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ABSTRACT

Music recordings often suffer from audio quality issues such as excessive rever-
beration, distortion, clipping, tonal imbalances, and a narrowed stereo image,
especially when created in non-professional settings without specialized equip-
ment or expertise. These problems are typically corrected using separate spe-
cialized tools and manual adjustments. In this paper, we introduce SonicMaster,
the first unified generative model for music restoration and mastering that ad-
dresses a broad spectrum of audio artifacts with text-based control. SonicMas-
ter is conditioned on natural language instructions to apply targeted enhance-
ments, or can operate in an automatic mode for general restoration. To train
this model, we construct the SonicMaster dataset, a large dataset of paired de-
graded and high-quality tracks by simulating common degradation types with
nineteen degradation functions belonging to five enhancements groups: equal-
ization, dynamics, reverb, amplitude, and stereo. Our approach leverages a
flow-matching generative training paradigm to learn an audio transformation
that maps degraded inputs to their cleaned, mastered versions guided by text
prompts. Objective audio quality metrics demonstrate that SonicMaster signif-
icantly improves sound quality across all artifact categories. Furthermore, sub-
jective listening tests confirm that listeners prefer SonicMaster’s enhanced out-
puts over other baselines. The model and demo samples are available through
https://msonic793.github.io/SonicMaster/.

1 INTRODUCTION

Music recordings produced in amateur settings often suffer from a variety of quality issues that dis-
tinguish them from professionally mastered recordings (Wilson & Fazenda, 2016; Mourgela et al.,
2024; Deruty & Tardieu, 2014). For instance, an enthusiast recording vocals in a garage may in-
troduce excessive reverberation, making the voice sound distant and “echoey.” Similarly, using in-
expensive microphones or misconfigured interfaces can lead to distortion and clipping when loud
peaks exceed the recording range, resulting in harsh crackles or flattened dynamics (Zang et al.,
2025). Tonal imbalances are also common: a home recording might sound overly “muddy” or
“tinny” if certain frequency bands dominate or vanish due to poor room acoustics or improper mi-
crophone placement. Even the stereo image can be narrowed or skewed, reducing the sense of space
in the mix. In practice, engineers address these problems with specialized tools: e.g., dereverbera-
tion plugins to remove room echo, declipping algorithms to reconstruct saturated peaks, equalizers
to rebalance frequencies, and stereo enhancers to widen the image. Mastering a flawed track has
become a labor-intensive process requiring expert skill and multiple stages of manual adjustment.

The need for an automated all-in-one solution is evident. Creators with limited resources often lack
the expertise to apply the right combination of restoration tools, and a piecemeal approach may
fail to fully recover a track’s fidelity. This motivates SonicMaster, a unified approach to music
restoration and mastering that can correct a broad spectrum of audio degradations within a single
model. We introduce a single flow-based generative framework (Liu et al., 2022; Esser et al., 2024)
that simultaneously performs dereverberation, equalization, declipping, dynamic-range expansion,
and stereo enhancement. The backbone is trained on a curated corpus of polyphonic music rendered
through a combinatorial grid of simulated degradations, enabling the network to learn the joint
statistics and cross-couplings of common artifacts rather than treating them in isolation. This joint

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: SonicMaster dataset creation pipeline and overview.

training eliminates the need for error-prone cascades of task-specific modules and reduces inference
to a single forward pass.

Crucially, SonicMaster incorporates multimodal conditioning through natural language instructions
that capture production objectives. A prompt such as reduce the hollow room sound
attenuates late reflections without suppressing desirable early reverberation, whereas increase
the brightness selectively enhances the treble frequencies while preserving spectral balance
elsewhere.In the absence of a prompt, SonicMaster switches to an automatic mode that applies per-
ceptually balanced mastering. Existing speech restoration models (e.g. VoiceFixer by Liu et al.
(2021)) also address artifacts sequentially, ignoring their mutual influence. By unifying restora-
tion and mastering tasks under a single, prompt-driven generative model, SonicMaster delivers
professional-grade improvements while affording fine-grained creative control. Recent advances
such as Mustango (Text-guided music generation) by Melechovsky et al. (2024), FlowSep by Yuan
et al. (2025) (text-guided source separation), TangoFlux by Hung et al. (2024) (reward-optimized
text-to-audio diffusion), and instruction-guided models like AUDIT (Wang et al., 2023) or Audi-
oLDM/AudioLDM2 (Liu et al., 2023; 2024) illustrate powerful generative methods, but they target
orthogonal tasks—generation, separation, or localized editing—rather than unified restoration. In
contrast, SonicMaster uniquely addresses comprehensive multi-artifact music restoration and mas-
tering through a single controllable rectified-flow architecture, bridging dereverberation, declipping,
tonal rebalancing, dynamics, and stereo enhancement under prompt guidance.

In the absence of text-conditioned music-restoration data, we build a new large-scale corpus for
controllable restoration. From ≈ 580 k Jamendo recordings, we retain ≈ 25 k high-quality 30-s
segments, balanced across 10 genre groups by production quality score. Each clean clip is corrupted
with one to three of 19 common effects drawn from five categories—EQ, dynamics, reverb, ampli-
tude, and stereo—producing paired degraded versions. Every degraded sample is accompanied by
a natural-language prompt describing the artifact or required fix, and all random effect parameters
are stored as metadata. This genre-diverse collection of tens of thousands of prompt–audio pairs
underpins SonicMaster training and offers a rigorous benchmark for controllable music-restoration
research. Our main contributions are as follows:

• We introduce SonicMaster, the first flow-matching model to simultaneously address 19 common
degradations, including reverb, EQ imbalance, clipping, dynamic range errors, and stereo artifacts
in a single generative framework, eliminating sequential processing and cascading error.

• Our SonicMaster enables precise user control through natural language conditioning, allowing tar-
geted corrections (e.g., reduce hollow room sound for dereverberation) while maintain-
ing autonomous operation when prompts are unavailable, bridging automated and user-directed
restoration paradigms.

• We construct and release 1 the first text-conditioned music-restoration corpus: 25k high-fidelity
Jamendo segments spanning 10 genres, each paired with 7 degraded versions, detailed metadata,
and a natural-language instruction describing the required fix, resulting in 175k audio pairs.

2 RELATED WORK

Restoring and mastering audio spans speech and music enhancement, audio inpainting, and source
separation—areas that have mostly been handled separately Záviška et al. (2020). Diffusion-based

1Public link suppressed due to anonymous submission
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generative models and text-guided audio editing Hou et al. (2025); Jiang et al. (2025); Zhang et al.
(2024); Manor & Michaeli (2024); Han et al. now let us tackle these problems together. We review
these advances, their uses, and the gaps that SonicMaster aims to fill. Early audio restoration efforts
typically focused on single domains or isolated tasks, addressing issues like noise, clipping, or reverb
in separation. Speech enhancement Yousif & Mahmmod (2025) and music enhancement evolved
largely independently, and tasks such as audio inpainting or source separation were treated with
specialized methods Lemercier et al. (2025).

Audio Inpainting, Mixing and Declipping: Early signal-model and interpolation methods could
patch only very short gaps (< 10 ms), leaving longer dropouts unresolved. Deep generative models
now bridge that gap: diffusion-based systems convincingly regenerate missing music sections and
clipped peaks Moliner & Välimäki (2023). The authors in Wang et al. (2023); Liu et al. (2023)
extend this with instruction-guided diffusion for audio inpainting, while VoiceFixer Liu et al. (2021)
jointly denoises, dereverbs, and declipse speech, though it is restricted to voice and does not offer
user control. In music, Imort et al. (2022) removed heavy guitar distortion (including clipping) with
neural networks, surpassing sparse-optimization baselines in quality and speed. Lee et al. (2024) in-
troduce a pruning approach to recover sparse audio effect chains from mixed recordings, essentially
reverse-engineering mixing graphs from input/output pairs. Alongside works like Bhandari et al.
(2025) on iterative corruption refinement, Steinmetz et al. (2021) on differentiable mixing consoles
and Martı́nez-Ramı́rez et al. (2022) on out-of-domain mixing generalization, and diffusion restorers
such as MaskSR Li et al. (2024), these highlight emerging methods that bridge audio restoration with
controllable, interpretable effect modeling. Moreover, Rice et al. (2023) introduce a compositional
architecture for multi-effect audio removal using effect-specific removal modules.

