TOWARDS UNDERSTANDING ROBUSTNESS AND GENERALIZATION IN WORLD MODELS

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

Paper under double-blind review

ABSTRACT

World model has recently emerged as a promising approach to reinforcement learning (RL), as evidenced by the recent successes that world model based agents achieve state-of-the-art performance on a wide range of visual control tasks. This work aims to obtain a deep understanding of the robustness and generalization capabilities of world models. Thus motivated, we develop a stochastic differential equation formulation by treating the world model learning as a stochastic dynamical system in the latent state space, and characterize the impact of latent representation errors on robustness and generalization, for both cases with zero-drift representation errors and with non-zero-drift representation errors. Our somewhat surprising findings, based on both theoretic and experimental studies, reveal that for the case with zero drift, modest latent representation errors can in fact function as implicit regularization and hence result in improved robustness. We further propose a Jacobian regularization scheme to mitigate the compounding error propagation effects of non-zero drift, thereby enhancing training stability and robustness. Our extensive experimental studies corroborate that this regularization approach not only stabilizes training but also accelerates convergence and improves accuracy of long-horizon prediction.

028 1 INTRODUCTION

Model-based reinforcement learning (RL) has emerged as a promising learning paradigm to improve 031 sample efficiency by enabling agents to exploit a learned model for the physical environment. Notably, in recent works Hafner et al. (2019; 2020; 2022; 2023); Kessler et al. (2023); Freeman et al. (2019); 033 Wu et al. (2023); Kim et al. (2020) on world models, RL agents learn a latent dynamics model 034 (LDM) of the environment from observations and action, and then optimize the policy over the learned dynamics model. Different from conventional approaches, world-model based RL takes an end-to-end learning approach, where the building blocks (such as dynamics model, perception and 036 action policy) are jointly trained and optimized to achieve a unified goal. This framework offers 037 significant potential to improve both generalization and robustness to perturbations, making it highly advantageous for deployment in real-world scenarios. For example, DreamerV2 and DreamerV3 achieve great progress in mastering diverse tasks involving continuous and discrete actions, image-040 based inputs, and both 2D and 3D environments, thereby facilitating robust learning across unseen 041 task domains Hafner et al. (2019; 2020; 2022). Recent empirical studies have also demonstrated the 042 capacity of world models to generalize to unseen noisy states and dynamics in complex environments, 043 such as autonomous driving Hu et al. (2023). Nevertheless, it remains not well understood when and 044 how world models can generalize well in unseen environments, and how robustness plays a role in this process.

In this work, we make attempts to obtain a systematic understanding of the *robustness* and *generalization* capabilities of world models by examining the impact of *latent representation errors*.
 Specifically, we investigate how latent representation errors can enhance robustness against perturbations, which in turn often improves generalization Lim et al. (2021). While one may expect that optimizing a LDM prior to training the task policy would minimize latent representation errors and hence can achieve better world model training, our somewhat surprising findings, based on both theoretical and empirical studies, reveal that modest latent representation errors during training may in fact be beneficial for robustness. In particular, the alternating training strategy for world model learning, which simultaneously refines both the LDM and the action policy, can improve robustness

054

056

060

061 062 063

094

096

098

099

perturbation batch size	$\alpha = 10$	$\alpha = 20$	$\alpha = 30$	$\beta = 25$	$\beta = 50$	$\beta = 75$
8	691.62	363.73	153.67	624.67	365.31	216.52
16	830.39	429.62	213.78	842.26	569.42	375.61
32	869.39	436.87	312.99	912.12	776.86	655.26
64	754.47	440.44	80.24	590.41	255.2	119.62

Table 1: Reward values on unseen perturbed states by rotation (α) or mask (β %) with $\mathcal{N}(0.15, 0.5)$.

and yield generalization gains. This is because modest latent representation errors could enable 064 the world model to better handle perturbations, leading to improved exploration and generalization 065 capabilities. This phenomenon mirrors the behavior observed with gradient estimation errors in 066 batch training. For instance, as shown in Table 1, our experimental results reveal that intermediate 067 batch sizes (e.g., 16 or 32) produce gradient estimation errors that are beneficial for generalization, 068 compared to smaller (e.g., 8) or larger (e.g., 64) batch sizes. The latent representation errors exhibit a 069 similar effect in a controlled range, supporting robustness through implicit regularization. In fact, implicit regularization has been credited to increased classification margins Poggio et al. (2017), 071 which improves generalization performance Sokolić et al. (2017); Lim et al. (2021).

In a nutshell, *latent representation errors* incurred by latent encoders, if properly managed, may actually facilitate world model training by enhancing robustness against perturbations, thereby improving generalization. This insight aligns with recent advances in deep learning, where noise injection schemes have been studied as a form of implicit regularization to enhance models' robustness. For instance, recent study Camuto et al. (2021) analyzes the effects of introducing isotropic Gaussian noise at each layer of neural networks, identifying it as a form of implicit regularization. Another recent work Lim et al. (2021) explores the addition of zero-drift Brownian motion to RNN architectures, demonstrating its regularizing effects in improving network's stability against noise perturbations.

However, we caution that *latent representation errors* in world models differ from the above noise
injection schemes (Lim et al. (2021); Camuto et al. (2021)), in the following aspects: 1) Unlike
the artificially injected noise only added in training (and removed during inference), these errors
are inherent in world models, leading to error propagation during rollouts; 2) Unlike the controlled
conditions of isotropic or zero-drift noise examined in prior studies, the errors in world models
may not exhibit such well-behaved properties in the sense that the drift may be non-zero and hence
biased; and 3) additionally, in the iterative training of world models and agents, the error originating
from the encoder affects the policy learning and agent exploration, influencing both robustness and
generalization.

In light of these observations, we develop a continuous-time stochastic differential equation (SDE)
 formulation by treating the world model learning as a stochastic dynamic system with stochastic
 latent states. This approach provides a formal characterization of latent representation errors as
 stochastic perturbations, allowing us to quantify their impacts on robustness and generalization. Our
 main contributions can be summarized as follows:

- Latent representation errors as implicit regularization: Aiming to understand the robustness and generalization of world models and improve it further, we develop a continuous-time SDE formulation by treating the world model learning as a stochastic dynamic system in latent state space. Leveraging tools in stochastic calculus and differential geometry, we show that under certain technical conditions, modest latent representation errors can in fact function as implicit regularization and hence result in robustness gain.
- Improving robustness and generalization in non-zero drift cases via Jacobian regularization: For the case where latent representation errors exhibit non-zero drifts, we show that the additional bias can degrade the implicit regularization effect, leading to learning instability. Based on the theoretical quantification of the instability caused by non-zero drift, we show that the well-known Jacobian regularization can be employed to address this issue. Our experimental studies demonstrate its efficacy in enhancing robustness and generalization.
- *Reducing error propagation in predictive rollouts:* We explicitly characterize the effect of latent representation errors on predictive rollouts and their impact on robustness. We apply the Jacobian regularization technique to controll these effects, and our findings corroborate its ability to
 - 2

reduce error propagation in rollouts. This leads to enhanced prediction performance and faster convergence, particularly in tasks with longer time horizons in empirical evaluations.

• *Bounding Latent representation error in Approximation of CNN architectures:* We establish a novel bound on the latent representation error within CNN encoder-decoder architectures. To our knowledge, this is the first quantifiable bound applied to a learned latent representation model, and the analysis carries over to other architectures (e.g., ReLU) along the same line.

Notation. We use Einstein summation convention for succinctness, where $a_i b_i$ denotes $\sum_i a_i b_i$. We denote functions in $\mathcal{C}^{k,\alpha}$ as being k-times differentiable with α -Hölder continuity. The Euclidean norm of a vector is represented by $\|\cdot\|$, and the Frobenius norm of a matrix by $|\cdot|_F$; this notation may occasionally extend to tensors. The notation x^i indicates the i^{th} coordinate of the vector x, and A^{ij} the (i, j)-entry of the matrix A. Function composition is denoted by $f \circ g$, implying f(g). For a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$, its Jacobian matrix is denoted by $\frac{\partial f}{\partial x} \in \mathbb{R}^{m \times n}$. Its gradient, following conventional definitions, is denoted by ∇f . The constant C may represent different values in distinct contexts.

122 123 124

125

108

109

110

111

112

113

114

2 RELATED WORK

126 Robustness and Generalization in Deep RL. Recent work on robustness and generalization in deep RL has studied zero-shot generalization of learned policies to unseen environments Kirk et al. 127 (2023), often emphasizing task-level generalization through techniques such as task augmentation 128 in meta-RL Yao et al. (2021); Lee and Chung (2021). These approaches focus on 'policy transfer' 129 across different tasks, whereas our work here aims to understand the robustness and generalization 130 of world model based RL, under perturbations and variations in observations and dynamics. Unlike 131 task-centric methods, our study on the LDM is centered around improving robustness in unseen or 132 noisy environments where latent representations play a pivotal role in decision-making. Additionally, 133 while recent studies on RL robustness Panaganti et al. (2022); Liu et al. (2023) introduce new training 134 frameworks aimed at policy safety and robustness, they do not account for the inherent challenges 135 posed by latent representation errors during rollouts.

136 World model based RL. World models have demonstrated remarkable efficacy in visual control 137 tasks across various platforms, including Atari Bellemare et al. (2013) and Minecraft Duncan (2011), 138 as detailed in the studies by Hafner et al. Hafner et al. (2019; 2020; 2022). These models typically 139 integrate encoders and memory-augmented neural networks, such as RNNs Yu et al. (2019), to 140 manage the latent dynamics. The use of variational autoencoders (VAE) Doersch (2016); Kingma 141 and Welling (2013) to map sensory inputs to a compact latent space was pioneered by Ha et al. Ha 142 and Schmidhuber (2018). Furthermore, the Dreamer algorithm Hafner et al. (2020; 2023) employs 143 convolutional neural networks (CNNs) LeCun et al. (1989) to enhance the processing of both hidden states and image embeddings, yielding models with improved predictive capabilities in dynamic 144 environments. 145

146 **Continuous-time RNNs.** The continuous-time assumption is standard for theoretical formulations of 147 RNN models. Li et al. (2022) study the optimization dynamics of linear RNNs on memory 148 decay. Chang et al. (2019) propose AntisymmetricRNN, which captures long-term 149 dependencies through the control of eigenvalues in its underlying ODE. Chen et al. Chen et al. (2020) propose the symplectic RNN to model Hamiltonians. As continuous-time formulations can 150 be discretized with Euler methods Chang et al. (2019); Chen et al. (2020) (or with Euler-Maruyama 151 methods if stochastic in Lim et al. (2021)) and yield similar insights, this step is often eliminated for 152 brevity. 153

Implicit regularization by noise injection in RNN. Studies on noise injection as a form of implicit regularization have gained traction, with Lim et al. Lim et al. (2021) deriving an explicit regularizer under small noise conditions, demonstrating bias towards models with larger margins and more stable dynamics. Camuto et al. (2021) examine Gaussian noise injections at each layer of neural networks. Similarly, Wei et al. Wei et al. (2020) provide analytic insights into the dual effects of dropout techniques.

- 160
- 161

Trans

162 DEMYSTIFYING WORLD MODEL: A STOCHASTIC DIFFERENTIAL 3 163 EQUATION APPROACH 164

As pointed out in Hafner et al. (2019; 2020; 2022; 2023), critical to the effectiveness of the world 166 model representation is the stochastic design of its latent dynamics model. The model can be outlined 167 by the following key components: an encoder that compresses high dimensional observations s_t into a low-dimensional latent state z_t (Eq.1), a sequence model that captures temporal dependencies in 168 the environment (Eq.2), a transition predictor that estimates the next latent state (Eq.3), and a latent decoder that reconstructs observed information from the posterior (Eq.4): 170

Latent Encoder:
$$z_t \sim q_{\text{enc}}(z_t \mid h_t, s_t),$$
 (1)

Sequence Model:
$$h_t = f(h_{t-1}, z_{t-1}, a_{t-1}),$$
 (2)

171

ition Predictor:
$$\tilde{z}_t \sim p(\tilde{z}_t \mid h_t),$$
 (3)

Latent Decoder:
$$\tilde{s}_t \sim q_{\text{dec}}(\tilde{s}_t \mid h_t, \tilde{z}_t)$$
 (4)

(7)

175 In this work, we consider a popular class of world models, including Dreamer and PlaNet, where $\{z, z\}$ 176 \tilde{z}, \tilde{s} have distributions parameterized by neural networks' outputs, and are Gaussian when the outputs 177 are known. It is worth noting that $\{z, \tilde{z}, \tilde{s}\}$ may not be Gaussian and are non-Gaussian in general. 178 This is because while z is conditional Gaussian, its mean and variance are random variables which 179 are learned by the encoder with s and h being the inputs, rendering that z is non-Gaussian due to the mixture effect. For this setting, we have a continuous-time formulation where the latent dynamics 181 model can be interpreted as stochastic differential equations (SDEs) with coefficient functions of known inputs. Due to space limitation, we refer to Proposition B.1 in the Appendix for a more 182 detailed treatment. 183

Consider a complete, filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{P})$ where independent standard 185 Brownian motions B_t^{enc} , B_t^{pred} , B_t^{seq} , B_t^{dec} are defined such that \mathcal{F}_t is their augmented filtration, and $T \in \mathbb{R}$ as the time length of the task environment. We interpret the stochastic dynamics of LDM 187 with latent representation errors through coupled SDEs representing continuous-time analogs of the discrete components: 188

Latent Encoder:
$$dz_t = (q_{enc}(h_t, s_t) + \varepsilon \sigma(h_t, s_t)) dt + (\bar{q}_{enc}(h_t, s_t) + \varepsilon \bar{\sigma}(h_t, s_t)) dB_t^{enc}$$
, (5)

Sequence Model:
$$dh_t = f(h_t, z_t, \pi(h_t, z_t)) dt + \overline{f}(h_t, z_t, \pi(h_t, z_t)) dB_t^{\text{seq}}$$
 (6)

191 192

189

190

193

Transition Predictor:
$$d\tilde{z}_t = p(h_t) dt + \bar{p}(h_t) dB_t^{\text{pred}}$$
, (7)

Latent Decoder:
$$d \,\tilde{s}_t = q_{\text{dec}}(h_t, \tilde{z}_t) \, dt + \bar{q}_{\text{dec}}(h_t, \tilde{z}_t) \, dB_t^{\text{uec}},$$
(8)

194 where $\pi(h, \tilde{z})$ is a policy function as a local maximizer of value function and the stochastic process 195 s_t is \mathcal{F}_t -adapted. Notice that f is often a zero function indicating that Equation (6) is an ODE, 196 as the sequence model is generally designed as deterministic. Generally, the coefficient functions 197 in dt and dB_t terms in SDEs are referred to as the *drift* and *diffusion* coefficients. Intuitively, the diffusion coefficients here represent the stochastic model components. In Equation (5), $\sigma(\cdot, \cdot)$ and $\bar{\sigma}(\cdot,\cdot)$ denotes the drift and diffusion coefficients of the *latent representation errors*, respectively. 199 Both are assumed to be functions of hidden states h_t and task states s_t . In addition, ε indicates the 200 magnitude of the error. 201

202 Next, we impose standard assumptions on these SDEs (5) - (8) to guarantee the well-definedness of 203 the solution to SDEs. For further technical details, we refer readers to fundamental works on SDEs in 204 the literature (e.g., Steele (2001); Hennequin et al. (1984)).

205 Assumption 3.1. The drift coefficient functions q_{enc} , f, p and q_{dec} and the diffusion coefficient 206 functions \bar{q}_{enc} , \bar{p} and \bar{q}_{dec} are bounded and Borel-measurable over the interval [0, T], and of class C^3 207 with bounded Lipschitz continuous partial derivatives. The initial values $z_0, h_0, \tilde{z}_0, \tilde{s}_0$ are square-208 integrable random variables.

209 Assumption 3.2. σ and $\bar{\sigma}$ are bounded and Borel-measurable and are of class C^3 with bounded 210 Lipschitz continuous partial derivatives over the interval [0, T].

211

212 3.1 LATENT REPRESENTATION ERRORS IN CNN ENCODER-DECODER NETWORKS 213

As shown in the empirical studies with different batch sizes (Table 1), the latent representation error 214 would also enrich generalization when it is within a moderate regime. In this section, we show that the 215 latent representation error, in the form of approximation error corresponding to the widely used CNN

encoder-decoder, could be made sufficiently small by finding appropriate CNN network configuration. In particular, this result provides theoretical justification to interpreting latent representation error as stochastic perturbation in the dynamical system defined in Equations (5 - 8), as the error magnitude ε can be made sufficiently small by CNN network configuration.

Consider the state space $S \subset \mathbb{R}^{d_S}$ and the latent space Z. Consider a state probability measure Q on the state space S and a probability measure P on the latent space Z. As high-dimensional state space in image-based tasks frequently exhibit *intrinsic lower-dimensional geometric structure*, we adopt the latent manifold assumption, formally stated as follows:

Assumption 3.3. (Latent manifold assumption) For a positive integer k, there exists a $d_{\mathcal{M}}$ dimensional $\mathcal{C}^{k,\alpha}$ submanifold \mathcal{M} (with $\mathcal{C}^{k+3,\alpha}$ boundary) with Riemannian metric g and has positive reach and also isometrically embedded in the state space $\mathcal{S} \subset \mathbb{R}^{d_{\mathcal{S}}}$ and $d_{\mathcal{M}} \ll d_{\mathcal{S}}$, where the state probability measure is supported on. In addition, \mathcal{M} is a compact, orientable, connected manifold.

