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ABSTRACT

World model has recently emerged as a promising approach to reinforcement
learning (RL), as evidenced by the recent successes that world model based agents
achieve state-of-the-art performance on a wide range of visual control tasks. This
work aims to obtain a deep understanding of the robustness and generalization
capabilities of world models. Thus motivated, we develop a stochastic differential
equation formulation by treating the world model learning as a stochastic dynamical
system in the latent state space, and characterize the impact of latent representation
errors on robustness and generalization, for both cases with zero-drift representation
errors and with non-zero-drift representation errors. Our somewhat surprising
findings, based on both theoretic and experimental studies, reveal that for the case
with zero drift, modest latent representation errors can in fact function as implicit
regularization and hence result in improved robustness. We further propose a
Jacobian regularization scheme to mitigate the compounding error propagation
effects of non-zero drift, thereby enhancing training stability and robustness. Our
extensive experimental studies corroborate that this regularization approach not
only stabilizes training but also accelerates convergence and improves accuracy of
long-horizon prediction.

1 INTRODUCTION

Model-based reinforcement learning (RL) has emerged as a promising learning paradigm to improve
sample efficiency by enabling agents to exploit a learned model for the physical environment. Notably,
in recent works Hafner et al. (2019; 2020; 2022; 2023); Kessler et al. (2023); Freeman et al. (2019);
Wu et al. (2023); Kim et al. (2020) on world models, RL agents learn a latent dynamics model
(LDM) of the environment from observations and action, and then optimize the policy over the
learned dynamics model. Different from conventional approaches, world-model based RL takes an
end-to-end learning approach, where the building blocks (such as dynamics model, perception and
action policy) are jointly trained and optimized to achieve a unified goal. This framework offers
significant potential to improve both generalization and robustness to perturbations, making it highly
advantageous for deployment in real-world scenarios. For example, DreamerV2 and DreamerV3
achieve great progress in mastering diverse tasks involving continuous and discrete actions, image-
based inputs, and both 2D and 3D environments, thereby facilitating robust learning across unseen
task domains Hafner et al. (2019; 2020; 2022). Recent empirical studies have also demonstrated the
capacity of world models to generalize to unseen noisy states and dynamics in complex environments,
such as autonomous driving Hu et al. (2023). Nevertheless, it remains not well understood when and
how world models can generalize well in unseen environments, and how robustness plays a role in
this process.

In this work, we make attempts to obtain a systematic understanding of the robustness and gen-
eralization capabilities of world models by examining the impact of latent representation errors.
Specifically, we investigate how latent representation errors can enhance robustness against pertur-
bations, which in turn often improves generalization Lim et al. (2021). While one may expect that
optimizing a LDM prior to training the task policy would minimize latent representation errors and
hence can achieve better world model training, our somewhat surprising findings, based on both
theoretical and empirical studies, reveal that modest latent representation errors during training may
in fact be beneficial for robustness. In particular, the alternating training strategy for world model
learning, which simultaneously refines both the LDM and the action policy, can improve robustness
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batch size
perturbation

α = 10 α = 20 α = 30 β = 25 β = 50 β = 75

8 691.62 363.73 153.67 624.67 365.31 216.52
16 830.39 429.62 213.78 842.26 569.42 375.61
32 869.39 436.87 312.99 912.12 776.86 655.26
64 754.47 440.44 80.24 590.41 255.2 119.62

Table 1: Reward values on unseen perturbed states by rotation (α) or mask (β%) with N (0.15, 0.5).

and yield generalization gains. This is because modest latent representation errors could enable
the world model to better handle perturbations, leading to improved exploration and generalization
capabilities. This phenomenon mirrors the behavior observed with gradient estimation errors in
batch training. For instance, as shown in Table 1, our experimental results reveal that intermediate
batch sizes (e.g., 16 or 32) produce gradient estimation errors that are beneficial for generalization,
compared to smaller (e.g., 8) or larger (e.g., 64) batch sizes. The latent representation errors exhibit a
similar effect in a controlled range, supporting robustness through implicit regularization. In fact,
implicit regularization has been credited to increased classification margins Poggio et al. (2017),
which improves generalization performance Sokolić et al. (2017); Lim et al. (2021).

In a nutshell, latent representation errors incurred by latent encoders, if properly managed, may actu-
ally facilitate world model training by enhancing robustness against perturbations, thereby improving
generalization. This insight aligns with recent advances in deep learning, where noise injection
schemes have been studied as a form of implicit regularization to enhance models’ robustness. For in-
stance, recent study Camuto et al. (2021) analyzes the effects of introducing isotropic Gaussian noise
at each layer of neural networks, identifying it as a form of implicit regularization. Another recent
work Lim et al. (2021) explores the addition of zero-drift Brownian motion to RNN architectures,
demonstrating its regularizing effects in improving network’s stability against noise perturbations.

However, we caution that latent representation errors in world models differ from the above noise
injection schemes (Lim et al. (2021); Camuto et al. (2021)), in the following aspects: 1) Unlike
the artificially injected noise only added in training (and removed during inference), these errors
are inherent in world models, leading to error propagation during rollouts; 2) Unlike the controlled
conditions of isotropic or zero-drift noise examined in prior studies, the errors in world models
may not exhibit such well-behaved properties in the sense that the drift may be non-zero and hence
biased; and 3) additionally, in the iterative training of world models and agents, the error originating
from the encoder affects the policy learning and agent exploration, influencing both robustness and
generalization.

In light of these observations, we develop a continuous-time stochastic differential equation (SDE)
formulation by treating the world model learning as a stochastic dynamic system with stochastic
latent states. This approach provides a formal characterization of latent representation errors as
stochastic perturbations, allowing us to quantify their impacts on robustness and generalization. Our
main contributions can be summarized as follows:

• Latent representation errors as implicit regularization: Aiming to understand the robustness
and generalization of world models and improve it further, we develop a continuous-time SDE
formulation by treating the world model learning as a stochastic dynamic system in latent state
space. Leveraging tools in stochastic calculus and differential geometry, we show that under
certain technical conditions, modest latent representation errors can in fact function as implicit
regularization and hence result in robustness gain.

• Improving robustness and generalization in non-zero drift cases via Jacobian regularization: For
the case where latent representation errors exhibit non-zero drifts, we show that the additional
bias can degrade the implicit regularization effect, leading to learning instability. Based on
the theoretical quantification of the instability caused by non-zero drift, we show that the well-
known Jacobian regularization can be employed to address this issue. Our experimental studies
demonstrate its efficacy in enhancing robustness and generalization.

