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ABSTRACT

To reduce the computational cost of convolutional neural networks (CNNs) for us-
age on resource-constrained devices, structured pruning approaches have shown
promising results, drastically reducing floating-point operations (FLOPs) without
substantial drops in accuracy. However, most recent methods require fine-tuning
or specific training procedures to achieve a reasonable trade-off between retained
accuracy and reduction in FLOPs. This introduces additional cost in the form of
computational overhead and requires training data to be available. To this end, we
propose HASTE (Hashing for Tractable Efficiency), a parameter-free and data-
free module that acts as a plug-and-play replacement for any regular convolution
module. It instantly reduces the network’s test-time inference cost without requir-
ing any training or fine-tuning. We are able to drastically compress latent feature
maps without sacrificing much accuracy by using locality-sensitive hashing (LSH)
to detect redundancies in the channel dimension. Similar channels are aggregated
to reduce the input and filter depth simultaneously, allowing for cheaper convolu-
tions. We demonstrate our approach on the popular vision benchmarks CIFAR-10
and ImageNet. In particular, we are able to instantly drop 46.72% of FLOPs
while only losing 1.25% accuracy by just swapping the convolution modules in a
ResNet34 on CIFAR-10 for our HASTE module.

1 INTRODUCTION
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Figure 1: Overview of related pruning approaches. Training-based methods require specialized
training procedures. Methods based on fine-tuning need retraining to compensate lost accuracy in
the pruning step. Our method instantly reduces network FLOPs and maintains high accuracy entirely
without training or fine-tuning.

With the rise in availability and capability of deep learning hardware, the possibility to train ever
larger models led to impressive achievements in the field of computer vision. At the same time, con-
cerns regarding high computational costs, environmental impact and the applicability on resource-
constrained devices are growing. This led to the introduction of carefully constructed efficient mod-
els (Howard et al., 2017; Sandler et al., 2018; Tan & Le, 2019; 2021; Zhang et al., 2018; Ma et al.,
2018) that offer fast inference in embedded applications, gaining speed by introducing larger induc-
tive biases. Yet, highly scalable and straight-forward architectures (Simonyan & Zisserman, 2015;
He et al., 2016; Dosovitskiy et al., 2021; Liu et al., 2021a; 2022; Woo et al., 2023) remain popular
due to their performance and ability to generalize, despite requiring more data, time and energy to
train. To still allow for larger models to be used in mobile applications, various methods (Zhang
et al., 2016; Lin et al., 2017b; Pleiss et al., 2017; Han et al., 2020; Luo et al., 2017) have been
proposed to reduce their computational cost. One particularly promising field of research for the
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compression of convolutional architectures is pruning (Wimmer et al., 2023), especially in the form
of structured pruning for direct resource savings (Anwar et al., 2017).

However, the application of existing work is restricted by two factors. Firstly, many proposed ap-
proaches rely on actively learning which channels to prune during the regular model training pro-
cedure (Dong et al., 2017; Liu et al., 2017; Gao et al., 2019; Verelst & Tuytelaars, 2020; Bejnordi
et al., 2020; Li et al., 2021; Xu et al., 2021). This introduces additional parameters to the model,
increases the complexity of the optimization process due to supplementary loss terms, and requires
existing models to be retrained to achieve any reduction in FLOPs. The second limiting factor is
the necessity of performing fine-tuning steps to restore the performance of pruned models back to
acceptable levels (Wen et al., 2016; Li et al., 2017; Lin et al., 2017a; Zhuang et al., 2018; He et al.,
2018). Aside from the incurred additional cost and time requirements, this creates a dependency
on the availability of the data that was originally used for training the baseline model, as tuning the
model on a different set of data can lead to catastrophic forgetting (Goodfellow et al., 2014).

To this end, we propose HASTE, a plug-and-play channel pruning approach that is entirely data-free
and does not require any real or synthetic training data. Our method instantly reduces the compu-
tational complexity of convolution modules without requiring any additional training or fine-tuning.
To achieve this, we utilize a locality-sensitive hashing scheme (Indyk & Motwani, 1998) to dynam-
ically detect and cluster similarities in the channel dimension of latent feature maps in CNNs. By
exploiting the distributive property of the convolution operation, we take the average of all input
channels that are found to be approximately similar and convolve it with the sum of correspond-
ing filter channels. This reduced convolution is performed on a smaller channel dimension, which
drastically lowers the amount of FLOPs required.

Our experiments demonstrate that the HASTE module is capable of greatly reducing computational
cost of a wide variety of pre-trained CNNs while maintaining high accuracy. More importantly, it
does so directly after exchanging the original convolutional modules for the HASTE block. This
allows us to skip lengthy model trainings with additional regularization and sparsity losses as well
as extensive fine-tuning procedures. Furthermore, we are not tied to the availability of the dataset
on which the given model was originally trained. Our pruning approach is entirely data-free, thus
enabling pruning in a setup where access to the trained model is possible, but access to the data
is restricted. To the best of our knowledge, this makes the HASTE module the first dynamic and
data-free CNN pruning approach that does not require any form of training or fine-tuning.

Our main contributions are:

• We propose a locality-sensitive hashing based method to detect redundancies in the latent
features of current CNN architectures. Our method incurs a low computational overhead
and is entirely data-free.

• We propose HASTE, a scalable, plug-and-play convolution module replacement that lever-
ages these structural redundancies to save computational complexity in the form of FLOPs
at test time, without requiring any training steps.

• We demonstrate the performance of our method on popular CNN models trained on bench-
mark vision datasets. We also identify a positive scaling behavior, achieving higher cost
reductions on deeper and wider models.

2 RELATED WORK

When structurally pruning a model, its computational complexity is reduced at the expense of per-
formance on a given task. For this reason, fine-tuning is often performed after the pruning scheme
was applied. The model is trained again in its pruned state to compensate the lost structural compo-
nents, often requiring multiple epochs of tuning (Li et al., 2017; Zhuang et al., 2018; Xu et al., 2021)
on the dataset originally used for training. These methods tend to remove structures from models in
a static way, not adjusting for different degrees of sparsity across varying input data. Some recent
methods try to avoid fine-tuning by learning a pruning pattern during regular model training (Liu
et al., 2017; Gao et al., 2019; Xu et al., 2021; Li et al., 2021; Elkerdawy et al., 2022). This generates
an input-dependent dynamic path through the network, allocating less compute to sparser images.
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Static Pruning. By finding general criteria for the importance of individual channels, some recent
methods propose static pruning approaches. PFEC (Li et al., 2017) prunes filter kernels with low
importance measured by their L1-norm in a one-shot manner. DCP (Zhuang et al., 2018) equips
models with multiple loss terms before fine-tuning to promote highly discriminative channels to be
formed. Then, a channel selection algorithm picks the most informative ones. FPGM (He et al.,
2019) demonstrates a fine-tuning-free pruning scheme, exploiting norm-based redundancies to train
models with reduced complexity. He et al. (2018) explore a compression policy generated by re-
inforcement learning. A handful of data-free approaches exist, yet they either use synthetic data to
re-train the model (Bai et al., 2023) or generate a static model (Yvinec et al., 2023; Bai et al., 2023)
that is unable to adapt its compression to the availability of hardware resources on the fly.

Dynamic Gating. To accommodate inputs of varying complexity in the pruning process, recent
works try to learn dynamic, input-dependent paths through the network (Xu et al., 2021; Li et al.,
2021; Elkerdawy et al., 2022; Liu et al., 2017; Hua et al., 2019; Verelst & Tuytelaars, 2020; Be-
jnordi et al., 2020; Liu et al., 2019). These methods learn (binary) masks that toggle structural
components of the underlying CNN at runtime. DGNet (Li et al., 2021) equips the base model with
additional spatial and channel gating modules based on average pooling that are trained end-to-end
together with the model using additional regularization losses. Similarly, DMCP (Xu et al., 2021)
learns mask vectors using a pruning loss and does not need fine-tuning procedures after training.
FTWT (Elkerdawy et al., 2022) decouples the task and regularization losses introduced by previous
approaches, reducing the complexity of the pruning scheme. While these methods do not require
fine-tuning, they introduce additional complexity through pruning losses and the need for custom
gating modules during training to realize FLOP savings. We instead focus on hashing to speed up
inference at test time, with no training and data requirement at all.

