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ABSTRACT

Recent decades have witnessed great development of stochastic optimization in
training deep neural networks. Learning rate scheduling is one of the most im-
portant factors that influence the performance of stochastic optimizers like Adam.
Traditional methods seek to find a relatively proper scheduling among a limited
number of pre-defined rules and might not accommodate a particular target problem.
Instead, we propose a novel Graph-Network-based Scheduler (GNS), aiming at
learning a specific scheduling mechanism without restrictions to existing principles.
By constructing a directed graph for the underlying neural network of the target
problem, GNS encodes current dynamics with a graph message passing network
and trains an agent to control the learning rate accordingly via reinforcement learn-
ing. The proposed scheduler can capture the intermediate layer information while
being able to generalize to problems of varying scales. Besides, an efficient reward
collection procedure is leveraged to speed up training. We evaluate our framework
on benchmarking datasets, Fashion-MNIST and CIFAR10 for image classification,
and GLUE for language understanding. GNS shows consistent improvement over
popular baselines when training CNN and Transformer models. Moreover, GNS
demonstrates great generalization to different datasets and network structures. Our
code is available at https://github.com/xyh97/GNS.

1 INTRODUCTION

Stochastic optimization has achieved great successes in training deep learning models (Robbins
& Monro, [1951)), due to the tremendous data size and non-convexity of neural networks (Xiong
et al.,|2020). However, in contrast to classical and hyperparameter-free optimizers, performance of
widely used stochastic algorithms such as SGD and Adam is significantly dependent on the choice of
hyperparameters including batch size, learning rate and momentum coefficients (Xiong et al., 2020;
Sivaprasad et al.|2020; |Cooper et al.| [2021}; |Choi et al., 2019).

Learning rate scheduling is one of the most important factors which stochastic optimizers are very
sensitive to (Cooper et al.||2021;|Xu et al., 2019)). A fixed and static learning rate throughout the whole
training is insufficient to attain an optimal model. Thus, various scheduling algorithms (Gotmare
et al., 2018) including polynomial decay, cosine decay and warmup have been developed and each
of them is designed in a distinct form. In practice, models trained with an appropriate scheduling
mechanism can outperform those with a constant learning rate, in terms of convergence rate as well
as the final performance (Senior et al., 2013} |Gotmare et al.,|2018; [Loshchilov & Hutter, [2016).

As the learning rate scheduling is of vital importance to the model performance, how to tune it for a
given stochastic optimizer effectively and automatically has been investigated intensively. Current
approaches tackle this problem by assuming a particular learning rate scheduling rule (e.g., polynomial
or cosine decay, warmup and restart) based on empirical studies and domain knowledge (Xu et al.|
2017; |Gotmare et al., 2018)), and apply traditional hyperparameter optimization methods (Li et al.,
2017; Snoek et al., 2012} Bergstra & Bengio, 2012)) to tune the parameters of the rule. However,
searching within those pre-defined principles is restricted since the best learning rate scheduling for a
particular training problem may not exactly follow any existing rule.

To overcome this restriction, finding an optimal scheduler can be viewed as a learning-to-learn
problem (Andrychowicz et al., 2016} |Chen et al., 2020), where empirical scheduling principles are


https://github.com/xyh97/GNS

Published as a conference paper at ICLR 2022

replaced by a data-driven neural network alternative. For instance, attempts such asXu et al.|(2019)
and Xu et al.| (2017) model the learning rate scheduling as a sequential decision process where
the learning rate is modified in every decision step, and train a policy network with reinforcement
learning algorithms. However, these methods sacrifice rich state representations in order to maintain
generalization. This implies that problem-dependent information, such as the architecture of neural
networks to be optimized, and the state of intermediate neurons is not fully exploited. Therefore,
state-of-the-art algorithms such (Chen et al.|(2020) only represent the current state by the statistics of
final layer neurons. A straightforward way to leverage such information is to concatenate states in
every layer as a super vector. However, it would lead to the explosion of the input dimension and fail
to work in models with different sizes. Therefore it is nontrivial to obtain a representation of training
state that is both informative (being able to encode rich information of architecture and intermediate
neurons) and generalizable (can be applied to different architectures).

In this paper, we propose a Graph Network-based Scheduler (GNS) to overcome the above-mentioned
challenges. Different from previous attempts, our GNS makes full use of the problem structure:
since deep neural networks can be represented as directed graphs intrinsically [Zhang et al.|(2018),
we leverage graph networks to encode states into latent features with richer information and such
a design allows GNS to be easily transferred to different network architectures at the same time.
Moreover, an action definition for stabling training and an efficient reward signal collection procedure
are designed for our GNS framework.

Our main contributions are summarized as following:

* We develop the Graph Network-based Scheduler (GNS) to search for the best learning rate
scheduling rule by representing the target network as a directed graph. Our dynamic learning
rate scheduler can thoroughly capture the intermediate layer information of neural network
in both image classification and language understanding tasks. Also, an efficient reward
collection procedure is designed to speedup our method.

* We apply the proposed GNS to multiple training tasks. In particular, GNS achieves average
scores of 85.2 and 87.8 on GLUE with RoBERTa-base and -large respectively and outper-
forms 84.7 and 86.9 from the best existing learning rate schedule. Note that unlike previous
learning-to-learn methods that mostly are applied to toy examples such as CIFAR-10, we are
the first to apply automatic learning rate scheduling to challenging tasks such as RoBERTa
training and improve the performance of those realistic large models.

* We demonstrate that the GNS framework is able to generalize to problems of different
datasets (from CIFAR10 to CIFAR100) and model structures (from ResNet to VGG, and
from RoBERTa-base to RoBERTa-large).

2 RELATED WORK

Learning rate scheduling. This topic has been an open problem in stochastic optimization.
In |Almeida et al.| (1998) and Baydin et al.| (2017), learning rate was regarded as a trainable pa-
rameter and modified using its gradient with respect to the objective function. [Sutton| (1992) and
Schraudolph et al.| (2006)) considered a meta-descent algorithm to adjust local learning rate with a meta
one. In the era of deep learning, a number of adaptive optimization algorithms have been proposed,
such as RMSProp (Tieleman & Hinton} 2012), AdaGrad (Duchi et al., 2011}, and Adam (Kingma
& Bal 2014). They conduct parameter-wise adaptation to learning rate based on heuristics of the
geometry of the traversed objective. For instance, RMSProp normalizes the learning rate with the
magnitude of recent gradients while AdaGrad generates a large learning rate for infrequently-updated
parameters. Complimentary to these parameter-wise adaptations, some predefined learning rate
schedulers are also observed beneficial to training performance (You et al., 2019; |Ge et al., 2019;
Schaul et al., 2013} Senior et al., 2013). Mechanisms like polynomial (Mishra & Sarawadekar, [2019)
and cosine decay (Loshchilov & Hutter, 2016) together with a warmup process (Gotmare et al.,
2018) improve the convergence rate and final performance of deep learning models empirically.
However, they still hold additional hyperparameters to be tuned. At the same time, these parametric
schedules have limited flexibility and may not be optimized for the training dynamics of different
high dimensional and non-convex optimization problems (Xu et al., 2017;2019).