Equalization and Tonal Restoration: Research on learning-based equalization is still emerging.
Mockenhaupt et al. (2024) recently introduced CNN-based approach to automatically equalize in-
strument stems by predicting parametric EQ settings, showing improvements over earlier heuristic
methods. Notably, the VoiceFixer (Liu et al., 2021) addressed bandwidth extension, essentially
restoring high-frequency content as part of its speech restoration, which can be seen as a form
of equalization correction. Similarly, diffusion-based restorers like MaskSR Li et al. (2024) treat
low-frequency muffling as a distortion to fix, using discrete token prediction to restore a balanced
spectrum. In Text2FX Chu et al. (2025), CLAP Elizalde et al. (2023) is used in inference mode to
steer the parameters of EQ and reverb audio effects.

3 METHOD

3.1 DATASET

In the absence of text-conditioned music restoration datasets, we generate SonicMaster dataset
by pairing high-quality audio with systematically applied degradations and corresponding natural
language instructions. Our source comprises songs from Roy et al. (2025) and additional content
from Jamendo2 under Creative Commons licence using the official Jamendo API. In total, we have
sourced 580k recordings. We ensure balanced genre representation by defining 10 groups, where
each group consists of multiple semantically related genre tags, e.g., Hip-Hop genre group con-
taining the following tags: “rap”, “hiphop”, “trap”, “alternativehiphop”, “gangstarap”. Complete
taxonomies are provided in the Appendix. Track selection employs Audiobox Aesthetics toolbox
(Tjandra et al., 2025) for automated production quality assessment. We select 2, 500 songs per genre
groups using adaptive production quality thresholds ranging from 6.5 to 8 to balance comprehen-
sive sub-genre representation with sufficient production quality. We extract random 30s excerpts
from each track, positioned between 15% and 85% of its total duration. The complete pipeline
is illustrated in Figure 1. We train SonicMaster by applying 19 distinct degradations to the audio
and pairing each with a matching natural language editing instruction. The degradations span five
classes: (i) EQ, (ii) Dynamics, (iii) Reverb, (iv) Amplitude, and (v) Stereo.

Equalization (EQ): Spectral degradations cover 10 effects targeting perceptual audio characteris-
tics: Brightness, Darkness, Airiness, Boominess, Muddiness, Warmth, Vocals, Clarity, Microphone,
and X-band. Brightness, Darkness, Airiness, Boominess, and Warmth are emulated with low- or

2https://www.jamendo.com/
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high-shelf EQ; Clarity with a Butterworth low-pass filter; Vocals and Muddiness with Chebyshev-II
band-pass filters. Microphone applies one of 20 Poliphone transfer functions (Salvi et al., 2025),
while X-band uses an 8–12-band, logarithmically spaced peaking EQ with 6 dB gain per band.

Dynamics: Temporal envelope modification via two functions: Compression (feedforward dynamic
range compression) and Punch (transient shaping). Both exhibit lossy, non-invertible characteristics,
rendering exact restoration mathematically ill-posed and requiring learned approximations.

Reverb: The Reverb category contains four distinct approaches: three of them utilise the Pyrooma-
coustics library (Scheibler et al., 2018), which simulates acoustic environments with the image
source method. We simulate three types of rooms: Small, Big, and Mixed. For our fourth Reverb
function, we utilize 12 selected room impulse responses from the openAIR library dataset (Howard
& Angus, n.d.), which give us audio with more real-life properties. The resulting impulse responses
from all the functions are convoluted with the clean signals.

Amplitude: Two complementary degradations target signal amplitude: Clipping/Volume. Clipping
introduces hard nonlinear distortion by constraining peak amplitudes to predefined thresholds; Vol-
ume reduction attenuates signals to near-inaudible levels, degrading the signal-to-quantization-noise
ratio and simulating poor recording practices.

Stereo: A function to de-stereo the audio recording – tracks undergo stereo content analysis via left-
right channel difference standard deviation (threshold: 0.08); qualifying recordings are converted to
monophonic by channel summation, simulating poor mixing or playback equipment limitations.

Each ground truth yields 7 corrupted variants: 4 with a single, 2 with double, and 1 with triple
degradation. In multi-degradation, we sample at most one effect from each of the 5 categories, so an
EQ choice, for instance, blocks further EQ picks. To avoid duplicates in the single-degradation set,
high-probability effects with narrow parameter ranges: Stereo, Clipping, and Punch, are used only
once (in the 4 versions per original, e.g., there cannot be two single-degraded versions with Stereo
degradation, as they would be identical). Each degradation is linked to a one-sentence instruction
from 8–10 possible options (all written by a music expert); these sentences are concatenated into
the full prompt, and we store two prompt variants per clip for robustness. We also record every
applied effect and its parameters (gain, absorption), supporting tasks such as parameter prediction.
For Compression and Reverb, there is a 15% chance of injecting “hidden clipping” with no corre-
sponding instruction to emulate real life cases of constructive interference in a reverberant room,
or overcompensated gain setting of a compressor. When neither hidden clipping nor an Amplitude
effect is present, the audio is peak-normalised to a random level between 0.8− 1.0. Further details
can be found in Appendix.

3.2 SonicMaster ARCHITECTURE

SonicMaster employs a hybrid architecture combining Multimodal Diffusion Transformer (MM-
DiT)(Esser et al., 2024) blocks with subsequent Diffusion Transformers (DiT) layers (Peebles &
Xie, 2023). As outlined in Figure 2, stereo waveforms (44.1 kHz) (xt) undergo VAE ecoding (Evans
et al., 2024) into compact spectro-temporal latent representations. Restoration, therefore, occurs
entirely in this learned space, allowing large receptive fields without sample-level overhead. The
MM-DiT processes degraded latent representations alongside the text embeddings from a frozen
FLAN-T5 encoder (Chung et al., 2024). The resulting conditioned representations pass through
subsequent DiT layers to predict flow velocity vt, steering the latent toward its clean target x̂t.
Prompts like “reduce reverb” biases this prediction trajectory to suppress decay tails, while the
downstream DiT layers refine musical coherence. A pooled-audio branch, active in 25% of training
cases, concatenates a temporally averaged 5–15s clean cue with the pooled prompt embedding and
injects it at every MM-DiT/DiT layer, enabling seamless chaining of 30s segments for long-form
generation while degrading gracefully when no reference is supplied.

Audio and text encoding: We adopt the Stable Audio Open VAE (Evans et al., 2024) to encode–
decode stereo signals sampled at 44.1 kHz, yielding a compact latent representation while retaining
high-fidelity reconstruction. Text instructions are embedded with FLAN-T5 Large (Chung et al.,
2024); the resulting tensor ctext ∈ RB×Stext×Dtext (with Dtext = 1024) is used as a conditioning signal.
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Figure 2: Overall architecture of SonicMaster.

Rectified Flow Training: SonicMaster employs rectified flow (Liu et al., 2022; Esser et al., 2024),
to predict flow velocity from degraded to clean audio in latent space, unlike other models that map
noise to output distributions (Fei et al., 2024; Hung et al., 2024).

We assign timestep t = 1 to the latent representation of the degraded audio x1, and t = 0 to the
latent representation of the clean audio target x0. During training, we feed the model with samples
xt, which are linear interpolations between degraded input x1 and clean target x0:

xt = tx1 + (1− t)x0 (1)

where timestep t is drawn from a skewed distribution p(t) = 0.5U(t)+t, t ∈ [0, 1] with increasing
probability for higher t, where U represents a uniform distribution. This skewed distribution gives
emphasis to more degraded inputs given the interpolation of training data in Eq. 1. The model is
trained to predict the flow velocity vt from the current xt to the target clean audio x0: vt = −dxt

dt =
x0 − x1. The model fθ with parameters θ estimates the velocity v̂t, fθ(xt, t, ctext) = v̂t, where
ctext is the text condition from the FLAN-T5 model, which is passed to the dual-stream MM-DiT
blocks as one of the streams. The ctext condition is also passed through a pooled projection and
used to control the scale and shift factors of the adaptive layer-norm layers in both MM-DiT and
DiT blocks. The training loss is then given as:

L(θ) = Et,x1,x0
||v̂t − vt||22 = Et,x1,x0

||fθ(xt, t, ctext)− vt||22 (2)

Inference transforms degraded audio input x1 to clean audio output x0 by integrating the predicted
velocity v̂t using the forward Euler method: xt−h = xt+hv̂t, where h ∈ [0, 1] is the step computed
as the inverse of the total timesteps dedicated for integration.

Inference: During inference, SonicMaster takes in an audio input and a text instruction given by
the user to perform the desired restoration/mastering operation. Inference is possible without text
input in the so-called auto-correction mode. To process full-length songs, SonicMaster operates on
chunks of 30s and then connects the segments together. After the first segment is inferred, the last
10s of this output are used to condition the next segment inference through the audio pooling branch.
The overlapping regions of the resulting segments are then linearly interpolated over the overlapping
10s to connect the segments together.