Hashing for Fast Inference. In recent years, the usage of locality-sensitive hashing Indyk & Mot-
wani (1998) schemes as a means to speed up model inference has gained some popularity. In Re-
former, (Kitaev et al., 2020) use LSH to reduce the computational complexity of multi-head attention
modules in transformer models by finding similar queries and keys before computing their matrix
product. Müller et al. (2022) employ a multiresolution hash encoding to construct an efficient feature
embedding for neural radiance fields (NeRFs), leading to orders of magnitude speedup compared
to previous methods. Chen et al. (2020; 2021) use an LSH scheme to store activation patterns of a
high-dimensional feedforward network, only computing the strongest activating neurons during the
forward pass. Approaches related to LSH have also been explored for model compression. Liu et al.
(2021b) employ a count sketch-type algorithm to approximate the forward pass of MLP networks
by hashing the model’s input vector. Liu et al. (2021c) extend on FPGM (He et al., 2019) and ex-
plore the use of k-means clustering for finding redundant input channels. However, this approach is
limited to fixed pruning ratios, and does not allow for input-dependent compression.

3 METHOD

In this section, we present HASTE, a novel convolution module based on locality-sensitive hash-
ing that acts as a plug-and-play replacement for any regular convolution module, instantly reducing
the FLOPs during inference. Firstly, we give a formal definition of the underlying LSH scheme.
Secondly, we illustrate how hashing is used to identify redundancies inside latent features of con-
volutional network architectures. Lastly, we present the integration of the hashing process into our
proposed HASTE module, which allows us to compress latent features for cheaper computations.

3.1 LOCALITY-SENSITIVE HASHING VIA SPARSE RANDOM PROJECTIONS

Locality-sensitive hashing is a popular approach for approximate fast nearest neighbor search in
high-dimensional spaces. A hash function h : Rd → N is locality-sensitive, if similar vectors in the
input domain x,y ∈ Rd receive the same hash codes h(x) = h(y) with high probability. This is in
contrast to regular hashing schemes which try to reduce hash collisions to a minimum, widely scat-
tering the input data across their hash buckets. More formally, we require a measure of similarity on
the input space and an adequate hash function h. A particularly suitable measure for use in convo-
lutional architectures is the cosine similarity, as convolving the (approximately) normalized kernel
with the normalized input is equivalent to computing their cosine similarity. Pairwise similarities
between vectors are preserved through hashing by the allocation of similar hash codes.
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Figure 2: Overview of our proposed HASTE module. Each patch of the input feature map is pro-
cessed to find redundant channels. Detected redundancies are then merged together, dynamically
reducing the depth of each patch and the convolutional filters.

One particular family of hash functions that groups input data by cosine similarity is given by ran-
dom projections (RP). These functions partition the high-dimensional input space through L random
hyperplanes, such that each input vector is assigned to exactly one section of this partitioning, called
a hash bucket. Determining the position of an input x ∈ Rd relative to all L hyperplanes is done by
computing the dot product with their normal vectors vl ∈ Rd, l ∈ {1, 2, . . . , L}, whose entries are
drawn from a standard normal distribution N (0, 1). By defining

hl : Rd → {0, 1}, hl(x) :=

{
1, if vl · x > 0,

0, else,
(1)

we get a binary information representing to which side of the l-th hyperplane input x lies. The
hyperparameter L governs the discriminative power of this method, dividing the input space Rd into
a total of 2L distinct regions, or hash buckets. By concatenating all individual functions hl, we
receive the RP hash function

h : Rd → {0, 1}L, h(x) = (h1(x), h2(x), . . . , hL(x)) . (2)

Note that h(x) is an L-bit binary code, acting as an identifier of exactly one of the 2L hash buckets.
Equivalently, we can transform this code into an integer, labeling the hash buckets from 0 to 2L − 1:

h : Rd →
{
0, 1, . . . , 2L − 1

}
, h(x) = 2L−1hL(x) + 2L−2hL−1(x) + · · ·+ 20h1(x). (3)

While LSH already reduces computational complexity drastically compared to exact nearest neigh-
bor search, the binary code generation still requires L ·d multiplications and L · (d−1) additions per
input. To further decrease the cost of this operation, we employ the method presented by Achliop-
tas (2003); Li et al. (2006): Instead of using standard normally distributed vectors vl, we use very
sparse vectors vl, containing only elements from the set {1, 0,−1}. Given a targeted degree of spar-
sity s ∈ (0, 1), the hyperplane normal vectors vl are constructed randomly such that the expected
ratio of zero entries is s. The remaining 1 − s of vector components are randomly filled with ei-
ther 1 or −1, both chosen with equal probability. This reduces the dot product computation to a
total of L · (d(1 − s) − 1) additions and 0 multiplications, as we only need to sum entries of x
where vl is non-zero with the corresponding signs. Consequently, this allows us to trade expensive
multiplication operations for cheap additions.

3.2 FINDING REDUNDANCIES WITH LSH

After establishing LSH via sparse random projections as a computationally cheap way to find ap-
proximate nearest neighbors in high-dimensional spaces, we now aim to leverage this method as a
means of finding redundancies in the channel dimension of latent feature maps in CNNs. Formally,
a convolutional layer can be described by sliding multiple learned filters Fj ∈ RCin×K×K , j ∈
{1, 2, . . . , Cout} over the (padded) input feature map X ∈ RCin×H×W and computing the discrete
convolution at every point. Here, K is the kernel size, H and W denote the spatial dimensions of
the input, and Cin, Cout describe the input and output channel dimensions, respectively.
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For any filter position, the corresponding input window contains redundant information in the form
of similar channels. However, a regular convolution module ignores potential savings from reducing
the amount of similar computations in the convolution process. We challenge this design choice and
instead leverage redundant channels to save computations in the convolution operation. As the first
step, we rasterize the (padded) input image into patches X(p) ∈ RCin×(K+2)×(K+2) with an overlap
of two pixels on each side. This is equivalent to splitting the spatial dimension into patches of size
K × K, but keeping the filter overlap to its neighbors. The special case of K = 1 is discussed in
Appendix B.2.

To group similar channels together, we flatten all individual channels X(p)
i into vectors of dimension

(K+2)2 and center them by the mean along the channel dimension. We denote the resulting vectors
as x(p)

i . Finally, they are hashed using h, giving us a total of Cin hash codes. We then check which
hash code appears more than once, as all elements that appear in the same hash bucket are determined
to be approximately similar by the LSH scheme. Consequently, grouping the vector representations
of X(p)

i by their hash code, we receive sets of redundant feature map channels.

In particular, note that our RP LSH approach is invariant to the scaling of a given input vector. This
means that input channels of the same spatial structure, but with different activation intensities, still
land in the same hash bucket, effectively finding even more redundancies in the channel dimension.

3.3 THE HASTE MODULE

Our approach is motivated by the distributivity of the convolution operation. Instead of convolving
various filter kernels with nearly similar input channels and summing the result, we can approximate
this operation by computing the sum of kernels first and convolving it with the mean of these redun-
dant channels. The grouping of input channels X(p)

i into hash buckets provides a straight-forward
way to utilize this distributive property for the reduction of required floating-point operations when
performing convolutions.

To avoid repeated computations on nearly similar channels, we dynamically reduce the size of each
input context window X(p) by compressing channels found in the same hash bucket, as shown in
Figure 2. The merging operation is performed by taking the mean of all channels in one bucket. As
a result, the number of remaining input channels of a given patch is reduced to C̃in < Cin. In a
similar manner to the reduction of the input feature map depth, we add the corresponding channels
of all convolutional filters Fj . Note that this does not require hashing of the filter channels, as we
can simply aggregate those kernels that correspond to the collapsed input channels. This step is done
on the fly for every patch p, retaining the original filter weights for the next patch.

The choice of different merging operations for input and filter channels is directly attributable to the
distributive property, as the convolution between the average input and summed filter set retains a
similar output intensity to the original convolution. When choosing to either average or sum both
inputs and filters, we would systematically under- or overestimate the original output, respectively.

Finally, the reduced input patch is convolved with the reduced set of filters in a sliding window
manner to compute the output. This can be formalized as follows:

Cin∑
i=1

Fj,i ∗X(p)
i ≈

2L−1∑
l=0

(( ∑
i∈S

(p)
l

Fj,i

)
∗
(

1

|S(p)
l |

∑
i∈S

(p)
l

X
(p)
i

))
, (4)

where S(p)
l = {i ∈ {1, 2, . . . , Cin} |h(x(p)

i ) = l} contains all channel indices that appear in the l-th
hash bucket. We assume the scaling factor 1/|S(p)

l | to be zero if the bucket is empty for simplicity of
notation. Since we do not remove entire filters, but rather reduce their depth, the output feature map
retains the same spatial dimension and number of channels as with a regular convolution module.
The entire procedure is summarized in Algorithm 1.