Reinforcement learning. The goal of reinforcement learning (RL) is to find an agent that produces an
optimal policy to maximize a cumulative reward (Sutton & Barto, 2018])). Recently, deep reinforcement
learning with neural networks as approximation functions has shown great potentials in many
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applications, such as Atari games (Gu et al., 2016; Hester et al.l 2018; |Schulman et al., [2017),
Go (Silver et al.L 2016 2017), and training deep learning models (Zoph & Le, [2016; |Cubuk et al.,
2018). There are also several attempts to apply RL to learning rate controlling. For example,
Daniel et al.| (2016) proposed to improve the stability of training w.r.t. the initial learning rate via
reinforcement learning. [Li & Malik] (2016)),|Xu et al.|(2017)) and Xu et al.|(2019) leveraged RL agents
to adjust the learning rate to reach a final performance whereas their selection of state features, reward
and action leads to an inefficient training process, and is difficult to scale up to large models such as
BERT (Devlin et al.,[2018)) and RoBERTa (Liu et al.,{2019)).

Graph Neural Networks. Graph Neural Networks (GNN) is a type of neural networks that operate
on graph data and structure their computations accordingly (Battaglia et al., [2018). A graph network,
or a graph-to-graph module, can be interpreted as a mapping from an input graph to an output graph
with the same structure but potentially different node, edge, and graph-level representations (Battaglia
et al.l 2018} [Sanchez-Gonzalez et al., [2020). The most important component in GNN, Message
Passing Neural Networks (MPNN) (Gilmer et al.| 2017), have been shown effective in learning
dynamics for graph-structured settings. Generally, MPNN utilizes the graph structure to propagate
information between nodes via edges, and extract latent features for downstream tasks. Variations
such as GCN (Kipf & Welling,|2016) and Interaction Networks (Battaglia et al.l [ 2016)) have previously
demonstrated promising results on simulation tasks in the field of physics (Battaglia et al.l 2016}
Sanchez-Gonzalez et al.;[2020) and chemistry (Gilmer et al., 2017; You et al., [2018]).

3 REINFORCEMENT LEARNING FOR LEARNING RATE SCHEDULING

In this section, we formulate learning rate scheduling as an RL problem, with the goal to find an
optimal control policy to maximize the accumulated reward in the current environment which is
defined by the target training problem.

3.1 REINFORCEMENT LEARNING

Reinforcement learning aims at solving a group of problems, known as Markov Decision Process
(MDP) with an agent choosing optimal actions (Sutton & Bartol [2018])). Typically, the MDP problem
is formulated by a tuple M = (S, A, P, R,~). Given the state set S and action set A, the reward
function R is a mapping of S x A — R. The discounted return is denoted by R, = Y, Yri
where -y is a discount factor for future rewards. P is the state transition function, which specifies the
probability p(s¢+1]S¢, a:) and is usually determined by the environment itself. To encourage more
exploration, we focus on a stochastic policy 7(a|s), which maps states to action probabilities.

3.2 LEARNING RATE SCHEDULING AS A MDP

For most problems involved in training deep neural networks, a standard approach for the objective
function minimization is stochastic gradient descent on a certain form (Robbins & Monrol [1951}
Kingma & Ba, 2014} |Duchi et al., 2011)), which sequentially updates the parameters using gradients
by wi+1 = wi — ay, - gx. Specifically, wy, represents network parameters to be trained and « is the
global learning rate. gi is defined by the optimizer (e.g., g; can be the SGD or Adam direction). For
learning rate scheduling, we primarily consider generating a sequence for the global learning rate .

We can formulate learning rate scheduling into a sequential decision process. In each environment
of a particular optimization task, states can be described by dynamics of the target network such
as a combination of weight and gradient values (Xu et al., [2019} Daniel et al., 2016)). Actions can
be any operation that might change the learning rate. As to rewards, since the ultimate goal is to
achieve higher final performance, metrics like loss or accuracy can serve as a signal to guide the agent
training. Besides, as training a deep learning model usually requires a large number of iterations,
rather than a single optimization step, we execute an action every K steps to avoid instability from
too frequent learning rate modifications. By training such an agent modeled as a policy network, we
can obtain a learning rate scheduler to adjust learning rate dynamically.

4 METHOD

4.1 STATE ENCODING WITH GRAPH NEURAL NETWORKS

The selection of features to represent the environment is of vital significance. Previous work such as
(Xu et al.,|2017) and (Xu et al.; 2019) aims to learn a generalized agent that can be applicable to any
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network architecture, so they were only able to utilize statistics of the final layer to describe the state.
It might work for small scale models, but when dealing with large ones like ROBERTa (Liu et al.,
2019)), solely using information of the last layer is insufficient to describe the environment.

A straightforward way to obtain a more thorough representation is to utilize dynamics of all layers in
a neural network and concatenate them into one super vector. However, such a representation cannot
guarantee promising results as shown in Section [5.6]of ablation study. The problem is that naively
concatenating all features increases the input dimension and does not explore the correlation between
layers. For instance, dynamics between nearby layers should have a higher correlation than layers
that are far away. This concatenation also loses transferrablity to different network structures.

Therefore, to maintain a rich state description and generalization in the meanwhile, we construct
a computational graph to depict the state. We represent a network structure as a directed graph
G = (£,V). Each node v denotes an operator f,(-; w,) (convolution, linear, etc.) parameterized by
w, which generates an output activation tensor. An edge e,,,, € £ represents the computation flow
from node u to node v. The output for node v is computed by applying its associated computational
operator taking all source nodes as the input. Examples of the graph structure of a neural network are
presented in Figure[Ia) and (b). For each node v with trainable parameters w,, the raw feature x,,
includes the mean and variance of weights, biases, and absolute gradient values of w,,, as well as
global dynamics of the previous learning rate and the average training loss in the decision step. In
the end, the environment can be represented by a graph with a feature matrix X € RV < and the
adjacency matrix A € RY*N where N is the number of nodes and F is the feature dimension.
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Figure 1: (a) A repeated block in ResNet models. (b) A repeated block in Transformer models. (c)
[lustration of the hierarchical GCN message passing.