4 EXPERIMENTAL SETUP AND BASELINES

4.1 BASELINES AND TRAINING SETUP

We train SonicMaster using 5 NVIDIA L40S GPUs for 40 epochs with a total batch size of 80.
We adopt classifier-free guidance (Ho & Salimans, 2022) by (i) dropping the text prompt in 10%
of samples and (ii) replacing it in another 10% with one of four generic phrases (“Make it sound
better!”, “Master this track for me, please!”, “Improve this!”, “Can you improve the sound of this
song?”). In 25% of cases, the model is additionally conditioned—via the pooling branch—on the
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first 10 s of clean audio. Unless stated otherwise, all experiments follow these conditioning settings
while comparing multiple SonicMaster variants and baselines.

We compare against recent approaches, alongside ablation studies for different SonicMaster con-
figurations:: (i) Degraded input—the original corrupted audio; (ii) Reconstructed input—the
same audio passed through the VAE encoder–decoder; (iii) Text2FX-EQ, an EQ baseline using
Text2FX (Chu et al., 2025) with 600 iterations and a 0.01 learning rate to correct EQ degradations via
our prompts; (iv) WPE dereverberation, the Weighted Prediction Error algorithm (Nakatani et al.,
2010) with a prediction order of 30; (v) HPSS dereverberation, harmonic–percussive source separa-
tion (librosa.decompose.hpss) with 6 dB and 12 dB harmonic attenuation; (vi) Mel2Mel
+ DiffWave (Kandpal et al., 2022) framework that treats mel-spectrogram enhancement as an
image-to-image translation followed by diffusion vocoding for music restoration. and (vii) three
SonicMaster variants—SonicMasterSmall (2 MM-DiT + 6 DiT), SonicMasterMedium (4 MM-DiT + 12
DiT or 6 MM-DiT + 6 DiT), and SonicMasterLarge (6 MM-DiT + 18 DiT).

Given that Text2FX3 is not a restoration model, we further deploy its directional variant as a mean-
ingful text-guided audio manipulation baseline. SonicMaster operates in a text-conditioned enhance-
ment paradigm, where the model must follow natural-language instructions (e.g., “reduce muddi-
ness”, “increase clarity”). Text2FX-directional is specifically designed for instruction-following
tasks: it steers the audio embedding in the same semantic direction defined by a target prompt and
its contrast prompt.

Model Clarity Boom Airy Bright Dark Muddy Warm Vocals Mic. X-band

Snippet Evaluation (Short Segments)

Degraded Input 0.0238 0.3601 0.0049 0.0143 0.0893 0.4560 0.4345 0.2525 0.2393 0.1782
Reconstructed Input 0.0243 0.3717 0.0051 0.0151 0.0728 0.4749 0.4456 0.2525 0.2379 0.1854
Mel2Mel + Diffwave Kandpal et al. (2022) 0.0278 0.3561 0.0049 0.0135 0.0855 0.4705 0.4436 0.2560 0.2604 0.1885
Text2FXcos Chu et al. (2025) 0.0219 0.3809 0.0055 0.0276 0.2112 0.3651 0.4955 0.2199 0.4441 0.3419
Text2FXdir Chu et al. (2025) 0.0421 0.3977 0.0206 0.0143 0.3021 0.2602 0.5461 0.2517 0.6120 0.5038
SonicMaster (Ours) 0.0114 0.0834 0.0019 0.0059 0.0058 0.0388 0.0617 0.0576 0.0088 0.0358

Full Song Evaluation (Long-Form)
Ablation – No Text Condition 0.0130 0.1432 0.0032 0.0101 0.0086 0.0448 0.0841 0.0668 0.0154 0.0424
Ablation – Shuffled Prompts 0.0187 0.2075 0.0077 0.0132 0.0362 0.0981 0.1648 0.1043 0.0424 0.0998

Full Song Evaluation (Long-Form)

Degraded Input 0.0290 0.3231 0.0048 0.0124 0.0983 0.4606 0.4810 0.2274 0.2403 0.1737
SonicMaster (Ours) 0.0102 0.0639 0.0021 0.0060 0.0065 0.0329 0.0510 0.0517 0.0070 0.0289

Table 1: EQ Objective Evaluation (Average Absolute Error). Bold = best performance (lowest
error). SonicMaster outperforms baselines in all categories in snippet and full-song scenarios.

Evaluation is conducted along two orthogonal axes. (i) Global perceptual fidelity is quantified with
FAD on CLAP embeddings (Elizalde et al., 2023), Kullback–Leibler divergence (KL), structural
similarity (SSIM) on 128-bin mel-spectrograms, and the Production Quality (PQ) score from the
Audiobox Aesthetics toolbox (Tjandra et al., 2025). (ii) Degradation-specific restoration efficacy is
measured by average absolute error reduction: for every degraded clip in a 7000 clip test set, we
compute the relevant (based on the degradation deployed) artefact-aware metric against its clean
counterpart from a 1000 sample reference set, then recompute the metric after SonicMaster process-
ing; the relative decrease indicates how closely each model variant approaches the ground-truth.

For X-band EQ and microphone-TF degradations, we compute the spectral balance over nine fre-
quency bands and report their cosine distance. All other EQ effects are scored by the energy ratio
between the affected band and the full spectrum. Compression is measured as the standard de-
viation of frame-level RMS (2048-sample frames, 1024 hop); punch as the mean onset-envelope
value (librosa.onset.onset strength). Because RT60 estimates are unreliable on dense
mixes, reverb is assessed via the Euclidean distance of modulation spectra. Clipping uses spectral
flatness; volume, the global RMS; and stereo width, the RMS ratio of the mid and side signals,
RMS

[
L−R
2

]
/RMS

[
L+R
2

]
. We report the average absolute error value (GT vs inferred sample) of

all the metrics except where mentioned differently (X-band, microphone-TF, and reverb). Details of
each metric are described in Appendix A.5.

3Appendix A.3 has details of the Text2FX-directional, both loss formulation and EQ prompt construction.
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Model Reverb Dynamics Amplitude Stereo
Small Big Mix Real Comp. Punch Clip Vol.

Snippet Evaluation (Short Segments)

Degraded Input 0.4457 0.4243 0.5045 0.4639 0.0496 0.1200 5.122 0.1813 0.4183
Reconstructed Input 0.4686 0.4507 0.5433 0.4908 0.0494 0.0590 3.871 0.1810 0.4181
HPSS 6 dB 0.4419 0.4240 0.4970 0.4537 - - - - -
HPSS 12 dB 0.4971 0.4739 0.5333 0.4814 - - - - -
WPE Nakatani et al. (2010) 0.4849 0.4732 0.5207 0.4854 - - - - -
Mel2Mel + Diffwave Kandpal et al. (2022) 0.4404 0.4387 0.4361 0.4368 - - - - -
SonicMaster (Ours) 0.3663 0.3726 0.3935 0.3109 0.0193 0.0871 1.506 0.0468 0.1058

Ablation Studies
Ablation – No Text Condition 0.3732 0.3805 0.4012 0.3264 0.0157 0.0730 2.812 0.0465 0.1416
Ablation – Shuffled Prompts 0.4161 0.4236 0.4538 0.3903 0.0225 0.0895 2.874 0.0895 0.3213

Full Song Evaluation (Long-Form)

Degraded Input 0.3667 0.3654 0.4706 0.3852 0.0598 0.1103 6.363 0.1829 0.4133
SonicMaster (Ours) 0.3954 0.4511 0.4191 0.4066 0.0258 0.1101 3.734 0.0424 0.0850

Table 2: Objective Scores: Reverb, Dynamics, Amplitude, and Stereo. Clip scores are multiplied by
1000. Bold indicates best performance (lowest error).