• Reducing error propagation in predictive rollouts: We explicitly characterize the effect of latent
representation errors on predictive rollouts and their impact on robustness. We apply the Jacobian
regularization technique to controll these effects, and our findings corroborate its ability to
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reduce error propagation in rollouts. This leads to enhanced prediction performance and faster
convergence, particularly in tasks with longer time horizons in empirical evaluations.

• Bounding Latent representation error in Approximation of CNN architectures: We establish a
novel bound on the latent representation error within CNN encoder-decoder architectures. To our
knowledge, this is the first quantifiable bound applied to a learned latent representation model,
and the analysis carries over to other architectures (e.g., ReLU) along the same line.

Notation. We use Einstein summation convention for succinctness, where aibi denotes
∑

i aibi. We
denote functions in Ck,α as being k-times differentiable with α-Hölder continuity. The Euclidean
norm of a vector is represented by ∥ · ∥, and the Frobenius norm of a matrix by | · |F ; this notation
may occasionally extend to tensors. The notation xi indicates the ith coordinate of the vector x, and
Aij the (i, j)-entry of the matrix A. Function composition is denoted by f ◦ g, implying f(g). For a
differentiable function f : Rn → Rm , its Jacobian matrix is denoted by ∂f

∂x ∈ Rm×n. Its gradient,
following conventional definitions, is denoted by ∇f . The constant C may represent different values
in distinct contexts.

2 RELATED WORK

Robustness and Generalization in Deep RL. Recent work on robustness and generalization in
deep RL has studied zero-shot generalization of learned policies to unseen environments Kirk et al.
(2023), often emphasizing task-level generalization through techniques such as task augmentation
in meta-RL Yao et al. (2021); Lee and Chung (2021). These approaches focus on ‘policy transfer’
across different tasks, whereas our work here aims to understand the robustness and generalization
of world model based RL, under perturbations and variations in observations and dynamics. Unlike
task-centric methods, our study on the LDM is centered around improving robustness in unseen or
noisy environments where latent representations play a pivotal role in decision-making. Additionally,
while recent studies on RL robustness Panaganti et al. (2022); Liu et al. (2023) introduce new training
frameworks aimed at policy safety and robustness, they do not account for the inherent challenges
posed by latent representation errors during rollouts.

World model based RL. World models have demonstrated remarkable efficacy in visual control
tasks across various platforms, including Atari Bellemare et al. (2013) and Minecraft Duncan (2011),
as detailed in the studies by Hafner et al. Hafner et al. (2019; 2020; 2022). These models typically
integrate encoders and memory-augmented neural networks, such as RNNs Yu et al. (2019), to
manage the latent dynamics. The use of variational autoencoders (VAE) Doersch (2016); Kingma
and Welling (2013) to map sensory inputs to a compact latent space was pioneered by Ha et al. Ha
and Schmidhuber (2018). Furthermore, the Dreamer algorithm Hafner et al. (2020; 2023) employs
convolutional neural networks (CNNs) LeCun et al. (1989) to enhance the processing of both hidden
states and image embeddings, yielding models with improved predictive capabilities in dynamic
environments.

Continuous-time RNNs. The continuous-time assumption is standard for theoretical formulations of
RNN models. Li et al. Li et al. (2022) study the optimization dynamics of linear RNNs on memory
decay. Chang et al. Chang et al. (2019) propose AntisymmetricRNN, which captures long-term
dependencies through the control of eigenvalues in its underlying ODE. Chen et al. Chen et al.
(2020) propose the symplectic RNN to model Hamiltonians. As continuous-time formulations can
be discretized with Euler methods Chang et al. (2019); Chen et al. (2020) (or with Euler-Maruyama
methods if stochastic in Lim et al. (2021)) and yield similar insights, this step is often eliminated for
brevity.

Implicit regularization by noise injection in RNN. Studies on noise injection as a form of implicit
regularization have gained traction, with Lim et al. Lim et al. (2021) deriving an explicit regularizer
under small noise conditions, demonstrating bias towards models with larger margins and more stable
dynamics. Camuto et al. Camuto et al. (2021) examine Gaussian noise injections at each layer of
neural networks. Similarly, Wei et al. Wei et al. (2020) provide analytic insights into the dual effects
of dropout techniques.
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3 DEMYSTIFYING WORLD MODEL: A STOCHASTIC DIFFERENTIAL
EQUATION APPROACH

As pointed out in Hafner et al. (2019; 2020; 2022; 2023), critical to the effectiveness of the world
model representation is the stochastic design of its latent dynamics model. The model can be outlined
by the following key components: an encoder that compresses high dimensional observations st into
a low-dimensional latent state zt (Eq.1), a sequence model that captures temporal dependencies in
the environment (Eq.2), a transition predictor that estimates the next latent state (Eq.3), and a latent
decoder that reconstructs observed information from the posterior (Eq.4):

Latent Encoder: zt ∼ qenc(zt |ht, st), (1)
Sequence Model: ht = f(ht−1, zt−1, at−1), (2)

Transition Predictor: z̃t ∼ p(z̃t |ht), (3)
Latent Decoder: s̃t ∼ qdec(s̃t |ht, z̃t) (4)

In this work, we consider a popular class of world models, including Dreamer and PlaNet, where {z,
z̃, s̃} have distributions parameterized by neural networks’ outputs, and are Gaussian when the outputs
are known. It is worth noting that {z, z̃, s̃} may not be Gaussian and are non-Gaussian in general.
This is because while z is conditional Gaussian, its mean and variance are random variables which
are learned by the encoder with s and h being the inputs, rendering that z is non-Gaussian due to the
mixture effect. For this setting, we have a continuous-time formulation where the latent dynamics
model can be interpreted as stochastic differential equations (SDEs) with coefficient functions of
known inputs. Due to space limitation, we refer to Proposition B.1 in the Appendix for a more
detailed treatment.

Consider a complete, filtered probability space (Ω, F , {Ft}t∈[0,T ], P ) where independent standard
Brownian motions B enc

t , B pred
t , B seq

t , B dec
t are defined such that Ft is their augmented filtration, and

T ∈ R as the time length of the task environment. We interpret the stochastic dynamics of LDM
with latent representation errors through coupled SDEs representing continuous-time analogs of the
discrete components:

Latent Encoder: d zt = (qenc(ht, st) + ε σ(ht, st)) dt+ (q̄enc(ht, st) + ε σ̄(ht, st)) dB
enc
t , (5)

Sequence Model: d ht = f(ht, zt, π(ht, zt)) dt+ f̄(ht, zt, π(ht, zt)) dB
seq
t (6)

Transition Predictor: d z̃t = p(ht) dt+ p̄(ht) dB
pred
t , (7)

Latent Decoder: d s̃t = qdec(ht, z̃t) dt+ q̄dec(ht, z̃t) dB
dec
t , (8)

where π(h, z̃) is a policy function as a local maximizer of value function and the stochastic process
st is Ft-adapted. Notice that f̄ is often a zero function indicating that Equation (6) is an ODE,
as the sequence model is generally designed as deterministic. Generally, the coefficient functions
in dt and dBt terms in SDEs are referred to as the drift and diffusion coefficients. Intuitively, the
diffusion coefficients here represent the stochastic model components. In Equation (5), σ(·, ·) and
σ̄(·, ·) denotes the drift and diffusion coefficients of the latent representation errors, respectively.
Both are assumed to be functions of hidden states ht and task states st. In addition, ε indicates the
magnitude of the error.

