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Abstract

Graph-based recommender systems are commonly trained in transductive settings,
which limits their applicability to new users, items, or datasets. We propose NBF-
Rec, a graph-based recommendation model that supports inductive transfer learning
across datasets with disjoint user and item sets. Unlike conventional embedding-
based methods that require retraining for each domain, NBF-Rec computes node
embeddings dynamically at inference time. We evaluate the method on seven
real-world datasets spanning movies, music, e-commerce, and location check-ins.
NBF-Rec achieves competitive performance in zero-shot settings, where no target
domain data is used for training, and demonstrates further improvements through
lightweight fine-tuning. These results show that inductive transfer is feasible in
graph-based recommendation and that interaction-level message passing supports
generalization across datasets without requiring aligned users or items.

1 Introduction

Recommender systems play a central role in many digital platforms, where they personalize content
by modeling interactions between users and items. Graph-based approaches have proven effective in
this setting, as they capture complex relational dependencies through message passing on user-item
interaction graphs. However, most graph-based recommenders are trained and evaluated within
a single dataset, making strong assumptions about the availability of domain-specific interaction
histories. This limits their ability to generalize to new users, items, or domains, and restricts their
applicability in real-world scenarios where data is sparse or fragmented across platforms. In contrast,
transfer learning has enabled substantial progress in fields such as natural language processing and
computer vision, where models pretrained on large datasets can be adapted to new tasks with limited
supervision. Despite this success, transfer learning remains underexplored in the context of graph-
based recommender systems. Existing methods often rely on transductive training paradigms or
assume overlapping user or item sets across domains. These constraints hinder their ability to perform
recommendation in settings where no such overlap exists and where target domain data is unavailable
during training. We address this gap by introducing NBF-Rec, a graph-based recommendation model
that supports inductive transfer learning across disjoint user-item graphs. NBF-Rec computes node
representations dynamically via message passing, without relying on pretrained embeddings or access
to the target domain during training. This design enables zero-shot recommendation in new domains
and supports further adaptation through fine-tuning when limited target interactions are available.
We evaluate NBF-Rec on seven real-world datasets spanning diverse application areas, including
movies, music, e-commerce, and location-based services. Our experiments show that the model
achieves competitive performance in zero-shot scenarios, and that fine-tuning on a small subset of
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Figure 1: Schematic overview of NBF-Rec’s inductive transfer learning pipeline. The model is
trained on user-item interaction graphs from one or more source domains and applied to unseen target
domains. Transferable patterns are learned from structural and interaction features without requiring
shared users or items.

target interactions leads to further improvements. These results demonstrate the viability of inductive
transfer learning in graph-based recommendation.

2 Related Work

Graph Neural Networks (GNNs) have become central in recommendation systems due to their
ability to model complex user-item relationships. Early models like LightGCN [1]] achieved strong
performance by simplifying message passing, but were transductive in nature and failed to generalize
to unseen nodes or graphs. To enable inductive reasoning, models such as MINERVA [2], GralL [3],
and RED-GNN [4] introduced path- and subgraph-based methods. NBFNet [3]], which forms
the foundation of our approach, learns to aggregate path-based messages in a query-dependent
manner, supporting inductive link prediction. More recent work has explored transfer learning
in GNNs to improve generalization across domains. ULTRA [6]] extended NBFNet for zero-shot
knowledge graph completion by jointly reasoning over relation and entity graphs. In recommendation,
most cross-domain models assume shared users or items [7], limiting their applicability. Other
works employ adversarial training [8]], contrastive disentanglement [9-12], or meta-learning [[13]
to address cross-domain generalization, but often rely on aligned entity spaces or domain-specific
supervision. Efforts leveraging pretrained language or vision models, such as U-BERT [14]] and
ChatRec [15], have shown promise for cross-domain recommendation but typically require rich
side information. In contrast, NBF-Rec operates solely on interaction graphs, without depending on
textual or visual content. Contrastive learning methods like SimGCL [[16]] and NESCL [17] enhance
transferability by regularizing representations, though they focus primarily on improving performance
within a single domain. Large-scale pretrained models have recently been explored as a unified
solution to recommendation tasks. P5 [[18]] formulates personalized recommendation as a text-to-text
problem and leverages large language models to handle multiple tasks across domains in a unified
framework. Similarly, GPTRec [[19] adapts generative pretrained transformers to model user behavior
sequences for next-item prediction. While these models achieve strong performance in zero-shot
and multitask settings, they require substantial pretraining and inference resources. In contrast,
NBF-Rec provides a lightweight alternative based on graph message passing, enabling inductive
transfer across datasets with disjoint user and item sets. To our knowledge, no prior graph-based
recommender has demonstrated scalable, inductive transfer across disjoint user-item graphs in a
purely interaction-driven setting.