Assumption 3.4. (Smoothness of state probability measure) Q is a probability measure supported on \mathcal{M} with its Radon-Nikodym derivative $q \in \mathcal{C}^{k,\alpha}(\mathcal{M}, \mathbb{R})$ w.r.t $\mu_{\mathcal{M}}$.

Let Z be a closed ball in $\mathbb{R}^{d_{\mathcal{M}}}$, that is $\{x \in \mathbb{R}^{d_{\mathcal{M}}} : ||x|| \le 1\}$. P is a probability measure supported on Z with its Radon-Nikodym derivative $p \in C^{k,\alpha}(Z,\mathbb{R})$ w.r.t μ_Z . In practice, it is usually an easyto-sample distribution such as uniform distribution which is determined by a specific encoder-decoder architecture choice.

Latent Representation Learning. We define the *latent representation learning* as to find encoder $g_{enc} : \mathcal{M} \to \mathcal{Z}$ and decoder $g_{dec} : \mathcal{Z} \to \mathcal{M}$ as maps that optimize the following objectives:

248

 $\min_{g_{\mathsf{enc}} \in \mathcal{G}} W_1\left(g_{\mathsf{enc}_{\#}} Q, P\right); \qquad \min_{g_{\mathsf{dec}} \in \mathcal{G}} W_1\left(Q, \, g_{\mathsf{dec}_{\#}} P\right).$

Here, $g_{enc_{\#}}Q$ and $g_{dec_{\#}}P$ represent the pushforward measures of Q and P through the encoder map g_{enc} and decoder map g_{dec} , respectively. The latent representation error is understood as the "difference" of pushforward measure by the encoder/decoder and target measure.

Here, to understand the "scale" of the error ε in Equation (5), we use W_1 for the discrepancy between probability measures. In particular, for Dreamer-type loss function that uses KL-divergence, we note that squared W_1 distance between two probability measures can be upper bounded by their KL-divergence up to a constant Gibbs and Su (2002), implying that one could reasonably expect the W_1 distance to also decrease when KL-divergence is used in the model.

CNN configuration. As a popular choice choice in encoder-decoder architecture is CNN, we consider a general CNN function $f_{\text{CNN}} : \mathcal{X} \to \mathbb{R}$. Let f_{CNN} have L hidden layers, represented as: for $x \in \mathcal{X}$, $f_{\text{CNN}}(x) := A_{L+1} \circ A_L \circ \cdots \circ A_2 \circ A_1(x)$, where A_i 's are either convolutional or downsampling operators. For convolutional layers, $A_i(x) = \sigma(W_i^c x + b_i^c)$, where $W_i^c \in \mathbb{R}^{d_i \times d_{i-1}}$ is a structured sparse Toeplitz matrix from the convolutional filter $\{w_j^{(i)}\}_{j=0}^{s(i)}$ with filter length $s(i) \in \mathbb{N}_+$, $b_i^c \in \mathbb{R}^{d_i}$ is a bias vector, and σ is the ReLU activation function. For downsampling layers, $A_i(x) = D_i(x) = (x_{jm_i})_{j=1}^{\lfloor d_{i-1}/m_i \rfloor}$, where $D_i : \mathbb{R}^{d_i \times d_{i-1}}$ is the downsampling operator with scaling parameter $m_i \leq d_{i-1}$ in the *i*-th layer. We examine the class of functions represented by CNNs, denoted by \mathcal{F}_{CNN} , defined as:

 $\mathcal{F}_{\text{CNN}} = \{ f_{\text{CNN}} \text{ as in defined above with any choice of } A_i, i = 1, \dots, L+1 \}.$

For the specific definition of \mathcal{F}_{CNN} , we refer to Shen et al. (2022)'s (4), (5) and (6).

Assumption 3.5. Assume that \mathcal{M} and \mathcal{Z} are locally diffeomorphic, that is there exists a map $F: \mathcal{M} \to \mathcal{Z}$ such that at every point x on \mathcal{M} , $\det(dF(x)) \neq 0$.

Theorem 3.6. (Approximation Error of Latent Representation). Under Assumption 3.3, 3.4 and 3.5, for $\theta \in (0, 1)$, let $d_{\theta} := \mathcal{O}(d_{\mathcal{M}}\theta^{-2}\log\frac{d}{\theta})$. For positive integers M and N, there exists an encoder g_{enc} and decoder $g_{dec} \in \mathcal{F}_{CNN}(L, S, W)$ s.t.

266 267 268

258

259

 $W_1(g_{enc_{\#}}Q, P) \le d_{\mathcal{M}}C(NM)^{-\frac{2(k+1)}{d_{\theta}}}, \quad W_1(g_{dec_{\#}}P, Q) \le d_{\mathcal{M}}C(NM)^{-\frac{2(k+1)}{d_{\theta}}}.$

Theorem 3.6 indicates that with an appropriate CNN configuration, the W_1 approximation error can be made to reside in a small region, as the best candidate within the function class is indeed capable 274 275

276

277

278

279

280

281

282

284

287 288

295

296

306

307 308

314

315 316 317

of approximating the oracle encoder/decoder. As a result, the approximation error magnitude ε in SDE (5) can be made arbitrarily small, thereby justifying the assumption that ε can be made as small as possible in the analysis. This allows us to apply the perturbation analysis of the dynamical system defined in Equations (5 - 8) in the following sections.

3.2 LATENT REPRESENTATION ERRORS AS IMPLICIT REGULARIZATION TOWARDS ROBUSTNESS AND GENERALIZATION

In this section, we investigate how latent representation errors influence both robustness and generalization, considering two scenarios: *zero drift* and *non-zero drift*. Our analysis shows that under mild conditions, *zero-drift* errors can act as a natural form of *implicit regularization*, creating wider optimization landscapes that enhance robustness. However, when latent representation errors exhibit *non-zero drift*, they introduce an *unstable bias* that undermines the implicit regularization effect, leading to degraded generalization performance. In such cases, explicit regularization is necessary to stabilize learning and maintain both robustness and generalization capabilities in the world model.

To simplify the notation here, we consider the system equations, specifically Equations (5), (6) - (8), as one stochastic system. Let $x_t = (z_t, h_t, \tilde{z}_t, \tilde{s}_t)$ and $B_t = (B_t^{\text{enc}}, B_t^{\text{seq}}, B_t^{\text{pred}}, B_t^{\text{dec}})$:

$$dx_t = (g(x_t, t) + \varepsilon \,\sigma(x_t, t)) \,dt + \sum_i \bar{g}_i(x_t, t) + \varepsilon \,\bar{\sigma}_i(x_t, t) \,dB_t^i, \tag{9}$$

where g, and \bar{g}_i are structured accordingly for the respective components, employing the Einstein summation convention for concise representation. For abuse of notation, $\sigma = (\sigma, 0, 0, 0), \bar{\sigma} = (\bar{\sigma}, 0, 0, 0)$. For a given error magnitude ε , we denote the solution to SDE (9) as x_t^{ε} . Intuitively, x_t^{ε} is the perturbed trajectory of the latent dynamics model. In particular, when $\varepsilon = 0$, indicating that the absence of latent representation error in the model, the solution is denoted as x_t^0 .

3.2.1 THE CASE WITH ZERO-DRIFT REPRESENTATION ERRORS

297 When the drift coefficient $\sigma = 0$, the latent representation errors correspond to a class of well-behaved 298 stochastic processes. The following result translates the induced perturbation on the stochastic latent 299 dynamics model's loss function \mathcal{L} to a form of explicit regularization. We assume that a (nonconvex) 200 general loss function $\mathcal{L} \in C^2$ which depends on $z_t, h_t, \tilde{z}_t, \tilde{s}_t$. Loss functions used in practical 201 implementation, e.g. in DreamerV3, reconstruction loss J_O , reward loss J_R , consistency loss J_D , all 201 satisfy this condition.

Theorem 3.7. (Explicit Effect Induced by Zero-Drift Representation Error) Under Assumptions 303 3.1 and 3.2 and considering a loss function $\mathcal{L} \in C^2$, the explicit effects of the zero-drift error can be marginalized out as follows: as $\varepsilon \to 0$,

$$\mathbb{E}\mathcal{L}(x_t^{\varepsilon}) = \mathbb{E}\mathcal{L}(x_t^0) + \mathcal{R} + \mathcal{O}(\varepsilon^3),$$
(10)

where the regularization term $\mathcal R$ is given by $\mathcal R := \varepsilon \, \mathcal P + \varepsilon^2 \left(\mathcal Q + rac{1}{2} \, \mathcal S
ight)$, with

$$\mathcal{P} := \mathbb{E} \,\nabla \mathcal{L}(x_t^0)^\top \Phi_t \sum_k \xi_t^k, \tag{11}$$

$$S := \mathbb{E} \sum_{k_1, k_2} (\Phi_t \xi_t^{k_1})^i \nabla^2 \mathcal{L}(x_t^0, t) \, (\Phi_t \xi_t^{k_2})^j, \tag{12}$$

$$\mathcal{Q} := \mathbb{E} \,\nabla \mathcal{L}(x_t^0)^\top \Phi_t \int_0^t \Phi_s^{-1} \,\mathcal{H}^k(x_s^0, s) dB_t^k.$$
(13)

Square matrix Φ_t is the stochastic fundamental matrix of the corresponding homogeneous equation:

$$d\Phi_t = \frac{\partial \bar{g}_k}{\partial x} (x_t^0, t) \,\Phi_t \, dB_t^k, \quad \Phi(0) = I$$

and ξ_t^k is the shorthand for $\int_0^t \Phi_s^{-1} \bar{\sigma}_k(x_s^0, s) dB_t^k$. Additionally, $\mathcal{H}^k(x_s^0, s)$ is represented by for $\sum_{k_1,k_2} \frac{\partial^2 \bar{g}_k}{\partial x^i \partial x^j} (x_s^0, s) (\xi_s^{k_1})^i (\xi_s^{k_2})^j$.

The proof is relegated to Appendix B in the Supplementary Materials.

In the special case when the loss \mathcal{L} is convex, then its Hessian, $\nabla^2 \mathcal{L}$, is positive semi-definite, which ensures that the term \mathcal{S} is non-negative. *The presence of this Hessian-dependent term S, under latent* 324 representation error, implies a tendency towards wider minima in the loss landscape. Empirical 325 results from Keskar et al. (2017) indicates that wider minima correlate with improved robustness of 326 implicit regularization during training. This observation also aligns with the theoretical insights in 327 Lim et al. (2021) that the introduction of Brownian motion, which is indeed zero-drift by definition, in 328 training RNN models promotes robustness. We note that in addition, when the error $\bar{\sigma}_t(\cdot)$ is too small, the effect of term S as implicit regularization would not be as significant as desired. Intuitively, this 329 insight resonates with the empirical results in Table 1 that model's robustness gain is not significant 330 when the error induced by large batch sizes is too small. 331

We remark that the exact loss form treated here is simplified compared to that in the practical implementation of world models, which frequently depends on the probability density functions (PDFs) of $z_t, h_t, \tilde{z}_t, \tilde{s}_t$. In principle, the PDE formulation corresponding to the PDFs of the perturbed x_t^{ε} can be derived from the Kolmogorov equation of the SDE (9), and the technicality is more involved but can offer more direct insight. We will study this in future work.

337 338

347 348

357 358

359

360

361

362

363

364

366 367

368

369

3.2.2 THE CASE WITH NON-ZERO-DRIFT REPRESENTATION ERRORS

In practice, latent representation errors may not always exhibit *zero drift* as in idealized noise-injection schemes for deep learning (Lim et al. (2021), Camuto et al. (2021)). When the drift coefficient σ is non-zero or a function of input data h_t and s_t in general, the explicit regularization terms induced by the latent representation error may lead to unstable bias in addition to the regularization term \mathcal{R} in Theorem 3.7. With a slight abuse of notation, we denote \bar{g}_0 as g from Equation (9) for convenience.

344 Corollary 3.8. (Additional Bias Induced by Non-Zero Drift Representation Error)

Under Assumptions 3.1 and 3.2 and considering a loss function $\mathcal{L} \in C^2$, the explicit effects of the general form error can be marginalized out as follows as $\varepsilon \to 0$:

$$\mathbb{E}\mathcal{L}(x_t^{\varepsilon}) = \mathbb{E}\mathcal{L}(x_t^0) + \mathcal{R} + \tilde{\mathcal{R}} + \mathcal{O}(\varepsilon^3),$$
(14)

where the additional bias term $ilde{\mathcal{R}}$ is given by $ilde{\mathcal{R}}:=arepsilon ilde{\mathcal{P}}+arepsilon^2\left(ilde{\mathcal{Q}}+ ilde{\mathcal{S}}
ight)$, with

$$\tilde{\mathcal{P}} := \mathbb{E} \, \nabla \mathcal{L}(x_t^0)^\top \Phi_t \, \tilde{\xi}_t, \tag{15}$$

$$\tilde{\mathcal{Q}} := \mathbb{E} \,\nabla \mathcal{L}(x_t^0)^\top \Phi_t \int_0^t \Phi_s^{-1} \,\mathcal{H}^0(x_s^0, s) \,dt, \tag{16}$$

$$\tilde{\mathcal{S}} := \mathbb{E} \sum_{k} (\Phi_t \tilde{\xi}_t)^i \nabla^2 \mathcal{L}(x_t^0, t) \, (\Phi_t \xi_t^k)^j, \tag{17}$$

and $\tilde{\xi}_t$ being the shorthand for $\int_0^t \Phi_s^{-1} \sigma_k(x_s^0, s) dt$.

The presence of the new bias term $\hat{\mathcal{R}}$ implies that regularization effects of latent representation error could be unstable. The presence of $\tilde{\xi}$ in $\tilde{\mathcal{P}}$, $\tilde{\mathcal{Q}}$ and $\tilde{\mathcal{S}}$ induces a bias to the loss function with its magnitude dependent on the error level ε , since $\tilde{\xi}$ is a non-zero term influenced on the drift term σ . This contrasts with the scenarios described in Lim et al. (2021) and Camuto et al. (2021), where the noise injected for implicit regularization follows a zero-mean Gaussian distribution. To modulate the regularization and bias terms \mathcal{R} and $\tilde{\mathcal{R}}$ respectively, we note that a common factor, the fundamental matrix Φ , can be bounded by

$$\mathbb{E}\sup_{t} \left\|\Phi_{t}\right\|_{F}^{2} \leq \sum_{k} C \exp\left(C \mathbb{E}\sup_{t} \left\|\frac{\partial g_{k}}{\partial x}(x_{t}^{0}, t)\right\|_{F}^{2}\right)$$
(18)

which can be shown by using the Burkholder-Davis-Gundy Inequality and Gronwall's Lemma. Based on this observation, we next propose a regularizer on input-output Jacobian norm $\|\frac{\partial g_k}{\partial x}\|_F$ that could modulate the new bias term $\tilde{\mathcal{R}}$ for stabilized implicit regularization.

4 ENHANCING PREDICTIVE ROLLOUTS VIA JACOBIAN REGULARIZATION

In this section, we study the effects of latent representation errors on predictive rollouts using latent state transitions, which happen in the inference phase in world models. We then propose to use Jacobian regularization to enhance the quality of rollouts. In particular, we first obtain an upper bound of state trajectory divergence in the rollout due to the representation error. We show that the error effects on task policy's *Q* function can be controlled through model's input-output Jacobian norm. 384 385 386

396

397 398 399

421

In world model learning, the task policy is optimized over the rollouts of dynamics model with the initial latent state z_0 . Recall that latent representation error is introduced to z_0 when latent encoder encodes the initial state s_0 from task environment. Intuitively, the latent representation error would propagate under the sequence model and impact the policy learning, which would then affect the generalization capacity through increased exploration.

Recall that the sequence model and the transition predictor are given as follows:

$$dh_t = f(h_t, \tilde{z}_t, \pi(h_t, \tilde{z}_t)) dt, \quad d\tilde{z}_t = p(h_t)dt + \bar{p}(h_t) dB_t,$$
(19)

with random variables h_0 , $\tilde{z}_0 + \varepsilon$ as the initial values, respectively. In particular, ε is a random variable of proper dimension, representing the error from encoder introduced at the initial step. We impose the standard assumption on the error to ensure the well-definedness of the SDEs.

Under Assumption 3.1, there exists a unique solution to the SDEs (for Equations 19 with squareintegrable ε), denoted as $(h_t^{\varepsilon}, z_t^{\varepsilon})$. In the case of no error introduced, i.e., $\varepsilon = 0$, we denote the solution of the SDEs as (h_t^0, z_t^0) understood as the rollout under the absence of latent representation error. To understand how to modulate impacts of the error in rollouts, our following result gives an upper bound on the expected divergence between the perturbed rollout trajectory $(h_t^{\varepsilon}, z_t^{\varepsilon})$ and the original (h_t^0, z_t^0) over the interval [0, T].