Next, we impose standard assumptions on these SDEs (5) - (8) to guarantee the well-definedness of
the solution to SDEs. For further technical details, we refer readers to fundamental works on SDEs in
the literature (e.g.,Steele (2001); Hennequin et al. (1984)).
Assumption 3.1. The drift coefficient functions qenc, f, p and qdec and the diffusion coefficient
functions q̄enc, p̄ and q̄dec are bounded and Borel-measurable over the interval [0, T ], and of class C3

with bounded Lipschitz continuous partial derivatives. The initial values z0, h0, z̃0, s̃0 are square-
integrable random variables.
Assumption 3.2. σ and σ̄ are bounded and Borel-measurable and are of class C3 with bounded
Lipschitz continuous partial derivatives over the interval [0, T ].

3.1 LATENT REPRESENTATION ERRORS IN CNN ENCODER-DECODER NETWORKS

As shown in the empirical studies with different batch sizes (Table 1), the latent representation error
would also enrich generalization when it is within a moderate regime. In this section, we show that the
latent representation error, in the form of approximation error corresponding to the widely used CNN
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encoder-decoder, could be made sufficiently small by finding appropriate CNN network configuration.
In particular, this result provides theoretical justification to interpreting latent representation error as
stochastic perturbation in the dynamical system defined in Equations (5 - 8), as the error magnitude ε
can be made sufficiently small by CNN network configuration.

Consider the state space S ⊂ RdS and the latent space Z . Consider a state probability measure Q on
the state space S and a probability measure P on the latent space Z . As high-dimensional state space
in image-based tasks frequently exhibit intrinsic lower-dimensional geometric structure, we adopt
the latent manifold assumption, formally stated as follows:
Assumption 3.3. (Latent manifold assumption) For a positive integer k, there exists a dM-
dimensional Ck,α submanifold M (with Ck+3,α boundary) with Riemannian metric g and has
positive reach and also isometrically embedded in the state space S ⊂ RdS and dM << dS , where
the state probability measure is supported on. In addition, M is a compact, orientable, connected
manifold.
Assumption 3.4. (Smoothness of state probability measure) Q is a probability measure supported on
M with its Radon-Nikodym derivative q ∈ Ck,α(M,R) w.r.t µM.

Let Z be a closed ball in RdM , that is {x ∈ RdM : ∥x∥ ≤ 1 }. P is a probability measure supported
on Z with its Radon-Nikodym derivative p ∈ Ck,α(Z,R) w.r.t µZ . In practice, it is usually an easy-
to-sample distribution such as uniform distribution which is determined by a specific encoder-decoder
architecture choice.

Latent Representation Learning. We define the latent representation learning as to find encoder
genc : M → Z and decoder gdec : Z → M as maps that optimize the following objectives:

min
genc∈G

W1
(
genc# Q, P

)
; min

gdec∈G
W1

(
Q, gdec# P

)
.

Here, genc# Q and gdec# P represent the pushforward measures of Q and P through the encoder
map genc and decoder map gdec, respectively. The latent representation error is understood as the
“difference" of pushforward measure by the encoder/decoder and target measure.

Here, to understand the "scale" of the error ε in Equation (5), we use W1 for the discrepancy between
probability measures. In particular, for Dreamer-type loss function that uses KL-divergence, we
note that squared W1 distance between two probability measures can be upper bounded by their
KL-divergence up to a constant Gibbs and Su (2002), implying that one could reasonably expect the
W1 distance to also decrease when KL-divergence is used in the model.

CNN configuration. As a popular choice choice in encoder-decoder architecture is CNN, we
consider a general CNN function fCNN : X → R. Let fCNN have L hidden layers, represented
as: forx ∈ X , fCNN(x) := AL+1 ◦ AL ◦ · · · ◦ A2 ◦ A1(x), where Ai’s are either convolutional or
downsampling operators. For convolutional layers, Ai(x) = σ(W c

i x+ bci ), where W c
i ∈ Rdi×di−1

is a structured sparse Toeplitz matrix from the convolutional filter {w(i)
j }s(i)j=0 with filter length

s(i) ∈ N+, bci ∈ Rdi is a bias vector, and σ is the ReLU activation function. For downsampling
layers, Ai(x) = Di(x) = (xjmi

)
⌊di−1/mi⌋
j=1 , where Di : Rdi×di−1 is the downsampling operator

with scaling parameter mi ≤ di−1 in the i-th layer. We examine the class of functions represented by
CNNs, denoted by FCNN, defined as:

FCNN = {fCNN as in defined above with any choice of Ai, i = 1, . . . , L+ 1}.

For the specific definition of FCNN, we refer to Shen et al. (2022)’s (4), (5) and (6).
Assumption 3.5. Assume that M and Z are locally diffeomorphic, that is there exists a map
F : M → Z such that at every point x on M, det(dF (x)) ̸= 0.
Theorem 3.6. (Approximation Error of Latent Representation). Under Assumption 3.3, 3.4 and 3.5,
for θ ∈ (0, 1), let dθ := O(dMθ−2 log d

θ ). For positive integers M and N , there exists an encoder
genc and decoder gdec ∈ FCNN(L, S,W ) s.t.

W1(genc#Q,P ) ≤ dMC(NM)
− 2(k+1)

dθ , W1(gdec#P,Q) ≤ dMC(NM)
− 2(k+1)

dθ .

Theorem 3.6 indicates that with an appropriate CNN configuration, the W1 approximation error can
be made to reside in a small region, as the best candidate within the function class is indeed capable
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of approximating the oracle encoder/decoder. As a result, the approximation error magnitude ε in
SDE (5) can be made arbitrarily small, thereby justifying the assumption that ε can be made as small
as possible in the analysis. This allows us to apply the perturbation analysis of the dynamical system
defined in Equations (5 - 8) in the following sections.