Model Single Deg. Double+Triple Deg. All

FAD↓ KL↓ SSIM↑ PQ↑ FAD↓ KL↓ SSIM↑ PQ↑ FAD↓ KL↓ SSIM↑ PQ↑

Snippet Evaluation (Short Segments)

GT Mastered Ref. - - - 7.886 - - - 7.886 - - - 7.886
Degraded Input 0.061 3.859 0.838 7.321 0.184 6.827 0.696 6.632 0.106 5.131 0.777 7.026
Reconstructed Input 0.139 3.990 0.574 7.172 0.290 6.984 0.507 6.501 0.196 5.273 0.546 6.885
Mel2Mel + Diffwave Kandpal et al. (2022) 0.522 14.938 0.447 6.158 0.474 15.185 0.416 5.953 0.491 15.044 0.433 6.070
SonicMaster (Ours) 0.069 0.696 0.624 7.743 0.082 1.145 0.589 7.654 0.073 0.888 0.609 7.705

Ablation Studies
Ablation – No Text Condition 0.069 0.917 0.621 7.772 0.088 1.484 0.586 7.643 0.074 1.160 0.606 7.716
Ablation – Shuffled Prompts 0.081 2.014 0.598 7.610 0.131 3.249 0.558 7.283 0.098 2.543 0.581 7.470

Full Song Evaluation (Long-Form)

GT Mastered Ref. - - - 7.885 - - - 7.885 - - - 7.885
Degraded Input 0.087 2.937 0.834 7.325 0.223 5.679 0.682 6.606 0.142 4.308 0.758 6.965
Reconstructed Input 0.165 3.049 0.584 7.204 0.335 5.644 0.510 6.509 0.234 4.339 0.547 6.859
SonicMaster (Ours) 0.095 0.754 0.380 7.627 0.121 1.251 0.368 7.477 0.101 1.002 0.374 7.552

Table 3: Objective Scores: FAD (↓), KL (↓), SSIM (↑), and PQ (↑). KL values are multiplied by
1000 for readability. Bold indicates best performance (excluding ground truth reference).

We presented listeners with 43 audio sample pairs – degraded inputs and SonicMaster outputs – to
rate, consisting of 2 pairs for each degradation function (2 × 19 = 38 single degraded samples),
3 pairs of double and 2 pairs of triple degraded samples. Using a 7-point Likert Scale, listeners
were to rate: 1) The extent of improvement from the input to SonicMaster output represented by the
text prompt (Text relevance), 2) audio quality of input (Quality1), 3) audio quality of the inferred
SonicMaster sample (Quality2), 4) consistency and fluency of the inferred sample (Consistency),
and 5) preference between the two samples, where 1 represents full preference of the ground truth
degraded input, and 7 represents the SonicMaster inferred sample (Preference). The study was
attended by 12 listeners (7 music experts and 5 Music Information Retrieval researchers).

Furthermore, to benchmark against existing methods, we conducted an additional study with 20
participants comparing SonicMaster against Text2FX (Chu et al., 2025), Text2FX-directional, and
Mel2Mel + Diffwave (Kandpal et al., 2022) on 20 randomly selected samples from our test set. The
evaluation included 10 samples with X-band EQ degradation and 10 with reverberation artifacts.
Note that Text2FX and Text2FX-directional are limited to EQ effects as their reverb effect is only
additive, thus excluded. Since the baseline methods’ evaluation sets are not publicly available, we
performed this comparison exclusively on our curated test data.
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Figure 3: Comparison of SI-SDR scores (↑) for Dynamics and Reverb removal.

5 RESULTS

5.1 OBJECTIVE EVALUATION

Degradation-Specific Performance: Tables 1 and 2 demonstrates SonicMaster’s superiority over
baselines of Text2FX in EQ, and WPE/HPSS in Reverb. SonicMaster improves in all categories
when compared to the degraded and reconstructed inputs. Furthermore, the reconstructed input
metrics are overall slightly worse (with exceptions) than those of the ground truth degraded inputs.

Perceptual Quality Assessment: Table 3 reveals SonicMaster outperforms the degraded inputs in
both PQ and KL. FAD is marginally higher than that of the degraded audio, yet markedly lower than
the reconstructed baseline. Furthermore, SonicMaster achieves a significant increase in PQ, almost
reaching the level of ground truth mastered reference. In SSIM, SonicMaster exhibits lower scores
than degraded inputs but achieves superior performance compared to the reconstruction baseline.

Method CE ↑ CU ↑ PC ↑ PQ ↑
Original 6.94±0.48 7.29±0.43 3.45±0.36 6.70±0.50

LTAS-EQ 6.77±0.54 7.04±0.57 3.75±0.45 6.49±0.57

BEHM-GAN 6.82±0.43 7.19±0.44 3.47±0.35 6.63±0.56

BABE 6.96±0.37 7.32±0.37 3.32±0.29 6.79±0.36

BABE-2 6.79±0.34 7.16±0.29 3.46±0.28 7.05±0.27

SonicMaster (ours) 6.87±0.55 7.25±0.50 3.86±0.39 6.93±0.52

Table 4: Comparison of mean across metrics CE, CU, PC, and PQ.

Comparison with removal models: While models such as DPTNet Chen et al. (2020), UMX Stöter
et al. (2019), DCUNet Choi et al. (2018), TCN Rethage et al. (2018); Steinmetz & Reiss (2021),
and HDemucs Défossez (2021) focus on effect removal with minimal alteration Rice et al. (2023)
(best baseline: 20.08 dB for Dynamics, 13.59 dB for Reverb), SonicMaster performs text-guided
mastering that applies intentional tonal and dynamic shaping. All baselines are trained following
the RemFX protocol Rice et al. (2023) using effect-specific supervision with L1 + multi-resolution
STFT losses, and evaluated on the official test split containing clean vs. effected pairs for each degra-
dation type. We test SonicMaster on the same test set, focusing on the two degradation: Dynamics
and Reverb used (Rice et al., 2023). This broader objective enables SonicMaster to reconstruct a
more coherent musical structure as shown in Fig. 3, achieving substantially higher SI-SDR scores
of 47.11 dB (Dynamics) and 45.76 dB (Reverb).

5.2 ABLATION STUDIES

Text Prompt Dependency: Inference without text prompts maintains comparable FAD, SSIM, and
PQ but shows degraded KL divergence (0.917 vs. 0.696). Critical drops occur in Clip restoration
(2.812 vs. 1.506) and Stereo processing (0.1416 vs. 0.1058), with elevated EQ errors. To further
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Figure 4: Listening study - SonicMaster’s performance on specific degradations – MOS 95% CI

assess the text controllability, we shuffled the prompts inside the test set and ran inference. Results
(Tables 1, 2, 3 show worse performance than when no prompt was given (KL 2.014, Clip 2.874),
but still show large improvement over the degraded input. This confirms text conditioning enables
targeted restoration rather than generic improvements.

Architecture Scaling Analysis: We observe interesting scaling dynamics. SonicMasterSmall

performs comparably with SonicMasterLarge in all metrics, but slightly worse in Reverb, Clip,
and Stereo. SonicMasterMedium (4MM-DiT/12DiT) performs slightly better than the SonicMas-
terSmall, but still lacks behind SonicMasterLarge in Clip. SonicMasterMedium (6MM-DiT/6DiT)
performs the worst out of all variants across all metrics. See Appendix A.7.

Audio Conditioning Duration: We evaluated SonicMasterLarge with different conditioning lengths
(5s, 10s, 15s), finding comparable performance across configurations. The 10-second setting bal-
ances computational efficiency with temporal overlap for long-form processing. See Appendix A.7.

Conditioning Strategy Analysis: The no-conditioning variant achieves optimal Boom correction
(0.0658 absolute error) but poor Clip restoration (2.055 vs. standard variants), highlighting multi-
modal guidance importance for challenging tasks. More details in Appendix A.7.

Long-Form Audio Evaluation: Full-song evaluations confirm SonicMaster’s effectiveness, with
substantial improvements in EQ-related metrics (Table 1) and most degradation functions (Table 2).
Reverberation metrics show mixed results, likely due to increased complexity of spatial processing
in extended musical contexts where room acoustics interact with diverse instrumental timbres and
dynamic variations. SSIM and FAD decrease compared to degraded inputs, except for FAD in
multi-degradation samples, indicating SonicMaster’s ability to handle compound degradations.

5.3 PIANO RECORDINGS EVALUATION

To test SonicMaster generalization, we evaluate historical solo piano pieces4 using established base-
lines: LTAS-EQ, BEHM-GAN (Moliner & Välimäki, 2023) model for bandwidth extension, and
BABE/BABE-2 diffusion-based generative equalizers (Moliner et al., 2024; Moliner & Välimäki,
2023). BABE-2 represents a state-of-the-art specialized method for old recordings, it uses a dif-
fusion prior to restore lost high frequencies and remove coloration, and has shown impressive im-
provements in archival music (Moliner et al., 2024). Despite lacking domain-specific training, Son-
icMaster came surprisingly close to these specialized baselines (Table 4. In objective evaluations,
SonicMaster restored samples achieved a PQ of 6.93, nearly matching the 7.05 obtained by BABE-2.