Theorem 4.1. (Bounding trajectory divergence) For a square-integrable random variable ε , let $\delta := \mathbb{E} \|\varepsilon\|$ and $d_{\varepsilon} := \mathbb{E} \sup_{t \in [0,T]} \|h_t^{\varepsilon} - h_t^0\|^2 + \|\tilde{z}_t^{\varepsilon} - \tilde{z}_t^0\|^2$. As $\delta \to 0$,

$$d_{\varepsilon} \leq \delta C \left(\mathcal{J}_{0} + \mathcal{J}_{1}\right) + \delta^{2} C \exp\left(\mathcal{H}_{0} \left(\mathcal{J}_{0} + \mathcal{J}_{1}\right)\right) + \delta^{2} C \exp\left(\mathcal{H}_{1} \left(\mathcal{J}_{0} + \mathcal{J}_{1}\right)\right) + \mathcal{O}(\delta^{3}),$$

where C is a constant dependent on T. \mathcal{J}_1 and \mathcal{J}_2 are Jacobian-related terms, and \mathcal{H}_1 and \mathcal{H}_2 are Hessianrelated terms.

The Jacobian-related terms \mathcal{J}_1 and \mathcal{J}_2 are defined as $\mathcal{J}_0 := \exp(\mathcal{F}_h + \mathcal{F}_z + \mathcal{P}_h)$, $\mathcal{J}_1 := \exp(\bar{\mathcal{P}}_h)$; the Hessian-related terms \mathcal{H}_0 and \mathcal{H}_1 are defined as $\mathcal{H}_0 := \mathcal{F}_{hh} + \mathcal{F}_{hz} + \mathcal{F}_{zh} + \mathcal{F}_{zz} + \mathcal{P}_{hh}$, $\mathcal{H}_1 := \bar{\mathcal{P}}_{hh}$, where \mathcal{F}_h , \mathcal{F}_z are the expected sup Frobenius norm of Jacobians of f w.r.t h, z, respectively, and $\mathcal{F}_{hh}, \mathcal{F}_{hz}, \mathcal{F}_{zh}, \mathcal{F}_{zz}$ are the corresponding expected sup Frobenius norm of second-order derivatives. Other terms are similarly defined. A detailed description of all terms, can be found in Appendix C.1.

Theorem 4.1 correlates with the empirical findings in Hafner et al. (2019) regarding the diminished predictive accuracy of latent states \tilde{z}_t over the extended horizons. In particular, Theorem 4.1 suggests that the expected divergence from error accumulation hinges on the expected error magnitude, the Jacobian norms within the latent dynamics model and the horizon length T.

Our next result reveals how initial latent representation error influences the value function Q during the prediction rollouts, which again verifies that the perturbation is dependent on expected error magnitude, the model's Jacobian norms and the horizon length T:

415 Corollary 4.2. For a square-integrable ε , let $x_t := (h_t, z_t)$. Then, for any action $a \in A$, the following holds for value function Q almost surely:

$$\begin{split} Q(x_t^{\varepsilon}, a) &= Q(x_t^0, a) + \frac{\partial}{\partial x} Q(x_t^0, a) \left(\varepsilon^i \partial_i x_t^0 + \frac{1}{2} \varepsilon^i \varepsilon^j \partial_{ij}^2 x_t^0 \right) \\ &+ \frac{1}{2} (\varepsilon^i \partial_i x_t^0)^\top \frac{\partial^2}{\partial x^2} Q(x_t^0, a) \left(\varepsilon^i \partial_i x_t^0 \right) + \mathcal{O}(\delta^3), \end{split}$$

as $\delta \to 0$, where stochastic processes $\partial_i x_t^0$, $\partial_{ij}^2 x_t^0$ are the first and second derivatives of x_t^0 w.r.t ε and are bounded as follows:

$$\mathbb{E}\sup_{t\in[0,T]}\left\|\partial_{i}x_{t}^{0}\right\| \leq C\left(\mathcal{J}_{0}+\mathcal{J}_{1}\right), \mathbb{E}\sup_{t\in[0,T]}\left\|\partial_{ij}^{2}x_{t}^{0}\right\| \leq C\exp\left(\mathcal{H}_{0}\left(\mathcal{J}_{0}+\mathcal{J}_{1}\right)\right) + C\exp\left(\mathcal{H}_{1}\left(\mathcal{J}_{0}+\mathcal{J}_{1}\right)\right).$$

This corollary reveals that latent representation errors implicitly encourage exploration of unseen states by inducing a stochastic perturbation in the value function, which again can be regularized through a controlled Jacobian norm. Intuitively, the stochasticity in the LDM also encourages greater exploration compared to its deterministic counterparts.

Jacobian Regularization against Non-Zero Drift. The above theoretical results have established
 a close connection of input-output Jacobian matrices with the stabilized generalization capacity of
 world models (shown in 18 under non-zero drift form), and perturbation magnitude in predictive

rollouts (indicated in the presence of Jacobian terms in Theorem 4.1 and Corollary 4.2.) Building on these insights, we propose a regularizer on input-output Jacobian norm $\|\frac{\partial g_k}{\partial x}\|_F$ that could modulate $\tilde{\xi}$ (and in addition ξ_k). This regularization not only enhances robustness by controlling perturbations but also reinforces generalization through smoother dynamics in the world model's latent space.

The regularized loss function for LDM is defined as follows:

of the trials, are relegated to Section D in the Appendix.

$$\bar{\mathcal{L}}_{dyn} = \mathcal{L}_{dyn} + \lambda \, \|J_{\theta}\|_F,\tag{20}$$

where \mathcal{L}_{dyn} is the original loss function for dynamics model, J_{θ} denotes the data-dependent Jacobian matrix associated with the θ -parameterized dynamics model, and λ is the regularization weight. Our empirical results in 5 with an emphasis on sequential case align with the experimental findings from Hoffman et al. (2019) that Jacobian regularization can enhance robustness against random and adversarial input perturbation in machine learning models.

444 445 446

441

442

443

5 EXPERIMENTAL STUDIES

447 448

449

450

In this section, extensive experiments are carried out over a number of tasks in Mujoco environments. Due to space limitation, implementation details and additional results, including the standard deviation

451 Enhanced robustness and generalization to unseen noisy states and varied dynamics. We evalu-452 ated the effectiveness of Jacobian regularization by comparing a model trained with this regularization 453 against a vanilla model during inference, using perturbed state images and varied dynamics. We consider three types of perturbations to the observations: (1) Gaussian noise applied across the entire 454 image, denoted as $\mathcal{N}(\mu_1, \sigma_1^2)$; (2) rotation; and (3) Gaussian noise applied to a random portion of the 455 image, $\mathcal{N}(\mu_2, \sigma_2^2)$. Additionally, we examine variations in the gravity constant g for unseen dynamics. 456 These perturbation patterns align with those commonly used in robustness studies (Curi et al. (2021); 457 Sun et al. (2023); Zhou et al. (2023)). 458

For the Walker task, the parameters are set as $\mu_1 = \mu_2 = 0.5$ and $\sigma_2^2 = 0.15$, while for the Quadruped task, $\mu_1 = 0$, $\mu_2 = 0.05$, and $\sigma_2^2 = 0.2$. In each case, we investigate a range of noise levels: (1) variance σ^2 ranging from 0.05 to 0.55; (2) rotation angles α of 20° and 30°; and (3) masked image percentages β % ranging from 25% to 75%. For the unseen dynamics, the gravity constant g is varied from 9.8 to 1.

471 472

464

465

466

467

468

469

470

Figure 1: Generalization against increasing degree of perturbation.

It can be seen from Table 2 and Figure 1 that thanks to the adoption of Jacobian regularization in training, the rewards (averaged over 5 trials) are higher compared to the baseline, indicating improved robustness to noisy image states in all cases. Moreover, Table 2demonstrates that the model trained with Jacobian regularization consistently outperforms the baseline under most dynamics variations. These experimental results support the findings in Corollary 3.8, showing that regularizing the Jacobian norm effectively stabilizes the implicit regularization process, leading to enhanced performance and robustness.

In some cases where additional knowledge about perturbation is available, such as when the perturbation type is known a priori (which could be unrealistic), one could consider using augmentation methods by training with perturbed observations to improve robustness. We provide a comparative discussion between Jacobian regularization and augmentation methods in the Appendix D.6.

Robustness against encoder errors. Next, we focus on the effects of Jacobian regularization on controlling the error process to the latent states *z* during training. Since it is very challenging, if

486			full, $\mathcal{N}(\mu_1, \sigma_1^2)$		rotation, $+\alpha^{\circ}$		mask $\beta\%$, $\mathcal{N}(\mu_2, \sigma_2^2)$	
487		clean	$\sigma_1^2 = 0.35$	$\sigma_1^2 = 0.5$	$\alpha = 20$	$\alpha = 30$	$\beta = 50$	$\beta = 75$
488	Jac Reg (Walker)	967.12	742.32	618.98	423.81	226.04	725.81	685.49
489	Baseline (Walker)	966.53	615.79	333.47	391.65	197.53	583.41	446.74
490	Jac Reg (Quad)	971.98	269.78	242.15	787.63	610.53	321.55	304.92
491	Baseline (Quad)	967.91	207.33	194.08	681.03	389.41	222.22	169.58

Table 2: Evaluation on unseen states by various perturbation (Clean means without perturbation). $\lambda = 0.01.$

	g = 9.8	g = 6	g = 4	g = 2
Jac Reg (Walker)	967.12	906.42	755.18	679.24
Baseline (Walker)	966.53	750.36	662.86	381.14
Jac Reg (Quad)	971.98	752.7	543.44	400.94
Baseline (Quad)	967.91	875.02	518.7	329.06

Table 3: Evaluation on unseen dynamics by various gravity constants (q = 9.8 is default). $\lambda = 0.01$.

not impossible, to characterize the latent representation errors and hence the drift therein explicitly, we consider to evaluate the robustness against two exogenous error signals, namely (1) zero-drift error with $\mu_t = 0, \sigma_t^2$ ($\sigma_t^2 = 5$ in Walker, $\sigma_t^2 = 0.1$ in Quadruped), and (2) non-zero-drift error with $\mu_t \sim [0,5], \sigma_t^2 \sim [0,5]$ uniformly. Table 4 shows that the model with regularization can consistently learn policies with high returns and also converges faster, compared to the vanilla case. This corroborates our theoretical findings in Corollary 3.8 that the impacts of error to loss \mathcal{L} can be controlled through the model's Jacobian norm.

	Zero drift, Walker		Non-zero drift, Walker		Zero drift, Quad		Non-zero drift, Quad	
	300k	600k	300k	600k	600k	1.2M	1M	2M
Jac Reg	666.2	966	905.7	912.4	439.8	889	348.3	958.7
Baseline	24.5	43.1	404.6	495	293.6	475.9	48.98	32.87

Table 4: Accumulated rewards under additional encoder errors, $\lambda = 0.01$.

To observe the error propagation of zero-drift and non-zero-drift error signals in latent states, we refer to the visualizations of reconstructed state trajectory samples in the Appendix D.7.

Faster convergence on tasks with extended horizon. We further evaluate the efficacy of Jacobian regularization in tasks with extended horizon, particularly by extending the horizon length in MuJoCo Walker from 50 to 100 steps. Table 5 shows that the model with regularization converges significantly faster (~ 100 K steps) than the case without Jacobian regularization in training. This corroborates results in Theorem 4.1 that regularizing the Jacobian norm can reduce error propagation.

	Extended Walker 100 steps (increased from original 50 step				
Num steps	100k	200k	280k		
Jac Reg ($\lambda = 0.05$)	639.1	936.3	911.1		
Jac Reg ($\lambda = 0.1$)	537.5	762.6	927.7		
Baseline	582.3	571.2	886.6		

Table 5: Accumulated rewards of Walker with extended horizon.

CONCLUSION

In this study, we investigate the robustness and generalization of world models. We develop an SDE formulation by treating the world model learning as a stochastic dynamical system in the latent state space, and characterize the effects of latent representation errors as implicit regularization, for zero-drift and non-zero drift cases. Our findings, based on both theoretic and experimental studies, reveal that for the case with zero drift, modest latent representation errors can paradoxically function as implicit regularization and hence enhance robustness. To mitigate the compounding effects of non-zero drift, we applied Jacobian regularization, which enhanced training stability and robustness. Our empirical studies corroborate that Jacobian regularization improves generalization performance, broadening world models' applicability in complex environments. This work has

540 541 542	the potential to improve the robustness and reliability of RL agents, especially in safety-critical applications like autonomous driving. Future work can extend this study to other world models such as with transformers-based LDM.
543	
544	
545	
546	
547	
548	
549	
550	
551	
552	
553	
554	
555	
556	
557	
558	
559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	
570	
571	
572	
573	
574	
575	
576	
577	
578	
579	
580	
581	
582	
583	
584	
585	
586	
587	
588	
589	
590	
591	
592	
593	

594 6.1 ETHICS STATEMENT

This work does not involve any human subjects, and no datasets are required. The methodologies and insights presented focus on improving the robustness and generalization of world models in reinforcement learning, with no direct applications that could lead to harmful outcomes. However, as with any machine learning research, the possibility of misuse or unintended consequences in real-world applications should be carefully considered. We have adhered to all ethical research practices and have no conflicts of interest or sponsorships that could influence the outcomes of this study.

7 Reproducibility

For full details on the assumptions and proofs of the theorems presented in the paper, please refer to Sections A, B, and C in the Appendix.

To reproduce the experimental results, the complete source code is provided in the supplementary materials, along with additional experiment details in Section D of the Appendix.

648 REFERENCES 649

650	Marc G Bellemare, Yayar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-						
651	ment: An evaluation platform for general agents. <i>Journal of Artificial Intelligence Research</i> . 47:						
652	253–279, 2013.						
653							
654	Alexander Camuto, Matthew Willetts, Umut Şimşekli, Stephen Roberts, and Chris Holmes. Explicit						
655	regularisation in gaussian noise injections, 2021.						
656	Henri Cartan. Differential calculus on normed spaces. Createspace Independent Publishing Platform,						
657	North Charleston, SC, August 2017.						
658	De Chane Minnie Chan Elded Haber and Ed H. Chi. Antisementationers A demonstration science						
659	on recurrent neural networks 2010						
660	on recurrent neural networks, 2019.						
661	Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural						
662	networks, 2020.						
663	Sebastian Curi Ilija Bogunovic and Andreas Krause. Combining pessimism with ontimism for robust						
664	and efficient model-based deep reinforcement learning. In <i>Proceedings of the 38th International</i>						
665	Conference on Machine Learning, volume 139, pages 2210–2220, PMLR, 2021.						
666							
667	Bernard Dacorogna and Jürgen Moser. On a partial differential equation involving the jacobian						
668	determinant. Annales de l'I.H.P. Analyse non linéaire, 7(1):1–26, 1990. URL http://www.						
669	numdam.org/item/AIHPC_1990/_1_1_0/.						
670	Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.						
671	Seen C Dungen Mincoueft beyond construction and survival 2011						
672	Sean C Duncan. Minecran, beyond construction and survival. 2011.						
673	Lawrence Craig Evans and Ronald F Gariepy. Measure theory and fine properties of functions,						
674	revised edition. Textbooks in Mathematics. Apple Academic Press, Oakville, MO, April 2015.						
675	C Daniel Freeman, Luke Metz, and David Ha. Learning to predict without looking abead: World						
676	models without forward prediction. Thirty-third Conference on Neural Information Processing						
677	Systems (NeurIPS 2019), 2019. URL https://arxiv.org/abs/1910.13038.						
678							
680	Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics. <i>International</i>						
681	Statistical Review / Revue Internationale de Statistique, 70(5).419–455, 2002.						
682	David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.						
683	Danijar Hafner, Timothy Lillicran, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James						
684	Davidson. Learning latent dynamics for planning from pixels. In <i>International conference on</i>						
685	machine learning, pages 2555–2565. PMLR, 2019.						
686							
687	bahaviors by latent imagination 2020						
688	ochaviors by facilit infagiliation, 2020.						
689	Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete						
690	world models, 2022.						
691	Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicran, Mastering diverse domains						
692	through world models. arXiv preprint arXiv:2301.04104, 2023.						
693							
094	Paul Louis Hennequin, R. M. Dudley, H. Kunita, and F. Ledrappier. <i>Ecole d'ete de Probabilites de</i>						
606	Saint-Flour XII-1982. Springer-Verlag, 1984.						
697	Judy Hoffman, Daniel A. Roberts, and Sho Yaida. Robust learning with jacobian regularization,						
698	2019.						
699	Anthony Hu Lloyd Dussell Hudson Voo Zak Murez Coores Esdosson, Alay Vandell Jami's Chatter						
700	and Gianluca Corrado Gaia-1: A generative world model for autonomous driving arXiv preprint						
701	arXiv:submit/1234567, Sep 2023. Submitted on 29 Sep 2023.						