This reduction of input and filter depth lets us define a compression ratio r = 1−(C̃in/Cin) ∈ (0, 1),
determining the relative reduction in channel depth. Note that this ratio is dependent on the amount
of redundancies in the input feature map X at patch position p. Our dynamic pruning of channels
allows for different compression ratios across images and even in different regions of the same input.
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Although the hashing of input channels and both merging operations create additional computational
cost, the overall savings on computing the convolution operations with reduced channel dimension
outweigh the added overhead. The main additional cost lies in the merging of filter channels, as
this process is repeated Cout times for every patch p. However, since this step is performed by
computationally cheap additions, it lends itself to hardware-friendly implementations. For a detailed
overview of the computational cost of our HASTE module, we refer to Appendix B.1.

Algorithm 1 Pseudocode overview of the HASTE module.
Input: Feature map X ∈ RCin×H×W , Filters F ∈ RCout×Cin×K×K

Output: Y ∈ RCout×H×W

Initialize: Hash function h : R(K+2)2 →
{
0, 1, . . . , 2L − 1

}
1: for every patch p do
2: HashCodes = [ ] ▷ Create empty list for hash codes
3: for i = 1, 2, . . . , Cin do
4: x

(p)
i = Center(Flatten(X(p)

i )) ▷ Generate centered and flattened representation
5: HashCodes.Append(h(x(p)

i )) ▷ Hash input representation and append code
6: end for
7: X̃(p) = MergeInput(X(p), HashCodes) ▷ Compute mean of channels in same bucket
8: F̃ = MergeFilters(F , HashCodes) ▷ Sum corresponding filter channels
9: Y (p) = X̃(p) * F̃

10: end for
11: return Y

Our HASTE module features two hyperparameters: the number of hyperplanes L in the LSH scheme
and the degree of sparsity s in their normal vectors. Adjusting L gives us a tractable trade-off
between the compression ratio and approximation quality to the original convolution in the form
of retained accuracy. This allows us to generate multiple model variants from one underlying base
model, either focusing on low FLOPs or high accuracy. The normal vector sparsity s does not require
direct tuning and can easily be fixed across a dataset. Achlioptas (2003) and Li et al. (2006) provide
initial values with theoretical guarantees. Our hyperparameter choices are discussed in Section 4.1.

4 EXPERIMENTS

In this section, we present results of our plug-and-play approach on standard CNN architectures
in terms of FLOPs reduction as well as retained accuracy and give an overview of related meth-
ods. Firstly, we describe the setup of our experiments in detail. Then, we evaluate our proposed
HASTE module on the CIFAR-10 (Krizhevsky, 2009) dataset for image classification and discuss
the influence of the hyperparameter L. Lastly, we present results on the ImageNet ILSVRC 2012
(Russakovsky et al., 2015) benchmark dataset and discuss the scaling behavior of our method.

4.1 EXPERIMENT SETTINGS

For the experiments on CIFAR-10, we used pre-trained models provided by Phan (2021). On Ima-
geNet, we use the trained models provided by PyTorch 2.0.0 (Paszke et al., 2019). Given a baseline
model, we replace the regular non-strided convolutions with our HASTE module. For ResNet mod-
els (He et al., 2016), we do not include downsampling layers in our pruning scheme.

Depending on the dataset, we vary the degree of sparsity s in the hyperplanes as well as at which
layer we start pruning. As the CIFAR-10 dataset is less complex and features smaller latent spatial
dimensions, we can increase the sparsity and prune earlier compared to models trained on ImageNet.
For this reason, we set s = 2/3 on CIFAR-10 experiments as suggested by Achlioptas (2003), and
start pruning VGG models (Simonyan & Zisserman, 2015) from the first convolution module and
ResNet models from the first block after the max pooling operation. For experiments on ImageNet,
we choose s = 1/2 to create random hyperplanes with less non-zero entries, leading to a more
accurate hashing scheme. We prune VGG models starting from the third convolution module and
ResNet / WideResNet models starting from the second layer. These settings compensate the lower
degree of redundancy in latent feature maps of ImageNet models, especially in the early layers.
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Method Dynamic
Restrictive Requirements

Training Fine-Tuning Data Availability

SSL (Wen et al., 2016) ✗ ✗ ✓ ✓
PFEC (Li et al., 2017) ✗ ✗ ✓ ✓

LCCN (Dong et al., 2017) ✓ ✓ ✗ ✓
FBS (Gao et al., 2019) ✓ ✓ ✗ ✓
FPGM (He et al., 2019) ✗ ✓ ✗ ✓

DynConv (Verelst & Tuytelaars, 2020) ✓ ✓ ✗ ✓
DMCP (Xu et al., 2021) ✓ ✓ ✗ ✓
DGNet (Li et al., 2021) ✓ ✓ ✗ ✓

FTWT (Elkerdawy et al., 2022) ✓ ✓ ✗ ✓

HASTE (ours) ✓ ✗ ✗ ✗

Table 1: Overview of related pruning approaches. While other methods require either fine-tuning
or a specialized training procedure to achieve notable FLOPs reduction, our method is completely
training-free and data-free.

After plugging in our HASTE modules, we directly evaluate the models on the corresponding test
set using one NVIDIA Tesla T4 GPU, as no further fine-tuning or retraining is required. We follow
common practice and report results on the validation set of the ILSVRC 2012 for models trained
on ImageNet. Each experiment is repeated for three different random seeds to evaluate the effect
of random hyperplane initialization. We report the mean top-1 accuracy after pruning and the mean
FLOPs reduction compared to the baseline model as well as the standard deviation for both values.

Since, to the best of our knowledge, HASTE is the only approach that offers entirely data-free and
dynamic model compression, we cannot give a direct comparison to similar work. For this reason,
we resort to showing results of related channel pruning and dynamic gating approaches that feature
specialized training or tuning routines. An overview of these methods is given in Table 1.

4.2 RESULTS ON CIFAR-10

For the CIFAR-10 dataset, we evaluate our method on ResNet18 and ResNet34 architectures as
well as VGG11-BN, VGG13-BN, VGG16-BN and VGG19-BN. Results are presented in Figure 3a,
while the full table of experiments is found in Appendix A.1. We also provide visualizations of
pruned feature maps in Appendix D. Overall, our HASTE method achieves substantial reductions
in the FLOPs requirement of tested networks. In particular, it reduces the computational cost of
a ResNet34 by 46.72% with L = 14, while only losing 1.25 percentage points accuracy. This is
achieved entirely without training, making the model less computationally expensive in an instant.

The desired ratio of cost reduction to accuracy loss can be adjusted on the fly by changing the
hyperparameter L across all HASTE modules simultaneously. Figure 3b shows how the relationship
of targeted cost reduction and retained accuracy is influenced by the choice of L. Increased accuracy
on the test set, achieved by increasing L, is directly related to less FLOPs reduction. For instance,
we can vary the accuracy loss on ResNet34 between 2.89 (L = 12) and 0.38 (L = 20) percentage
points to achieve 51.09% and 39.07% reduction in FLOPs, respectively.

We also give an overview of results from related approaches in Table 2. Although our method
is not trained or fine-tuned on the dataset, it achieves comparable results to existing approaches
which tailored their pruning scheme to the given data. Specifically, we outperform all other methods
on VGG19-BN with 38.83% FLOPs reduction while retaining 92.32% accuracy, whereas the best
trained approach (DMCP) achieves 34.14% cost reduction at 91.94% accuracy.

4.3 RESULTS ON IMAGENET

On the ImageNet benchmark dataset, we evaluate all available ResNet architectures including
WideResNets as well as all VGG-BN models. Results are presented in Figure 4. A tabular overview
of all experiments is given in Appendix A.2. In particular, we observe a positive scaling behavior
of our method in Figure 4a, achieving up to 31.54% FLOPs reduction for a WideResNet101. When
observing models of similar architecture, the potential FLOPs reduction grows with the number of
parameters in a given model. We relate this to the fact that larger models typically exhibit more
redundancies, which are then compressed by our module.
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Figure 3: Results of our method on the CIFAR-10 dataset. (a) shows the achieved FLOPs reduction
for all tested models, using L = 14 for ResNets and L = 20 for VGG-BN models. (b) depicts the
influence of the chosen number of hyperplanes L for LSH on compression rates and accuracy.