5.4 SUBJECTIVE EVALUATION

Figure 4 shows results of the first listening study. Text relevance ratings are highest in the Amplitude
(6.21), Stereo (5.75), and Reverb (5.36) categories, indicating effective declipping, volume increase,

4http://research.spa.aalto.fi/publications/papers/dafx-babe2/
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expansion of the stereo image, and dereverberation. These three categories also show the highest
consistency and preference ratings. The Dynamics and Amplitude categories show the biggest im-
provement in quality. EQ shows the fourth-best text relevance, but the worst preference ratings.
This likely reflects the nature of some EQ effects being more stylistic or difficult to notice (e.g.,
airiness, boominess). Overall, SonicMaster samples are rated higher in quality compared to inputs
and preferred across the board. A paired t-test on Quality1 and Quality2 ratings shows statistically
significant differences (p < 0.05 for Stereo, p < 0.01 for the rest) in all categories except EQ.

The comparative evaluation against existing baselines demonstrates SonicMaster’s superior perfor-
mance across both reverb and EQ degradation categories (Figure 5). For reverb artifacts, participants
overwhelmingly preferred SonicMaster over Mel2Mel + Diffwave (Kandpal et al., 2022), selecting
our method in 191 out of 200 total comparisons (10 samples × 20 participants), with Mel2Mel +
Diffwave chosen only twice. In the EQ category, SonicMaster achieved similarly strong results with
180 out of 200 preferences, while Mel2Mel + Diffwave received 13 votes, Text2FX (Chu et al.,
2025) garnered 4 votes and Text2FX-directional generated 3. These results show SonicMaster’s
effectiveness in addressing both spatial acoustic degradations and spectral imbalances.

6 DISCUSSION

Experiments confirm that SonicMaster’s generative approach is effective when trained on a large cor-
pus with a suitable objective. The historical piano experiment demonstrated SonicMaster’s strong
generalization: even on out-of-domain, severely degraded audio, it produced enhancements close
to the best specialized solution, BABE-2. This highlights the potential of general-purpose audio
restoration AI. However, a key limitation is that the lossy latent representation can introduce ar-
tifacts, such as robotic vocals or muted instruments, especially in certain genres. The observed
decrease in SonicMaster’s performance on full songs in SSIM and Reverb metrics could be related
to the way neighbouring segments are connected together. Improving on this aspect could increase
the objective performance further. Evaluating reverberation in dense music is challenging, and how
SonicMaster removes it in latent space is not explicitly observable, making metric selection difficult.
A deeper study of this issue would benefit the community.

7 CONCLUSION

We introduced SonicMaster, the first unified text-guided generative model for music restoration and
mastering, capable of handling 19 diverse degradations within a single framework. Our contributions
further include the creation of a paired degraded–clean dataset with textual annotations, the intro-
duction of a flow-matching paradigm for directly learning restoration mappings, and the integration
of natural language conditioning for precise and flexible control. Evaluations show that SonicMaster
consistently improves the audio quality, outperforming baselines in terms of objective metrics and
listener studies. It also achieved strong zero-shot performance on old piano recordings, highlighting
its versatility suggesting a path toward a generalist restoration framework–one capable of addressing
diverse challenges through prompt guidance while approaching the quality of specialist methods.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We employed a Large Language Model to assist with reducing wordy paragraphs to help the paper
fit in the page limit.

A.2 GENRE TAGS

We grouped genre tags into genre groups, as depicted in Table 5. Each row links a coarse “Group”
label—such as Rock, Electronic, or Jazz/Blues—to the fine-grained “Genre tags” that appear in the
metadata. These tags enumerate substyles (e.g., progressiverock, deephouse, acidjazz),
which allows us to aggregate diverse representations inside each of the genre groups.

Table 5: Genre groupings by metadata tags used in our dataset.

Group Genre tags

Rock rock, alternativerock, poprock, classicrock, hardrock, progressiverock, stoner, psychedelicrock,
garage, indierock

Pop pop, electropop, dancepop, dance, alternativepop, adultcontemporary, indiepop
Electronic electronic, house, techno, trance, edm, electrohouse, deephouse, progressivehouse, electroswing,

synthwave, electronica
Hip-Hop rap, hiphop, trap, alternativehiphop, gangstarap
Folk folk, singersongwriter, americana, country, bluegrass, folklore
Metal metal, deathmetal, blackmetal, thrashmetal, heavymetal, numetal, metalcore, hardcore, alterna-

tivemetal, doommetal
World world, latin, reggaeton, afrobeat, african, indian, oriental, celtic, salsa, flamenco, jpop, mid-

dleeastern, asian, reggae
Jazz/Blues jazz, blues, funk, acidjazz, jazzfusion, smoothjazz, jazzfunk, soul, swing, rnb, alternativernb
Chill ambient, downtempo, chillout, chillhop, lofi, newage, darkambient, triphop, chillwave, idm,

dreampop
Classical classical, filmscore, neoclassical, symphonic, opera, baroque, medieval, avantgarde, production,

choral

A.3 TEXT2FX-DIRECTIONAL BASELINE FOR THE EQ TASK

For the equalization (EQ) experiments, we include the Text2FX-Directional method Chu et al.
(2025) as a text-guided audio transformation baseline. Although Text2FX is not a restoration model,
SonicMaster is instruction-conditioned; therefore, a text-conditioned FX optimizer offers a mean-
ingful point of comparison for evaluating how well different systems follow natural-language EQ
instructions.

A.3.1 DIRECTIONAL LOSS FORMULATION

Text2FX-Directional uses CLAP audio/text embeddings to align the change in audio embedding
with the semantic direction defined by a target prompt and a contrast prompt. Let fa and ft denote
the CLAP audio and text encoders, and let g(x; θ) be a differentiable 6-band parametric EQ (dasp-
pytorch). Given degraded audio xdeg and prompts t1 (contrast) and t2 (target), we define:

A1 = fa(xdeg),

A2(θ) = fa
(
g(xdeg; θ)

)
,

T1 = ft(t1),

T2 = ft(t2).

The method encourages the audio embedding to move from A1 to A2 in the same direction as the
text embedding moves from T1 to T2. Let

da(θ) =
A2(θ)−A1

∥A2(θ)−A1∥2
, dt =

T2 − T1

∥T2 − T1∥2
.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

The directional loss is then:
Ldir(θ) = 1− cos

(
da(θ), dt

)
.

We follow the optimization settings of Chu et al. (2025): 600 Adam iterations (learning rate 1 ×
10−2), standard-normal parameter initialization, and a random circular time shift at each step to
avoid fixation on audio content.

A.3.2 PROMPT AND CONTRAST-PROMPT CONSTRUCTION

Our EQ dataset contains natural-language instructions rather than the short adjectives used in Chu
et al. (2025). To maintain the T1 → T2 structure required by the directional loss, we construct a
semantically opposite contrast prompt for each instruction using GPT with a constrained template
(“write the opposite EQ action”) and manual verification.

Examples used in our EQ evaluation include:

• Clarity / Treble Boost:
– Target prompt (T2): “Increase the clarity of this song by emphasizing treble frequen-

cies.”
– Contrast prompt (T1): “Decrease the clarity of this song by softening or reducing the

treble frequencies and making it sound more dull and muffled.”
• Boominess / Low-End Enhancement:

– Target prompt (T2): “Add weight and depth to the bottom end.”
– Contrast prompt (T1): “Do the opposite of the following instruction: Add weight and

depth to the bottom end.”
• Mic / Narrow-Band Coloration:

– Target prompt (T2): “Balance the EQ, please.”
– Contrast prompt (T1): “Do the opposite of the following instruction: Balance the EQ,

please.”

These pairs ensure that Text2FX-Directional receives properly opposed EQ semantics while match-
ing the full-sentence instruction style of our enhancement dataset.

A.3.3 PURPOSE OF THIS BASELINE

Text2FX-Directional does not use the clean reference audio during optimization; thus it is not eval-
uated as a restoration model. Instead, we include it as a text-conditioned equalization baseline that
evaluates: How well can a CLAP-guided, single-instance EQ optimizer follow the same natural-
language instructions given to SonicMaster? This provides a fair, instruction-aligned comparison
for EQ-specific transformations under identical textual guidance.

A.4 DEGRADATION FUNCTIONS

To create the SonicMaster dataset, we used a set of 19 degradation functions. The details of their
implementation and parameter range are described in Table 6. Each of the groups, and subsequently
each of the functions inside the groups, have their own probabilities/weights to be picked in our data
creation pipeline. These are documented in Table 7.

Peak normalisation of tracks: In case of no intentional clipping, “hidden clipping”, or a low
volume degradation being used, all degraded versions of the SonicMaster dataset are normalised
to a peak amplitude ypeak drawn from a uniform distribution ypeak ∼ U(0.8, 1.0), track is then
normalised as:

xnorm =
x

max(abs(x))
× ypeak
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Table 6: Detailed description of degradation functions used to create our dataset.