Given an input architecture, we describe the state as a graph G with the feature matrix X and the
adjacency matrix A. Then we can feed G into an encoder F, modeled as a graph convolutional neural
network (GCN) (Kipf & Welling, 2016)), one of the most effective techniques to achieve message
propagation. More concretely, hidden features can be extracted by

H'™' = E(H, A) = ¢(AH'W!), (1)

where HY is initialized as X, A is the normalized adjacency matrix with a self-loop in each node,
and W' is the parameters of the [-th layer of GCN.

However, a deep learning model usually adopts hundreds of operations and results in a large compu-
tation graph which is hard to process. We notice that repeated blocks are stacked in commonly-used
structures such as ResNet (He et al.l 2016)) and Transformer (Devlin et al., [2018; Vaswani et al.,
2017) to boost the expressiveness of the network (Zhang et al., 2018;|Zoph et al.||2018)), shown in
Figure[T[a) and (b). Instead of passing messages through the whole graph directly, we separate the
graph into a number of blocks as {G; = (V;, &; )}M 1 and each block has a group of nodes. M is the
number of repeated blocks, and G stands for the input block (e.g., embedding layers) while Gy 1
represents the output block (e.g., classification layers). We can then use a shared encoder across
different blocks as shown in Figure[T|c) to conduct information propagation. This is implemented
by a hierarchical GCN as follows: (i) compute latent features of nodes in each block by Eq. (1} (ii)
summarize the i-th block as hg, = AGG({h,|v € V;}); (iii) then use h, as the input node feature
for the next block: (iv) Finally, to obtain the graph level information to describe the whole network,
we just take the aggregation over each node by hg = AGG({h,|v € V}). Here, we use the mean
function as aggregation function to allow generalization to different structures.
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Compared with a concatenated state with dynamics in all nodes, representing the environment as
a graph and then encoding it via a hierarchical GCN have two primary advantages: (1) GCN can
capture the correlation between neighboring nodes and generate a meaningful latent feature for action
prediction; (2) a shared encoder can learn message passing within one block and between blocks
in the meanwhile and is not constrained to a specific graph structure. In detail, the dimension of a
concatenated representation varies between different network architectures, for example, ROBERTa-
base and -large models. A scheduler learned from such concatenated states fails to work in another
environment due to the input mismatch. On the contrary, by stacking the same encoder along the
depth dimension, we can transfer our graph-network-based scheduler trained on one network to the
new environment of another different network directly or with slight fine-tuning.

4.2 ENVIRONMENT DESIGN

We discuss the remaining components of the environment of the target problem involved in neural
network optimization in this part besides the state. An effective set of reward functions and actions is
defined to facilitate an efficient and generalizable agent.

Action. We adopt the action as scaling the previous learning rate by a factor (Xu et al.l |2019)
considering the wide range of «. Through that operation, the learning rate can be changed stably and
consistently. More concretely, after each action execution, a1 = ay - (1 + ay).

State transition. As mentioned in Section once we modify the learning rate to a;41, we execute
the update rule of gradient descent for K batches to get the next state s, 1.

Reward design. With the goal of the agent to achieve higher final performance, there are a series of
metrics that can be leveraged, such as validation loss and accuracy. In|Xu et al.| (2019)), validation
loss at each decision step serves as an immediate reward. However, loss might not be an ideal
indicator for task specific metrics which we are ultimately concerned with, like accuracy, F1 score
and correlation (Venter et al.,2021). Thus, we choose to use such task-related metrics directly instead
of the loss. On the other hand, since defining an intermediate reward can utilize training information
thoroughly and provide direct feedback (Xu et al.l|2019), we take the performance difference between
two steps as the reward signal:

re = Pry1 — B, 2
where P; represents the validation result under the given metric at the ¢-th decision step. Whereas,
computing a reward in Eq. [2]indicates that we have to conduct a validation procedure every decision
step, which is a non-trivial burden. In order to make training more efficient, we turn to reduce the
frequency of validation with a probability p, i.e., the validation is only carried out if the number
randomly sampled from Uni(0, 1) is less than p. Specifically, suppose under our principle, we
calculate the validation metric P;, and P, at the decision step ¢; and ¢ respectively. The reward
signal for each step can be derived by linearly distributing the difference as follows:

/ P, to

iy
Tt = tittl,vt € [tl,tQ). (3)
2— U

4.3 GRAPH NETWORK-BASED SCHEDULER

With illustration of the environment design, we can then move to the general framework of our
Graph Network-based Scheduler (GNS). As shown in Figure |2 at each decision step, GNS takes
the observation s; as input, encodes s; into h;, sample an action a; based on the policy network,
evaluates the value of s, then execute the action to render the next state s; ;.

Sampling . )
&Evaluation,  V'(st) = ms(hy) Execution Rendering

o e ) a1~ Ny (), 0%) a1 = (L +ad)- o st

Encoding

Figure 2: The transition from s; to s441.

In the procedure of sampling and evaluation, we use the hidden feature h; to evaluate the current state
and predict the action. Denote m and m s as two different MLPs. Specifically, the state value can be
computed by V (s;) = ms(h:). Then we calculate the mean of the action and the policy 7 samples
a; from the corresponding normal distribution in Eq. ] with a fixed deviation o

ar ~ N (pe, ), e = 0.1 - tanh(my(hy)). 4)
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By Eq. ] we can constrain that the scale factor (1 + a;) is within the range of [0.9, 1.1] at most of
the times in order to train the target network stably (Xu et al., [2019)).

As to the agent training, we first parameterize the value network V' (critic), and policy network
m (actor) by ¢, o respectively for clarity. Each environment of the target problem has a fixed time
horizon T, i.e., the number of total training steps, which is called as one episode. We adopt Proximal
Policy Optimization (PPO) (Schulman et al.,2017) in the actor-critic style to optimize our scheduling
policy, which is the state of the art on-policy RL methods in many continuous control tasks (Achiam)
2018 Berner et al.| 2019). On-policy RL methods only use the experience generated by current
policy. Therefore, the training will be more stable due to the training data distribution. The key
objective function of the policy network is defined as

Ty (atst)

L (p) = E, [min(pt(w)fitaclip(m(m 1—e 1+ 94|, pi(p) = - als)’
Pold

(&)

where p; () is the probability ratio and A, is the estimated advantage value. Besides, a learned
state-value function V4 (-) is leveraged to reduce variance in advantage estimators and can be trained
by minimizing the following squared-error loss:

L(¢) = Ee[(Vi(se) — Vi™8)?), (6)

where Vttarg = 1t + YV (8¢4+1). During the training phase, we run the agent in the environment for
one episode, and then update the value and policy network at the end. We reset environment at the
beginning of each episode and repeat the process for multiple episodes. The detailed algorithm is
presented in Appendix |Al When applying the scheduler, we first sample a number of initial learning
rates, run each setting for 7}, steps, compute corresponding V'(s7,,, ), and choose the learning rate
with the largest value to complete the training.