3.2 LATENT REPRESENTATION ERRORS AS IMPLICIT REGULARIZATION TOWARDS
ROBUSTNESS AND GENERALIZATION

In this section, we investigate how latent representation errors influence both robustness and gener-
alization, considering two scenarios: zero drift and non-zero drift. Our analysis shows that under
mild conditions, zero-drift errors can act as a natural form of implicit regularization, creating wider
optimization landscapes that enhance robustness. However, when latent representation errors exhibit
non-zero drift, they introduce an unstable bias that undermines the implicit regularization effect,
leading to degraded generalization performance. In such cases, explicit regularization is necessary to
stabilize learning and maintain both robustness and generalization capabilities in the world model.

To simplify the notation here, we consider the system equations, specifically Equations (5), (6) - (8),
as one stochastic system. Let xt = (zt, ht, z̃t, s̃t) and Bt = (B enc

t , B seq
t , B pred

t , B dec
t ):

d xt = (g(xt, t) + ε σ(xt, t)) dt+
∑
i

ḡi(xt, t) + ε σ̄i(xt, t) dB
i
t, (9)

where g, and ḡi are structured accordingly for the respective components, employing the Einstein
summation convention for concise representation. For abuse of notation, σ = (σ, 0, 0, 0), σ̄ =
(σ̄, 0, 0, 0). For a given error magnitude ε, we denote the solution to SDE (9) as xεt . Intuitively, xεt is
the perturbed trajectory of the latent dynamics model. In particular, when ε = 0, indicating that the
absence of latent representation error in the model, the solution is denoted as x0t .

3.2.1 THE CASE WITH ZERO-DRIFT REPRESENTATION ERRORS

When the drift coefficient σ = 0, the latent representation errors correspond to a class of well-behaved
stochastic processes. The following result translates the induced perturbation on the stochastic latent
dynamics model’s loss function L to a form of explicit regularization. We assume that a (nonconvex)
general loss function L ∈ C2 which depends on zt, ht, z̃t, s̃t. Loss functions used in practical
implementation, e.g. in DreamerV3, reconstruction loss JO, reward loss JR, consistency loss JD, all
satisfy this condition.
Theorem 3.7. (Explicit Effect Induced by Zero-Drift Representation Error) Under Assumptions
3.1 and 3.2 and considering a loss function L ∈ C2, the explicit effects of the zero-drift error can be
marginalized out as follows: as ε→ 0,

EL (xε
t ) = EL(x0

t ) +R+O(ε3), (10)

where the regularization term R is given by R := εP + ε2
(
Q+ 1

2
S
)
, with

P :=E∇L(x0
t )

⊤Φt

∑
k

ξkt , (11)

S :=E
∑
k1,k2

(Φtξ
k1
t )i∇2L(x0

t , t) (Φtξ
k2
t )j , (12)

Q :=E∇L(x0
t )

⊤Φt

∫ t

0

Φ−1
s Hk(x0

s, s)dB
k
t . (13)

Square matrix Φt is the stochastic fundamental matrix of the corresponding homogeneous equation:

dΦt =
∂ḡk
∂x

(x0
t , t)Φt dB

k
t , Φ(0) = I,

and ξkt is the shorthand for
∫ t

0
Φ−1

s σ̄k(x
0
s, s)dB

k
t . Additionally, Hk(x0s, s) is represented by for∑

k1,k2

∂2ḡk
∂xi∂xj (x

0
s, s)

(
ξk1
s

)i (
ξk2
s

)j
.

The proof is relegated to Appendix B in the Supplementary Materials.

In the special case when the loss L is convex, then its Hessian, ∇2L, is positive semi-definite, which
ensures that the term S is non-negative. The presence of this Hessian-dependent term S , under latent
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representation error, implies a tendency towards wider minima in the loss landscape. Empirical
results from Keskar et al. (2017) indicates that wider minima correlate with improved robustness of
implicit regularization during training. This observation also aligns with the theoretical insights in
Lim et al. (2021) that the introduction of Brownian motion, which is indeed zero-drift by definition, in
training RNN models promotes robustness. We note that in addition, when the error σ̄t(·) is too small,
the effect of term S as implicit regularization would not be as significant as desired. Intuitively, this
insight resonates with the empirical results in Table 1 that model’s robustness gain is not significant
when the error induced by large batch sizes is too small.

We remark that the exact loss form treated here is simplified compared to that in the practical
implementation of world models, which frequently depends on the probability density functions
(PDFs) of zt, ht, z̃t, s̃t. In principle, the PDE formulation corresponding to the PDFs of the perturbed
xεt can be derived from the Kolmogorov equation of the SDE (9), and the technicality is more involved
but can offer more direct insight. We will study this in future work.

3.2.2 THE CASE WITH NON-ZERO-DRIFT REPRESENTATION ERRORS

In practice, latent representation errors may not always exhibit zero drift as in idealized noise-injection
schemes for deep learning (Lim et al. (2021), Camuto et al. (2021)). When the drift coefficient σ is
non-zero or a function of input data ht and st in general, the explicit regularization terms induced by
the latent representation error may lead to unstable bias in addition to the regularization term R in
Theorem 3.7. With a slight abuse of notation, we denote ḡ0 as g from Equation (9) for convenience.
Corollary 3.8. (Additional Bias Induced by Non-Zero Drift Representation Error)
Under Assumptions 3.1 and 3.2 and considering a loss function L ∈ C2, the explicit effects of the
general form error can be marginalized out as follows as ε→ 0:

EL (xε
t ) = EL(x0

t ) +R+ R̃+O(ε3), (14)

where the additional bias term R̃ is given by R̃ := ε P̃ + ε2
(
Q̃+ S̃

)
, with

P̃ :=E∇L(x0
t )

⊤Φt ξ̃t, (15)

Q̃ :=E∇L(x0
t )

⊤Φt

∫ t

0

Φ−1
s H0(x0

s, s) dt, (16)

S̃ :=E
∑
k

(Φtξ̃t)
i∇2L(x0

t , t) (Φtξ
k
t )

j , (17)

and ξ̃t being the shorthand for
∫ t

0
Φ−1

s σk(x
0
s, s)dt.

The presence of the new bias term R̃ implies that regularization effects of latent representation error
could be unstable. The presence of ξ̃ in P̃ , Q̃ and S̃ induces a bias to the loss function with its
magnitude dependent on the error level ε, since ξ̃ is a non-zero term influenced on the drift term σ.
This contrasts with the scenarios described in Lim et al. (2021) and Camuto et al. (2021), where the
noise injected for implicit regularization follows a zero-mean Gaussian distribution. To modulate the
regularization and bias terms R and R̃ respectively, we note that a common factor, the fundamental
matrix Φ, can be bounded by

E sup
t

∥Φt∥2
F ≤

∑
k

C exp

(
C E sup

t

∥∥∥∥∂gk

∂x
(x

0
t , t)

∥∥∥∥2

F

)
(18)

which can be shown by using the Burkholder-Davis-Gundy Inequality and Gronwall’s Lemma.
Based on this observation, we next propose a regularizer on input-output Jacobian norm ∥∂gk

∂x ∥F that
could modulate the new bias term R̃ for stabilized implicit regularization.