Degradation group Degradation type Description Prompt example (inverse)

EQ

X-band EQ Apply 8 to 12 band parametric EQ
with −6 to +6 range for each band.

Correct the unnatural frequency em-
phasis.

Microphone transfer function Convolve the audio with one of 20
phone microphone transfer functions.

Reduce the coloration added by the
microphone.

Brightness Reduce brightness using a high-shelf
filter at 6 kHz by 6–15 dB.

Give the mix more shine and sparkle.

Darkness Increase perceived brightness with a
high-shelf filter at 6 kHz by 6–15 dB.

Make the tone fuller and less sharp.

Airiness Reduce airiness via a high-shelf filter
at 10 kHz by 10–20 dB.

Add more air and openness to the
sound.

Boominess Reduce boominess with a low-shelf
filter at 120 Hz by 10–20 dB.

Give the audio more roar and low-end
power.

Clarity Degrade clarity using a Butterworth
low-pass filter (order 3–5) with cutoff
at 2 kHz.

Increase the clarity of this song by
emphasizing treble frequencies.

Muddiness Increase muddiness with a 2nd-
order Chebyshev Type II bandpass
(200–500 Hz) by 6–15 dB.

Make the mix sound less boxy and
congested.

Warmth Reduce warmth with a low-shelf filter
at 400 Hz by 6–20 dB.

Make the sound warmer and more
inviting.

Vocals Attenuate vocal-range frequencies us-
ing a 2nd-order Chebyshev Type II
bandpass (350–3500 Hz) by 6–20 dB.

Make the vocals stand out more.

Dynamics
Compression Apply a feedforward compressor with

attack 3–80 ms, release 80–250 ms,
threshold −45 to −38 dB, ratio
6–45, and make-up gain 16–25 dB.

Let the audio breathe more and im-
prove the dynamics.

Punch Apply a feedforward transient shaper
with attack 3 ms, release 150 ms,
adaptive threshold, and reduction of
8–15 dB.

Add more impact and dynamic punch
to the sound.

Reverb

Small room Convolve with Pyroomacous-
tics simulated IR: room size
(7–15, 8–18, 4–14) m, absorp-
tion coefficient 0.05–0.30.

Clean this off any echoes!

Big room Convolve with Pyroomacoustics IR:
room size (4–8, 4–7, 2.5–3.5) m,
1–2 absorptive walls, frequency-
dependent absorption.

Can you remove the excess reverb in
this audio, please?

Mixed material room Convolve with Pyroomacoustics IR:
room size (3–7, 3–9, 2.5–4) m, ab-
sorption coefficient 0.05–0.30.

Remove excess reverb and make it
sound cleaner.

Real RIR Apply one of twelve real impulse re-
sponses from the openAIR library.

Please, reduce the strong echo in this
song.

Amplitude
Clipping Modify the audio level to a maximum

amplitude of {2,3,5} and apply clip-
ping.

Reduce the clipping and reconstruct
the lost audio, please.

Volume Adjust the audio gain to a maximum
amplitude of {0.001, 0.003, 0.01,
0.05}.

Enhance the loudness without distort-
ing the signal.

Stereo Stereo Combine the left and right channels to
erase the spatial image.

Add depth and separation between
left and right.
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Group (weight) Option Probability / Weight

EQ (0.4)

xband 7.0
mic 5.0
bright 3.0
dark 3.0
airy 2.0
boom 2.0
clarity 3.0
mud 3.0
warm 3.0
vocal 4.0

Dynamics (0.125) comp 2.5
punch 1.0

Reverb (0.225)

small 0.15
big 0.15
mix 0.30
real 0.40

Amplitude (0.125) clip 3.0
volume 1.0

Stereo (0.125) stereo 1.0

Table 7: Degradation groups with assigned probabilities and option weights.

(a) Original (clean). (b) Degraded input. (c) Restored output.

Figure 6: Original vs. degraded (via convolution with a phone microphone transfer function) and
SonicMaster-restored spectrograms; restoration suppresses the microphone’s coloration.
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A.5 EVALUATION METRICS DETAILS

To evaluate SonicMaster’s ability to deal with each of the 19 proposed degradations, we use a set
of evaluation metrics as follows in this section. For all the metrics, except for X-band EQ, micro-
phone transfer function, and all reverb options, we report absolute errors, i.e., the absolute value of
difference of ground truth (GT) and inferred sample metric values:

AbsErrormetric =
∣∣metricground truth −metricinferred

∣∣.
EQ: The effect of all the EQ options, except for ”xband” and ”mic” is evaluated through absolute
error of spectral energy ratio of two signals – the ground truth reference and the inferred signals.
Spectral energy ratio (Spectral ER) is computed as:

Spectral ER =
Eband

Etotal
,

where Etotal is the total energy of the signal, and Eband is the signal’s energy in a spectral band
given by the following boundaries B:

B =



(20, 150), if ”boom”
(20, 400), if ”warm”
(200, 500), if ”mud”
(350, 3500), if ”vocal”
(4000, fs/2), if ”clarity”
(6000, fs/2), if ”bright”
(6000, fs/2), if ”dark”
(10000, fs/2), if ”airy”

where fs stands for sampling rate.

The remaining two EQ functions of “xband” and “mic” are evaluated through a cosine distance
of spectral balance of the ground truth reference and inferred signal. Spectral balance (SB) is
calculated as a normalised energy profile in 9 pre-defined frequency bands:

SB =
[E1, E2, E3, E4, E5, E6, E7, E8, E9]

sum[E1, E2, E3, E4, E5, E6, E7, E8, E9]
.

The bands are given as:

Bbalance =



(20, 60), if index = 1

(60, 250), if index = 2

(250, 500), if index = 3

(500, 2000), if index = 4

(2000, 4000), if index = 5

(4000, 6000), if index = 6

(6000, 10000), if index = 7

(10000, 16000), if index = 8

(16000, 20000), if index = 9

The reported cosine distance is then gained as:

cosine distance = 1− cos(SBground truth, SBinferred).

Amplitude: Clipping correction is evaluated through spectral flatness using the LI-
BROSA.FEATURE.SPECTRAL FLATNESS library function, which takes in a power spectrogram
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gained through STFT with n fft=2048 and hop length = 512. The final metric for clipping is the
absolute error of spectral flatness (GT vs inferred sample).

Volume is evaluated as the absolute error of the Root-Mean-Square (RMS) value.

Dynamics: Compression is evaluated as the standard deviation of the dynamic range (STD DR),
given as:

STD DR = std(RMS(FH,L)),

where FH,L represents a set of waveform frames with length 2048 and hop length 1024 each. The
final metric is the absolute error from the GT.

The “punch” is measured through transient strength by taking the mean value of the transient enve-
lope gained from the LIBROSA.ONEST.ONSET
STRENGTH library function with default parameters.

Reverb: We evaluate the effect of dereverberation using modulation spectrum distance (MSD).

First, we get a set of temporal envelopes Ex from input signal x:

E(k)
x (m) =

∣∣STFT{x}(k,m)
∣∣,

where k indexes frequency bins and m indexes time frames. Modulation spectrum S
(k)
x (b) is then

calculated using demeaned temporal envelopes:

S(k)
x (b) =

∣∣∣∣∣FFTm

(
E(k)

x (m)− 1

M

M−1∑
m′=0

E(k)
x (m′)

)∣∣∣∣∣
b

, b = 0, . . . , B − 1.

where b represents modulation bins.

Modulation spectra from all frequency bands are then stacked into a single vector:

sx = vec
(
S(k)
x (b)

)
,

and ℓ2 normalized:

ŝx =
sx

∥sx∥2 + ε
.

The MSD between two signals, in our case the GT reference xGT and relevant inferred sample
xinfer, is given as Euclidean distance:

MSD(xGT , xinfer) =
∥∥ŝxGT

− ŝxinfer

∥∥
2
.

In code, this is realized with following parameters as:

import numpy as np
from scipy.spatial.distance import euclidean
from scipy.signal import stft

def modulation_spectrum_distance(x1, x2, fs=44100,
n_fft=1024, hop_length=512, n_mod_bins=20):

def get_modulation_spectrum(x):
f, t, Zxx = stft(x, fs=fs, nperseg=n_fft, noverlap=n_fft - hop_length)
mag = np.abs(Zxx)

mod_spec = []
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for band in mag:
envelope = band - np.mean(band)
spectrum = np.abs(np.fft.fft(envelope))[:n_mod_bins]
mod_spec.append(spectrum)

mod_spec = np.array(mod_spec)
mod_spec /= np.linalg.norm(mod_spec) + 1e-10
return mod_spec.flatten()

mod1 = get_modulation_spectrum(x1)
mod2 = get_modulation_spectrum(x2)

return euclidean(mod1, mod2)

Stereo: We measure the level of stereoness using stereo energy ratio (Stereo ER), computed as:

Stereo ER =
RMS(L−R

2 )

RMS(L+R
2 ) + 10−10

(3)

We report the absolute error of this metric.