Model Method
Top-1 Accuracy (%) FLOPs Reduction (%)

Baseline Pruned ∆ Tuning-Based Training-Based Data-Free

ResNet18

PFEC∗ 91.38 89.63 1.75 11.71 - -
SSL∗ 92.79 92.45 0.34 14.69 - -

DMCP 92.87 92.61 0.26 - 35.27 -

Ours (L = 14) 93.07 91.18 (±0.38) 1.89 - - 41.75 (±0.28)
Ours (L = 20) 93.07 92.52 (±0.10) 0.55 - - 35.73 (±0.09)

VGG16-BN

PFEC∗ 91.85 91.29 0.56 13.89 - -
SSL∗ 92.09 91.80 0.29 17.76 - -

DMCP 92.21 92.04 0.17 - 25.05 -
FTWT 93.82 93.73 0.09 - 44.00 -

Ours (L = 18) 94.00 92.03 (±0.21) 1.97 - - 37.15 (±0.47)
Ours (L = 22) 94.00 93.00 (±0.12) 1.00 - - 33.25 (±0.44)

VGG19-BN

PFEC∗ 92.11 91.78 0.33 16.55 - -
SSL∗ 92.02 91.60 0.42 30.68 - -

DMCP 92.19 91.94 0.25 - 34.14 -

Ours (L = 18) 93.95 92.32 (±0.35) 1.63 - - 38.83 (±0.36)
Ours (L = 22) 93.95 93.22 (±0.14) 0.73 - - 34.11 (±0.99)

* Results taken from DMCP (Xu et al., 2021).

Table 2: Selected results on CIFAR-10. FLOPs Reduction denotes the percentage decrease of
FLOPs after pruning compared to the base model.

Similar to He et al. (2018), we observe that models including pointwise convolutions are harder
to prune than their counterparts which rely solely on larger filter kernels. This is particularly ap-
parent in the drop in FLOPs reduction from ResNet34 to ResNet50. While the larger ResNet and
WideResNet models with bottleneck blocks continue the scaling pattern, the introduction of point-
wise convolutions momentarily dampens the computational cost reduction. Increasing the width of
each convolutional layer benefits pruning performance, as is apparent with the results of WideRes-
Net50 with twice the number of channels per layer as in ResNet50. While pointwise convolutions
can achieve similar or even better compression ratios compared to 3 × 3 convolutions (see Figure
4b), the cost overhead of the hashing and merging steps is higher relative to the baseline.

When comparing the results to those seen on CIFAR-10, we note that our HASTE module achieves
less compression on ImageNet classifiers. We directly relate this to the higher degree of complexity
in the data. With a 100-fold increase in number of classes and roughly 26 times more training im-
ages than on CIFAR-10, the tested models store more information in latent feature maps, rendering
them less redundant and therefore harder to compress. Methods that exploit the training data for
extensively tuning their pruning scheme naturally achieve higher degrees of FLOPs reduction, as
shown in Table 3. However, this is only possible when access to the data is granted. In contrast,
our method offers significant reductions of computational cost in CNNs while being data-free, even
scaling with larger model architectures.
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(a) Overview of ImageNet results.
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Figure 4: Visualization of results on the ImageNet dataset. (a) depicts the relation of FLOPs reduc-
tion to number of parameters for all tested model architectures. Results are shown with L = 16 for
basic ResNet models and L = 28 for bottleneck ResNets, L = 32 for WideResNets, and L = 20 for
VGG-BN models. (b) shows the achieved compression rate per convolution module in a ResNet50,
starting from the second bottleneck layer.

Model Method
Top-1 Accuracy (%) FLOPs Reduction (%)

Baseline Pruned ∆ Tuning-Based Training-Based Data-Free

ResNet18

LCCN 69.98 66.33 3.65 - 34.60 -
DynConv∗ 69.76 66.97 2.79 - 41.50 -

FPGM 70.28 68.34 1.94 41.80 - -
FPGM 70.28 67.78 2.50 - 41.80 -
FBS 70.71 68.17 2.54 - 49.49 -

FTWT 69.76 67.49 2.27 - 51.56 -

Ours (L = 16) 69.76 66.97 (±0.21) 2.79 - - 18.28 (±0.19)
Ours (L = 20) 69.76 68.64 (±0.56) 1.12 - - 15.10 (±0.18)

ResNet34

PFEC 73.23 72.09 1.14 24.20 - -
LCCN 73.42 72.99 0.43 - 24.80 -
FPGM 73.92 72.54 1.38 41.10 - -
FPGM 73.92 71.79 2.13 - 41.10 -
FTWT 73.30 72.17 1.13 - 47.42 -
DGNet 73.31 71.95 1.36 - 67.20 -

Ours (L = 16) 73.31 70.31 (±0.07) 3.00 - - 22.65 (±0.45)
Ours (L = 20) 73.31 72.06 (±0.05) 1.25 - - 18.69 (±0.30)

ResNet50

FPGM 76.15 74.83 1.32 53.50 - -
FPGM 76.15 74.13 2.02 - 53.50 -
DGNet 76.13 75.12 1.01 - 67.90 -

Ours (L = 28) 76.13 73.04 (±0.07) 3.09 - - 18.58 (±0.33)
Ours (L = 36) 76.13 74.77 (±0.10) 1.36 - - 15.68 (±0.16)

* Results taken from DGNet (Li et al., 2021).

Table 3: Selected results on ImageNet. FLOPs Reduction denotes the percentage decrease of FLOPs
after pruning compared to the base model.

5 CONCLUSION

While existing channel pruning approaches rely on training data to achieve notable reductions in
computational cost, our proposed HASTE module removes restrictive requirements on data avail-
ability and compresses CNNs without any training steps. By employing a locality-sensitive hashing
scheme for redundancy detection, we are able to drastically reduce the depth of latent feature maps
and corresponding convolutional filters to significantly decrease the model’s total FLOPs require-
ment. We empirically validate our claim through a series of experiments with a variety of CNN
models and achieve compelling results on the CIFAR-10 and ImageNet benchmark datasets. We
hope that our method acts as a first step in the direction of entirely data-free and training-free meth-
ods for the compression of convolutional architectures.
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ETHICS STATEMENT

Our work aims to enable compression of existing convolutional neural networks without having to
spend additional computational resources on fine-tuning or retraining. Furthermore, our proposed
HASTE module allows for pruning of pre-trained models without access to the training data. This
has the potential to increase accessibility and usability of existing models by compressing them for
usage on less powerful hardware, even when the training dataset is not publicly available. Further-
more, our method facilitates the employment of computationally cheaper models, reducing energy
and carbon footprint induced by the network’s inference.

However, advancements in the field of efficiency and accessibility of deep learning models, as well
as AI in general, need to be considered under the aspect of their dual-use nature. While our work
aims to enable broader access to large convolutional vision models, the same methodology could
be applied in undesired scenarios. Specifically, the compression of vision models offers potential
for misuse in military applications or mass surveillance, which raises ethical concerns regarding
security and privacy. As authors, we distance ourselves from any application that may result in harm
or negative societal impact.

REPRODUCIBILITY STATEMENT

We aim to release our code upon publication. All pre-trained models, datasets and frameworks
that were used in our experiments are publicly available. We give a detailed description of our
experimental setup in Section 4.1. To increase reproducibility of our results, we performed every
trial with three random seeds and averaged the results. Additionally, we provide a detailed overview
of the FLOPs requirement of our method in Appendix B.1. We also discuss model design choices
in Appendix C.
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A FULL RESULTS

A.1 CIFAR-10

Table 4 shows all results of our method on the CIFAR-10 dataset. All experiments were conducted
as described in Section 4.1. We set s = 2/3 for all models. The last table column denotes the com-
pression ratio r achieved by our HASTE module, averaged over all patches, images and modules.
We report the mean and standard deviation for every result, averaged over three random seeds.

Model L
Top-1 Accuracy (%) FLOPs

Reduction (%)
Average Compr.