702 703 704	Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima, 2017.
705 706 707	Samuel Kessler, Mateusz Ostaszewski, Michał Bortkiewicz, Mateusz Żarski, Maciej Wołczyk, Jack Parker-Holder, Stephen J. Roberts, and Piotr Miłoś. The effectiveness of world models for continual reinforcement learning. <i>CoLLAs 2023</i> , 2023.
708 709 710	Kuno Kim, Megumi Sano, Julian De Freitas, Nick Haber, and Daniel Yamins. Active world model learning with progress curiosity. In <i>Proceedings of the 37th International Conference on Machine Learning (ICML)</i> , 2020.
711 712 713	Diederik P Kingma and Max Welling. Auto-encoding variational bayes. <i>arXiv preprint</i> arXiv:1312.6114, 2013.
714 715 716	Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot generalisation in deep reinforcement learning. <i>Journal of Artificial Intelligence Research</i> , 76: 201–264, 2023.
717 718 719	Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. <i>Neural computation</i> , 1(4):541–551, 1989.
720 721 722 723	John M. Lee. <i>Introduction to Riemannian Manifolds</i> . Springer International Publishing, 2018. ISBN 9783319917559. doi: 10.1007/978-3-319-91755-9. URL http://dx.doi.org/10.1007/978-3-319-91755-9.
724 725 726	Suyoung Lee and Sae-Young Chung. Improving generalization in meta-rl with imaginary tasks from latent dynamics mixture. In <i>Advances in Neural Information Processing Systems (NeurIPS)</i> . NeurIPS, 2021.
727 728 729	Zhong Li, Jiequn Han, Weinan E, and Qianxiao Li. Approximation and optimization theory for linear continuous-time recurrent neural networks. <i>Journal of Machine Learning Research</i> , 23(42):1–85, 2022. URL http://jmlr.org/papers/v23/21-0368.html.
730 731 732	Soon Hoe Lim, N Benjamin Erichson, Liam Hodgkinson, and Michael W Mahoney. Noisy recurrent neural networks. <i>Advances in Neural Information Processing Systems</i> , 34:5124–5137, 2021.
733 734 735	Zuxin Liu, Zijian Guo, Zhepeng Cen, Huan Zhang, Jie Tan, Bo Li, and Ding Zhao. On the robustness of safe reinforcement learning under observational perturbations. In <i>International Conference on Learning Representations (ICLR)</i> . ICLR, 2023.
736 737 738	Lynn Harold Loomis and Shlomo Sternberg. <i>Advanced calculus (revised edition)</i> . World Scientific Publishing, Singapore, Singapore, March 2014.
739 740 741	Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust reinforcement learning using offline data. In <i>Advances in Neural Information Processing Systems (NeurIPS)</i> . NeurIPS, 2022.
742 743 744	Tomaso Poggio, Kenji Kawaguchi, Qianli Liao, Brando Miranda, Lorenzo Rosasco, Xavier Boix, Jack Hidary, and Hrushikesh Mhaskar. Theory of deep learning iii: Explaining the non-overfitting puzzle. <i>arXiv preprint arXiv:1801.00173</i> , 2017.
745 746 747	Guohao Shen, Yuling Jiao, Yuanyuan Lin, and Jian Huang. Approximation with cnns in sobolev space: with applications to classification. In <i>NeurIPS</i> , Oct 2022.
748 749 750	Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Generalization error of deep neural networks: Role of classification margin and data structure. In <i>2017 International Conference on Sampling Theory and Applications (SampTA)</i> , pages 147–151. IEEE, 2017.
751 752	J. Michael Steele. Stochastic calculus and Financial Applications. Springer, 2001.
753 754 755	Ke Sun, Yingnan Zhao, Shangling Jui, and Linglong Kong. Exploring the training robustness of distributional reinforcement learning against noisy state observations. In <i>Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)</i> , 2023.

756	
757	Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of dropout,
758	2020.
759	Philipp Wu, Aleiandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg, Davdreamer:
760	World models for physical robot learning. In <i>Proceedings of The 6th Conference on Robot Learning</i> ,
761	volume 205 of <i>PMLR</i> , pages 2226–2240, 2023.
762	Humin Van Lang Vai Human Lining Zhang Ving Wai Li Ting Langer Zhu Lunghan Human and
763	Huaxiu Yao, Long-Kai Huang, Linjun Zhang, Ying Wei, Li Tian, James Zou, Junzhou Huang, and Zhanhui Li, Improving generalization in mote learning via task sugmentation. In <i>Proceedings</i> of
764	the 38th International Conference on Machine Learning (ICML) ICML 2021
765	the sour international conjerence on internate Learning (renil), routh, 2021.
766	Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural networks:
767	Lstm cells and network architectures. <i>Neural computation</i> , 31(7):1235–1270, 2019.
768	Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, P. R. Kumar, and Chao Tian, Natural actor-critic
769	for robust reinforcement learning with function approximation. In Advances in Neural Information
770	Processing Systems. NeurIPS, 2023.
771	
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
783	
784	
785	
786	
787	
788	
789	
790	
791	
792	
793	
794	
795	
797	
798	
799	
800	
801	
802	
803	
804	
805	
806	
807	
808	
809	

810 811	Supplementary Materials
812	In this summation, we are side the summation of the summation of the first of the summation
813	in this appendix, we provide the supplementary materials supporting the information is as follows:
814	on the fatent representation of fatent representations in world models. The organization is as follows.
815	• In Section A, we provide proof on showing the approximation capacity of CNN encoder- decoder architecture in latent representation of world models.
010	• In Section P , we provide proof on implicit regularization of zero drift errors and additional
818	• In Section B, we provide proof on implicit regularization of zero-artic errors and additional effects of non-zero-drift errors by showing a proposition on the general form.
819 820	• In Section C, we provide proof on showing the effects of non-zero-drift errors during predictive rollouts by again showing a result on the general form.
821	• In Section D, we provide additional results and implementation details on our empirical
822	studies
823	
824	
825	
826	
827	
828	
829	
830	
831	
832	
833	
834	
835	
836	
03/	
830	
840	
841	
842	
843	
844	
845	
846	
847	
848	
849	
850	
851	
852	
853	
854	
855	
000	
00 <i>1</i> 859	
850	
860	
861	
862	
863	

867

868

869

870

871

872

873 874

875

876

877 878

879

880

909 910

912

913

A APPROXIMATION POWER OF LATENT REPRESENTATION WITH CNN Encoder and Decoder

To mathematically describe this *intrinsic lower-dimensional geometric structure*, for an integer k > 0and $\alpha \in (0, 1]$, we consider the notion of smooth manifold (in the $C^{k,\alpha}$ sense), formally defined by

Definition A.1 ($\mathcal{C}^{k,\alpha}$ manifold). A $\mathcal{C}^{k,\alpha}$ manifold \mathcal{M} of dimension n is a topological manifold (i.e. a topological space that is locally Euclidean, with countable basis, and Hausdorff) that has a $\mathcal{C}^{k,\alpha}$ structure Ξ that is a collection of coordinate charts $\{U_{\alpha}, \psi_{\alpha}\}_{\alpha \in A}$ where U_{α} is an open subset of \mathcal{M} , $\psi_{\alpha} : U_{\alpha} \to V_{\alpha} \subseteq \mathbb{R}^{n}$ such that

- $\bigcup_{\alpha \in A} U_{\alpha} \supseteq \mathcal{M}$, meaning that the the open subsets form an open cover,
- Each chart ψ_α is a diffeomorphism that is a smooth map with smooth inverse (in the C^{k,α} sense),
- Any two charts are $\mathcal{C}^{k,\alpha}$ -compatible with each other, that is for all $\alpha_1, \alpha_2 \in A$, $\psi_{\alpha_1} \circ \psi_{\alpha_2}^{-1}$: $\psi_{\alpha_2}(U_{\alpha_1} \cap U_{\alpha_2}) \rightarrow \psi_{\alpha_1}(U_{\alpha_1} \cap U_{\alpha_2})$ is $\mathcal{C}^{k,\alpha}$.

Intuitively, a $C^{k,\alpha}$ manifold is a generalization of Euclidean space by allowing additional spaces with nontrivial global structures through a collection of charts that are diffeomorphisms mapping open subsets from the manifold to open subsets of euclidean space. For technical utility, the defined charts allow to transfer most familiar real analysis tools to the manifold space. For more references, see Lee (2018).

Befinition A.2 (Riemannian volume form). Let \mathcal{X} be a smooth, oriented *d*-dimensional manifold with Riemannian metric *g*. A volume form $d \operatorname{vol}_{\mathcal{M}}$ is the canonical volume form on \mathcal{X} if for any point $x \in \mathcal{X}$, for a chosen local coordinate chart $(x_1, ..., x_d)$, $d\operatorname{vol}_{\mathcal{M}} = \sqrt{\det g_{ij}} dx_1 \wedge ... \wedge dx_d$, where $g_{ij}(x) := g\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right)(x)$.

Then the induced volume measure by the canonical volume form $dvol_{\mathcal{X}}$ is denoted as $\mu_{\mathcal{X}}$, defined by $\mu_{\mathcal{X}} : A \mapsto \int_A dvol_{\mathcal{X}}$, for any Borel-measurable subset A on the space \mathcal{X} . For more references, see Evans and Gariepy (2015).

We recall the latent representation problem defined in the main paper.

Consider the state space $S \subset \mathbb{R}^{d_S}$ and the latent space Z. Consider a state probability measure Q on the state space S and a probability measure P on the latent space Z.

Assumption A.3. (Latent manifold assumption) For a positive integer k, there exists a $d_{\mathcal{M}}$ dimensional $\mathcal{C}^{k,\alpha}$ submanifold \mathcal{M} (with $\mathcal{C}^{k+3,\alpha}$ boundary) with Riemannian metric g and has
positive reach and also isometrically embedded in the state space $\mathcal{S} \subset \mathbb{R}^{d_{\mathcal{S}}}$ and $d_{\mathcal{M}} \ll d_{\mathcal{S}}$, where
the state probability measure is supported on. In addition, \mathcal{M} is a compact, orientable, connected
manifold.

Assumption A.4. (Smoothness of state probability measure) Q is a probability measure supported on \mathcal{M} with its Radon-Nikodym derivative $q \in \mathcal{C}^{k,\alpha}(\mathcal{M},\mathbb{R})$ w.r.t $\mu_{\mathcal{M}}$.

Let \mathcal{Z} be a closed ball in $\mathbb{R}^{d_{\mathcal{M}}}$, that is $\{x \in \mathbb{R}^{d_{\mathcal{M}}} : ||x|| \leq 1\}$. P is a probability measure supported on \mathcal{Z} with its Radon-Nikodym derivative $p \in \mathcal{C}^{k,\alpha}(\mathcal{Z},\mathbb{R})$ w.r.t $\mu_{\mathcal{Z}}$.

We consider a general CNN function $f_{\text{CNN}} : \mathcal{X} \to \mathbb{R}$. Let f_{CNN} have L hidden layers, represented as:

$$f_{\text{CNN}}(x) = A_{L+1} \circ A_L \circ \dots \circ A_2 \circ A_1(x), \quad x \in \mathcal{X}$$

 $_{911}$ where A_i 's are either convolutional or downsampling operators. For convolutional layers,

$$A_i(x) = \sigma(W_i^c x + b_i^c),$$

914 where $W_i^c \in \mathbb{R}^{d_i \times d_{i-1}}$ is a structured sparse Toeplitz matrix from the convolutional filter $\{w_j^{(i)}\}_{j=0}^{s(i)}$ 915 with filter length $s(i) \in \mathbb{N}_+$, $b_i^c \in \mathbb{R}^{d_i}$ is a bias vector, and σ is the ReLU activation function.

916 917 For downsampling layers,

$$A_i(x) = D_i(x) = (x_{jm_i})_{j=1}^{\lfloor d_{i-1}/m_i \rfloor}$$

Figure 2: Latent Representation Problem: The left and right denote the manifold \mathcal{M} with lower dim $d_{\mathcal{M}}$ embedded in a larger Euclidean space, with latent space Z a $d_{\mathcal{M}}$ -dimensional ball in middle. Encoder and decoder as maps respectively pushing forward Q to P and P to Q.

where $D_i : \mathbb{R}^{d_i \times d_{i-1}}$ is the downsampling operator with scaling parameter $m_i \leq d_{i-1}$ in the *i*-th layer. The convolutional and downsampling operations are elaborated in Appendix [63]. We examine 934 the class of functions represented by CNNs, denoted by \mathcal{F}_{CNN} , defined as:

 $\mathcal{F}_{CNN} = \{f_{CNN} \text{ as in defined above with any choice of } A_i, i = 1, \dots, L+1\}.$

937 For more details in the definitions of CNN functions, we refer to Shen et al. (2022). 938

Assumption A.5. Assume that \mathcal{M} and \mathcal{Z} are locally diffeomorphic, that is there exists a map $F: \mathcal{M} \to \mathcal{Z}$ such that at every point x on \mathcal{M} , $\det(dF(x)) \neq 0$.

941 **Theorem A.6.** (Approximation Error of Latent Representation). Under Assumption A.3, A.4 and A.5, for $\theta \in (0,1)$, let $d_{\theta} = \mathcal{O}(d_{\mathcal{M}}\theta^{-2}\log\frac{d}{\theta})$. For positive integers M and N, there exists an 942 encoder g_{enc} and decoder $g_{dec} \in \mathcal{F}_{CNN}(L, S, \check{W})$ s.t. 943

$$W_1(g_{enc_{\#}}Q, P) \le d_{\mathcal{M}}C(NM)^{-\frac{2(k+1)}{d_{\theta}}},$$
$$W_1(g_{dec_{\#}}P, Q) \le d_{\mathcal{M}}C(NM)^{-\frac{2(k+1)}{d_{\theta}}}.$$

948 The primary challenge to show Theorem A.6 is in demonstrating the existence of oracle encoder and 949 decoder maps. These maps, denoted as $g_{enc}^*: \mathcal{M} \to \mathcal{Z}$ and $g_{dec}^*: \mathcal{Z} \to \mathcal{M}$ respectively, must satisfy

$$g_{\text{enc}\#}^* Q = P, \quad g_{\text{dec}\#}^* P = Q.$$
 (21)

and importantly they have the proper smoothness guarantee, namely $g_{\text{enc}}^* \in \mathcal{C}^{k+1,\alpha}(\mathcal{M}, \mathcal{Z})$ and $g_{\text{dec}}^* \in \mathcal{C}^{k+1,\alpha}(\mathcal{Z}, \mathcal{M})$. Proposition A.7 shows the existence of such oracle map(s).

Proposition A.7 ($\mathcal{C}^{k,\alpha}$, compact). Let \mathcal{M}, \mathcal{N} be compact, oriented d-dimensional Riemannian 955 manifolds with $\mathcal{C}^{k+3,\alpha}$ boundary with the volume measure $\mu_{\mathcal{M}}$ and $\mu_{\mathcal{N}}$ respectively. Let Q, P be 956 distributions supported on \mathcal{M}, \mathcal{N} respectively with their $\mathcal{C}^{k,\alpha}$ density functions q, p, that is Q, P are 957 probability measures supported on \mathcal{M} , \mathcal{N} with their Radon-Nikodym derivatives $q \in \mathcal{C}^{k,\alpha}(\mathcal{M},\mathbb{R})$ 958 w.r.t $\mu_{\mathcal{M}}$ and $p \in \mathcal{C}^{k,\alpha}(\mathcal{N},\mathbb{R})$ w.r.t $\mu_{\mathcal{N}}$. Then, there exists a $\mathcal{C}^{k+1,\alpha}$ map $g: \mathcal{N} \to \mathcal{M}$ such that 959 the pushforward measure $g_{\#}P = Q$, that is for any measurable subset $A \in \mathcal{B}(\mathcal{M}), \ Q(A) =$ 960 $P(g^{-1}(A)).$ 961

962

929

930

931 932

933

935 936

939

940

950 951 952

953 954

Proof. (*Proposition A.7*) Let $\omega := p \, d\text{vol}_{\mathcal{N}}$, then ω is a $\mathcal{C}^{k,\alpha}$ volume form on \mathcal{N} , as $p \in \mathcal{C}^{k,\alpha}$ and for 963 any point $x \in \mathcal{N}$, we have p(x) > 0. In addition, $\int_{\mathcal{N}} \omega = \int_{\mathcal{N}} p \, d\text{vol}_{\mathcal{N}} = \int_{\mathcal{N}} p \, d\mu_{\mathcal{N}} = P(\mathcal{N}) = 1$. 964 Similarly, let $\eta := q \operatorname{dvol}_{\mathcal{M}} a \mathcal{C}^{k,\alpha}$ volume form on \mathcal{M} and $\int_{\mathcal{M}} \eta = 1$. 965

966

967 Let $F: \mathcal{N} \to \mathcal{M}$ be an orientation-preserving local diffeomorphism, we then have $\det(dF) > 0$ everywhere on \mathcal{N} . 968

As \mathcal{N} is compact and \mathcal{M} is connected by assumption, F is a covering map, that is for every point 969 $x \in \mathcal{M}$, there exists an open neighborhood U_x of x and a discrete set D_x such that $F^{-1}(U) =$ 970 $\sqcup_{\alpha \in D} V_{\alpha} \subset \mathcal{N}$ and $F|_{V_{\alpha}} = V_{\alpha} \to U$ is a diffeomorphism. Furthermore, $|D_x| = |D_y|$ for any points 971 $x, y \in \mathcal{M}$. In addition, $|D_x|$ is finite from the compactness of \mathcal{N} .