A.6 SPECTROGRAM EXAMPLES

We visualize time–frequency structure in spectrograms to provide qualitative evidence of restoration
behavior. Each figure shows the clean reference, the degraded input (e.g., reverberation-induced
smearing or clipping distortion), and the output of SonicMaster. Figures 6, 7, 8, 9, 10, and 11
compare clean, degraded, and restored spectrograms across selected scenarios (reverb, clipping,
microphone transfer function, and clarity EQ).

(a) Ground truth audio. (b) Degraded by reverb
(smearing).

(c) After SonicMaster: reverb
removed.

Figure 7: Comparison of spectrograms: (a) ground truth, (b) degraded with reverb, and (c) the output
of SonicMaster where smearing is removed. Prompt: “Please, reduce the strong echo in this song.”

Model (MMDiT/DiT) Clarity Boom Airy Bright Dark Muddy Warm Vocals Microphone X-band

Snippet degraded input
SonicMasterLarge (6/18) 0.0114 0.0834 0.0019 0.0059 0.0058 0.0388 0.0617 0.0576 0.0088 0.0358

-w Euler 1 Step 0.0100 0.1146 0.0019 0.0059 0.0061 0.0425 0.0668 0.0498 0.0141 0.0384
-w Euler 100 Steps 0.0136 0.1540 0.0033 0.0100 0.0091 0.0540 0.0915 0.0749 0.0162 0.0444
-w Runge-Kutta 10 Steps 0.0120 0.0810 0.0019 0.0058 0.0058 0.0402 0.0630 0.0590 0.0083 0.0374

SonicMasterSmall (2/6) 0.0100 0.0819 0.0020 0.0064 0.0060 0.0477 0.0590 0.0630 0.0122 0.0408
SonicMasterMedium (4/12) 0.0105 0.0698 0.0021 0.0067 0.0061 0.0400 0.0592 0.0602 0.0091 0.0383
SonicMasterMedium (6/6) 0.0225 0.2766 0.0020 0.0067 0.0056 0.1718 0.1737 0.2417 0.0462 0.0762
SonicMasterLarge (6/18) 0.0114 0.0834 0.0019 0.0059 0.0058 0.0388 0.0617 0.0576 0.0088 0.0358

SonicMasterLarge (6/18) 0.0114 0.0834 0.0019 0.0059 0.0058 0.0388 0.0617 0.0576 0.0088 0.0358
-w 5s Audio Cond. 0.0111 0.0716 0.0021 0.0061 0.0058 0.0386 0.0605 0.0628 0.0124 0.0387
-w 15s Audio Cond. 0.0117 0.0750 0.0020 0.0064 0.0063 0.0320 0.0552 0.0525 0.0079 0.0398
-w/o Audio Cond. (basic) 0.0099 0.0658 0.0021 0.0064 0.0056 0.0352 0.0595 0.0746 0.0097 0.0434
-w Cond. During Infer 0.0115 0.0840 0.0019 0.0060 0.0058 0.0389 0.0610 0.0572 0.0088 0.0355

Table 8: EQ Objective evaluation (average absolute error) – the lower, the better.
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(a) Original (clean).

(b) Degraded input.

(c) Restored output.

Figure 8: Effect of reverberation (example from the main text in larger size): top panel shows
the original audio sample, middle panel shows audio convolved with a Pyroomacoustics simulated
impulse response, and bottom panel shows the dereverberated result with echoes cleaned.

A.7 ABLATION ON ODE SOLVERS, MODEL SIZE, AND CONDITIONING

We evaluated Euler solvers with 1, 10 (baseline), and 100 steps, plus a 10-step 4th order
Runge–Kutta (Dormand & Prince, 1980) solver. Tables 8, 9, and 10 outline the results and highlight
the trade-off across degradation categories. Euler-1 matches the baseline overall but is weaker on
Boom, Microphone, Clip, all Reverb subtasks, and shows higher KL. Euler-100 boosts Reverb and
Punch yet lowers every EQ score versus the 1-/10-step runs. Runge–Kutta-10 equals Euler-10 on
most metrics and tops Clip, but its inference is significantly slower.

We further performed a scaling analysis of the SonicMaster model. The results in Tables 8, 9, 10,
show that SonicMasterSmall performs comparably with SonicMasterLarge in all metrics, but slightly
worse in Reverb, Clip, and Stereo. The medium variant, SonicMasterMedium (4MM-DiT/12DiT),
performs slightly better than the small model SonicMasterSmall overall. It also performs comparably
to the large model SonicMasterLarge, outperforming it in Boom, or Compression, but still lacking
behind in Clip. SonicMasterMedium (6MM-DiT/6DiT) performs the worst out of all variants across
all metrics, suggesting a non-optimal ratio of MM-DiT to DiT blocks.

Regarding the audio condition and its duration, we evaluated SonicMasterLarge with three different
conditioning lengths (5s, 10s, 15s). The performance across configurations was found to be compa-
rable (Tables 8, 9, 10). For our default model version, we chose the 10-second setting as it balances
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(a) Original (clean).

(b) Degraded input.

(c) Restored output.

Figure 9: Effect of clarity degradation and restoration on spectrograms. The treble frequencies are
supressed in the degraded input sample, and then restored with SonicMaster. Prompt: “Make the
audio clearer and more intelligible.”

computational efficiency with temporal overlap for long-form processing. The variant that uses au-
dio condition through the pooling layers during inference scored comparably to the default setup,
however, we can observe improvement in Clip and Volume (Table 9). The model trained without
audio conditioning performs similarly across the board, scoring the best in Boom (0.0658, Table
8), but shows a clear drop in Clip performance (2.055 vs 1.506, see Table 9), which highlights the
importance of this condition for this reconstruction task.
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(a) Original (clean).

(b) Degraded input.

(c) Restored output.

Figure 10: Effect of clipping degradation and related restoration. Drum hits clip in the degraded
audio, showing as wideband spectral peaks, but are restored in the SonicMaster’s output without
distortion. Prompt: “Clean up the harshness in the signal.”

A.8 PROMPTS FOR EACH DEGRADATION TYPE

Prompt instructions for each degradation type are grouped by audio attribute in Table 11; for ex-
ample, entries for Xband, microphone coloration, clarity, brightness, darkness, airiness, boominess,
warmth, muddiness, vocals, compression, punch, reverb, volume, clipping, and stereo give natural-
language commands that steer the restoration model. These instructions act as conditioning sig-
nals—e.g., “remove excess reverb and make it sound cleaner,” “raise the level of the vocals,” or
“make this sound brighter”—so that the generative restoration trajectory emphasizes or suppresses
specific signal characteristics.
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(a) Original (clean).

(b) Degraded input.

(c) Restored output.

Figure 11: Another example of the effect of clipping and its restoration. The degraded input shows
signs of distortion with visible increase in wideband spectral content at the parts of waveform clip-
ping. This distortion is suppressed by SonicMaster. Prompt: “Clean up the noisiness in the audio.”
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Model (MMDiT/DiT) Reverb Dynamics Amplitude Stereo
Small Big Mix Real Compressor Punch Clip Volume

Snippet degraded input

SonicMasterLarge (6/18) 0.3663 0.3726 0.3935 0.3109 0.0193 0.0871 1.506 0.0468 0.1058
-w Euler 1 step 0.4215 0.4378 0.4599 0.3459 0.0124 0.0906 2.171 0.0461 0.1261
-w Euler 100 Steps 0.3716 0.3754 0.3997 0.3255 0.0158 0.0672 2.753 0.0491 0.1497
-w Runge-Kutta 10 Steps 0.3647 0.3684 0.3921 0.3087 0.0210 0.0858 1.422 0.0481 0.1059

SonicMasterSmall (2/6) 0.3812 0.3826 0.4050 0.3277 0.0172 0.0859 2.363 0.0457 0.1536
SonicMasterMedium (4/12) 0.3683 0.3700 0.3934 0.3138 0.0147 0.0891 2.455 0.0409 0.1028
SonicMasterMedium (6/6) 0.3952 0.3916 0.4422 0.4255 0.0366 0.0833 2.905 0.1228 0.4180
SonicMasterLarge (6/18) 0.3663 0.3726 0.3935 0.3109 0.0193 0.0871 1.506 0.0468 0.1058

SonicMasterLarge (6/18) 0.3663 0.3726 0.3935 0.3109 0.0193 0.0871 1.506 0.0468 0.1058
-w 5s Audio Cond. 0.3717 0.3658 0.3919 0.3079 0.0164 0.0893 1.779 0.0430 0.0918
-w 15s Audio Cond. 0.3676 0.3682 0.3901 0.3093 0.0172 0.0895 1.633 0.0485 0.1008
-w/o Audio Cond. During Training 0.3620 0.3682 0.3888 0.3067 0.0146 0.0850 2.055 0.0455 0.1015
-w Cond. During inference 0.3664 0.3724 0.3934 0.3112 0.0172 0.0870 1.455 0.0412 0.1060

Table 9: Objective evaluation: Reverb, Dynamics, Amplitude, and Stereo. Clip values are multiplied
by 1000.