Ratio r (%)Baseline Pruned ∆

ResNet18

14 93.07 91.18 (±0.38) 1.89 41.75 (±0.28) 57.07 (±0.26)
16 93.07 91.75 (±0.24) 1.32 38.95 (±0.37) 53.70 (±0.50)
18 93.07 92.43 (±0.16) 0.64 37.00 (±0.79) 51.38 (±0.94)
20 93.07 92.52 (±0.10) 0.55 35.73 (±0.09) 49.99 (±0.10)

ResNet34

12 93.34 90.45 (±0.47) 2.89 51.09 (±0.38) 62.31 (±0.43)
14 93.34 92.09 (±0.15) 1.25 46.72 (±0.21) 57.86 (±0.41)
16 93.34 92.46 (±0.15) 0.88 43.84 (±0.16) 54.75 (±0.24)
18 93.34 92.73 (±0.16) 0.61 41.04 (±0.39) 52.03 (±0.50)
20 93.34 92.96 (±0.06) 0.38 39.07 (±0.32) 50.09 (±0.36)

VGG11-BN

18 92.39 89.36 (±0.01) 3.03 37.25 (±0.40) 48.47 (±0.86)
20 92.39 90.36 (±0.17) 2.03 33.96 (±0.33) 44.54 (±0.61)
22 92.39 90.68 (±0.16) 1.71 32.89 (±0.47) 43.81 (±0.39)
24 92.39 91.08 (±0.09) 1.31 31.00 (±0.70) 40.61 (±1.44)

VGG13-BN

18 94.22 92.10 (±0.23) 2.12 33.89 (±0.73) 44.08 (±1.03)
20 94.22 92.76 (±0.21) 1.46 31.40 (±0.42) 41.47 (±0.61)
22 94.22 92.95 (±0.23) 1.27 29.55 (±0.51) 39.28 (±0.85)
24 94.22 93.32 (±0.10) 0.90 28.23 (±0.62) 37.26 (±0.40)

VGG16-BN

16 94.00 90.91 (±0.49) 3.09 40.44 (±0.62) 51.22 (±0.78)
18 94.00 92.03 (±0.21) 1.97 37.15 (±0.47) 47.93 (±1.04)
20 94.00 92.47 (±0.42) 1.53 35.54 (±0.25) 45.91 (±0.63)
22 94.00 93.00 (±0.12) 1.00 33.25 (±0.44) 43.40 (±1.19)

VGG19-BN

16 93.95 91.19 (±0.42) 2.76 41.47 (±0.29) 52.55 (±0.71)
18 93.95 92.32 (±0.35) 1.63 38.83 (±0.36) 49.70 (±0.32)
20 93.95 92.75 (±0.33) 1.20 36.78 (±0.83) 47.66 (±0.72)
22 93.95 93.22 (±0.14) 0.73 34.11 (±0.99) 45.23 (±1.19)

Table 4: Full results of our method on the CIFAR-10 dataset.

A.2 IMAGENET

Table 5 shows all results of our method on the ImageNet dataset. All experiments were conducted
as described in Section 4.1. We set s = 1/2 for all models. The last table column denotes the com-
pression ratio r achieved by our HASTE module, averaged over all patches, images and modules.
We report the mean and standard deviation for every result, averaged over three random seeds.

B FLOPS SAVINGS AND MEMORY BENCHMARKS

B.1 DERIVING THEORETICAL FLOPS SAVINGS

In this section, we provide an exact computation of the FLOPs saving which are achieved by our
HASTE module. To accurately determine the improvement, we first need to count the FLOPs of
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Model L
Top-1 Accuracy (%) FLOPs

Reduction (%)
Average Compr.

Ratio r (%)Baseline Pruned ∆

ResNet18

16 69.76 66.97 (±0.21) 2.79 18.28 (±0.19) 35.70 (±0.37)
18 69.76 67.87 (±0.09) 1.89 16.53 (±0.47) 32.49 (±0.88)
20 69.76 68.63 (±0.06) 1.12 15.10 (±0.18) 29.88 (±0.34)
22 69.76 68.87 (±0.06) 0.88 14.41 (±0.15) 28.66 (±0.28)
24 69.76 69.00 (±0.13) 0.76 13.78 (±0.17) 27.56 (±0.31)
26 69.76 69.20 (±0.02) 0.56 13.15 (±0.31) 26.46 (±0.57)

ResNet34
16 73.31 70.31 (±0.07) 3.00 22.65 (±0.45) 36.93 (±0.58)
18 73.31 71.57 (±0.04) 1.74 20.08 (±0.32) 33.20 (±0.39)
20 73.31 72.07 (±0.05) 1.25 18.69 (±0.30) 31.16 (±0.42)

ResNet50 28 76.13 73.04 (±0.07) 3.09 18.58 (±0.33) 39.25 (±0.54)
36 76.13 74.77 (±0.10) 1.36 15.68 (±0.16) 34.59 (±0.15)

ResNet101 28 77.37 74.90 (±0.23) 2.47 23.46 (±0.27) 40.60 (±0.40)
36 77.37 76.17 (±0.15) 1.20 20.16 (±0.25) 36.15 (±0.56)

ResNet152 28 78.31 76.07 (±0.20) 2.24 25.35 (±0.08) 42.06 (±0.12)
36 78.31 77.39 (±0.07) 0.92 21.62 (±0.04) 36.88 (±0.12)

WideResNet50 32 78.47 76.01 (±0.13) 2.46 22.23 (±0.27) 46.37 (±0.19)

WideResNet101 32 78.85 75.95 (±0.29) 2.90 31.54 (±0.14) 51.07 (±0.27)

VGG11-BN 20 70.37 69.64 (±0.07) 0.73 22.90 (±0.56) 29.85 (±0.37)
28 70.37 70.08 (±0.07) 0.29 18.97 (±0.70) 25.13 (±0.81)

VGG13-BN 20 71.59 70.25 (±0.38) 1.34 24.39 (±0.82) 32.09 (±1.04)
28 71.59 71.04 (±0.15) 0.55 21.04 (±1.07) 27.65 (±1.38)

VGG16-BN 20 73.36 72.19 (±0.19) 1.17 22.99 (±1.03) 29.92 (±0.79)
28 73.36 72.87 (±0.06) 0.49 18.74 (±0.52) 24.87 (±0.59)

VGG19-BN 20 74.22 71.50 (±0.81) 2.72 30.83 (±0.63) 36.97 (±0.54)
28 74.22 73.25 (±0.19) 0.97 27.51 (±0.16) 32.81 (±0.13)

Table 5: Full results of our method on the ImageNet dataset.

the underlying baseline convolution module. Since a convolution operation requires an almost equal
amount of additions and multiplications, we can derive its FLOPs count from the number of per-
formed multiply-accumulate operations, or MACs, by multiplying with a factor of two. Given a
module with Cin input and Cout output channels, kernel size K and input spatial size H ×W , the
total amount of FLOPs for a regular convolution operation amounts to

FLOPsRegular = 2 ·H ·W ·K2 · Cin · Cout. (5)

We are assuming that the input is padded such that the spatial resolution remains the same after the
convolution. Otherwise, we would simply subtract the overhang of the convolutional filter on all
sides from the spatial resolution. Similarly, it is assumed that the stride is set to one. In any other
case, we can determine the new output sizes H ′,W ′ when using stride > 2 and use them to replace
H,W in Equation 5. Furthermore, we assume the use of non-dilated kernels.