5 EXPERIMENTAL RESULTS

To validate the effectiveness of GNS, we evaluate our method on various tasks in image classification
and language understanding, and compare it with popular learning rate scheduling rules. We further
investigate the generalization of GNS on different transfer tasks. In addition, we conduct an ablation
study to analyze the state representation and reward collection.

5.1 EXPERIMENTAL SETTINGS

In this section, we present our experimental settings. Further details can be found in Appendix

Image classification. We consider two benchmark datasets in image classification, Fashion-
MNIST (Xiao et al.l 2017) and CIFAR10 (Krizhevsky et al.,[2014). These two datasets are first
split into the standard training and test sets. Then we randomly sample 10k images for each dataset
from the training set to construct a validation set. A ResNet-18 (He et al.l 2016) model is trained on
Fashion-MNIST while a ResNet-34 (He et al.,|2016)) is trained on CIFAR10. We use Adam (Kingma
& Bal [2014)) with the batch size of 128 for 200 epochs to train these two image classification tasks.

Language understanding. For language understanding, we conduct experiments on GLUE (Wang
et al.,2019), a benchmark consisting of eight sentence- or sentence-pair tasks. They are divided into
training, validation and test sets and we have no access to ground truth labels of test sets. On each
dataset, we fine-tune a pre-trained ROBERTa model (Liu et al.,2019), use it to generate predictions
on the test set, and obtain the corresponding performance through the official GLUE platform. Both
RoBERTa-base and -large models are evaluated. No ensembling techniques are adopted for purely
validating the effectiveness of our proposed scheduler. The AdamW (Loshchilov & Hutter, [2017)
optimizer is adopted to train ROBERTa models. Details of other hyperparameters like batch size and
episode length for each task are provided in Appendix

Baselines. Three hand-designed scheduling mechanisms (constant, polynomial decay, cosine decay),
one gradient-based method Hypergradient (Baydin et al.| [2017), and one learning-based method,
SRLS (Xu et al.}[2019) are compared with our GNS framework as baselines. For traditional schedulers
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with the warmup process, we use the following equation to summarize them:

Leur .
T2 Olmax ) warmup;
teur—Tus -
N (max — Qmin) (1 - Tdce“;y_ﬁf;‘m) + Omins polynomial; o
.=
1 tewr— T -
[E(amax — Qmin) (1 + COS(HT()) + amin} , cosine;

Omin, constant.

In detail, aypax and aupin = ftamax are the maximum and minimum learning rate respectively during
the training. Tio is the number of total training steps, Twarm = 71 Ttotar 1 the number of warmup steps
and Tyecay = M2Tioral 1s the number of decay steps. We tune all hyperparameter combinations within
the search space in Appendix [B]and select the configuration with the best validation performance.
Then we run the experiment 5 times and report the average test performance. For Hypergraident and
SRLS, we follow training details in|Baydin et al.[(2017) and |Xu et al.|(2019) respectively.

GNS implementation. To encode raw observations into latent features, we use a 2-layer GCN (Kipf
& Wellingl 2016) with 64 dimensional node embeddings in all hidden layers, and apply batch
normalization for each layer. After a shared encoder, each of the value network and policy network
has an MLP with a hidden layer of size 32. Our GNS is trained with PPO (Schulman et al.,[2017)
for 30 episodes for ResNet models and RoBERTa-base while 10 episodes for RoOBERTa-large by
fine-tuning the agent learned from RoBERTa-base, by an Adam optimizer of the learning rate 0.005
and 0.001 for the critic and actor respectively.

5.2 RESULTS ON IMAGE CLASSIFICATION

In this section, we present experimental results of image classification tasks. Test accuracy obtained by
different schedulers are shown in Table[T] It can be observed that the constant learning rate scheduling
is insufficient to lead to a satisfactory result and is beaten by all other methods. Although hand-
designed schedulers like polynomial and cosine decay and the gradient-based method Hypergradient
can make an improvement over a constant learning rate, learning-based methods can still outperform
them. In particular, GNS achieves much better accuracy on both Fashion-MNIST and CIFAR10 than
SRLS, due to a richer state representation from the utilization of the model’s graph structure.

Table 1: Test accuracy on Fashion-MNIST and CIFAR10 of different schedulers

Scheduler Fashion-MNIST CIFAR10

Constant 93.0+0.2 93.0+0.4
Polynomial 93.4+£0.1 93.5+0.3
Cosine 93.4+0.1 93.6 £0.4
Hypergradient 93.5+0.2 93.7+£0.6
SRLS 93.6+0.3 93.6 £0.6
GNS 94.6 + 0.2 94.3 + 0.5

5.3 RESULTS ON LANGUAGE UNDERSTANDING

Apart from image classification, we also focus on language understanding tasks on eight GLUE
benchmark datasets. Two models with different sizes, ROBERTa-base and RoBERTa-large, are
evaluated and detailed results are reported in Table[2] As expected, adjusting learning rate rather than
keeping a constant one contributes to the test performance. In addition, a consistent performance
boost can be observed in GNS over all eight datasets for both base and large models. Specifically,
it achieves a score of 85.2 and 87.8 on average in RoBERTa-base and -large model respectively,
while the best baseline in each scenario only reaches 84.5 and 86.9. It should be noticed that SRLS
performs poorly and even cannot surpass the constant scheduling. It is likely that the simple state
design of SRLS (only using information in the last layer) constrains its ability to adjust the learning
rate dynamically, especially for large models like ROBERTa. Thus, SRLS fails to generate a good
scheduling to improve the performance.

We plot learning rate scheduling trajectories for three tasks in Figure[3} MRPC, RTE, and STS-B.
It can be observed that different mechanisms are deployed for distinct tasks. The learning rate is
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Table 2: Test performance of ROBERTa on GLUE benchmarking of different schedulers.

Scheduler CoLA SST-2 MRPC QQpP STS-B MNLI QNLI RTE Avg.