4 ENHANCING PREDICTIVE ROLLOUTS VIA JACOBIAN REGULARIZATION

In this section, we study the effects of latent representation errors on predictive rollouts using latent
state transitions, which happen in the inference phase in world models. We then propose to use
Jacobian regularization to enhance the quality of rollouts. In particular, we first obtain an upper bound
of state trajectory divergence in the rollout due to the representation error. We show that the error
effects on task policy’s Q function can be controlled through model’s input-output Jacobian norm.
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In world model learning, the task policy is optimized over the rollouts of dynamics model with the
initial latent state z0. Recall that latent representation error is introduced to z0 when latent encoder
encodes the initial state s0 from task environment. Intuitively, the latent representation error would
propagate under the sequence model and impact the policy learning, which would then affect the
generalization capacity through increased exploration.

Recall that the sequence model and the transition predictor are given as follows:

d ht = f(ht, z̃t, π(ht, z̃t)) dt, d z̃t = p(ht)dt+ p̄(ht) dBt, (19)

with random variables h0, z̃0 + ε as the initial values, respectively. In particular, ε is a random
variable of proper dimension, representing the error from encoder introduced at the initial step. We
impose the standard assumption on the error to ensure the well-definedness of the SDEs.

Under Assumption 3.1, there exists a unique solution to the SDEs (for Equations 19 with square-
integrable ε), denoted as (hεt , z

ε
t ). In the case of no error introduced, i.e., ε = 0, we denote the

solution of the SDEs as (h0t , z
0
t ) understood as the rollout under the absence of latent representation

error. To understand how to modulate impacts of the error in rollouts, our following result gives an
upper bound on the expected divergence between the perturbed rollout trajectory (hεt , z

ε
t ) and the

original (h0t , z
0
t ) over the interval [0, T ].

Theorem 4.1. (Bounding trajectory divergence) For a square-integrable random variable ε, let
δ := E ∥ε∥ and dε := E supt∈[0,T ]

∥∥hε
t − h0

t

∥∥2
+

∥∥z̃εt − z̃0t
∥∥2

. As δ → 0,

dε ≤ δ C (J0 + J1) + δ2 C exp (H0 (J0 + J1)) + δ2 C exp (H1 (J0 + J1)) +O(δ3),

where C is a constant dependent on T. J1 and J2 are Jacobian-related terms, and H1 and H2 are Hessian-
related terms.

The Jacobian-related terms J1 and J2 are defined as J0 := exp (Fh + Fz + Ph) , J1 := exp
(
P̄h

)
;

the Hessian-related terms H0 and H1 are defined as H0 := Fhh+Fhz+Fzh+Fzz+Phh,H1 := P̄hh,
where Fh, Fz are the expected sup Frobenius norm of Jacobians of f w.r.t h, z, respectively, and
Fhh,Fhz,Fzh,Fzz are the corresponding expected sup Frobenius norm of second-order derivatives.
Other terms are similarly defined. A detailed description of all terms, can be found in Appendix C.1.

Theorem 4.1 correlates with the empirical findings in Hafner et al. (2019) regarding the diminished
predictive accuracy of latent states z̃t over the extended horizons. In particular, Theorem 4.1 suggests
that the expected divergence from error accumulation hinges on the expected error magnitude, the
Jacobian norms within the latent dynamics model and the horizon length T .

Our next result reveals how initial latent representation error influences the value function Q during
the prediction rollouts, which again verifies that the perturbation is dependent on expected error
magnitude, the model’s Jacobian norms and the horizon length T :
Corollary 4.2. For a square-integrable ε, let xt := (ht, zt). Then, for any action a ∈ A, the
following holds for value function Q almost surely:

Q(x
ε
t , a) =Q(x

0
t , a) +

∂

∂x
Q(x

0
t , a)

(
ε
i
∂i x

0
t +

1

2
ε
i
ε
j
∂
2
ij x

0
t

)
+

1

2
(ε

i
∂i x

0
t )

⊤ ∂2

∂x2
Q(x

0
t , a) (ε

i
∂i x

0
t ) + O(δ

3
),

as δ → 0, where stochastic processes ∂i x0t , ∂2ij x
0
t are the first and second derivatives of x0t w.r.t ε

and are bounded as follows:

E sup
t∈[0,T ]

∥∥∥∂i x
0
t

∥∥∥ ≤ C (J0 + J1) , E sup
t∈[0,T ]

∥∥∥∂2
ij x

0
t

∥∥∥ ≤ C exp (H0 (J0 + J1)) + C exp (H1 (J0 + J1)) .

This corollary reveals that latent representation errors implicitly encourage exploration of unseen
states by inducing a stochastic perturbation in the value function, which again can be regularized
through a controlled Jacobian norm. Intuitively, the stochasticity in the LDM also encourages greater
exploration compared to its deterministic counterparts.

Jacobian Regularization against Non-Zero Drift. The above theoretical results have established
a close connection of input-output Jacobian matrices with the stabilized generalization capacity of
world models (shown in 18 under non-zero drift form), and perturbation magnitude in predictive

8
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rollouts (indicated in the presence of Jacobian terms in Theorem 4.1 and Corollary 4.2.) Building on
these insights, we propose a regularizer on input-output Jacobian norm ∥∂gk

∂x ∥F that could modulate
ξ̃ ( and in addition ξk). This regularization not only enhances robustness by controlling perturbations
but also reinforces generalization through smoother dynamics in the world model’s latent space.

The regularized loss function for LDM is defined as follows:

L̄dyn = Ldyn + λ ∥Jθ∥F , (20)

where Ldyn is the original loss function for dynamics model, Jθ denotes the data-dependent Jacobian
matrix associated with the θ-parameterized dynamics model, and λ is the regularization weight.
Our empirical results in 5 with an emphasis on sequential case align with the experimental findings
from Hoffman et al. (2019) that Jacobian regularization can enhance robustness against random and
adversarial input perturbation in machine learning models.

5 EXPERIMENTAL STUDIES

In this section, extensive experiments are carried out over a number of tasks in Mujoco environments.
Due to space limitation, implementation details and additional results, including the standard deviation
of the trials, are relegated to Section D in the Appendix.