3 Methodology

3.1 Problem Formulation

Recommender systems can be formulated as a link prediction task on a bipartite user-item graph. Let
U be the set of users and Z be the set of items. The history of interaction between users and items is
represented as a graph G = (V, E), where V = U U Z is the set of nodes and £ C U x Z denotes the
interactions observed between users and items. Each edge (u, ) € £ represents an interaction (e.g.,
user buying a product, watching a movie, or listening to a song). Given an incomplete graph G, our
goal is to predict missing edges, i.e., to recommend new items to users.

3.2 NBF-Rec Model Architecture

NBF-Rec is an inductive link prediction model that builds on neural Bellman-Ford networks (NBFNet)
and integrates edge features into the message-passing process. Edge features capture rich interaction-
level context and enable the model to distinguish different types and strengths of user-item interactions.
For example, in the Epinions dataset, edge features include category, rating, helpfulness, and times-
tamp, which provide nuanced signals about user preferences and item relevance. Similarly, the
LastFM dataset includes listening counts as edge features, reflecting users’ interaction frequency
and intensity with specific artists. Unlike traditional embedding-based approaches, which require
retraining when new users or items appear, NBF-Rec dynamically computes node embeddings for
previously unseen graphs. Given a user u, the message-passing procedure is defined as follows:

Initialization. Each node v is initialized according to the standard NBFNet scheme: hE}” =1(u=
v), which ensures that all information propagates from the query user u. Additionally, we define g as
the function that generates edge embeddings from raw edge features r:

g(T) = MLPeyp (MLPpmj (7’)) . (1)

This function consists of a dataset-specific projection MLP followed by a backbone embedding MLP.

Message Computation. At each layer ¢, the messages for a node v are computed as:
MM = {MESSAGE(hgf‘l),Wq(x,r,v)) | (x,r,v) € 5(1})}, )
where the edge weight is given by:

wq(z,7,v) = MLP, (g(r)) 3)

Here, edge features r are transformed into layer-specific embeddings via MLP;. The message function
is implemented using a non-parametric DistMult operation [20]].

Node Update. Each node v updates its representation by aggregating incoming messages along
with its initial embedding:

v

h{) = UPDATE (h(t—”, AGGREGATE (Mgﬂ U {r© })) . “

The aggregation function is a summation operation, followed by a learnable update function compris-
ing a linear transformation, layer normalization, and an activation function.

Score Generation. After T' layers of message passing, we compute logit scores for each node
v using a final MLP that projects the concatenation of the last-layer embedding and the initial
embedding to a scalar value:

score(u, ¢, v) = MLPyore (Concat(thT), hS,O)))- 3)

Notably, our model does not learn node-specific parameters, enabling node-inductive generalization.
Unlike traditional embedding-based methods such as LightGCN [[1], which precompute node embed-
dings and apply simple similarity functions for recommendation, our approach dynamically performs
message passing for each query.



Table 1: Dataset statistics for the seven real-world benchmarks used in our evaluation. For each
dataset, we report the number of users, items, and observed interactions, as well as the primary
evaluation metric used in our benchmarking.