Base model:
Constant 60.5+04 951+02 869+06 89.0+00 83.6+02 87.0+0.1 929+0.1 73.0+03 84.1
Polynomial  61.2+0.3 953+03 872+04 892401 893+03 873£02 93.0+£0.1 73.1+04 844
Cosine 612+03 954+03 872+05 892401 894+01 87.2+£01 93.0+£02 735+03 845
Hypergradient 61.0+04 9534+02 870+04 89.1+£02 894+02 87.1+0.1 93.0+0.1 734+05 844
SRLS 584+12 953+03 868+05 884+01 8.4+03 86.7+£02 923+02 70.8+0.7 835
GNS 63.3+05 958+0.2 87.7+0.5 89.6+00 89.7+01 87.7+02 932+0.0 744+03 852

Large model:
Constant 63.1+07 9584+02 877+£0.7 892+0.0 90.1+03 900£02 940+02 80.6+02 863
Polynomial 642 +0.8 959+04 884+£0.7 892+01 91.1+£02 900+00 945+0.1 820£02 869
Cosine 633+0.6 958+03 885+06 893+00 91.2+02 899+02 943+02 81.0+£03 86.7
Hypergradient 63.3+0.7 957+04 882+08 892+0.1 91.0+03 899+03 944+02 814+04 86.6
SRLS 623+05 959+03 875+12 882+02 912+04 888=£01 934+02 798+03 859
GNS 658 +0.7 96.7+01 89.0+09 897+01 921+02 904+01 947401 84.0+0.2 878
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Figure 3: Learning rate trajectories generated by GNS for three tasks.

generally adjusted in a similar trend for both ROBERTa-base and large models within a task. Specifi-
cally, we can see that the learning rate for MRPC is not modified aggressively. For RTE, a decayed
scheduling is learned while there is a warmup-like procedure followed by a decreasing tendency for
STS-B. Besides, it should be emphasized that the learning rate does not change monotonically, and
there are ups and downs during the training to react to the environment observations dynamically.

5.4 GENERALIZATION OF GNS

Due to the utilization of hierarchical GCN as the learning rate scheduler described in Section [#.3]
our GNS can be transferred to different but similar graphs, e.g., ResNet and VGG (Conneau et al.,
2016) structures on CIFAR10. Thus, we conduct an experiment to evaluate the generalization of
the learned scheduler. We select the policy network trained under the environment of ResNet-34,
and apply it directly to the task with VGG-16. For all other baselines, we simply adopt the best
hyperparameter configuration of ResNet-34 to train the VGG-16 network. Results are shown in the
second column of Table[3] We can see that GNS can still achieve the best performance on the VGG
model while the hyperparameter settings of other methods are not suitable for the VGG model. It
indicates that GNS is able to learn the fundamental rule to conduct message passing between nodes
and is generalizable to various graphs. We also evaluate the generalization of GNS on language tasks
from RoBERTa-base model to large model in Appendix [E| The excellent transferred performance
also explains why only a few episodes are needed when fine-tuning the agent under RoOBERTa-large
models. In addition, GNS can be utilized to the same network structure but on different datasets.

Table 3: Transferred performance of GNS.

Scheduler ResNet — VGG  CIFAR10 — CIFAR100 CIFAR10 — ImageNet

Constant 91.4+£03 69.3+0.3 68.9
Polynomial 91.8£0.3 705 £ 04 70.3
Cosine 91.7+04 71.2+£02 70.5
Hypergradient 91.5+£05 709 £0.3 70.0
SRLS 91.7+£03 71.0 £ 0.6 71.6
GNS 925+ 04 72.3+0.3 73.1

Specifically, we apply the graph scheduler trained on ResNet-34 for CIFAR10 to training a ResNet-34
network for CIFAR100 and ImageNet. It can be observed in Table [3|that GNS achieves 72.3% on test
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accuracy and outperforms 71.2% of the best baseline scheduler with a cosine decay on CIFAR100.
On ImageNet, transferred performance of GNS is 73.1% and is still better than the best baseline of
71.6%. Such a performance further validates that GNS is generalizable to different datasets.

5.5 RUNNING TIME COMPARISON

Compared with SRLS in which validation is required in every decision step, GNS can reduce a
considerable amount of time with the validation probability p = 0.2. We consider training RoOBERTa-
base in this section. For instance, when running on MRPC for 5 epochs, we need to make 58 decisions
with the number of network updates K = 10. The average time of one episode with one NVIDIA
1080Ti GPU of SRLS is 405s while GNS only takes 259s, which decreases the original cost by 30%.

For hand-designed rules, there are 40 hyperparameter settings shown in Appendix [B|to be considered
for RoBERTa fine-tuning while it takes 30 episodes to train the learned scheduler. The time for
running one setting is 223s on average. Thus, a thorough grid search among these 40 settings
consumes approximately 2.5 hours. On the contrary, GNS takes 2.2 hours and even achieves better
results. Furthermore, fine-tuning the scheduler on RoBERTa-large from the base model only requires
10 episodes and costs much less time than grid search in all configurations.

5.6 ABLATION STUDY

In this part, an ablation study is carried out to corroborate that the design of state representations and
reward collection play an important role in the GNS framework.
Table 4: Test performance of three scheduler variants for RoBERTa-base.

Scheduler CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.

SRLS 584+12 953+03 868+05 884+01 89.4+£03 86.7£02 923£02 708+£0.7 835
CSS 60.0+05 949+0.1 8714+03 89.2+02 887+03 864+£01 923+£02 722+05 838
FRS 63.5+03 959+03 877+04 894+00 894402 87.6+02 93.2+01 74.6+04 852
GNS 63.3+05 958+02 87.7+05 89.6+0.0 89.7+0.1 87.7+0.2 932+00 744+0.3 852

State representations with graph networks. To show advantages in encoding the state by a graph
neural network, we compare our GNS with a variant called concatenated-state scheduler (CSS), where
features of all nodes in the state graph are concatenated to form a super representation and then fed
into subsequent neural networks for controlling the learning rate. Compared with the basline SRLS
that only uses the final layer state, CSS uses all layers but without using GCN to exploit correlation
between layers and cannot be applied to different target models. We can observe from results in Table
M) that using a concatenated state slightly outperforms SRLS but is still insufficient to render as a
competitive scheduler as GNS, which shows the importance of encoding by graph neural networks.

Reward collection with a probability. We also compare the difference between collecting a reward
signal at every decision step (the variant is denoted as full-reward scheduler, FRS) and collecting
it with a probability. We report the evaluation metric on the test set in Table[d We can see that an
instant reward cannot necessarily improve the final performance of the learned scheduler. It is likely
that the performance does not improve monotonically and typically oscillates during the training. For
example, in two consecutive decision steps, the latter one gives us a worse validation result, leading
to a negative reward computed by Eq. 2] and indicating that the action is not good. However, this
information might be misleading and impede agent training. Thus, to alleviate such a phenomenon,
we design a stochastic reward collection procedure, expecting to obtain more useful signals.

6 CONCLUSION

This paper proposes a novel graph-network-based scheduler to control the learning rate dynamically
by reinforcement learning. We are the first to take into consideration the structure of the target
optimization problem with neural networks, and hereby leverage message passing via the graph to
encode the state for predicting the action. Comprehensive experiments have shown that GNS can
consistently achieve performance boosts on benchmark datasets in both image classification and
language understanding. However, in this paper we only focus on problems with a moderate time
horizon. How to efficiently train a learning rate scheduler for a problem with hundreds of thousands
optimization steps such as BERT pre-training with techniques like early stopping and successive
halving can be a potential future direction.
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A GNS ALGORITHM

Algorithm 1 Graph Network-based Scheduler.