For our HASTE module, the overall cost is determined by the sum of FLOPs for the individual
components: centering, hashing, feature map merging, filter merging and reduced convolution. In
the LSH step, each individual channel at patch position p is flattened into a (K + 2)2-dimensional
vector. The resulting Cin many vectors are then centered by subtracting their mean across the
channel dimension. This ensures that the LSH hyperplanes, which are also centered at the coordinate
origin, are able to partition the channel vectors in a meaningful way. Due to the overlap of two pixels
at the border between neighboring patches, we get (H + PH)/K · (W + PW )/K patches in total,
where PH and PW denote the respective padding of input height and width. Therefore, the centering
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step introduces a computational overhead of

FLOPsCentering = 2 · H + PH

K
· W + PW

K
· Cin · (K + 2)2 , (6)

When using random projections, the hashing process itself consists of computing Cin·L dot products
between the flattened channel vectors and each hyperplane. As the hashing step is performed per
patch p, we have a total of (H+PH)/K ·(W+PW )/K ·Cin ·L dot products. Each dot product uses
2 ·K2 FLOPs when choosing the hyperplane normal vectors vl with entries sampled from N (0, 1).
However, when using sparse hyperplanes as discussed in Section 3.1, this cost reduces in two ways.
Firstly, the number of operations performed drops by the factor s ∈ (0, 1), the degree of sparsity
specifying the expected ratio of non-zero entries to zero entries in each hyperplane normal vector.
This is equivalent to multiplying the total cost with factor 1− s. Secondly, as the sparse hyperplane
dot product only requires additions and no multiplication, the amount of FLOPs is halved. Overall,
this results in a total cost of

FLOPsHashing =
H + PH

K
· W + PW

K
· Cin · L · (K + 2)2 · (1− s). (7)

As for the merging of input feature map channels, computing the mean of all redundant channels
accounts for (K+2)2 ·(Cin ·r+m) FLOPs, where m denotes the average number of buckets where
channels are merged and r denotes the average compression ratio over every patch position p across
all input feature maps. As this step is repeated for each filter position, we get

FLOPsMergeFMs =
H + PH

K
· W + PW

K
· (K + 2)2 · (Cin · r +m). (8)

The merging step for the convolutional filters requires Cin ·r ·K2 FLOPs per filter, as only additions
are performed. This results in an overall cost of

FLOPsMergeFilters =
H + PH

K
· W + PW

K
· Cout · Cin · r ·K2. (9)

When computing the convolution on the merged input features with aggregated filters, we can
perform K2 reduced convolutions for every filter with kernel size K inside the patches of size
(K + 2) × (K + 2). Skipping convolutions where the center of the kernel lies outside the original
input’s spatial size, we get a total of

FLOPsReducedConv = 2 ·H ·W ·K2 · Cin · (1− r) · Cout. (10)

floating-point operations for computing the reduced convolution. One can easily see now that the
deciding factor for computational cost savings is the reduction of input channel size, resulting in a
reduction of FLOPs by the factor (1− r) when comparing only the convolution operations.

Overall, we can state the cost of the HASTE module by summing the cost of its individual parts:

FLOPsHASTE =FLOPsCentering + FLOPsHashing + FLOPsMergeFMs

+ FLOPsMergeFilters + FLOPsReducedConv .
(11)

B.2 PRUNING POINTWISE CONVOLUTIONS

A special case of the convolution operation appears when K = 1. These 1×1 convolutions are com-
monly used for downsampling or upsampling of the channel dimension before and after parameter-
heavy convolutions with larger kernel sizes, or after a depth-wise convolutional layer. However, as
the kernel resolution changes to a single pixel, each input pixel generates exactly one output pixel
in the spatial domain. As there is no reduction in spatial resolution when performing 1× 1 convolu-
tions, we do not require the 3× 3 patches that rasterize the input to be overlapping. Hence, we pad
the input in such a way that each side is divisible by 3 and use non-overlapping patches.

B.3 MEMORY BENCHMARKS

In this section, we provide memory benchmarks for our proposed HASTE module. As our method
offers a dynamic, input-dependent compression of latent feature maps and the corresponding filters,
we have to store the underlying base model’s weights throughout inference. For this reason, we
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Figure 5: Memory requirements for input tensors in ResNet18 (L = 14) on CIFAR-10.
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Figure 6: Memory requirements for input tensors in ResNet18 (L = 16) on ImageNet.

do not reduce the model’s overall size as is the case for static pruning methods. However, the
compression of latent feature maps is essential to avoid high memory bus utilization, which is critical
for employment on embedded hardware (Vogel et al., 2019). The HASTE module compresses the
channel dimension of an input tensor before the convolution operation, allowing for efficient storage
of the reduced input.

Let r = 1 − (C̃in/Cin) ∈ (0, 1) be the compression ratio of an input tensor’s size as defined in
Section 3.3. As the memory requirement of a a tensor is the product of the number of elements it
contains and the memory size of each such element, a compression of the tensor’s size is equivalent
to the compression of its memory requirement by the same amount. Therefore, the average com-
pression ratio r presented in Tables 4 and 5 can directly be understood as the average compression
rate of input tensor memory requirements.

Figures 5 and 6 visualize the relative compression of latent input sizes per convolutional module
in a ResNet18 architecture, evaluated on both the CIFAR-10 test set and ImageNet validation set.
We observe that, especially in later layers, the input tensor size can be reduced drastically, reducing
memory requirement by more than half. It is worth noting that Figure 4b from Section 4.3 displays
similar information, as the compression ratio can directly be translated to memory savings.

C ABLATION STUDIES

C.1 IMPORTANCE OF LOCALITY-SENSITIVE HASHING

As a simple check to determine whether our LSH scheme finds meaningful similarities in the channel
dimension of latent feature maps, we test a naive random grouping of channels. For this experiment,
we use a ResNet18 on the CIFAR-10 dataset, following the same experiment setup as described
in Section 4.1. To ensure a fair comparison between randomized grouping and LSH, we extract
the number of channels to be merged per hash bucket from the hashing scheme. We utilize this to
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aggregate the exact same amount of randomly selected channels, such that the compression ratio r
remains similar across both approaches. Results are shown in Table 6.

Model Channel
Selection L

Top-1 Accuracy (%) FLOPs
Reduction (%)

Average Compr.
Ratio r (%)Baseline Pruned ∆

ResNet18

LSH

14 93.07 91.18 (±0.38) 1.89 41.75 (±0.28) 57.07 (±0.26)
16 93.07 91.75 (±0.24) 1.32 38.95 (±0.37) 53.70 (±0.50)
18 93.07 92.43 (±0.16) 0.64 37.00 (±0.79) 51.38 (±0.94)
20 93.07 92.52 (±0.10) 0.55 35.73 (±0.09) 49.99 (±0.10)

Random

14 93.07 11.12 (±0.34) 81.95 44.30 (±0.49) 59.11 (±0.55)
16 93.07 11.03 (±0.36) 82.04 40.91 (±0.68) 54.83 (±0.93)
18 93.07 11.17 (±0.25) 81.90 38.72 (±0.94) 52.03 (±1.12)
20 93.07 12.37 (±0.40) 80.70 37.10 (±0.20) 50.02 (±0.40)

Table 6: Comparison of LSH to random channel grouping on CIFAR-10.

It is obvious that a random grouping of channels does not maintain the model’s accuracy when
compressing the channel dimension of latent features and filters. In fact, when randomly selecting
channels to compress, the accuracy is only slightly better than random guessing on CIFAR-10. Note
that for the random approach, the value of L only affects the compression ratio r, as we simulate the
same number of channels to be merged as with the LSH scheme.

With decreasing compression ratio, the random grouping starts to get slightly more accurate as less
latent information is arbitrarily aggregated. Also, the random approach achieves a marginally higher
reduction in FLOPs for similar compression ratios, as the overhead for hashing and the centering of
channel vectors is omitted. However, the random grouping is not able to retain usable accuracy on
the test set. This validates that our proposed LSH scheme does find meaningful clusters of channels
in latent feature maps.

C.2 INFLUENCE OF HYPERPLANE SPARSITY

In this section, we provide an ablation for the hyperparameter s, which determines the degree of
sparsity in the hyperplane’s normal vectors used in our LSH scheme. For this reason, we evaluate
our proposed HASTE module on the CIFAR-10 and ImageNet datasets as described in Section 4.1.
For both datasets, we fix the model choice to a ResNet18 architecture and try various values for s
over a fixed amount of hyperplanes L. We denote the usage of dense Gaussian hyperplanes with
normal vector entries sampled from N (0, 1) by ”None”. The special case of s = 0 occurs when
using densely filled hyperplane normal vectors, but restricting their entries to being chosen from the
set {−1, 1} with equal probability. For a more detailed introduction to the sparsity parameter s, see
Section 3.1.

The results of our experiments for different choices of s are presented in Tables 7 and 8. We also
visualize the results in Figures 7 and 8, where we plot the reduction in accuracy (∆) per percentage
point of FLOPs reduction. This ratio helps us to compare the results across different sparsity settings.
A lower ratio is better, as it implies less accuracy is lost for constant FLOPs reduction, or more
FLOPs are saved for constant accuracy reduction. It determines the amount of percentage points in
accuracy lost for every 1 percentage point of FLOPs saved.