Dataset #Users #Items #Interactions Metric
ML-1M [22] 5,950 2,811 364,654 Hits@10
LastFM [23]] 1,867 1,867 39,717 Hits@10
Amazon B. [24] 52,204 57,289 293,912 Hits@10
Gowalla [25]] 29,858 70,839 712,504 NDCG @20
Epinions [26] 21,008 13,887 266,791 Hits@10
BookX [27]] 12,720 18,318 276,334 Hits@10
Yelp18 [28] 31,668 38,048 1,097,007 NDCG@20

3.3 Training

Following the approach by Zhu et al. [21]], we train the model by minimizing a cross-entropy loss
over positive and negative triplets:

n

1
£: —logp(u,q,v)—Zglog(l—p(u;,q,vg)), (6)
i=1

where (u, ¢, v) is a positive interaction, and {(u},q,v;)}?_, are negative samples generated by
corrupting either the head u or the tail v. The negative samples are strict negatives, meaning they
do not appear in the training dataset and are selected uniformly at random. This loss encourages
the model to assign higher probabilities to positive interactions while minimizing the likelihood of
negative ones. To optimize our model, we remove easy edges (i.e. batch edges) from the convolution
graph during training. The training dataset defines the underlying graph for convolution, meaning
that for every batch edge, the corresponding edge is already present in the convolution graph. If
left unchanged, this setup would allow the model to trivially learn direct interactions rather than
extracting meaningful relational patterns. By removing these edges, we force the model to rely on
non-trivial paths.

3.4 Computational Complexity

NBF-Rec performs inference efficiently through dynamic message passing without precomputing
user and item embeddings. A forward pass consists of (1) edge embedding transformation (O(|E)|)),
(2) message passing (O(T'|E|), with T layers), and (3) score computation (O(|V])), resulting in
overall linear complexity in the number of nodes and edges. While NBF-Rec incurs higher inference
costs than models such as LightGCN, which precompute node embeddings, it enables transfer to
unseen nodes, a capability absent in transductive architectures.

4 Experimental Evaluation

4.1 Datasets

We evaluate NBF-Rec on seven real-world recommendation datasets spanning movies (MovieLens-
1M), music (LastFM), e-commerce (Amazon Beauty), location check-ins (Gowalla), product reviews
(Epinions), and local business ratings (Yelp18). Each dataset is modeled as a bipartite user-item graph,
with edge features such as ratings, timestamps, interaction counts, or metadata incorporated when
available. MovieLens-1M contains around 1M ratings from 5.9K users on 2.8K movies. LastFM
includes implicit feedback (e.g., play counts) between 1.8K users and artists. Amazon Beauty and
BookX represent large-scale product domains, with over 250K interactions each. Gowalla captures
spatio-temporal check-ins, while Epinions includes explicit ratings and user trust relationships.
Yelp18 contains over 1M user-business reviews with textual and temporal metadata. Dataset statistics
are summarized in Table
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Figure 2: Performance of NBF-Rec in zero-shot, fine-tuned, and end-to-end settings across seven
datasets. Metrics are Hits@ 10 or NDCG @20, depending on the dataset (see Table[I). Bars indicate
95% confidence intervals over 3 runs. Zero-shot transfer achieves competitive results.

4.2 Experimental Setup

For each dataset, we evaluate NBF-Rec in three settings:

* End-to-End Training: The model is trained and tested on the same dataset.

» Zero-Shot: NBF-Rec is pretrained on one dataset and directly tested on another without
fine-tuning. Embedding MLPs are randomly initialized.

* Fine-Tuning: The whole pretrained model is fine-tuned on the target dataset.

We pretrain our models on datasets using both single-graph and multi-graph configurations, where
we train on multiple datasets. Alongside our model, we also evaluate a simplified version of NBFNet
that relies solely on structural graph information. For evaluation, we use Hits@K and NDCG @K.
Hits@K measures whether a relevant item appears in the top K recommendations, while NDCG@K
incorporates ranking information by normalizing the discounted cumulative gain (DCG) against the
ideal DCG (IDCG). While Hits@K provides a binary assessment of whether a relevant item appears
in the top- K recommendations, NDCG@K captures both the presence and ranking of relevant items
in the list.