Let $\bar{\eta}$ be the pushforward of ω via F, defined by for any point $x \in \mathcal{M}$ and a neighborhood U_x ,

$$\bar{\eta}(x) := \frac{1}{|D_x|} \sum_{\alpha \in D_x} \left(F \big|_{V_\alpha}^{-1} \right)^* \omega \big|_{V_\alpha}.$$

$$(22)$$

 $\bar{\eta}$ is well-defined as it is not dependent on the choice of neighborhoods and the sum and $\frac{1}{|D_{\pi}|}$ are always finite. Furthermore, $\bar{\eta}$ is a $\mathcal{C}^{k,\alpha}$ volume form on \mathcal{M} , as $p \circ \left(F|_{V_{\alpha}}^{-1}\right)$ is $\mathcal{C}^{k,\alpha}$.

Notice that $F|_{V_{\alpha}}^{-1}$ is orientation-preserving as det $dF|_{V_{\alpha}}^{-1} = \frac{1}{\det dF|_{V_{\alpha}}} > 0$ everywhere on V_{α} . In addition, $F|_{V_{\tau}}^{-1}$ is proper: as for any compact subset K of N, K is closed; and as $F|_{V_{\tau}}^{-1}$ is continuous, the preimage of K via $F|_{V_{\alpha}}^{-1}$ a closed subset of \mathcal{M} which is compact, then the preimage of K must also be compact. Hence, $F|_{V_{\alpha}}^{-1}$ is proper. As every $F|_{V_{\alpha}}^{-1}$ is proper, orientation-preserving and surjective, then $c := \deg(F|_{V_{c}}^{-1}) = 1.$ Then, $\int_{\mathcal{M}} \bar{\eta} = c \int_{\mathcal{N}} \omega = 1.$

As we have shown that η and $\bar{\eta} \in C^{k,\alpha}$ and $\int_{\mathcal{M}} \bar{\eta} = \int_{\mathcal{M}} \eta$, by Dacorogna and Moser (1990), there exists a diffeomorphism $\psi : \mathcal{M} \to \mathcal{M}$ fixing on the boundary such that $\psi^* \eta = \bar{\eta}$, where $\psi, \psi^{-1} \in C^{k+1,\alpha}$.

Let $g := \psi \circ F$, then it holds that $g^* \eta = (\psi \circ F)^* \eta = F^* \circ \psi^* \eta = F^* \bar{\eta} = \omega$.

Then, for any measurable subset A on the manifold \mathcal{M} , we verify that $Q(A) = \int_A \eta =$ $\int_{q^{-1}(A)} g^* \eta = \int_{q^{-1}(A)} \omega = \int_{q^{-1}(A)} p \, d\text{vol}_{\mathcal{N}} = \int_{q^{-1}(A)} p \, d\mu_{\mathcal{N}} = P(g^{-1}(A)).$

Hence, we have shown the existence by an explicit construction. As $\psi \in C^{k+1,\alpha}$, and $F \in C^{\infty}$, then we have $g \in \mathcal{C}^{k+1,\alpha}$.

We are now ready to show Theorem A.6 with the existence of oracle map and the low-dimensional approximation results from Shen et al. (2022).

Proof. (*Theorem A.6*) For encoder, from Proposition A.7, there exists an $\mathcal{C}^{k+1,\alpha}$ oracle map g: $\mathcal{M} \to \mathcal{Z}$ such that the pushforward measure $g_{\#}Q = P$. Then,

$$W_{1}((g_{\text{enc}})_{\#}Q, P) = W_{1}((g_{\text{enc}})_{\#}Q, g_{\#}Q)$$

$$= \sup_{f \in \text{Lip}_{1}(\mathcal{Z})} \left| \int_{\mathcal{Z}} f(y) d((g_{\text{enc}})_{\#}Q) - \int_{\mathcal{Z}} f(y) d(g_{\#}Q) \right|$$

$$\leq \sup_{f \in \text{Lip}_{1}(\mathcal{Z})} \int_{\mathcal{M}} |f \circ g_{\text{enc}}(x) - f \circ g(x)| \ dQ$$

$$\leq \int_{\mathcal{M}} ||g_{\text{enc}}(x) - g(x)|| \ dQ$$

$$\leq d_{\mathcal{M}}C(NM)^{-\frac{2(k+1)}{d_{\theta}}},$$

where the last inequality follows from the special case $\rho = 0$ of Theorem 2.4 in Shen et al. (2022).

Similarly, for decoder, from Proposition A.7, there exists an $\mathcal{C}^{k+1,\alpha}$ oracle map $\bar{q}: \mathcal{Z} \to \mathcal{M}$ such that the pushforward measure $\bar{g}_{\#}P = Q$.

1020
1020
1021
1022
1023

$$W_1((g_{dec})_{\#}P, Q) = W_1((g_{dec})_{\#}P, \bar{g}_{\#}P)$$

 $\leq \int_{\mathcal{Z}} \|g_{dec}(y) - \bar{g}(y)\| dP$
 $\leq L = C(MM)^{-\frac{2(k+1)}{2}}$

$$\leq d_{\mathcal{M}} C(NM)^{-\frac{d_{\theta}}{d_{\theta}}}$$

1026
1027
1028BEXPLICIT REGULARIZATION OF LATENT REPRESENTATION ERROR IN
WORLD MODEL LEARNING

We recall the SDEs for latent dynamics model defined in the main paper. Consider a complete, filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{P})$ where independent standard Brownian motions $B_t^{\text{enc}}, B_t^{\text{pred}}, B_t^{\text{seq}}, B_t^{\text{dec}}$ are defined such that \mathcal{F}_t is their augmented filtration, and $T \in \mathbb{R}$ as the time length of the task environment. We consider the stochastic dynamics of LDM through the following coupled SDEs after error perturbation:

1036

 $dz_{t} = (q_{\text{enc}}(h_{t}, s_{t}) + \sigma(h_{t}, s_{t})) dt + (\bar{q}_{\text{enc}}(h_{t}, s_{t}) + \bar{\sigma}(h_{t}, s_{t})) dB_{t}^{\text{enc}},$ $dh_{t} = f(h_{t}, z_{t}, \pi(h_{t}, z_{t})) dt + \bar{f}(h_{t}, z_{t}, \pi(h_{t}, z_{t})) dB_{t}^{\text{seq}}$ (24)

$$d\tilde{z}_t = p(h_t) dt + \bar{p}(h_t) dB_t^{\text{pred}},$$
(25)

 $d\,\tilde{s}_t = q_{\rm dec}(h_t, \tilde{z}_t)\,dt + \bar{q}_{\rm dec}(h_t, \tilde{z}_t)\,dB_t^{\rm dec},\tag{26}$

where $\pi(h, \tilde{z})$ is a policy function as a local maximizer of value function and the stochastic process s_t is \mathcal{F}_t -adapted.

As discussed in the main paper, our analysis applies to a common class of world models that uses Gaussian distributions parameterized by neural networks' outputs for z, \tilde{z} , \tilde{s} . Their distributions are not non-Gaussian in general.

For example, as z is conditional Gaussian and its mean and variance are random variables which are learned by the encoder from r.v.s s and h as inputs, thus rendering z non-Gaussian. However, z is indeed Gaussian when the inputs are known. Under this conditional Gaussian class of world models, to see that the continuous formulation of latent dynamics model can be interrupted as SDEs, one notices that SDEs with coefficient functions of known inputs are indeed Gaussian, matching to this class of world models. Formally, in the context of z without latent representation error:

Proposition B.1. (Latent states SDE conditioned on inputs is Gaussian)

1053 For the latent state process $z_{t \in [0,T]}$ without error,

1054 1055

$$dz_t = q_{enc}(h_t, s_t) dt + \bar{q}_{enc}(h_t, s_t)) dB_t^{enc},$$
(27)

with zero initial value. Given known $h_{t \in [0,T]}$ and $s_{t \in [0,T]}$, the process z_t is a Gaussian process. Furthermore, for any $t \in [0,T]$, z_t follows a Gaussian distribution with mean $\mu_t = \int_0^t q_{enc}(h_s, s_s) ds$ and variance $\sigma_t^2 = \int_0^t \bar{q}_{enc}(h_s, s_s)^2 ds$.

1060 *Proof.* Proof follows from Proposition 7.6 in Steele (2001).

¹⁰⁶² Next, we recall our assumptions from the main text:

Assumption B.2. The drift coefficient functions q_{enc} , f, p and q_{dec} and the diffusion coefficient functions \bar{q}_{enc} , \bar{p} and \bar{q}_{dec} are bounded and Borel-measurable over the interval [0, T], and of class C^3 with bounded Lipschitz continuous partial derivatives. The initial values z_0 , h_0 , \tilde{z}_0 , \tilde{s}_0 are squareintegrable random variables.

Assumption B.3. σ and $\bar{\sigma}$ are bounded and Borel-measurable and are of class C^3 with bounded Lipschitz continuous partial derivatives over the interval [0, T].

¹⁰⁷⁰ One of our main results is the following:

Theorem B.4. (*Explicit Regularization Induced by Zero-Drift Representation Error*)

Under Assumption B.2 and B.3 and considering a loss function $\mathcal{L} \in C^2$, the explicit effects of the zero-drift error can be marginalized out as follows:

$$\mathbb{E}\mathcal{L}(x_t^{\varepsilon}) = \mathbb{E}\mathcal{L}(x_t^0) + \mathcal{R} + \mathcal{O}(\varepsilon^3),$$
(28)

1075 1076

1077

1078

as $\varepsilon \to 0$, where the regularization term \mathcal{R} is given by $\mathcal{R} := \varepsilon \mathcal{P} + \varepsilon^2 \left(\mathcal{Q} + \frac{1}{2} \mathcal{S} \right)$. Each term of \mathcal{R} is as follows:

$$\mathcal{P} := \mathbb{E} \,\nabla \mathcal{L}(x_t^0)^\top \Phi_t \sum_k \xi_t^k, \tag{29}$$

$$\mathcal{Q} := \mathbb{E} \,\nabla \mathcal{L}(x_t^0)^\top \Phi_t \int_0^t \Phi_s^{-1} \,\mathcal{H}^k(x_s^0, s) dB_t^k, \tag{30}$$

$$\mathcal{S} := \mathbb{E} \sum_{k_1, k_2} (\Phi_t \xi_t^{k_1})^i \nabla^2 \mathcal{L}(x_t^0, t) \, (\Phi_t \xi_t^{k_2})^j, \tag{31}$$

where square matrix Φ_t is the stochastic fundamental matrix of the corresponding homogeneous equation:

$$d\Phi_t = \frac{\partial \bar{g}_k}{\partial x} (x_t^0, t) \, \Phi_t \, dB_t^k, \quad \Phi(0) = I,$$

and ξ_t^k is as the shorthand for $\int_0^t \Phi_s^{-1} \bar{\sigma}_k(x_s^0, s) dB_t^k$. Additionally, $\mathcal{H}^k(x_s^0, s)$ is represented by for $\sum_{k_1,k_2} \frac{\partial^2 \bar{g}_k}{\partial x^i \partial x^j} (x_s^0, s) \left(\xi_s^{k_1}\right)^i \left(\xi_s^{k_2}\right)^j.$

Before proving Theorem B.4, we first show Proposition B.5 on the general case of perturbation to the stochastic system. Consider the following perturbed system given by

$$dx_{t} = \left(g_{0}\left(x_{t}, t\right) + \varepsilon \eta_{0}\left(x_{t}, t\right)\right) dt + \sum_{k=1}^{m} \left(g_{k}\left(x_{t}, t\right) + \varepsilon \eta_{k}\left(x_{t}, t\right)\right) dB_{t}^{k}$$
(32)

with initial values $x(0) = x_0$,

Proposition B.5. Suppose that f is a real-valued function that is C^2 . Then it holds that, with probability 1, as $\varepsilon \to 0$, for $t \in [0, T]$,

where the stochastic process x_t^0 is the solution to SDE 32 with $\varepsilon = 0$, with its first and second-order derivatives w.r.t ε denoted as $\partial_{\varepsilon} x_t^0, \partial_{\varepsilon}^2 x_t^0$. Furthermore, it holds that $\partial_{\varepsilon} x_t^0, \partial_{\varepsilon}^2 x_t^0$ satisfy the following SDEs with probability 1,

$$d \partial_{\varepsilon} x_{t}^{0} = \left(\frac{\partial g_{k}}{\partial x} \left(x_{t}^{0}, t\right) \partial_{\varepsilon} x_{t}^{0} + \eta_{k} \left(x_{t}^{0}, t\right)\right) dB_{t}^{k},$$

$$d \partial_{\varepsilon}^{2} x_{t} = \left(\Psi_{k} \left(\partial_{\varepsilon} x_{t}^{0}, x_{t}^{0}, t\right) + 2\frac{\partial \eta_{k}}{\partial x} \left(x_{t}^{0}, t\right) \partial_{\varepsilon} x_{t}^{0} + \frac{\partial g_{k}}{\partial x} \left(x_{t}^{0}, t\right) \partial_{\varepsilon}^{2} x_{t}^{0}\right) dB_{t}^{k},$$
(34)

with initial values $\partial_{\varepsilon} x(0) = 0, \partial_{\varepsilon}^2 x(0) = 0$, where

$$\Psi_k: (\partial_\varepsilon \, x, x, t) \mapsto \partial_\varepsilon \, x^i \frac{\partial g_k}{\partial x^i \partial x^j}(x, t) \partial_\varepsilon \, x^j,$$

for k = 0, 1, ..., m.

Proof. We first apply the stochastic version of perturbation theory to SDE 32. For brevity, we will write t as B_t^0 and use Einstein summation convention. Hence, SDE 32 is rewritten as

$$dx_t = \gamma_k^\varepsilon \left(x_t, t \right) dB_t^k, \tag{35}$$

with initial value $x(0) = x_0$.

Step 1: We begin with the corresponding systems to derive the SDEs that characterize $\partial_{\varepsilon} x_t^{\varepsilon}$ and $\partial_{\varepsilon}^2 x_t^{\varepsilon}$. Our main tool is an important result on smoothness of solutions w.r.t. initial data from Theorem 3.1 from Section 2 in Hennequin et al. (1984).

For $\partial_{\varepsilon} x$, consider the SDEs

1132
1132
1133

$$d x_t = \gamma_k^{\varepsilon} (x_t, t) dB_t^k, \qquad (*)$$

$$d \varepsilon_t = 0,$$

with initial values $x_{(0)} = x_0$, $\varepsilon(0) = \varepsilon$. From an application of Theorem 3.1 from Section 2 in Hennequin et al. (1984) on *, we have $\partial_{\varepsilon} x$ that satisfies the following SDE with probability 1:

$$d \,\partial_{\varepsilon} x_t = \left(\alpha_k^{\varepsilon}\left(x_t, t\right) \partial_{\varepsilon} x_t + \eta_k\left(x_t, t\right)\right) dB_t^k,\tag{36}$$

with initial value
$$\partial_{\varepsilon} x_0 = 0 \in \mathbb{R}^n$$
, with probability 1, where x_t is the solution to Equation (35) and
the functions α_k^{ε} are given by

$$\alpha_{k}^{\varepsilon}:\left(x,t\right)\mapsto\frac{\partial g_{k}}{\partial x^{j}}\left(x,t\right)+\varepsilon\frac{\partial \eta_{k}}{\partial x^{j}}\left(x,t\right),$$

1143 where k = 0, ..., m.

1145 To characterize $\partial_{\varepsilon}^2 x_t$, consider the following SDEs

 $dx_{t} = \gamma_{k}^{\varepsilon} (x_{t}, t) dB_{t}^{k}, \qquad (**)$ $d\partial_{\varepsilon} x_{t} = (\alpha_{k}^{\varepsilon} (x_{t}, t) \partial_{\varepsilon} x_{t} + \eta_{k} (x_{t}, t)) dB_{t}^{k}, \qquad d\varepsilon_{t} = 0,$

1151 with initial value $x(0) = x_0, \ \partial_{\varepsilon} x(0) = 0, \ \varepsilon(0) = \varepsilon.$

From a similar application of Theorem 3.1 from Section 2 in Hennequin et al. (1984), the second derivative $\partial_{\varepsilon}^2 x$ satisfies the following SDE with probability 1:

$$d\,\partial_{\varepsilon}^2 x_t = \left(\beta_k^{\varepsilon} \left(\partial_{\varepsilon} x_t, x_t, t\right) + 2\frac{\partial\,\eta_k}{\partial x} \left(x_t, t\right) \partial_{\varepsilon} \,x_t + \alpha_k^{\varepsilon} \left(x_t, t\right) \partial_{\varepsilon}^2 x_t\right) dB_t^k,\tag{37}$$

with initial value $\partial_{\varepsilon}^2 x(0) = 0 \in \mathbb{R}^n$, where $\partial_{\varepsilon} x_t$ is the solution to Equation(36), x(t) is the solution to Equation (35), and the functions

$$\begin{array}{l} \textbf{1160} \\ \textbf{1161} \\ \textbf{1162} \end{array} \qquad \beta_k^{\varepsilon} : (\partial_{\varepsilon} \, x, x, t) \mapsto \partial_{\varepsilon} \, x^j \left(\frac{\partial g_k^i}{\partial x^l \partial x^j}(x, t) + \varepsilon \frac{\partial \eta_k^i}{\partial x^l \partial x^j}(x, t) \right) \partial_{\varepsilon} \, x^l,$$

1163 where k = 0, ..., m.