CIFAR-10. By observing the mean accuracy reduction per FLOPs reduction ratio in Figure 7, we
conclude that the performance of our proposed HASTE module is not strongly dependent on the
choice of s. For the ResNet18 model architecture, dense Gaussian projections perform as well as
sparse hyperplanes with s ∈ {0.2, 0.3, 0.5, 0.6}. However, note that Gaussian projections require
multiplications to be performed at runtime to compute the hash codes. This is not the case for sparse
projections, where a few hardware-friendly additions suffice. As the ratio displayed in Figure 7 only
considers overall FLOPs savings and not solely FLOPs used in the hashing step, it is still beneficial
to choose sparse hyperplanes for an efficient implementation. When increasing the sparsity ratio
further to s = 0.8, we start to loose more accuracy per FLOPs saved. For this reason, we chose
the highest sparsity setting s = 0.6 before the performance starts to degrade for our experiments
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Model L s
Top-1 Accuracy (%) FLOPs

Reduction (%)Baseline Pruned ∆

ResNet18

14

None 93.07 91.58 (±0.54) 1.49 35.28 (±0.22)
0 93.07 90.36 (±0.49) 2.71 39.87 (±0.56)

0.2 93.07 91.35 (±0.15) 1.72 39.39 (±0.17)
0.3 93.07 91.64 (±0.20) 1.43 38.84 (±0.43)
0.5 93.07 91.30 (±0.26) 1.77 39.64 (±0.29)
0.6 93.07 91.18 (±0.38) 1.89 41.75 (±0.28)
0.8 93.07 88.53 (±0.11) 4.54 46.19 (±0.39)

16

None 93.07 92.31 (±0.06) 0.76 32.43 (±0.59)
0 93.07 90.66 (±0.81) 2.41 37.82 (±0.52)

0.2 93.07 92.25 (±0.14) 0.82 35.89 (±0.25)
0.3 93.07 91.99 (±0.34) 1.08 36.35 (±0.28)
0.5 93.07 92.19 (±0.09) 0.88 37.05 (±0.23)
0.6 93.07 91.75 (±0.24) 1.32 38.95 (±0.37)
0.8 93.07 91.19 (±0.06) 1.88 42.52 (±0.26)

18

None 93.07 92.56 (±0.09) 0.51 30.49 (±0.19)
0 93.07 91.73 (±0.20) 1.34 35.52 (±0.33)

0.2 93.07 92.23 (±0.17) 0.84 34.33 (±0.36)
0.3 93.07 92.31 (±0.12) 0.76 34.51 (±0.37)
0.5 93.07 92.47 (±0.36) 0.60 35.19 (±0.44)
0.6 93.07 92.43 (±0.16) 0.64 37.00 (±0.79)
0.8 93.07 91.59 (±0.21) 1.48 40.66 (±0.49)

20

None 93.07 92.74 (±0.14) 0.33 28.21 (±0.29)
0 93.07 92.00 (±0.08) 1.07 34.04 (±0.04)

0.2 93.07 92.55 (±0.03) 0.52 32.82 (±0.21)
0.3 93.07 92.31 (±0.12) 0.76 34.51 (±0.37)
0.5 93.07 92.58 (±0.19) 0.49 32.49 (±0.58)
0.6 93.07 92.52 (±0.10) 0.55 35.73 (±0.09)
0.8 93.07 92.04 (±0.16) 1.03 39.02 (±0.24)

Table 7: Comparison of different hyperparameter choices for s on CIFAR-10. The ”None” setting
for s denotes the use of dense Gaussian projections, where the hyperplane normal vector’s entries
are sampled from N (0, 1). Setting s = 0 implies normal vectors which are densely filled with
entries from {−1, 1}.

on CIFAR-10. Nonetheless, the usage of dense projections might be considered, as they offer a
direct link between collision probability and vector cosine similarity (Li et al., 2006). Furthermore,
we note that for s = 0, the performance is notably worse than for its neighboring hyperparam-
eter settings. We relate this to the fact that hyperplane normal vectors, which are densely filled
with entries from {−1, 1}, offer less variety than their sparsely filled counterparts. Instead of 3d
possible d−dimensional random vectors, the dense case only allows for 2d distinct possibilities.
This increases the chance of hash collisions for elements that further apart and thus not necessarily
redundant.

ImageNet. On the ImageNet benchmark, we observe a similar pattern as on the CIFAR-10 dataset in
Figure 8. The ResNet18 architecture seems to be relatively robust to the choice of hyperparameter s,
offering comparable performance across a range of sparsity settings and also using dense Gaussian
projections. However, as above, we favor the sparse hyperplanes to avoid multiplications when
computing the hash codes of input channels. Empirically, we found that the performance of larger
model architectures, particularly of those that utilize pointwise convolutions, degrades more rapidly
on ImageNet when using a high degree of sparsity such as s = 2/3. For this reason, we chose to
evaluate all architectures on ImageNet with s = 0.5. However, higher hyperplane sparsity settings
can be valid for specific model architectures.
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Figure 7: Influence of sparsity s on the CIFAR-10 dataset. We plot the ratio of accuracy reduction
(∆) per percentage point of FLOPs reduction for each hyperparameter choice.
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Figure 8: Influence of sparsity s on the ImageNet dataset. We plot the ratio of accuracy reduction
(∆) per percentage point of FLOPs reduction for each hyperparameter choice.
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Model L s
Top-1 Accuracy (%) FLOPs

Reduction (%)Baseline Pruned ∆

ResNet18

16

None 69.76 67.28 (±0.02) 2.47 16.71 (±0.31)
0 69.76 64.99 (±0.37) 4.77 18.55 (±0.20)

0.2 69.76 66.40 (±0.08) 3.36 17.91 (±0.15)
0.3 69.76 66.59 (±0.18) 3.17 18.23 (±0.04)
0.5 69.76 66.97 (±0.21) 2.79 18.28 (±0.19)
0.6 69.76 66.91 (±0.16) 2.84 19.48 (±0.37)
0.8 69.76 65.63 (±0.26) 4.13 21.92 (±0.21)

18

None 69.76 67.99 (±0.02) 1.77 14.71 (±0.24)
0 69.76 66.01 (±0.20) 3.75 17.01 (±0.29)

0.2 69.76 67.48 (±0.20) 2.28 16.13 (±0.17)
0.3 69.76 67.74 (±0.16) 2.01 16.35 (±0.37)
0.5 69.76 67.87 (±0.09) 1.89 16.53 (±0.47)
0.6 69.76 67.87 (±0.12) 1.89 17.51 (±0.21)
0.8 69.76 66.61 (±0.07) 3.15 20.05 (±0.15)

20

None 69.76 68.63 (±0.03) 1.12 13.51 (±0.30)
0 69.76 67.64 (±0.89) 2.11 15.40 (±0.49)

0.2 69.76 67.97 (±0.02) 1.79 15.08 (±0.20)
0.3 69.76 68.46 (±0.07) 1.30 15.09 (±0.15)
0.5 69.76 68.63 (±0.06) 1.12 15.10 (±0.18)
0.6 69.76 68.33 (±0.05) 1.43 16.63 (±0.38)
0.8 69.76 67.36 (±0.11) 2.39 18.89 (±0.14)

22

None 69.76 68.85 (±0.04) 0.91 12.50 (±0.15)
0 69.76 66.88 (±0.18) 2.88 14.85 (±0.16)

0.2 69.76 68.36 (±0.14) 1.40 14.15 (±0.11)
0.3 69.76 68.61 (±0.10) 1.14 14.18 (±0.12)
0.5 69.76 68.87 (±0.06) 0.88 14.41 (±0.15)
0.6 69.76 68.72 (±0.08) 1.04 15.57 (±0.12)
0.8 69.76 68.01 (±0.11) 1.75 17.61 (±0.08)

24

None 69.76 69.10 (±0.06) 0.66 11.40 (±0.14)
0 69.76 68.30 (±0.73) 1.46 13.66 (±0.39)

0.2 69.76 68.66 (±0.12) 1.09 13.44 (±0.26)
0.3 69.76 68.89 (±0.06) 0.87 13.41 (±0.06)
0.5 69.76 69.00 (±0.13) 0.76 13.78 (±0.17)
0.6 69.76 68.90 (±0.07) 0.86 14.69 (±0.20)
0.8 69.76 68.42 (±0.16) 1.33 16.81 (±0.46)

26

None 69.76 69.29 (±0.02) 0.47 10.83 (±0.18)
0 69.76 67.30 (±0.17) 2.46 13.82 (±0.26)

0.2 69.76 68.88 (±0.04) 0.88 12.75 (±0.22)
0.3 69.76 69.06 (±0.04) 0.70 12.54 (±0.06)
0.5 69.76 69.20 (±0.02) 0.56 13.15 (±0.31)
0.6 69.76 68.97 (±0.21) 0.79 14.28 (±0.04)
0.8 69.76 68.64 (±0.03) 1.12 15.90 (±0.17)

Table 8: Comparison of different hyperparameter choices for s on ImageNet. The ”None” setting for
s denotes the use of dense Gaussian projections, where the hyperplane normal vector’s entries are
sampled from N (0, 1). Setting s = 0 implies normal vectors which are densely filled with entries
from {−1, 1}.
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Model Patch Size
Top-1 Accuracy (%) FLOPs

Reduction (%)
Average Compr.