Input: Value network parameterized by ¢, action network parameterized by ¢, # updates T, decision
interval K, prior learning rate distribution D,,

1: for episode =1,2,... do

20 t+1

3 Sample an initial o from the prior distribution D,,

4: fori=1toT do

5: Conduct one optimization step by w41 = wy — ay - g With oy

6

7

8

if - mod K == 0 then
Obtain the graph state representation s,
Sample an action a; and modify the learning rate by a;11 = ¢ - (1 + ay)

9: Conduct validation as described in Section [4.2]
10: t+—t+1
11: end if
12:  end for

13:  Calculate rewards by Eq. (3) and organize the trajectory as 7 = {(s¢, as,7¢) tT:/{ K

14:  Update ¢ and ¢ using T based on PPO algorithm
15: end for

13
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B ADDITIONAL IMPLEMENTATION DETAILS

In this section, additional implementation details are provided for reproducing experimental results.

B.1 SEARCH SPACE FOR HAND-DESIGNED SCHEDULERS

As mentioned in Section 4.1, we need to conduct hyperparameter optimization on hand-designed
learning rate schedulers. The search spaces for image classification and language understanding tasks
are presented in Table [5]and [6|respectively, which are selected based on previous work |Choi et al.
(2019); L1u et al.|(2019); Devlin et al.| (2018)).

Table 5: Search space for image classification

Hyperparameter Tuning range
O'max [10_1’ 10_2, 10_3]
m [1071,1072,1073]
N2 [0.5, 1.0]
p (1,2]

Table 6: Search space for language understanding

Hyperparameter Tuning range
Olmax [1x107%,2x 1079]
m [0, 0.025, 0.05, 0.075, 0.1]
p (1, 2]

B.2 EXPERIMENTAL SETTINGS ON IMAGE CLASSIFICATION

We present a detailed hyperparameter configuration for two image classification tasks in Table

Table 7: Hyperparameter configuration for GLUE benchmarking datasets.

Fashion MNIST CIFAR10

batch size 128 128

# updates T' 78200 62600
decision interval K 500 500
Metric Acc Acc

B.3 EXPERIMENTAL SETTINGS ON GLUE

We further elaborate on details of GLUE benchmarking. All RoOBERTa models in this paper are
implemented by Huggin Faceﬂ ‘Wolf et al.|(2020) and pre-trained models are obtained from the
corresponding model hubf’| We use suggested values of batch size and the number of updates in|Liu
et al.| (2019) for all eight tasks, as shown in Table E} In addition, the decision interval and the metric
for reward computation of each dataset are provided. All tasks are optimized by AdamW with the
weight decay of 0.1.

https://github.com/huggingface/transformers
nttps://huggingface.co/roberta-base and https://huggingface.co/
roberta-large
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Table 8: Hyperparameter configuration for GLUE benchmarking datasets.

CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE

batch size 16 32 32 32 16 32 32 16
# updates T’ 2680 10525 575 56855 1800 61360 16370 1560
decision interval K 10 100 10 1000 10 1000 100 10
Metric Corr! Acc Acc Acc Corr? Acc Acc Acc

! Mathew’s correlation.
2 Pearson correlation.

B.4 HYPERGRADIENT

We present the details of Hypergradient in Algorithm[2] We still have two tunable hyperparameters for
Hypergradient, o and 3. The search space for image classification is: ag € [1071,1072,1073] and
B € [1077,1078,10~°]. The search space for language understanding is: oy € [1 x 1075,2 x 107?]
and 3 € [1077,1078,1079].

Algorithm 2 Adam with Hypergradient descent (Adam-HD)

Require: : «ag: initial learning rate
Require: : 3: hypergradient learning rate
Require: 1,52 € [0, 1): decay rates for Adam

t, mo, v, Vaug < 0,0,0,0 > Initialization
Update rule:

my < PBime—1+ (1 —P1) g > 1st mom. estimate
v < Bavi_1 + (1 — B2) g7 > 2nd mom. estimate
My < my /(1 — BY) > Bias correction
Vp vy /(1 — BE) > Bias correction
ug < —oy My / (V04 + €) > Parameter update

Vaut — —ﬁlt/(\/ﬁ—F 6)

B.5 FURTHER COMPARISON OF SRLS AND GNS

Due to the property of shared parameters in graph neural networks, our GNS does not introduce many
extra parameters and it takes similar time to train GNS compared with training the original policy
network in SRLS. On the other hand, although the efficient reward collection can be applied to SRLS
as well, there is still an obvious performance gap between GNS and SRLS, as shown in Table 9]

Table 9: Test accuracy of SRLS and GNS under reward collection with p = 0.2.

Scheduler Fashion-MNIST CIFAR10

SRLS 935+04 934+03
GNS 94.6 + 0.2 94.3 + 0.5

C GRAPH REPRESENTATION OF ROBERTA

We present a complete graph representation of RoOBERTa-base model in Figure [ for clarity. There
are 12 repeated blocks in total in RoBERTa-base.
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Figure 4: A graph representation of RoBERTa-base model.

D DEeTAILS OF PPO

As mentioned in Section 3.5, we adopt Proximal Policy Optimization (PPO)|Schulman et al.|(2017) in
the actor-critic style to train our scheduling policy. The key objective function of the policy network

is defined as
. ) I . To(at|s
L (p) = Eq [mln(pt(w)At»chp(pt(w% 1—¢€1+ G)At)} pe(p) = Toladds)

T oo (at ‘St) ’

(®)

where p;(¢) is the probability ratio and A, is the estimated advantage estimator. Ay is computed by
generalized advantage estimation (GAE) Schulman et al.|(2015) taking the form of

Ay =60+ (YN)ps1 + -+ (N oy, )

where 8, = V" — V(s;) = 1, + 7V (si11) — V (s} This objective can further be augmented by
adding an entropy bonus to ensure sufficient exploration, as suggested in|Schulman et al.| (2017):

L(p) = L™(p) + c - entropy[m,] (s¢).- (10)

Then ¢ can be optimized by maximizing Eq. equation[I0] Besides, a learned state-value function
V(-) is leveraged to reduce variance in advantage estimators and can be trained by minimizing the
following squared-error loss:

L(¢) = E[(Va(se) — V™), (11)

where Vttarg =1 + vV (s¢41). Here, we use default hyperparameter settings suggested in |[Schulman
etal.(2017): v =0.99, A = 0.95,¢ = 0.2,c = 0.01.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EXPERIMENTS WITH A LONGER HORIZON

We conduct an experiment to train the target model for a longer time horizon. More concretely,
RoBERTa-base is selected and the number of updates is double for each task as the original one
shown in Table[§] We choose the polynomial learning rate scheduler as a representative example. As
can be observed in Table[T0] training longer can only slightly improve the performance. However, it
still cannot match GNS, showing the efficiency and effectiveness of our proposed method.