Enhanced robustness and generalization to unseen noisy states and varied dynamics.We evalu-
ated the effectiveness of Jacobian regularization by comparing a model trained with this regularization
against a vanilla model during inference, using perturbed state images and varied dynamics. We
consider three types of perturbations to the observations: (1) Gaussian noise applied across the entire
image, denoted as N (µ1, σ

2
1); (2) rotation; and (3) Gaussian noise applied to a random portion of the

image, N (µ2, σ
2
2). Additionally, we examine variations in the gravity constant g for unseen dynamics.

These perturbation patterns align with those commonly used in robustness studies (Curi et al. (2021);
Sun et al. (2023); Zhou et al. (2023)).

For the Walker task, the parameters are set as µ1 = µ2 = 0.5 and σ2
2 = 0.15, while for the Quadruped

task, µ1 = 0, µ2 = 0.05, and σ2
2 = 0.2. In each case, we investigate a range of noise levels: (1)

variance σ2 ranging from 0.05 to 0.55; (2) rotation angles α of 20◦ and 30◦; and (3) masked image
percentages β% ranging from 25% to 75%. For the unseen dynamics, the gravity constant g is varied
from 9.8 to 1.

Figure 1: Generalization against increasing degree of perturbation.

It can be seen from Table 2 and Figure 1 that thanks to the adoption of Jacobian regularization
in training, the rewards (averaged over 5 trials) are higher compared to the baseline, indicating
improved robustness to noisy image states in all cases. Moreover, Table 2demonstrates that the model
trained with Jacobian regularization consistently outperforms the baseline under most dynamics
variations. These experimental results support the findings in Corollary 3.8, showing that regularizing
the Jacobian norm effectively stabilizes the implicit regularization process, leading to enhanced
performance and robustness.

In some cases where additional knowledge about perturbation is available, such as when the pertur-
bation type is known a priori (which could be unrealistic), one could consider using augmentation
methods by training with perturbed observations to improve robustness. We provide a comparative
discussion between Jacobian regularization and augmentation methods in the Appendix D.6.

Robustness against encoder errors. Next, we focus on the effects of Jacobian regularization on
controlling the error process to the latent states z during training. Since it is very challenging, if

9
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full, N (µ1, σ
2
1) rotation, +α◦ mask β%, N (µ2, σ

2
2)

clean σ2
1 = 0.35 σ2

1 = 0.5 α = 20 α = 30 β = 50 β = 75
Jac Reg (Walker) 967.12 742.32 618.98 423.81 226.04 725.81 685.49
Baseline (Walker) 966.53 615.79 333.47 391.65 197.53 583.41 446.74

Jac Reg (Quad) 971.98 269.78 242.15 787.63 610.53 321.55 304.92
Baseline (Quad) 967.91 207.33 194.08 681.03 389.41 222.22 169.58

Table 2: Evaluation on unseen states by various perturbation (Clean means without perturbation).
λ = 0.01.

g = 9.8 g = 6 g = 4 g = 2
Jac Reg (Walker) 967.12 906.42 755.18 679.24
Baseline (Walker) 966.53 750.36 662.86 381.14

Jac Reg (Quad) 971.98 752.7 543.44 400.94
Baseline (Quad) 967.91 875.02 518.7 329.06

Table 3: Evaluation on unseen dynamics by various gravity constants (g = 9.8 is default). λ = 0.01.

not impossible, to characterize the latent representation errors and hence the drift therein explicitly,
we consider to evaluate the robustness against two exogenous error signals, namely (1) zero-drift
error with µt = 0, σ2

t (σ2
t = 5 in Walker, σ2

t = 0.1 in Quadruped), and (2) non-zero-drift error
with µt ∼ [0, 5], σ2

t ∼ [0, 5] uniformly. Table 4 shows that the model with regularization can
consistently learn policies with high returns and also converges faster, compared to the vanilla case.
This corroborates our theoretical findings in Corollary 3.8 that the impacts of error to loss L can be
controlled through the model’s Jacobian norm.

Zero drift, Walker Non-zero drift, Walker Zero drift, Quad Non-zero drift, Quad
300k 600k 300k 600k 600k 1.2M 1M 2M

Jac Reg 666.2 966 905.7 912.4 439.8 889 348.3 958.7
Baseline 24.5 43.1 404.6 495 293.6 475.9 48.98 32.87

Table 4: Accumulated rewards under additional encoder errors. λ = 0.01.
To observe the error propagation of zero-drift and non-zero-drift error signals in latent states, we refer
to the visualizations of reconstructed state trajectory samples in the Appendix D.7.

Faster convergence on tasks with extended horizon. We further evaluate the efficacy of Jacobian
regularization in tasks with extended horizon, particularly by extending the horizon length in MuJoCo
Walker from 50 to 100 steps. Table 5 shows that the model with regularization converges significantly
faster (∼ 100K steps) than the case without Jacobian regularization in training. This corroborates
results in Theorem 4.1 that regularizing the Jacobian norm can reduce error propagation.

Extended Walker 100 steps (increased from original 50 steps)
Num steps 100k 200k 280k

Jac Reg (λ = 0.05) 639.1 936.3 911.1
Jac Reg (λ = 0.1) 537.5 762.6 927.7

Baseline 582.3 571.2 886.6

Table 5: Accumulated rewards of Walker with extended horizon.

6 CONCLUSION

In this study, we investigate the robustness and generalization of world models. We develop an
SDE formulation by treating the world model learning as a stochastic dynamical system in the latent
state space, and characterize the effects of latent representation errors as implicit regularization,
for zero-drift and non-zero drift cases. Our findings, based on both theoretic and experimental
studies, reveal that for the case with zero drift, modest latent representation errors can paradoxically
function as implicit regularization and hence enhance robustness. To mitigate the compounding
effects of non-zero drift, we applied Jacobian regularization, which enhanced training stability and
robustness. Our empirical studies corroborate that Jacobian regularization improves generalization
performance, broadening world models’ applicability in complex environments. This work has
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the potential to improve the robustness and reliability of RL agents, especially in safety-critical
applications like autonomous driving. Future work can extend this study to other world models such
as with transformers-based LDM.
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6.1 ETHICS STATEMENT

This work does not involve any human subjects, and no datasets are required. The methodologies
and insights presented focus on improving the robustness and generalization of world models in
reinforcement learning, with no direct applications that could lead to harmful outcomes. However,
as with any machine learning research, the possibility of misuse or unintended consequences in
real-world applications should be carefully considered. We have adhered to all ethical research
practices and have no conflicts of interest or sponsorships that could influence the outcomes of this
study.