Model Single deg. Double+triple deg. All
FAD ↓ KL ↓ SSIM ↑ PQ ↑ FAD ↓ KL ↓ SSIM ↑ PQ ↑ FAD ↓ KL ↓ SSIM ↑ PQ ↑

Snippet degraded input

SonicMasterLarge (6/18) 0.069 0.696 0.624 7.743 0.082 1.145 0.589 7.654 0.073 0.888 0.609 7.705
-w Euler 1 step 0.076 0.922 0.615 7.684 0.117 1.789 0.567 7.520 0.090 1.294 0.594 7.614
-w Euler 100 Steps 0.069 0.920 0.620 7.764 0.087 1.521 0.585 7.621 0.076 1.178 0.605 7.703
-w Runge-Kutta 10 Steps 0.070 0.701 0.624 7.740 0.084 1.171 0.588 7.642 0.074 0.902 0.608 7.698

SonicMasterSmall (2/6) 0.071 0.726 0.623 7.716 0.088 1.215 0.586 7.609 0.077 0.935 0.607 7.670
SonicMasterMedium (4/12) 0.070 0.709 0.624 7.740 0.084 1.187 0.589 7.649 0.075 0.914 0.609 7.701
SonicMasterMedium (6/6) 0.086 1.893 0.603 7.571 0.154 3.241 0.555 7.231 0.110 2.470 0.583 7.426
SonicMasterLarge (6/18) 0.069 0.696 0.624 7.743 0.082 1.145 0.589 7.654 0.073 0.888 0.609 7.705

SonicMasterLarge (6/18) 0.069 0.696 0.624 7.743 0.082 1.145 0.589 7.654 0.073 0.888 0.609 7.705
-w 5s Audio Cond. 0.070 0.703 0.624 7.733 0.083 1.175 0.588 7.637 0.075 0.905 0.609 7.692
-w 15s Audio Cond. 0.069 0.694 0.623 7.742 0.083 1.161 0.588 7.650 0.073 0.894 0.608 7.702
-w/o Audio Cond. During Training 0.069 0.691 0.625 7.741 0.082 1.146 0.590 7.645 0.073 0.886 0.610 7.700
-w Cond. During Inference 0.069 0.693 0.625 7.742 0.082 1.141 0.589 7.653 0.073 0.885 0.609 7.704

Table 10: Objective evaluation: FAD, KL, SSIM, and PQ. For readability, KL values were multiplied
by 1000.
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1433
1434
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1437
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1439
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1441
1442
1443
1444
1445
1446
1447
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1454
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1456
1457

Table 11: User instructions grouped by audio attribute.

Attribute Example Instructions

Xband Can you please correct the equalization?; Improve the balance in the audio by fixing the chaotic equalizer, please.;
Make this sound balanced, please.; Balance the EQ, please.; Balance the tonal spectrum of the audio.; Correct
the unnatural frequency emphasis.; Make the EQ curve smoother and more natural.; Even out the EQ.; Adjust
the tonal balance for a more pleasing sound.

Microphone This audio was recorded with a phone, can you fix that, please?; Please make this sound better than a phone
recording.; Balance the EQ, please.; Improve the balance in this song.; Make the audio sound like it was recorded
with a higher-quality microphone.; Reduce the coloration added by the microphone.; Make the tone more neutral
and balanced.; Improve the naturalness of the recording.; Remove the harshness or boxiness from the mic col-
oration.

Clarity Increase the clarity!; Can you please make this song sound more clear?; Increase the clarity of this song by
emphasizing treble frequencies.; Make the audio clearer and more intelligible.; Sharpen the overall sound.; Bring
more focus and definition to the details.; Make the mix sound less cloudy.; Tighten the articulation in the sound.

Brightness Can you please make this sound brighter?; Increase the brightness!; Make this audio sound brighter by emphasiz-
ing the high frequencies.; Add some brightness to the high end.; Make the sound more vivid and lively.; Give the
mix more shine and sparkle.; Lift the treble for a more open tone.; Enhance the presence of the upper frequencies.

Darkness Make this sound darker!; Can you reduce the brightness, please?; Make the audio darker by suppressing the
higher frequencies.; Bring in more low-mid richness to make the sound darker.; Make the tone fuller and less
sharp.; Smooth out the highs with deeper low-end support.; Round out the sound with more body.; Soften the
harshness with a warmer tone.

Airiness Make this sound more fresh and airy by emphasizing the high end frequencies.; Make this feel more airy, please.;
Increase the perceived airiness, please.; Give this a light sense of spaciousness by amplifying the higher frequen-
cies.; Add more air and openness to the sound.; Make the audio feel more spacious and extended.; Enhance the
sense of space in the highs.; Lift the top end for a more open character.; Give the mix a breathier, more open feel.

Boominess Make it boom!; Make this song sound more boomy by amplifying the low end bass frequencies.; Increase the
boominess, please!; Give me more bass!; Can you make this more bassy, please?; Give the audio more roar and
low-end power.; Make the bass more impactful and solid.; Add weight and depth to the bottom end.; Reinforce
the low frequencies for more energy.; Boost the bass presence.

Warmth Can you make this song sound warmer, please?; Increase the warmth, please.; Emphasize the bass and low-mid
frequencies to give this a more warm feel.; Make the sound warmer and more inviting.; Add some low-mid
warmth to the mix.; Soften the tone with a bit more body.; Give the audio a warm analog feel.; Enhance the
warmth for a fuller sound.

Muddiness Can you make this song sound less muddy, please?; Decrease the muddiness!; Reduce the level of muddiness in
this audio by lowering the low-mid frequencies.; Clean up the muddiness in the low-mids.; Make the mix sound
less boxy and congested.; Improve definition by reducing mud.; Clear up the low-mid buildup.; Make the audio
tighter and less murky.

Vocals Raise the level of the vocals, please.; Can you amplify the vocals, please?; Emphasize the vocals by raising the
level of the mid frequencies specific for vocals.; Bring the vocals forward in the mix.; Make the voice clearer
and more present.; Increase the vocal presence by enhancing the midrange.; Make the vocals stand out more.;
Strengthen the vocal clarity and focus.

Compression Increase the dynamic range.; Decompress the audio, please.; Remove the compression, please.; Can you fix the
strong compression effect in this audio by expanding the dynamic range?; Restore the dynamics of the audio.;
Make the sound less squashed and more open.; Reduce the over-compression for a more natural feel.; Bring back
the contrast in volume.; Let the audio breathe more and improve the dynamics.

Punch Give this song a punch!; Make the transients sharper, please.; Increase the punchiness of the song by emphasizing
the transients.; Make the audio more punchy and energetic.; Bring back the snap and attack of transients.; Add
more impact and dynamic punch to the sound.; Make drums and hits sound more aggressive and tight.; Increase
the percussive clarity and definition.

Reverb Can you remove the excess reverb in this audio, please?; Please, dereverb this audio.; Remove the echo!; Please,
reduce the strong echo in this song.; Remove the church effect, please.; Clean this off any echoes!; This song has
too much reverb present, can you reduce it?; Make the audio sound more dry and direct.; Reduce the roominess
or echo.; Remove excess reverb and make it sound cleaner.; Bring the sound closer and more focused.; Tighten
the spatial feel of the audio.

Volume The volume is low, make this louder please!; Can you make this sound louder, please?; Increase the amplitude.;
Normalize the audio volume.; Make the audio louder and more powerful.; Increase the overall level.; Boost the
volume without distorting the signal.

Clipping This audio is clipping, can you please remove it?; Remove the loud hissing in this song?; Remove the clipping.;
Reduce the clipping and reconstruct lost audio.; Clean up noisiness.; Make the audio smoother and less distorted.;
Reduce the gritty or crushed character.; Fix digital distortion.

Stereo Make it sound spacious!; Can you make this audio stereo, please?; Alter left/right channels to give spatial feel.;
Widen the stereo image.; Add depth and separation between left and right.; Enhance the stereo field for immersive
sound.
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