Ratio r (%)Baseline Pruned ∆

ResNet18
5× 5 69.76 68.63 (±0.06) 1.12 15.10 (±0.18) 30.05 (±0.24)
7× 7 69.76 68.87 (±0.02) 0.89 9.69 (±0.18) 18.37 (±0.32)
9× 9 69.76 69.43 (±0.03) 0.33 3.72 (±0.15) 7.08 (±0.26)

Table 9: Comparison of different patch sizes on ImageNet.

(a) Influence of patch size on FLOPs. (b) Influence of patch size on compression.

Figure 9: Evaluation of trade-offs between compression and accuracy for different patch sizes.

C.3 INFLUENCE OF PATCH SIZE

Our HASTE module requires the input patch to be larger than the filter kernel in the spatial dimen-
sion to benefit from repeated convolutions with shallower inputs and filters. Given a filter kernel size
K, a natural choice are patches of size (K + 2)× (K + 2). This allows us to perform nine reduced
convolutions per patch, which drastically reduces the overhead of filter and feature map merging.
Furthermore, smaller patch sizes naturally lead to more redundancies in the channel dimension due
to having less context per patch compared to larger sizes.

To evaluate different patch sizes and their effectiveness, we tested a ResNet18 on ImageNet equipped
with our HASTE modules in the same setting as described in Section 4.1. As all convolution modules
in ResNet18 use a kernel size K = 3, we used patch sizes 5×5, 7×7 and 9×9 for this experiment.
Furthermore, we set L = 20 for all trials. Results are presented in Table 9. Additionally, we visualize
the different trade-offs between achieved model compression and retained accuracy in Figure 9.

We observe that our chosen patch size (K + 2)× (K + 2) offers the best trade-off between FLOPs
reduction and model accuracy. Larger patch sizes exhibit fewer redundancies in the channel dimen-
sion and therefore offer reduced compression ratios and corresponding FLOPs reduction. While this
benefits the model’s accuracy, it does so disproportionately to the reduction in FLOPs when com-
pared to the baseline 5× 5 patches. By varying the hyperparameter L, we can create various model
variants using 5× 5 patches that outperform larger patch sizes.

D VISUALIZATIONS

D.1 CHANNEL COMPRESSION FREQUENCY

In this section, we visualize the frequency of merge operations between input channels across the
entire CIFAR-10 test dataset. Figures 10, 11, 12 and 13 show a heatmap of the relative frequency
of merges for each pairing of input channels, generated from a ResNet18 architecture with L = 14.
The axes label each input channel by its index. The maximum relative frequency of 1 would imply
that a pair of channels was merged consistently for every patch and every single image in the test
set. Note that the heatmaps are symmetric along their main diagonal, which is filled with zeroes, as
a single channel is never merged with itself.
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Figure 10: Compression Heatmap for Layer 1 of ResNet18.
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Figure 11: Compression Heatmap for Layer 2 of ResNet18.
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Figure 12: Compression Heatmap for Layer 3 of ResNet18.
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Layer 4, Block 0, Conv 2 Layer 4, Block 1, Conv 1 Layer 4, Block 1, Conv 2

Figure 13: Compression Heatmap for Layer 4 of ResNet18.

The average intensity of each heatmap gives a rough estimate on the compression ratio r that is
achieved in every layer, which is particularly noticeable when comparing Figures 11, 12 and 13.
The last layer of the ResNet model offers the most redundancies, leading to the highest compression
ratios. This is consistent with our findings in Figure 5 and Figure 4b. In Figure 10. We also notice
a prominent pattern for the first convolution in layer 1. The bright grid cells imply a structural
redundancy in the first convolutional filter, as the corresponding channels were merged across data
samples and varying patch positions.

D.2 FEATURE MAP COMPRESSION

To get an intuitive understanding of the merge operation for redundant feature map channels as
described in Section 3.3, we provide visualizations of the latent features before and after the merging
step. For this purpose, we track the latent input feature maps and the resulting compression for two
different images from the CIFAR-10 dataset, observed in a HASTE module in the first layer of a
ResNet18 model using L = 14 and s = 2/3.

Figures 14, 15, 16 and 17 illustrate our proposed HASTE module. Firstly, the spatial dimension of
the input feature map is split into patches. Then, for each patch (marked by a red border), we detect
redundancies by hashing the flattened vector representation x

(p)
i of each input channel. We visualize

this by coloring the border of patches with identical hash codes with identical colors. Patches that do
not have a colored outline did not match any other hash code, and are therefore left unchanged. All
patches in the same hash bucket, represented by shared outline color, are then merged to a singular
channel by computing their mean. Therefore, the overall input channel dimension is reduced to
C̃in < Cin. The same channels are then merged in the corresponding convolutional filters, allowing
as to perform a convolution using fewer floating-point operations.

Note that the compression ratio r = 1−(C̃in/Cin) ∈ (0, 1) changes not only depending on the input
image, but on the amount of redundancies found in each individual patch. The comparison of Figure
14 and 15 reveal an interesting property of our proposed HASTE module: Patches that contain little
class-specific information, such as the background, can be compressed to a much higher degree than
patches that contain relevant information for the classification task. This is attributable to the learned
filter kernels in pre-trained models, which activate more intensely and more diversely in regions with
higher semantic information content. This leads to numerous near-zero channels being compressed
into a single representation. Nonetheless, many redundancies are also found by observing similar
activation patterns throughout different non-zero channels.
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Latent Feature Map

Detected Redundancies in Patches Extracted from Feature Map

Compute Mean per Bucket

Patch Projected onto
Input Image

Remaining Channels after Merging Redundancies

Figure 14: Visualization of the input channel compression performed by the HASTE module. The
observed patch is marked as a red square on the input feature maps. All 64 channels of this patch are
then plotted in an 8 × 8 grid. Patches with identical hash codes receive identical outline colors and
are averaged by taking their mean. Patches with no matching hash code are left unchanged. Here,
we reduce Cin = 64 to C̃in = 24, which gives us a compression ratio of r = 62.50%.
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Latent Feature Map

Detected Redundancies in Patches Extracted from Feature Map

Compute Mean per Bucket

Patch Projected onto
Input Image

Remaining Channels after Merging Redundancies

Figure 15: Visualization of the input channel compression performed by the HASTE module. The
observed patch is marked as a red square on the input feature maps. All 64 channels of this patch are
then plotted in an 8 × 8 grid. Patches with identical hash codes receive identical outline colors and
are averaged by taking their mean. Patches with no matching hash code are left unchanged. Here,
we reduce Cin = 64 to C̃in = 54, which gives us a compression ratio of r = 15.63%.
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Latent Feature Map

Detected Redundancies in Patches Extracted from Feature Map
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Figure 16: Visualization of the input channel compression performed by the HASTE module. The
observed patch is marked as a red square on the input feature maps. All 64 channels of this patch are
then plotted in an 8 × 8 grid. Patches with identical hash codes receive identical outline colors and
are averaged by taking their mean. Patches with no matching hash code are left unchanged. Here,
we reduce Cin = 64 to C̃in = 44, which gives us a compression ratio of r = 31.25%.
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Latent Feature Map

Detected Redundancies in Patches Extracted from Feature Map

Compute Mean per Bucket

Patch Projected onto
Input Image

Remaining Channels after Merging Redundancies

Figure 17: Visualization of the input channel compression performed by the HASTE module. The
observed patch is marked as a red square on the input feature maps. All 64 channels of this patch are
then plotted in an 8 × 8 grid. Patches with identical hash codes receive identical outline colors and
are averaged by taking their mean. Patches with no matching hash code are left unchanged. Here,
we reduce Cin = 64 to C̃in = 49, which gives us a compression ratio of r = 23.43%.
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