7 REPRODUCIBILITY

For full details on the assumptions and proofs of the theorems presented in the paper, please refer to
Sections A, B, and C in the Appendix.
To reproduce the experimental results, the complete source code is provided in the supplementary
materials, along with additional experiment details in Section D of the Appendix.
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Supplementary Materials
In this appendix, we provide the supplementary materials supporting the findings of the main paper
on the latent representation of latent representations in world models. The organization is as follows:

• In Section A, we provide proof on showing the approximation capacity of CNN encoder-
decoder architecture in latent representation of world models.

• In Section B, we provide proof on implicit regularization of zero-drift errors and additional
effects of non-zero-drift errors by showing a proposition on the general form.

• In Section C, we provide proof on showing the effects of non-zero-drift errors during
predictive rollouts by again showing a result on the general form.

• In Section D, we provide additional results and implementation details on our empirical
studies.
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A APPROXIMATION POWER OF LATENT REPRESENTATION WITH CNN
ENCODER AND DECODER

To mathematically describe this intrinsic lower-dimensional geometric structure, for an integer k > 0
and α ∈ (0, 1], we consider the notion of smooth manifold (in the Ck,α sense), formally defined by
Definition A.1 (Ck,α manifold). A Ck,α manifold M of dimension n is a topological manifold (i.e.
a topological space that is locally Euclidean, with countable basis, and Hausdorff) that has a Ck,α

structure Ξ that is a collection of coordinate charts {Uα, ψα}α∈A where Uα is an open subset of M,
ψα : Uα → Vα ⊆ Rn such that

•
⋃

α∈A Uα ⊇ M, meaning that the the open subsets form an open cover,

• Each chart ψα is a diffeomorphism that is a smooth map with smooth inverse (in the Ck,α

sense),

• Any two charts are Ck,α-compatible with each other, that is for all α1, α2 ∈ A, ψα1 ◦ ψ−1
α2

:

ψα2(Uα1 ∩ Uα2) → ψα1(Uα1 ∩ Uα2) is Ck,α.

Intuitively, a Ck,α manifold is a generalization of Euclidean space by allowing additional spaces with
nontrivial global structures through a collection of charts that are diffeomorphisms mapping open
subsets from the manifold to open subsets of euclidean space. For technical utility, the defined charts
allow to transfer most familiar real analysis tools to the manifold space. For more references, see Lee
(2018).
Definition A.2 (Riemannian volume form). Let X be a smooth, oriented d-dimensional manifold
with Riemannian metric g. A volume form dvolM is the canonical volume form on X if for any point
x ∈ X , for a chosen local coordinate chart (x1, ..., xd), dvolM =

√
det gij dx1 ∧ ... ∧ dxd, where

gij(x) := g ( ∂
∂xi

, ∂
∂xj

)(x).

Then the induced volume measure by the canonical volume form dvolX is denoted as µX , defined
by µX : A 7→

∫
A
dvolX , for any Borel-measurable subset A on the space X . For more references,

see Evans and Gariepy (2015).

We recall the latent representation problem defined in the main paper.

Consider the state space S ⊂ RdS and the latent space Z . Consider a state probability measure Q on
the state space S and a probability measure P on the latent space Z .
Assumption A.3. (Latent manifold assumption) For a positive integer k, there exists a dM-
dimensional Ck,α submanifold M (with Ck+3,α boundary) with Riemannian metric g and has
positive reach and also isometrically embedded in the state space S ⊂ RdS and dM << dS , where
the state probability measure is supported on. In addition, M is a compact, orientable, connected
manifold.
Assumption A.4. (Smoothness of state probability measure) Q is a probability measure supported
on M with its Radon-Nikodym derivative q ∈ Ck,α(M,R) w.r.t µM.

Let Z be a closed ball in RdM , that is {x ∈ RdM : ∥x∥ ≤ 1 }. P is a probability measure supported
on Z with its Radon-Nikodym derivative p ∈ Ck,α(Z,R) w.r.t µZ .

We consider a general CNN function fCNN : X → R. Let fCNN have L hidden layers, represented as:

fCNN(x) = AL+1 ◦AL ◦ · · · ◦A2 ◦A1(x), x ∈ X ,

where Ai’s are either convolutional or downsampling operators. For convolutional layers,

Ai(x) = σ(W c
i x+ bci ),

where W c
i ∈ Rdi×di−1 is a structured sparse Toeplitz matrix from the convolutional filter {w(i)

j }s(i)j=0

with filter length s(i) ∈ N+, bci ∈ Rdi is a bias vector, and σ is the ReLU activation function.

For downsampling layers,
Ai(x) = Di(x) = (xjmi)

⌊di−1/mi⌋
j=1 ,
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Figure 2: Latent Representation Problem: The left and right denote the manifold M with lower dim
dM embedded in a larger Euclidean space, with latent space Z a dM-dimensional ball in middle.
Encoder and decoder as maps respectively pushing forward Q to P and P to Q.

where Di : Rdi×di−1 is the downsampling operator with scaling parameter mi ≤ di−1 in the i-th
layer. The convolutional and downsampling operations are elaborated in Appendix [63]. We examine
the class of functions represented by CNNs, denoted by FCNN, defined as:

FCNN = {fCNN as in defined above with any choice of Ai, i = 1, . . . , L+ 1}.

For more details in the definitions of CNN functions, we refer to Shen et al. (2022).
Assumption A.5. Assume that M and Z are locally diffeomorphic, that is there exists a map
F : M → Z such that at every point x on M, det(dF (x)) ̸= 0.
Theorem A.6. (Approximation Error of Latent Representation). Under Assumption A.3, A.4 and
A.5, for θ ∈ (0, 1), let dθ = O(dMθ−2 log d

θ ). For positive integers M and N , there exists an
encoder genc and decoder gdec ∈ FCNN(L, S,W ) s.t.

W1(genc#Q,P ) ≤ dMC(NM)
− 2(k+1)

dθ ,

W1(gdec#P,Q) ≤ dMC(NM)
− 2(k+1)

dθ .

The primary challenge to show Theorem A.6 is in demonstrating the existence of oracle encoder and
decoder maps. These maps, denoted as g∗enc : M → Z and g∗dec : Z → M respectively, must satisfy

g∗enc#Q = P, g∗dec# P = Q. (21)

and importantly they have the proper smoothness guarantee, namely g∗enc ∈ Ck+1,α(M,Z) and
g∗dec ∈ Ck+1,α(Z,M). Proposition A.7 shows the existence of such oracle map(s).