When $\varepsilon = 0$ in the obtained SDEs (35), (36) and (37), the corresponding solutions of which are $x_t^0, \partial_{\varepsilon} x_t^0, \partial_{\varepsilon}^2 x_t^0$, we now have the following:

$$dx_t^0 = g_k\left(x_t^0, t\right) dB_t^k,\tag{38}$$

$$d \,\partial_{\varepsilon} \,x_t^0 = \left(\frac{\partial g_k}{\partial x} \left(x_t^0, t\right) \partial_{\varepsilon} \,x^0 + \eta_k \left(x_t^0, t\right)\right) dB_t^k,\tag{39}$$

$$d\,\partial_{\varepsilon}^2 \,x_t^0 = \left(\Psi_k\left(\partial_{\varepsilon} \,x_t^0, x_t^0, t\right) + 2\frac{\partial\eta_k}{\partial x}\left(x_t^0, t\right)\partial_{\varepsilon} \,x_t^0 + \frac{\partial g_k}{\partial x}\left(x_t^0, t\right)\partial_{\varepsilon}^2 \,x_t^0\right)dB_t^k,\tag{40}$$

with initial values $x(0) = x_0$, $\partial_{\varepsilon} x(0) = 0$, $\partial_{\varepsilon}^2 x(0) = 0$. In particular, $\Psi_k := \beta_k^0$ is given by

$$(\partial_{\varepsilon}x, x, t) \mapsto \partial_{\varepsilon}x^i \frac{\partial g_k}{\partial x^i \partial x^i}(x, t) \partial_{\varepsilon}x^j.$$

1178 Step 2: For the next step, we show that the solutions x_t^0 , $\partial_s x_t^0$, $\partial_{\varepsilon}^2 x_t^0$ are indeed bounded by proving the following lemma B.6:

1181 Lemma B.6.

1182
$$\mathbb{E}\sup_{t\in[0,T]} \left\|x_t^0\right\|^2, \mathbb{E}\sup_{t\in[0,T]} \left\|\partial_{\varepsilon} x_t^0\right\|^2, \text{and } \mathbb{E}\sup_{t\in[0,T]} \left\|\partial_{\varepsilon}^2 x_t^0\right\|^2 \text{ are bounded.}$$

Proof. To simplify the notations, we take the liberty to write constants as C and notice that C is not necessarily identical in its each appearance.

(1) We first show that
$$\mathbb{E} \sup_{t \in [0,T]} \left\| x_t^0 \right\|^2$$
 is bounded.

From Equation (38), we have that

$$x_t^0 = x_0 + \int_0^t g_k(x_{\tau}, \tau) \, dB_{\tau}^k$$

By Jensen's inequality. it holds that

$$\mathbb{E} \sup_{t \in [0,T]} \|x_t\|^2 \le C \mathbb{E} \|x_0\|^2 + C \mathbb{E} \sup_{t \in [0,T]} \left\| \int_0^t g_k\left(x_{\tau}^0, \tau\right) dB_{\tau}^k \right\|^2.$$
(41)

... +

For the second term on the right hand side, it is a sum over k from 0 to m by Einstein notation.

For k = 0, recall that we write t as B_t^0 :

$$\mathbb{E}\sup_{t\in[0,T]}\left\|\int_{0}^{t}g_{0}\left(x_{\tau}^{0},\tau\right)d\tau\right\|^{2} \leq C \mathbb{E}\sup_{t\in[0,T]}t\int_{0}^{t}\left\|g_{0}\left(x_{\tau}^{0},\tau\right)\right\|^{2}d\tau,\tag{i}$$

$$\leq C \mathbb{E} \sup_{t \in [0,T]} \int_0^t C \left(1 + \left\| x_\tau^0 \right\| \right)^2 d\tau, \qquad (ii)$$
$$\leq C + C \int_0^T \mathbb{E} \sup_{s \in [0,\tau]} \left\| x_s^0 \right\|^2 d\tau, \qquad (iii)$$

(iii)

(v)

where we used Jensen's inequality, the assumption on the linear growth, the inequality property of sup and Fubini's theorem, respectively.

For k is equal to $1, \ldots, m$,

$$\mathbb{E}\sup_{t\in[0,T]}\left\|\int_{0}^{t}g_{1}\left(x_{\tau,\tau}^{0},\tau\right)dB_{\tau}\right\|^{2}\leq C\mathbb{E}\int_{0}^{T}\left\|g_{1}\left(x_{\tau}^{0},\tau\right)\right\|^{2}d\tau,\tag{iv}$$

1215
1216
1217
$$\leq C + C \int_0^T \mathbb{E} \sup_{s \in [0,\tau]} \left\| x_s^0 \right\| d\tau,$$

where (iv) holds from the Burkholder-Davis-Gundy inequality as $\int_0^t g_k(x_{\tau}^0, \tau) dB_{\tau}$ is a continuous local martingale with respect to the filtration \mathcal{F}_t ; and then one can obtain (v) by following a similar reasoning of (ii) and (iii).

Hence, now from the previous inequality (41),

$$\mathbb{E} \sup_{t \in [0,T]} \left\| x_t^0 \right\|^2 \le \mathbb{E} \left\| x_0 \right\|^2 + C + C \int_0^T \mathbb{E} \sup_{s \in [0,\tau]} \left\| x_s^0 \right\| d\tau.$$

By Gronwall's Lemma, it holds true that

$$\mathbb{E} \sup_{t \in [0,T]} \|x_t^0\|^2 \le \left(C \mathbb{E} \|x_0\|^2 + C \right) \exp(C).$$

As x_0 is square-integrable by assumption, therefore we have shown that $\mathbb{E}\sup_{t\in[0,T]} \|x_t^0\|^2$ is bounded.

(2) We then show that $\mathbb{E} \sup ||\partial_{\varepsilon} x_t^0||^2$ is also bounded. $t \in [0,T]$

From the SDE (39), as we have derived that

 $\partial_{\varepsilon} x_t^0 = \int_0^t \frac{\partial g_k}{\partial x} \left(x_{\tau}^0, \tau \right) \partial_{\varepsilon} x_{\tau}^0 + \eta_k \left(x_{\tau}^0, \tau \right) dB_{\tau}^k,$

then we have

1240
1241
$$\mathbb{E}\sup_{t\in[0,\tau]} \left\|\partial_{\varepsilon} x_{t}^{0}\right\|^{2} \leq C \mathbb{E}\sup_{t\in[0,\tau]} \left\|\int_{0}^{t} \frac{\partial g_{k}}{\partial x} \left(x_{\tau}^{0},\tau\right) \partial_{\varepsilon} x_{\tau}^{0} dB_{\tau}^{k}\right\|^{2} + C \mathbb{E}\sup_{t\in[0,T]} \left\|\int_{0}^{t} \eta_{k} \left(x_{\tau}^{0},\tau\right) dB_{\tau}^{k}\right\|^{2}.$$

For k = 0, we have $\mathbb{E} \sup_{t \in [0,T]} \left\| \int_0^t \frac{\partial g_0}{\partial x} \left(x^0_{\tau}, \tau \right) \partial_{\varepsilon} x^0_{\tau} dt \right\|^2 + \mathbb{E} \sup_{t \in [0,T]} \left\| \int_0^t \eta_0 \left(x^0_{\tau}, \tau \right) d\tau \right\|^2, \quad (vi)$

$$\leq C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| \frac{\partial g_0}{\partial x} \left(x_{\tau}^0, t \right) \right\|^2 \left\| \partial_{\varepsilon} x_{\tau}^0 \right\|^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| \eta_0 \left(x_{\tau}^0, \tau \right) \right\|^2 d\tau, \tag{vii}$$

$$\leq C \mathbb{E} \sup_{s \in [0,T]} \left\| \frac{\partial g_0}{\partial x} \left(x_s^0, s \right) \right\|^2 \sup_{t \in [0,T]} \int_0^t \left\| \partial_{\varepsilon} x_{\tau}^0 \right\|^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} \int_0^t C \left(1 + \left\| x_{\tau}^0 \right\| \right)^2 d\tau,$$

$$\leq C + C \mathbb{E} \sup_{t \in [0,T]} \int_0^\tau \left\| \partial_\varepsilon x_\tau^0 \right\|^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} \int_0^\tau \left\| x_\tau^0 \right\|^2 d\tau, \tag{viii}$$
$$\leq C + C \int_0^T \mathbb{E} \sup_{t \in [0,T]} \left\| \partial_\varepsilon x_\tau^0 \right\|^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} \left\| x_\tau^0 \right\|^2$$

$$\leq C + C \int_0^{-} \mathbb{E} \sup_{s \in [0,\tau]} \left\| \partial_{\varepsilon} x_s^0 \right\|^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} \left\| x_t^0 \right\|^2,$$

where to get to (vi), we used Jensen's inequality; for (vii), we used the linear growth assumption an η_0 , then we obtain (viii) by as derivatives of function g_0 are bounded by assumption. Similarly, for k = 1, ..., m,

$$C \mathbb{E} \sup_{t \in [0,T]} \left\| \int_0^t \frac{\partial g_1}{\partial x^i} \left(x^0_{\tau}, \tau \right) \partial_{\varepsilon} x^0_{\tau} dB_{\tau} \right\|^2 + C \mathbb{E} \sup_{t \in [0,T]} \left\| \int_0^t \eta_1 \left(x^0_{\tau}, \tau \right) dB_{\tau} \right\|^2,$$

$$\leq C \mathbb{E} \int_0^T \left\| \frac{\partial g_1}{\partial x} \left(x^0_{\tau}, \tau \right) \right\|^2 \left\| \partial_{\varepsilon} x^0_{\tau} \right\|^2 d\tau + C \mathbb{E} \int_0^T \left\| \eta_1 \left(x^0_{\tau}, \tau \right) \right\|^2 d\tau, \qquad (ix)$$

(x)

$$\leq C + C \int_0^T \mathbb{E} \sup_{s \in [0,\tau]} ||\partial_{\varepsilon} x_s^0||^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} ||x_t^0||^2,$$

where we obtain (ix) by the Burkholder-Davis-Gundy inequality and (x) by following similar steps as have shown in (vii) and (viii).

1271 We are now ready to sum up each term to acquire a new inequality:

 $\mathbb{E}\sup_{t\in[0,T]}\left\|\partial_{\varepsilon}\,x_t^0\right\|^2 \le C + C\,\mathbb{E}\sup_{t\in[0,T]}\left\|x_t^0\right\|^2 + C\,\int_0^T\mathbb{E}\sup_{s\in[0,\tau]}\left\|\partial_{\varepsilon}\,x_s^0\right\|^2d\tau.$

1276 By Gronwall's lemma, we have that

$$\mathbb{E}\sup_{t\in[0,T]}\left\|\partial_{\varepsilon} x_t^0\right\|^2 \le \left(C + C \mathbb{E}\sup_{t\in[0,T]}\left\|x_t^0\right\|^2\right)\exp(C).$$

As it is previously shown that $\mathbb{E}\sup_{t\in[0,\tau]} ||x^{\circ}(t)||^2$ is bounded, it is clear that $\mathbb{E}\sup_{t\in[0,T]} ||\partial_{\varepsilon} x_t^0||^2$ is bounded too.

(3) From similar steps, one can also show that $\mathbb{E} \sup_{t \in [0,T]} \left\| \partial_{\varepsilon}^2 x_t^0 \right\|^2$ is bounded. \Box

1286 Step 3: Having shown that $x_t^0, \partial_{\varepsilon} x_t^0, \partial_{\varepsilon}^2 x_t^0$ are bounded, we proceed to bound the remainder term by 1287 proving the following lemma.

Lemma B.7. For a given $\varepsilon \in \mathbb{R}$, let

$$\mathcal{R}^{\varepsilon} := (t,\omega) \mapsto \frac{1}{\varepsilon^3} \left(x^{\varepsilon}(t,\omega) - x^0(t,\omega) - \varepsilon \partial_{\varepsilon} x^0(t,\omega) - \varepsilon^2 \partial_{\varepsilon}^2 x^0(t,\omega) \right),$$

where the stochastic process x_t^{ε} is the solution to Equation (32). Then it holds true that

1294
1295
$$\mathbb{E} \sup_{t \in [0,T]} \left\| \mathcal{R}^{\varepsilon}(t) \right\|^2 \text{ is bounded.}$$

Proof. The main strategy of this proof is to first rewrite $\varepsilon^3 \mathcal{R}^{\varepsilon}$ as the sum of some simpler terms and then to bound each term. To simplify the notation, we denote $\tilde{x}_t^{\varepsilon}$ as $x_t^0 + \varepsilon \partial_{\varepsilon} x_t^0 + \varepsilon^2 \partial_{\varepsilon}^2 x_t^0$. For k = 0, ..., n, we define the following terms: $\theta_k(t) := \int_0^t g_k\left(x_{\tau}^{\varepsilon}, \tau\right) - g_k\left(\tilde{x}_{\tau}^{\varepsilon}, \tau\right) dB_{\tau}^k,$ $\varphi_k(t) := \int_{-t}^{t} g_k\left(\tilde{x}_{\tau}^{\varepsilon}, \tau\right) - g_k\left(x_{\tau}^{0}, \tau\right) - \varepsilon \frac{\partial g_k}{\partial x}\left(x_{\tau}^{0}, \tau\right) \partial_{\varepsilon} x_{\tau}^{0} - \varepsilon^2 \Psi_k\left(\partial_{\varepsilon} x_{\tau}^{0}, x_{\tau}^{0}, \tau\right) - \varepsilon^2 \frac{\partial g_k}{\partial x^i}\left(x_{\tau}^{0}, \tau\right) \partial_{\varepsilon}^2 x_{\tau}^{0} dB_{\tau}^k$ $\sigma_k(t) := -\varepsilon \int_0^t \eta_k \left(x_\tau^0, \tau \right) + 2\varepsilon \frac{\partial \eta}{\partial x} \left(x_\tau^0, \tau \right) \partial_\varepsilon x_\tau^0 dB_\tau^k.$ Hence, we have $\varepsilon^3 \mathcal{R}^{\varepsilon}(t) = \sum_{k=0}^{1} \theta_k(t) + \varphi_k(t) + \sigma_k(t)$. For $\theta_k(t)$, we have $\mathbb{E}\sup_{t\in[0,T]} \left\|\theta_k(t)\right\|^2 \le C \mathbb{E}\sup_{t\in[0,T]} \int_0^t \left\|g_k\left(x_{\varphi}^{\varepsilon},e\right) - g_k\left(\tilde{x}_{\varphi}^{\varepsilon},\tau\right)\right\|^2 d\tau,$ (i) $\leq C \int_0^T \mathbb{E} \sup_{t \in [0, tau]} \|x_t^{\varepsilon} - \tilde{x}_t^{\varepsilon}\|^2 d\tau,$ (ii) $\leq C \int_{0}^{T} \mathbb{E} \sup_{t \in [0,\tau]} \left\| \mathcal{R}^{\varepsilon}(t) \right\|^{2} d\tau,,$ (iii) where to obtain (i) we used Jensen's inequality when k = 0 and by the Burkholder-Davis-Gundy inequality when k = 1, used the Lipschitz condition of g_k to obtain (ii), and for (iii), it is because $\varepsilon^3 \mathcal{R}^\varepsilon(t) = \tilde{x}_t^\varepsilon - x_t^\varepsilon.$ We note that from Taylor's theorem, for any $s \in [0, t], k = 0, 1$, there exists some $\varepsilon_s \in (0, \varepsilon)$ s.t. $g_k\left(\tilde{x}_s^{\varepsilon},s\right) - g_k\left(x_s^0,s\right) - \varepsilon \frac{\partial g_k}{\partial x}\left(x_s^0,s\right) \partial_{\varepsilon} x_s^0 = \varepsilon^2 \frac{\partial g_k}{\partial x}\left(\tilde{x}_s^{\varepsilon_s}\right) \partial_{\varepsilon}^2 x_s^0 + \varepsilon^2 \Psi\left(\partial_{\varepsilon} x_s^0, \tilde{x}_s^{\varepsilon_s},s\right). \tag{42}$ For $\varphi_k(t)$, we have $\mathbb{E}\sup_{t\in[0,T]}\left\|\varphi_k(t)\right\|^2$ $\leq C \mathbb{E} \sup_{t \in [0,T]} \int_{0}^{t} \|\frac{\partial g_{k}}{\partial x} \left(\tilde{x}_{s}^{\varepsilon_{s}}\right) \partial_{\varepsilon}^{2} x_{s}^{0} + \Psi_{k} \left(\partial_{\varepsilon} x_{s}^{0}, \tilde{x}_{s}^{\varepsilon_{s}}, s\right) - \frac{\partial g_{k}}{\partial x} \left(x_{s}^{0}\right) \partial_{\varepsilon}^{2} x_{s}^{0} - \Psi_{k} \left(\partial_{\varepsilon} x_{s}^{0}, x_{s}^{0}, s\right) \|^{2} ds,$ (iv)

$$\leq C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| \frac{\partial g_k}{\partial x} \left(\tilde{x}_s^{\varepsilon_s} \right) - \frac{\partial g_k}{\partial x} \left(x_s^0 \right) \right\|^2 \left\| \partial_{\varepsilon}^2 x_s^0 \right\|^2 + \left\| \Psi_k \left(\partial_{\varepsilon} x_s^0, \tilde{x}_s, s \right) - \Psi_k \left(\partial_{\varepsilon} x_s^0, x_s^0, s \right) \right\|^2 ds,$$
(v)

$$\leq C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| \tilde{x}_s^{\varepsilon_s} - x_s^0 \right\|^2 \left(C + \left\| \partial_{\varepsilon}^2 x_s^0 \right\|^2 \right) ds, \tag{vi}$$

$$\begin{aligned} & \underset{1340}{1341} & \leq C \mathbb{E} \sup_{t \in [0,T]} \int_{0}^{t} \left\| \varepsilon \partial_{\varepsilon} x_{s}^{0} + \varepsilon^{2} \partial_{\varepsilon}^{2} x_{s}^{0} \right\|^{2} \left(C + \left\| \partial_{\varepsilon}^{2} x_{s}^{0} \right\|^{2} \right) ds, \\ & \underset{1343}{1344} & \leq C \left(\mathbb{E} \sup_{t \in [0,T]} \left\| \partial_{\varepsilon} x_{s}^{0} \right\|^{2} \right) + \mathbb{E} \sup_{t \in [0,T]} \left\| \partial_{\varepsilon}^{2} x_{s}^{0} \right\|^{2} \right) \right) \left(C + \mathbb{E} \sup_{t \in [0,T]} \left\| \partial_{\varepsilon}^{2} x_{s}^{0} \right\|^{2} \right), \end{aligned}$$
 (vii)

where for (iv), we used Equation (42) and Jensen's inequality for k = 0 and the Burkholder-Davis-Gundy inequality for k = 1; to obtain (v), we applied Jensen's equality; we then derived (vi) from the Lipschitz conditions of g_k and Ψ_k ; and finally another application of Jensen's inequality gives (vii) which is bounded as a result from the Lemma B.6.