4.3 Results and Analysis

We evaluate the ability of NBF-Rec to generalize across recommendation domains in two inductive
transfer settings: (i) zero-shot transfer, where no target domain data is seen during training, and (ii)
fine-tuning, where the target data is used for supervised adaptation. Unless otherwise noted, results
are derived from a model pretrained on Amazon Beauty and Epinions. We report SOTA performance
for each dataset based on results from prior work (ML-1M [29], LastFM [30], Amazon Beauty [31],
Gowalla [32]], Epinions [28]], BookX [29], Yelp18 [32])). Figure2]shows the performance of NBF-Rec
in these settings compared to a domain-specific model trained end-to-end on each dataset. We observe
that zero-shot transfer yields competitive results across most datasets. For example, on MovieLens-
1M, BookX, and Yelp18, the zero-shot model achieves performance within 5% of the fully supervised
baseline. This demonstrates that NBF-Rec learns representations and message-passing procedures
that generalize to unseen user-item graphs without requiring retraining. Fine-tuning the pretrained
model on the target domain consistently improves performance across all datasets. The relative
improvement is most pronounced on LastFM and Gowalla, where the zero-shot setting initially
underperforms. These results suggest that even modest amounts of in-domain supervision suffice



1.0
Amazon B. ORI 0.09 0.30 | 0.20

=
9]
(%]
BookX 0.8 %
"&,‘ o
0n —
& Epinions g
© =
a 0.6 P
- (9]
E Gowalla S
= £
[} 0.4 o
) LastFM -
8 o
8 v
>
Mi1lm 5
0.2 3
]
o

Yelpl8

-0.0
I A " S
Q> o O &° & 4 RS
&L & s F ¥ e
&

Checkpoint (Train Dataset)

Figure 3: Cross-dataset transfer heatmap: each column indicates the training dataset and each row
the test dataset. Cell colors represent relative performance (normalized by row). NBF-Rec achieves
strong transfer when trained on Amazon Beauty, outperforming several dataset-specific models.

to close the gap to fully supervised models. Importantly, NBF-Rec supports this adaptation without
reinitialization or retraining from scratch.

Cross-Dataset Transfer. We analyze dataset-to-dataset transferability based on the heatmap in
Figure[3] Along the diagonal, models are evaluated in a zero-shot setting using only the pretrained
backbone checkpoint, without end-to-end training on the target domain. Notably, the diagonal does
not always yield the best performance: for instance, BookX and Amazon Fashion achieve higher
accuracy when transferred from other datasets than from their own backbone. This suggests that
pretraining on different domains can provide more effective inductive biases than pretraining on the
target domain itself. Edge features that are less informative, as observed in BookX and LastFM,
generally reduce transferability. However, rich edge features alone do not guarantee successful
transfer, as illustrated by Yelp’s relatively weak performance. Conversely, Gowalla, a large graph
with fewer edge attributes, transfers effectively. Finally, transferability is not symmetric: for example,
models trained on LastFM transfer well to MovieLens-1M, whereas the reverse transfer is less
effective.

Comparison with NBFNet. We compare NBF-Rec to its base model, NBFNet, which solely relies
on the graphs’ structural information to assess the impact of our modifications (e.g., the inclusion
of edge embeddings) on transferability and overall performance. Figure @ (Appendix) shows that
in the zero-shot and fine-tuning settings, NBFRec consistently outperforms NBFNet. Even under
end-to-end training, NBF-Rec usually performs on par with or slightly better than NBFNet. These
results confirm that NBF-Rec generalizes the NBFNet architecture by supporting inductive transfer
with node and edge embeddings while maintaining strong in-domain performance.

5 Conclusions

We presented NBF-Rec, a graph-based recommender designed for inductive transfer learning across
datasets with disjoint user and item sets. Unlike transductive models, NBF-Rec computes node
representations dynamically and supports generalization without retraining. Experiments on seven
real-world datasets show that NBF-Rec performs competitively in zero-shot settings and improves



further with fine-tuning, often matching end-to-end baselines. These results demonstrate the feasibility
of transfer in graph-based recommendation without shared entities. Our architecture primarily serves
to demonstrate that inductive transfer is a viable approach for graph-based recommendation. While
results vary across domains and our evaluation is limited to medium-scale datasets, the findings
indicate that effective cross-domain generalization is achievable and highlight transfer learning as a
promising direction for future recommender systems.
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A Appendix

We provide the comparison with NBFNet in Figurd4]
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Figure 4: Performance comparison between NBF-Rec and NBFNet across all datasets under end-to-
end, zero-shot, and fine-tuned settings. Incorporating interaction-level features and inductive training
enables consistent improvements in recommendation quality.
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