E.2 GENERALIZATION ON LANGUAGE TASKS

We also evaluate the generalization of GNS on language tasks, by transferring GNS trained on
RoBERTa-base model to RoOBERTa-large model. Results are reported in Table We can see that
GNS can still achieve relative satisfactory performance on large models and outperform the constant
learning rate, even only trained on RoOBERTa-base. This transferred performance also explains why
only a few episodes are needed when fine-tuning the agent under RoBERTa-large models

*When we use V(s;) rather than V(s;), we refer to the value and it has no gradient w.r.t ¢.
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Table 10: Comparison with the scheduler of a longer trajectory.

Scheduler CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.
Polynomial 61.2 95.3 87.2 89.2 89.3 87.3 93.0 73.1 844
Polynomial (longer)  61.3 95.8 87.2 89.3 89.3 87.4 929 735 84.6
GNS 63.3 95.8 87.7 89.6 89.7 87.7 93.2 744 852

Table 11: Comparison between the constant learning rate and transferred GNS for RoOBERTa-large.

Scheduler MRPC STS-B RTE Avg.

Constant 87.7+0.7 90.1 0.3 80.6+0.2 86.1
GNS (transferred) 879 +0.8 91.1+0.2 795+0.2 86.2

E.3 SGD v.s. AbAM

As many papers also selected SGD as the standard optimizer for image classification tasks, we carry
out an additional experiment to train a ResNet-34 on CIFAR10 with SGD. As shown in Table[T2}
we can observe that Adam offers comparable and slightly better performance than SGD, especially
for the constant learning rate scheduling. It is consistent with conclusions in (Choi et al.l [2019;
Sivaprasad et al., [2020; Xiong et al.l |2020) that Adam can serve as the most practical solution in
training neural networks. Besides, GNS is still the best among all scheduling mechanisms with SGD,
showing the effectiveness of our proposed method.

Table 12: Test accuracy with SGD and Adam as the base optimizer respectively on CIFAR10.

Scheduler SGD Adam

Constant 927+03 93.0+£04
Polynomial 935+£02 935+£03
Cosine 934+04 93.6=£04
Hypergradient 93.6 £0.5 93.7 4+ 0.6
SRLS 93.6£04 93.6£0.6
GNS 94.1+03 943+05

E.4 SENSITIVITY OF HYPERPARAMETERS

Table 13: Sensitivity of hyperparameters.

(a) Performace on different K with p fixed at 0.2. (b) Performance on different p with K fixed at 10.

K CIFAR10 RTE

1 925+06 71.6+05
5 93.0+04 728+0.5
10 943+£05 744+03
20 93.7+£04 740+£03

p CIFARI0 RTE

02 943+05 744+03
06 944+04 744£05
1.0 944+04 74.6+04

Furthermore, we investigate the impact of two hyperparameters, the learning rate update interval
K and the validation probability p. Note that for CIFAR10, the real interval should multiply by 50,
i.e., K = 1 denotes 50 training steps of CIFAR10. Two tasks on CIFAR10 and RTE are selected
respectively from image classification and language understanding. It can be seen in Table [[3a] that
when the learning rate is modified aggressively with K = 1,5 or infrequently with K = 20, the
scheduling would degrade the optimization performance, e.g., from 94.3 (K = 10) to 92.5 (K = 1).
As to the validation probability, the performance of GNS is not very sensitive to different values of p
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in Table[I3b] Together with results of FRS in Table[d] we set p to a relatively small value 0.2 in all
experiments without much loss of performance while such a p can reduce the time cost notably as
discussed in Section

E.5 IMPACT OF MULTIPLE FACTORS

In this part, we investigate multiple factors such as the features, the encoding mechanism, and the
hyperparameter. These factors affect the encoding and the most straightforward way to evaluate the
encoding quality is to compare the performance of downstream tasks. In our paper the metric is just
the performance of the target network trained with the neural scheduler. To investigate the encoding
quality, we consider a list of schedulers with different encoding capability:

e SRLS
* SRLS + ALS (All Layer’s States)

* SRLS + ALS + larger network, where the network is chosen from a 3-layer MLP with
hidden size 32 (deeper), and a 2-layer MLP with hidden size 64 (wider).

* SRLS + ALS + larger network + tuned update interval K, K is chosen from [1, 5, 10, 20].
* GNS
¢ GNS + GAT (Velickovi¢ et al.,|2017)

Experiments are carried out on two datasets, CIFAR10 (ResNet34) and RTE (RoBERTa-base), and
results are shown in Table[T4] We can see that by using a super concatenated vector as the input, the
performance is improved slightly, from 93.6 to 93.8 on CIFAR10 and 70.8 to 72.2 on RTE. A larger
network also contributes to the performance gain to some degree but the improvement is limited,
compared with the result of GNS, where the encoding scheme is significantly different from MLP
networks. Note that performance with a tuned K remains the same and it indicates that our default
update interval works the best. Moreover, after switching to a more powerful graph encoder, GAT,
the performance can be further improved, in particular from 94.3 to 94.5 on CIFAR10.

To sum up, leveraging more information (SRLS -> SRLS + ALS) does enhance the scheduler. Using
a better network architecture (a larger network) and hyperparameter configuration also helps but
encoding with merely MLPs is not sufficient to make full use of all intermediate layers’ information.
By representing the target network as a directed graph and adopting an encoding scheme of GCN, the
encoder quality improves and the corresponding scheduler is much better. With a stronger encoder
GAT, the final performance can be further improved, which validates that the encoding quality matters
for the learned scheduler.

Table 14: Comparison of schedulers with different configurations.

Scheduler CIFAR10 RTE
SRLS 93.6+0.6 70.8+0.7
SRLS + ALS 93.8+04 722+£05
SRLS + ALS + larger network 93.9+04 726+04
SRLS + ALS + larger network + tuned K 939+ 04 72.6+£04
GNS 943+05 744+03
GNS + GAT 945+04 747+03

E.6 COMPARISON WITH THE ORIGINAL ROBERTA RESULTS

To make our results more convincing, we provide a comparison with the original results in|Liu et al.
(2019) as well as the standard practice (a warmup procedure followed by a linear decay) in Table[I5]
It can be observed that GNS performs consistently better on the dev set as well. we can tell that our
proposed GNS still outperforms this standard method, indicating that the improvements are not due
to the suboptimal learning rate schedules, but from our better learned policy.
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Table 15: Development performance of RoOBERTa-large on GLUE of different schedulers.