$$\begin{aligned} & \begin{array}{ll} 1350 \\ 1351 \\ 1351 \\ 1352 \\ 1353 \\ 1354 \\ 1354 \\ 1354 \\ 1355 \\ 1356 \\ 1356 \\ 1356 \\ 1356 \\ 1357 \\ 1358 \\ 1359 \\ 1359 \\ 1360 \\ 1361 \end{aligned} \\ & \begin{array}{ll} \operatorname{For} \sigma_{k}(t), \\ & \\ \sup_{t \in [0,T]} \left\| \sigma_{0}(t) \right\|^{2} \leq C \varepsilon \int_{0}^{T} \mathbb{E} \sup_{s \in [0,t]} \left\| \eta_{k} \left(x_{s}^{0}, s \right) \right\|^{2} + C \mathbb{E} \sup_{s \in [0,t]} \left\| \frac{\partial \eta_{k}}{\partial x} \left(x_{s}^{0}, t \right) \right\|^{2} \int_{0}^{T} \mathbb{E} \sup_{s \in [0,t]} \left\| \partial_{\varepsilon} x_{s}^{0} \right\|^{2} dt, \quad (ix) \\ & \\ & \\ \leq C \int_{0}^{T} C \left(1 + \mathbb{E} \sup_{s \in [0,t]} \left\| x_{s}^{0} \right\|^{2} \right) + C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial \eta_{k}}{\partial x} \left(x_{t}^{0}, t \right) \right\|^{2} \int_{0}^{T} \mathbb{E} \sup_{s \in [0,t]} \left\| \partial_{\varepsilon} x_{s}^{0} \right\|^{2} dt, \quad (ix) \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array}$$

where we obtained (ix) by Jensen's inequality when k = 0 and by Burkholder-Davis-Gundy inequality when k = 1, and (x) by the linear growth assumption on η_k ; one can see that (xi) is bounded by recalling the Lemma B.6 and the assumption that η_k has bounded derivatives.

¹³⁶⁵ I 1366 I

Hence, by Jensen's inequality and Gronwall's lemma, we have

$$\mathbb{E} \sup_{t \in [0,T]} \left\| \mathcal{R}^{\varepsilon}(t) \right\|^{2} \leq C \sum_{k=0}^{K} \mathbb{E} \sup_{t \in [0,T]} \left\| \theta_{k}(t) \right\|^{2} + \mathbb{E} \sup_{t \in [0,T]} \left\| \varphi_{k}(t) \right\|^{2} + \mathbb{E} \sup_{t \in [0,T]} \left\| \sigma_{k}(t) \right\|^{2},$$
$$\leq C + C \int_{0}^{T} \mathbb{E} \sup_{t \in [0,\tau]} \left\| \mathcal{R}^{\varepsilon}(t) \right\|^{2} d\tau,$$
$$\leq C \exp\left(C\right).$$

1374 Therefore, $\mathbb{E} \sup \|\mathcal{R}^{\varepsilon}(t)\|^2$ is bounded.

Finally, it is now straightforward to show Equation (33) by applying a second-order Taylor expansion on $f(x_t^0 + \varepsilon \partial_{\varepsilon} x_t^0 + \varepsilon^2 \partial_{\varepsilon}^2 x_t^0 + \varepsilon^3 R^{\varepsilon}(t))$.

We are now ready to show Theorem 3.7. One notes that Corollary 3.8 directly follows from the result too.

Proof. (*Theorem 3.7*) From Proposition B.5, it is noteworthy to point out that the derived SDEs (34) 1386 for $\partial_{\varepsilon} x_t^0$ and $\partial_{\varepsilon}^2 x_t^0$ are vector-valued general linear SDEs. With some steps of derivations, one can 1387 express the solutions as:

$$\partial_{\varepsilon} x_t^0 = \Phi_t \int_0^t \Phi_s^{-1} \left(\eta_0(x_s^0, s) - \sum_{k=1}^m \frac{\partial g_k}{\partial x}(x_s^0, s) \eta_k(x_s^0, s) \right) ds + \Phi_t \int_0^t \Phi_s^{-1} \eta_k(x_s^0, s) dB_s^k \quad (a)$$

$$\begin{split} \partial_{\varepsilon}^{2} x_{t}^{0} &= \Phi_{t} \int_{0}^{t} \Phi_{s}^{-1} \bigg(\Psi_{0}(x_{s}^{0}, \partial_{\varepsilon} x_{s}^{0}, s) + 2 \frac{\partial \eta_{0}}{\partial x}(x_{s}^{0}, s) \partial_{\varepsilon} x_{s}^{0} \\ &- \sum_{k=1}^{m} \frac{\partial g_{k}}{\partial x}(x_{s}^{0}, s) \Big(\Psi_{k}(x_{s}^{0}, \partial_{\varepsilon} x_{s}^{0}, s) + 2 \frac{\partial \eta_{k}}{\partial x}(x_{s}^{0}, s) \partial_{\varepsilon} x_{s}^{0}) \Big) \bigg) ds, \end{split}$$

$$+\Phi_t \int_0^t \Phi_s^{-1} \sum_{k=1}^m \left(\Psi_k(x_s^0, \partial_\varepsilon x_s^0, s) + 2 \frac{\partial \eta_k}{\partial x} (x_s^0, s) \partial_\varepsilon x_s^0 \right) dB_s^k, \tag{b}$$

1399 where $n \times n$ matrix Φ_t is the fundamental matrix of the corresponding homogeneous equation:

$$d\Phi_t = \frac{\partial g_k}{\partial x} (x_t^0, t) \,\Phi_t \, dB_t^k, \tag{43}$$

1403 with initial value

$$\Phi(0) = I. \tag{44}$$

1406 It is worthy to note that the fundamental matrix Φ_t is non-deterministic and when $\frac{\partial g_i}{\partial x}$ and $\frac{\partial g_j}{\partial x}$

$$\Phi_t = \exp\left(\int_0^t \frac{\partial g_k}{\partial x}(x_s^0, s) dB_s^k - \frac{1}{2} \int_0^t \frac{\partial g_k}{\partial x}(x_s^0, s) \frac{\partial g_k}{\partial x}(x_s^0, s)^\top ds\right).$$
(45)

Having obtained the explicit solutions, one can plug in corresponding terms and obtain the results of *Theorem 3.7*) after a Taylor expansion of the loss function \mathcal{L} .

С ERROR ACCUMULATION DURING THE INFERENCE PHASE AND ITS **EFFECTS TO VALUE FUNCTIONS**

Theorem C.1. (Error accumulation due to initial representation error) Let $\delta := \mathbb{E} \|\varepsilon\|$ and $d_{\varepsilon} := \mathbb{E} \sup_{t \in [0,T]} \|h_t^{\varepsilon} - h_t^0\|^2 + \|\tilde{z}_t^{\varepsilon} - \tilde{z}_t^0\|^2$. It holds that as $\delta \to 0$, $d_{\varepsilon} \leq \delta C \left(\mathcal{J}_0 + \mathcal{J}_1 \right) + \delta^2 C \left(\exp \left(\mathcal{H}_0 \left(\mathcal{J}_0 + \mathcal{J}_1 \right) \right) + \exp \left(\mathcal{H}_1 \left(\mathcal{J}_0 + \mathcal{J}_1 \right) \right) \right) + \mathcal{O}(\delta^3).$ (46)where $\mathcal{J}_0 = \exp\left(\mathcal{F}_h + \mathcal{F}_z + \mathcal{P}_h\right), \ \mathcal{J}_1 = \exp\left(\bar{\mathcal{P}}_h\right),$ $\mathcal{H}_0 = \mathcal{F}_{hh} + \mathcal{F}_{hz} + \mathcal{F}_{zh} + \mathcal{F}_{zz} + \mathcal{P}_{hh}, \ \mathcal{H}_1 = \bar{\mathcal{P}}_{hh}$ $\mathcal{F}_{h} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial f}{\partial h} + \frac{\partial f}{\partial a} \partial_{h} \rho \right\|_{F}^{2}, \quad \mathcal{F}_{z} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial f}{\partial z} + \frac{\partial f}{\partial a} \partial_{z} \rho \right\|_{F}^{2},$ $\mathcal{P}_{h} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial p}{\partial h} \right\|_{F}^{2}, \ \bar{\mathcal{P}}_{h} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial \bar{p}}{\partial h} \right\|_{F}^{2},$ $\mathcal{F}_{hh} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 f}{\partial h^2} + \frac{\partial^2 f}{\partial h \partial a} \partial_h \rho + \frac{\partial f}{\partial a} \partial_{hh}^2 \rho \right\|_{\Sigma}^2,$ $\mathcal{F}_{hz} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 f}{\partial h \partial z} + \frac{\partial^2 f}{\partial z \partial a} \partial_h \rho + \frac{\partial f}{\partial a} \partial_{zh}^2 \rho \right\|_{-}^2$ $\mathcal{F}_{zh} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 f}{\partial h \partial z} + \frac{\partial^2 f}{\partial h \partial a} \partial_z \rho + \frac{\partial f}{\partial a} \partial_{hz}^2 \rho \right\|_{T}^2$ $\mathcal{F}_{zz} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 f}{\partial z^2} + \frac{\partial^2 f}{\partial z \partial a} \partial_z \rho + \frac{\partial f}{\partial a} \partial_{zz}^2 \rho \right\|_{-}^2,$ $\mathcal{P}_{hh} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 p}{\partial h^2} \right\|_{F}^{2}, \ \bar{\mathcal{P}}_{hh} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 \bar{p}}{\partial h^2} \right\|_{F}^{2},$

where for brevity, when functions always have inputs $(\tilde{z}_t^t, h_t^0, t)$, we adopt the shorthand to write, for example, $f(\tilde{z}_t^0, h_t^0, t)$ as f.

Before proving the main result C.1, we first show the general case of perturbation in initial values. Consider the following general system with noise at the initial value:

$$dx_{t} = g_{0}(x_{t}, t) dt + g_{k}(x_{t}, t) dB_{t}^{k},$$
(47)

$$x(0) = x_0 + \varepsilon, \tag{48}$$

<u>م</u> /

where the initial perturbation $\varepsilon \in \mathbb{R}^n \times \Omega$. As g_k are $\mathcal{C}_g^{2,\alpha}$ functions, by the classical result on the existence and the uniqueness of solution to SDE, there exists a unique solution to Equation (47), denoted as x_t^{ε} or $x^{\varepsilon}(t)$.

To simplify the notation, we write $\partial_i x_t^{\varepsilon} := \frac{\partial x^{\varepsilon}(t)}{\partial x^i}, \partial_{ij}^2 x_t^{\varepsilon} = \frac{\partial^2 x_t^{\varepsilon}}{\partial x^i \partial x^j}$, for i, j = 1, ..., n that are, respectively, the first and second-order derivatives of the solution $x^{\varepsilon}(t)$ w.r.t. the changes in the corresponding coordinates of the initial value. When $\varepsilon = 0 \in \mathbb{R}^n$, we denote the solutions to Equation (47) as x_t^0 with its first and second derivatives $\partial_i x_t^0$, $\partial_{ij}^2 x_t^0$, respectively.

Proposition C.2. Let $\delta := \mathbb{E} \|\varepsilon\|$, it holds that

$$\begin{aligned} & \mathbb{E} \sup_{t \in [0,T]} \left\| x_t^{\varepsilon} - x_t^0 \right\|^2 \leq \sum_{k=0,1} C \,\delta \left(C \,\mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial g_k}{\partial x}(x_t^0, t) \right\|_F^2 \right) \\ & + C \,\delta^2 \exp\left(C \,\mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 g_k}{\partial x^2}(x_t^0, t) \right\|_F^2 \sum_{\bar{k}=0,1} \exp\left(C \,\mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial g_{\bar{k}}}{\partial x}(x_t^0, t) \right\|_F^2 \right) \right) + \mathcal{O}(\delta^3), \end{aligned}$$

$$\end{aligned}$$

$$(49)$$

as $\delta \to 0$.

¹⁵¹² *Proof.* Similar to the previous section, for notational convenience, we write t as B_t^0 and employs Einstein summation notation. Hence, Equation (47) can be shorten as

$$dx_t = g_k\left(x_t, t\right) dB_t^k,\tag{50}$$

1516 with initial values $x(0) = x_0 + \varepsilon$.

To begin, we find the SDEs that characterize $\partial_i x_t^{\varepsilon}$ and $\partial_{ij}^2 x_t^{\varepsilon}$, for i, j = 1, ..., n.

For $\partial_i x_t^{\varepsilon}$, we apply Theorem 3.1 from Section 2 in Hennequin et al. (1984) on Equation (50) and $\partial_i x_t^{\varepsilon}$ satisfy the following SDE with probability 1,

$$d\partial_i x_t^{\varepsilon} = \frac{\partial g_k}{\partial x} \left(x_t^{\varepsilon}, t \right) \partial_i x_t^{\varepsilon} dB_t^k$$
(51)

with initial value $\partial_i x_0^{\varepsilon}$ to be the unit vector $e_i = (0, 0, \dots, 1, \dots, 0)$ that is all zeros except one in the *i*th coordinate.

For $\partial_{ij}^2 x_t^{\varepsilon}$, we again apply Theorem 3.1 from Section 2 in Hennequin et al. (1984) on the SDE (51) and obtain that $\partial_{ij}^2 x_b^{\varepsilon}$ satisfy the following SDE with probability 1,

$$d\partial_{ij}^2 x_t^\varepsilon = \Psi_k \left(x_t^\varepsilon, \partial_i x_t^\varepsilon, t \right) \partial_{ij}^2 x_t^\varepsilon dB_t^k, \tag{52}$$

with the initial value $\partial_{ij} x^{\varepsilon}(0) = e_j$, where

$$\Psi_k: \mathbb{R}^d \times \mathbb{R}^d \times [0,T] \to \mathbb{R}^{d \times d}, \ (x, \partial_i \, x, t) \mapsto \left(\frac{\partial^2 g_k^l}{\partial x^u \partial x^v} \left(x_t^\varepsilon, t\right)\right)_{l,u,v} \partial_i \, x^v$$

¹⁵³⁵ For the next step, we show that with probability 1, the following holds

$$x_t^{\varepsilon} = x_t^0 + \varepsilon^i \,\partial_i \,x_t^0 + \frac{1}{2} \,\varepsilon^i \varepsilon^j \,\partial_{ij}^2 \,x_t^0 + O\left(\varepsilon^3\right),\tag{53}$$

 $\begin{array}{ccc} 1538 \\ 1539 \end{array} \quad \text{as } \|\varepsilon\| \to 0. \\ 0 & 0 & 0 \end{array}$

One can follow the similar steps of proofs for Lemma (B.6) and (B.7) in the previous section to show that $\mathbb{E} \sup_{t \in [0,T]} ||x_t^0||^2$, $\mathbb{E} \sup_{t \in [0,T]} ||\partial_i x_t^0||^2$, $\mathbb{E} \sup_{t \in [0,T]} ||\partial_{ij}^2 x_t^0||^2$ and the remainder term are bounded. Hence, Equation (53) holds with probability 1.