Scheduler CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.
Large model:
Constant 68.8 96.1 90.3 92.0 92.1 90.0 944 862 887
Polynomial 69.1 96.3 90.6 92.2 92.4 90.2 948  86.5 89.0
Cosine 69.0 96.4 90.5 92.2 923 90.1 946 86.7 89.0
Hypergradient 68.6 96.3 90.5 92.0 92.1 90.1 945 865 88.8
SRLS 67.8 95.9 89.7 91.6 92.1 89.9 942  86.0 884
GNS 70.5 97.1 91.2 92.7 92.9 90.5 949 874 89.6
Liu et al.|(2019)  68.0 96.4 90.9 92.2 924 90.2 947  86.6 88.9
Standard 68.8 96.3 90.7 92.1 92.3 90.2 947 865 889

E.7 COMPARISON WITH CMA-ES

In this part, we compare our GNS with a more effective hyperparameter tuning approach. More
concretely, we leverage CMA-ES (Hansen, 2016) as another baseline, to search for the learning rate
schedule. We choose a cosine decay method which leads to the best-performance results for almost
all the tasks as the base scheduler when searching with CMA-ES. The corresponding search space is

then expanded as shown in the following tables:

Table 16: Expanded search space for image classification

Hyperparameter Tuning range
Olmax LogUniform[1073, 10~!]
i LogUniform[1073, 10~!]
M2 Uniform[0.5, 1.0]

Table 17: Expanded search space for language understanding

50 evaluations are conducted in total for CMA-ES and we also train GNS for 50 episodes for

Hyperparameter Tuning range
lmax LogUniforrm[107°, 1074]
m Uniform[0.0, 0.1]

a fair comparison. Results are demonstrated in Figure [5] We can see that CMA-ES can find a

satisfactory hyperparameter configuration quickly in the beginning, but our GNS can reach a better
final performance. When we consider the whole search trajectory, it is still safe to say that the
proposed GNS is a relatively efficient and effective method even compared with the more powerful

baseline CMA-ES.

CIFAR10

RTE

945F —— GNS
=== CMA-ES

30

Number of Evaluation

(2) CIFAR10

40

— GNS
=== CMA-ES

0 10 20 30
Number of Evaluation

(b) RTE

Figure 5: Search performance of GNS and CMA-ES.
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E.8 ABLATION STUDY ON THE CHOICE OF RAW FEATURES

In order to characterize the training dynamics, we picked some common features adopted in (Xu
et al.} 2017;2019), including the mean and variance of weights, biases, and the mean and variance of
absolute gradient values, as well as global dynamics of the previous learning rate and the average
training loss. We can roughly group them into three categories: parameter state, gradient state, and
global state. To investigate the influence of different features, we mask one of these three types of
features and only use the remaining two as the raw input each time. Then we use different input
features to train GNS on CIFAR10 and RTE. Detailed results are presented in the following table.
It can be observed that all three categories of features benefit the quality of GNS. Parameter and
gradient information is more important than the global state since the global state can be reflected by
the reward and the action. This ablation study validates our choice of these features. In the future, it
is also interesting to integrate more useful features to further improve the performance, such as the
accumulated momentums which are used in adaptive optimizers like Adam.

Table 18: Performance of GNS with different input features.

Scheduler CIFAR10 RTE

GNS w/o parameter state 93.8 0.6 73.3 0.5
GNS w/o gradient state  93.7 04 735+04
GNS w/o global state 94.1+£06 740+03
GNS 943 +05 744 +0.3

E.9 COMPARISON OF OTHER FORMS OF ACTION

We have tried two other forms of action, adding a residual and directly predicting the learning rate.
For adding a residual, since the learning rate for different tasks might have different magnitudes, we
have to design some additional hyperparameters elaborately for each task to constrain the output
residual to a specific range. As to predicting the learning rate, it is very unstable and usually breaks
the optimization. We also implemented the action of adding a residual by constraining the output to
the range [—1075,10~°], and the action of predicting the learning rate by replacing the activation
function with Sigmoid on CIFAR10, and the corresponding results are shown as follows:

Table 19: Performance of GNS with different forms of action.

Scheduler CIFAR10

GNS (adding a residual) 90.7 + 0.6
GNS (predicting the learning rate) 10.0 £ 0.0
GNS (multiplying by a factor) 94.3 + 0.5

We can see that adding a residual is insufficient to beat our original design of multiplying by a
factor. For predicting the learning rate, it is hard to obtain a useful scheduler and the training of
CIFARI10 failed and was stuck with only 10% accuracy. However, it is possible that by fine-tuning
the hyperparameters for these two forms of action, the obtained scheduler will work. But multiplying
by a factor is the most stable action and needs little tuning effort and that’s why we choose this action.

E.10 EVALUATION ON MLPS

We include an evaluation of training a 3 layer MLP on Fashion MNIST with the hidden size of 128
and we report the performance of different optimizers in Table[20] It can be seen that GNS is also
applicable to such a simple scenario, with the best test accuracy of 89.8.
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E.11

We have included the training loss curve for Fashion MNIST and CIFAR10 in Figure[f] Since for the
GLUE benchmark tasks, final performance is usually the focus in the literature and the loss and the

Table 20: Test accuracy of a 3-layer MLP on Fashion MNIST.

Scheduler Fashion MNIST
Constant 88.8 0.2
Polynomial 89.3£03
Cosine 89.3+0.2
Hypergradient 89.0£0.2
SRLS 89.5+04
GNS 89.8 + 0.3

TRAINING LOSS CURVE

evaluation metric do not necessarily correlate, we do not show their loss curves.

Fashion MNIST

CIFAR10
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Figure 6: Training loss curves for Fashion MNIST and CIFARI10.

21




	Introduction
	Related Work
	Reinforcement Learning for Learning Rate Scheduling
	Reinforcement Learning
	Learning rate scheduling as a MDP

	Method
	State Encoding with Graph Neural Networks
	Environment design
	Graph Network-based Scheduler

	Experimental Results
	Experimental Settings
	Results on Image Classification
	Results on Language Understanding
	Generalization of GNS
	Running time comparison
	Ablation Study

	Conclusion
	GNS Algorithm
	Additional Implementation Details
	Search space for hand-designed schedulers
	Experimental settings on image classification
	Experimental settings on GLUE
	Hypergradient
	Further comparison of SRLS and GNS

	Graph Representation of RoBERTa
	Details of PPO
	Additional Experimental Results
	Experiments with a longer horizon
	Generalization on language tasks
	SGD v.s. Adam
	Sensitivity of hyperparameters
	Impact of multiple factors
	Comparison with the original RoBERTa results
	Comparison with CMA-ES
	Ablation study on the choice of raw features
	Comparison of other forms of action
	Evaluation on MLPs
	Training loss curve