1544 Indeed, for $\mathbb{E} \sup_{t \in [0,T]} \left\| \partial_i x_t^0 \right\|^2$, it holds that

$$\mathbb{E}\sup_{t\in[0,T]} \left\|\partial_{i} x_{t}^{0}\right\|^{2} \leq C \left\|e_{i}\right\|^{2} + \sum_{k=0,1} \mathbb{E}\sup_{t\in[0,T]} C \int_{0}^{t} \left\|\frac{\partial g_{k}}{\partial x}(x_{s}^{0},s)\right\|_{F}^{2} \left\|\partial_{i} x_{s}\right\|^{2} ds$$
(54)

$$\leq \sum_{k=0,1} C \exp\left(C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial g_k}{\partial x} (x_t^0, t) \right\|_F^2 \right).$$
(55)

Similarly, for $\mathbb{E} \sup_{t \in [0,T]} \left\| \partial_{ii}^2 x_t^0 \right\|^2$, it holds that

$$\mathbb{E}\sup_{t\in[0,T]} \left\|\partial_{ij}^{2} x_{t}^{0}\right\|^{2} \leq C \left\|e_{i}\right\|^{2} + \sum_{k=0,1} \mathbb{E}\sup_{t\in[0,T]} C \int_{0}^{t} \left\|\frac{\partial^{2}g_{k}}{\partial x^{2}}(x_{s}^{0},s)\right\|_{F}^{2} \left\|\partial_{i} x_{s}^{0}\right\|^{2} \left\|\partial_{ij}^{2} x_{s}^{0}\right\|^{2} ds$$
(56)

$$\leq C \sum_{k=0}^{1} \exp\left(C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 g_k}{\partial x^2} (x_t^0, t) \right\|_F^2 \left\| \partial_i x_t^0 \right\|^2\right)$$
(57)

$$\leq C \sum_{k=0,1} \exp\left(C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 g_k}{\partial x^2}(x_t^0, t) \right\|_F^2 \exp\left(C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial g_k}{\partial x}(x_t^0, t) \right\|_F^2\right)\right)$$
(58)

Therefore, we could obtain the proposition by applying Jensen's inequality to Equation (53) and plugging with 55 and 56. $\hfill \Box$

Now we are ready to prove Theorem C.1. We note that one could then obtain Corollary 4.2 without much more effort by a standard application of Taylor's theorem.

¹⁵⁶⁹ *Proof.* (Proof for Theorem C.1)

At $(h_t, \tilde{z}_t, \pi(h_t, \tilde{z}_t))$, where the local optimal policy $\pi(h_t, \tilde{z}_t)$, denoted as a_t^* , there exists an open neighborhood $V \subseteq \mathcal{A}$ of a_t^* such that a_t^* is the local maximizer for $Q(h_t, \tilde{z}_t, \cdot)$ by definition. Then, $\frac{\partial Q}{\partial a}(h_t, \tilde{z}_t, a_t^*) = 0$, and $\frac{\partial^2 Q}{\partial a^2}(h_t, \tilde{z}_t, a)$ is negative definite. As $\frac{\partial^2 Q}{\partial a^2}$ is non-degenerate in the neighborhood V, by the implicit function theorem, there exists a neighborhood $U \times V$ of $(h_t, \tilde{z}_t, a_t^*)$ such that there exists a C^2 map $\rho : U \to V$ such that $\frac{\partial Q}{\partial a}(h, \tilde{z}, \rho(h, \tilde{z})) = 0$ and $\rho(h, \tilde{z})$ is the local maximizer of $Q(h, \tilde{z}, \cdot)$ for any $h, \tilde{z} \in U$. Furthermore, we have that $\partial_h \rho = -\frac{\partial^2 Q}{\partial a^2}^{-1} \frac{\partial^2 Q}{\partial a \partial h}$. Similarly, other first-terms and second-order terms $\partial_z \rho$, $\partial_{zz}^2 \rho$, $\partial_{hz}^2 \rho$, $\partial_{hz}^2 \rho$, $\partial_{hh}^2 \rho$ can be explicitly expressed without much additional effort (e.g., in Loomis and Sternberg (2014), Cartan (2017)).

The rest of the proof is easy to see after plugging in the corresponding terms from Proposition \square C.2.

1620 D EXPERIMENTAL DETAILS

In this section, we provide additional details and results beyond thoese in the main paper.

1624 D.1 MODEL IMPLEMENTATION AND TRAINING

Our baseline is based on the DreamerV2 Tensorflow implementation. Our theoretical and empirical results should not matter on the choice of specific version; so we chose DreamerV2 as its codebase implementation is simpler than V3. We incorporated a computationally efficient approximation of the Jacobian norm for the sequence model, as detailed in Hoffman et al. (2019), using a single projection. During our experiments, all models were trained using the default hyperparameters (see Table 6) for the MuJoCo tasks. The training was conducted on an NVIDIA A100 and a GTX 4090, with each session lasting less than 15 hours.

Hyperparameter	Value
eval_every	1e4
prefill	1000
train_every	5
rssm.hidden	200
rssm.deter	200
model_opt.lr	3e-4
actor_opt.lr	8e-5
replay_capacity	2e6
dataset_batch	16
precision	16
clip_rewards	tanh
expl_behavior	greedy
encoder_cnn_depth	48
decoder_cnn_depth	48
loss_scales_kl	1.0
discount	0.99
jac_lambda	0.01

Table 6: Hyperparameters for DreamerV2 model.

1674 D.2 Additional Results on Generalization on Perturbed States

1676 In this experiment, we investigated the effectiveness of Jacobian regularization in model trained 1677 against a baseline during the inference phase with perturbed state images. We consider three types of 1678 perturbations: (1) Gaussian noise across the full image, denoted as $\mathcal{N}(\mu_1, \sigma_1^2)$; (2) rotation; and (3) 1679 noise applied to a percentage of the image, $\mathcal{N}(\mu_2, \sigma_2^2)$. (In Walker task, $\mu_1 = \mu_2 = 0.5, \sigma_2^2 = 0.15$; 1680 in Quadruped task, $\mu_1 = 0, \mu_2 = 0.05, \sigma_2^2 = 0.2$.) In each case of perturbations, we examine a 1681 collection of noise levels: (1) variance σ^2 from 0.05 to 0.55; (2) rotation degree α 20 and 30; and (3) 1682 masked image percentage β % from 25 to 75.

1683 1684 D.3 WALKER TASK

1686	$\beta\%$ mask, $\mathcal{N}(0.5, 0.15)$	mean (with Jac.)	stdev (with Jac.)	mean (baseline)	stdev (baseline)
1687	25%	882.78	28.57199976	929.778	10.13141451
1688	30%	878.732	40.92085898	811.198	7.663919934
1689	35%	856.32	37.56882045	799.98	29.75286097
1600	40%	804.206	47.53578989	688.382	43.21310246
1601	45%	822.97	80.36907477	601.862	42.49662057
1091	50%	725.812	43.87836335	583.418	76.49237076
1692	55%	768.68	50.71423045	562.574	59.88315135
1693	60%	730.864	23.37324967	484.038	90.38940234
1694	65%	696.936	65.26307708	516.936	41.44549462
1695	70%	687.346	70.9078686	411.922	45.85808832
1696	75%	685.492	63.22171723	446.74	40.66898799
1697					

1698Table 7: Walker. Mean and standard deviation of accumulated rewards under masked perturbation of1699increasing percentage.

1701					
1702	full, $\mathcal{N}(0.5, \sigma^2)$	mean (with Jac.)	stdev (with Jac.)	mean (baseline)	stdev (baseline)
1703	0.05	894.594	39.86907737	929.778	40.91
1704	0.10	922.854	27.28533819	811.198	98.79
1704	0.15	941.512	16.47165049	799.98	106.01
1705	0.20	840.706	66.12470628	688.382	70.78
1706	0.25	811.764	75.06276427	601.862	83.65
1707	0.30	779.504	53.29238107	583.418	173.59
1708	0.35	807.996	34.35949621	562.574	79.30
1709	0.40	751.986	85.20137722	484.038	112.43
1710	0.45	663.578	60.18862658	516.936	90.25
1711	0.50	618.982	61.10094983	411.922	116.94
1712	0.55	578.62	64.25840684	446.74	84.44

Table 8: *Walker*: Mean and standard deviation of accumulated rewards under Gaussian perturbation of increasing variance.

ĺ	rotation, α°	mean (with Jac.)	stdev (with Jac.)	mean (baseline)	stdev (baseline)
ĺ	20	423.81	12.90174678	391.65	35.33559636
	30	226.04	23.00445979	197.53	15.26706914

Table 9: Walker. Mean and standard deviation of accumulated rewards under rotations.

1722 1723

1713

1714

1700

1724 1725

1726

1727

1728 D.4 QUARDRUPED TASK 1729

1731	$eta\%$ mask, $\mathcal{N}(0.5, 0.15)$	mean (with Jac.)	stdev (with Jac.)	mean (baseline)	stdev (baseline)
1732	25%	393.242	41.10002579	361.764	81.41175179
1733	30%	384.11	20.70463958	333.364	101.7413185
1704	35%	354.222	53.14855379	306.972	16.02275164
1734	40%	329.404	39.1193856	266.088	51.20298351
1735	45%	360.662	36.86801622	281.342	47.85950867
1736	50%	321.556	27.66758085	222.222	22.0668251
1737	55%	300.258	31.44931987	203.578	14.38754218
1738	60%	321	18.42956321	217.98	23.81819368
1739	65%	304.62	20.75493676	209.238	47.14895407
1740	70%	301.166	18.2485583	193.514	60.83781004
1741	75%	304.92	18.63214963	169.58	30.83637462
1742					

1743Table 10: *Quadruped*. Mean and standard deviation of accumulated rewards under masked perturba-
tion of increasing percentage.

1740					
1740	full, $\mathcal{N}(0, \sigma^2)$	mean (with Jac.)	stdev (with Jac.)	mean (baseline)	stdev (baseline)
1747	0.10	416.258	20.87925573	326.74	40.30425536
1748	0.15	308.218	24.26432093	214.718	15.7782198
1749	0.20	314.29	44.73612075	218.756	35.41520832
1750	0.25	293.02	24.29582269	190.78	26.22250465
1751	0.30	269.778	21.83423047	207.336	39.1071161
1752	0.35	282.046	13.55303767	217.048	29.89589972
1753	0.40	273.814	19.81361476	190.208	59.61166975
1754	0.45	267.18	17.5276068	195.606	18.91137964
1755	0.50	268.838	29.45000543	194.082	26.76677642
1756	0.55	252.54	22.516283	150.786	24.53362855

Table 11: *Quadruped*. Mean and standard deviation of accumulated rewards under Gaussian perturbation of increasing variance.

rotation, α°	mean (with Jac.)	stdev (with Jac.)	mean (baseline)	stdev (baseline)
20	787.634	101.5974723	681.032	133.7507948
30	610.526	97.74499159	389.406	61.5997198

Table 12: Quadruped. Mean and standard deviation of accumulated rewards under rotations.

1782 D.5 Additional Results on Robustness against Encoder Errors

In this experiment, we evaluate the robustness of model trained with Jacobian regularization against two exogenous error signals (1) zero-drift error with $\mu_t = 0$, σ_t^2 ($\sigma_t^2 = 5$ in Walker, $\sigma_t^2 = 0.1$ in Quadruped), and (2) non-zero-drift error with $\mu_t \sim [0,5]$, $\sigma_t^2 \sim [0,5]$ uniformly. λ weight of Jacobian regularization is 0.01. In this section, we included plot results of both evaluation and training scores.

1789 D.5.1 WALKER TASK

1788

1795

1790 Under the Walker task, Figures 3 and 4 show that model with regularization is significantly less sensitive to perturbations in latent state z_t compared to the baseline model without regularization. This empirical observation supports our theoretical findings in Corollary 3.8, which assert that the impact of latent representation errors on the loss function \mathcal{L} can be effectively controlled by regulating the model's Jacobian norm.

Figure 3: Walker. Eval (left) and train scores (right) under latent error process $\mu_t = 0, \sigma_t^2 = 5$

Figure 4: Walker. Eval (left) and train scores (right) under latent error process $\mu_t \sim [0, 5], \sigma_t^2 \sim [0, 5]$.

1826 1827

1834

1836 D.5.2 QUADRUPED TASK

Under the Quadruped task, we initially examined a smaller latent error process ($\mu_t = 0, \sigma_t^2 = 0.1$) and observed that the model with Jacobian regularization converged significantly faster, even though the adversarial effects on the model without regularization were less severe (Figure 5). When considering the more challenging latent error process ($\mu_t \sim [0,5], \sigma_t^2 \sim [0,5]$), we noted that the regularized model remained significantly less sensitive to perturbations in latent state z_t , whereas the baseline model struggled to learn (Figure 6). These empirical observations reinforce our theoretical findings in Corollary 3.8, demonstrating that regulating the model's Jacobian norm effectively controls the impact of latent representation errors.

Figure 5: Quad. Eval (left) and train scores (right) under latent error process $\mu_t = 0, \sigma_t^2 = 0.1$.

Figure 6: Quad. Eval (left) and train scores (right) under latent error process $\mu_t \sim [0, 5], \sigma_t^2 \sim [0, 5]$.

D.6 COMPARISON OF JACOBIAN REGULARIZATION AND AUGMENTATION METHODS WITH **KNOWN PERTURBATION TYPES**

In cases where additional knowledge about perturbation is available, such as when the perturbation type is known a priori (which could be unrealistic), one could consider using augmentation methods by training with perturbed observations to improve robustness. We considered training with observation images augmented with (1) randomly-masked Gaussian noises $\mathcal{N}(0.15, 0.1)$ and (2) rotations 10° .

897								
898			full, $\mathcal{N}(0)$	$(0.5, \sigma_1^2)$	rotatio	n, $+\alpha^{\circ}$	mask $\beta\%$,	$\mathcal{N}(0.5, 0.15)$
899		clean	$\sigma_1^2 = 0.35$	$\sigma_1^2 = 0.5$	$\alpha = 20$	$\alpha = 30$	$\beta = 50$	$\beta = 75$
900	Jac Reg	967.12	742.32	618.98	423.81	226.04	725.81	685.49
001	Aug w. $\mathcal{N}(0.15, 0.1)$	847.19	182.33	127.72	286.63	213.93	767.92	187.66
901	Aug w. rotation 10°	860	286.26	184.84	695.34	424.88	347.66	256.84
902	Baseline	966.53	615.79	333.47	391.65	197.53	583.41	446.74
903					•		•	

Table 13: Evaluation on unseen states by various perturbation (Clean means without perturbation). $\lambda = 0.01.$

	g = 9.8	g = 6	g = 4	g = 2	
Jac Reg	967.12	906.42	755.18	679.24	
Aug w. $\mathcal{N}(0.15, 0.1)$	847.19	771.34	624.4	428.45	
Aug w. rotation 10°	860	582.22	486.84	356.9	
Baseline	966.53	750.36	662.86	381.14	

Table 14: Evaluation on unseen dynamics by various gravity constants (q = 9.8 is default). $\lambda = 0.01$. As shown in Table 13 and 14, the experimental results indicate that models trained with Jacobian regularization outperform those using augmentation methods when faced with perturbations different from those used during augmentation. While state augmentation is effective when the inference perturbations match those used in training, it struggles to generalize to unseen perturbations. In contrast, Jacobian regularization is less dependent on the diversity and relevance of augmented data samples, as it directly targets the learning dynamics of the world model. This makes it more broadly applicable and reduces the likelihood of overfitting, avoiding the risk of the model becoming overly specialized to specific perturbation patterns, which is a common challenge with data augmentation.

D.7 VISUALIZATIONS OF RECONSTRUCTED STATE TRAJECTORY UNDER EXOGENOUS ZERO-DRIFT AND NON-ZERO DRIFT LATENT REPRESENTATION ERROR.

In this section, we present visualizations of reconstructed state trajectory samples, included in the revision to illustrate the error propagation of exogenous zero-drift and non-zero drift error signals in latent states, both with and without Jacobian regularization.

As depicted in Figures 7 and 8, the reconstructed states for the baseline model without Jacobian regularization appear blurry and less structured, indicating that the model has not effectively captured the underlying dynamics of the environment. In contrast, the reconstructed states for the model with Jacobian regularization are sharper and more accurately reflect the true dynamics of the environment. The visual comparison highlights the robustness brought by Jacobian regularization against latent noises.

Figure 7: Quad. Open-loop reconstructed trajectories under zero-drift latent representation error $(\mu_t = 0, \sigma_t^2 = 5)$ with *right* and without *left* Jacobian regularization.

Figure 8: Walker. Open-loop reconstructed trajectories under non-zero drift latent representation error $(\mu_t \sim [0,5], \sigma_t^2 \sim [0,5])$ with *lower* and without *upper* Jacobian regularization.

D.8 ADDITIONAL RESULTS ON FASTER CONVERGENCE ON TASKS WITH EXTENDED HORIZON.

In this experiment, we evaluate the efficacy of Jacobian regularization in extended horizon tasks, specifically by increasing the horizon length in MuJoCo Walker from 50 to 100 steps. We tested two regularization weights $\lambda = 0.1$ and $\lambda = 0.05$. Figure 9 demonstrates that models with regularization converge faster, with $\lambda = 0.05$ achieving convergence approximately 100,000 steps ahead of the model without Jacobian regularization. This supports the findings in Theorem 4.1, indicating that regularizing the Jacobian norm can reduce error propagation, especially over longer time horizons.

Figure 9: Extended horizon Walker task. Eval (left) and train scores (right). Figure 10: Extended horizon Walker task. Eval (left) and train scores (right).