Proposition A.7 (Ck,α, compact). Let M,N be compact, oriented d-dimensional Riemannian
manifolds with Ck+3,α boundary with the volume measure µM and µN respectively. Let Q, P be
distributions supported on M, N respectively with their Ck,α density functions q, p, that is Q, P are
probability measures supported on M, N with their Radon-Nikodym derivatives q ∈ Ck,α(M,R)
w.r.t µM and p ∈ Ck,α(N ,R) w.r.t µN . Then, there exists a Ck+1,α map g : N → M such that
the pushforward measure g#P = Q, that is for any measurable subset A ∈ B(M), Q(A) =
P (g−1(A)).

Proof. (Proposition A.7) Let ω := p dvolN , then ω is a Ck,α volume form on N , as p ∈ Ck,α and for
any point x ∈ N , we have p(x) > 0. In addition,

∫
N ω =

∫
N p dvolN =

∫
N p dµN = P (N ) = 1.

Similarly, let η := q dvolM a Ck,α volume form on M and
∫
M η = 1.

Let F : N → M be an orientation-preserving local diffeomorphism, we then have det(dF ) > 0
everywhere on N .
As N is compact and M is connected by assumption, F is a covering map, that is for every point
x ∈ M, there exists an open neighborhood Ux of x and a discrete set Dx such that F−1(U) =
⊔α∈D Vα ⊂ N and F |Vα

= Vα → U is a diffeomorphism. Furthermore, |Dx| = |Dy| for any points
x, y ∈ M. In addition, |Dx| is finite from the compactness of N .
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Let η̄ be the pushforward of ω via F , defined by for any point x ∈ M and a neighborhood Ux,

η̄(x) :=
1

|Dx|
∑

α∈Dx

(
F
∣∣
Vα

−1
)∗
ω
∣∣
Vα
. (22)

η̄ is well-defined as it is not dependent on the choice of neighborhoods and the sum and 1
|Dx| are

always finite. Furthermore, η̄ is a Ck,α volume form on M, as p ◦
(
F
∣∣
Vα

−1
)

is Ck,α.

Notice that F
∣∣
Vα

−1
is orientation-preserving as det dF

∣∣
Vα

−1
= 1

det dF
∣∣
Vα

> 0 everywhere on Vα.

In addition, F
∣∣
Vα

−1
is proper: as for any compact subset K of N , K is closed; and as F

∣∣
Vα

−1

is continuous, the preimage of K via F
∣∣
Vα

−1
a closed subset of M which is compact, then the

preimage of K must also be compact. Hence, F
∣∣
Vα

−1
is proper. As every F

∣∣
Vα

−1
is proper,

orientation-preserving and surjective, then c := deg(F
∣∣
Vα

−1
) = 1.

Then,
∫
M η̄ = c

∫
N ω = 1.

As we have shown that η and η̄ ∈ Ck,α and
∫
M η̄ =

∫
M η, by Dacorogna and Moser (1990),

there exists a diffeomorphism ψ : M → M fixing on the boundary such that ψ∗η = η̄, where
ψ,ψ−1 ∈ Ck+1,α.
Let g := ψ ◦ F , then it holds that g∗η = (ψ ◦ F )∗η = F ∗ ◦ ψ∗η = F ∗η̄ = ω.

Then, for any measurable subset A on the manifold M, we verify that Q(A) =
∫
A
η =∫

g−1(A)
g∗η =

∫
g−1(A)

ω =
∫
g−1(A)

p dvolN =
∫
g−1(A)

p dµN = P (g−1(A)).

Hence, we have shown the existence by an explicit construction. As ψ ∈ Ck+1,α, and F ∈ C∞, then
we have g ∈ Ck+1,α.

We are now ready to show Theorem A.6 with the existence of oracle map and the low-dimensional
approximation results from Shen et al. (2022).

Proof. (Theorem A.6) For encoder, from Proposition A.7, there exists an Ck+1,α oracle map g :
M → Z such that the pushforward measure g#Q = P . Then,

W1((genc)#Q , P ) =W1((genc)#Q , g#Q)

= sup
f∈Lip1(Z)

∣∣∣∣∫
Z
f(y) d((genc)#Q)−

∫
Z
f(y) d(g#Q)

∣∣∣∣
≤ sup

f∈Lip1(Z)

∫
M

|f ◦ genc(x)− f ◦ g(x)| dQ

≤
∫
M

∥genc(x)− g(x)∥ dQ

≤ dMC(NM)
− 2(k+1)

dθ ,

where the last inequality follows from the special case ρ = 0 of Theorem 2.4 in Shen et al. (2022).

Similarly, for decoder, from Proposition A.7, there exists an Ck+1,α oracle map ḡ : Z → M such
that the pushforward measure ḡ#P = Q.

W1((gdec)#P , Q) =W1((gdec)#P , ḡ#P )

≤
∫
Z
∥gdec(y)− ḡ(y)∥ dP

≤ dMC(NM)
− 2(k+1)

dθ .
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B EXPLICIT REGULARIZATION OF LATENT REPRESENTATION ERROR IN
WORLD MODEL LEARNING

We recall the SDEs for latent dynamics model defined in the main paper. Consider a complete,
filtered probability space (Ω, F , {Ft}t∈[0,T ], P ) where independent standard Brownian motions
B enc

t , B pred
t , B seq

t , B dec
t are defined such that Ft is their augmented filtration, and T ∈ R as the time

length of the task environment. We consider the stochastic dynamics of LDM through the following
coupled SDEs after error perturbation:

d zt = (qenc(ht, st) + σ(ht, st)) dt+ (q̄enc(ht, st) + σ̄(ht, st)) dB
enc
t , (23)

d ht = f(ht, zt, π(ht, zt)) dt+ f̄(ht, zt, π(ht, zt)) dB
seq
t (24)

d z̃t = p(ht) dt+ p̄(ht) dB
pred
t , (25)

d s̃t = qdec(ht, z̃t) dt+ q̄dec(ht, z̃t) dB
dec
t , (26)

where π(h, z̃) is a policy function as a local maximizer of value function and the stochastic process
st is Ft-adapted.

As discussed in the main paper, our analysis applies to a common class of world models that uses
Gaussian distributions parameterized by neural networks’ outputs for z, z̃, s̃. Their distributions are
not non-Gaussian in general.

For example, as z is conditional Gaussian and its mean and variance are random variables which are
learned by the encoder from r.v.s s and h as inputs, thus rendering z non-Gaussian. However, z is
indeed Gaussian when the inputs are known. Under this conditional Gaussian class of world models,
to see that the continuous formulation of latent dynamics model can be interrupted as SDEs, one
notices that SDEs with coefficient functions of known inputs are indeed Gaussian, matching to this
class of world models. Formally, in the context of z without latent representation error:
Proposition B.1. (Latent states SDE conditioned on inputs is Gaussian)
For the latent state process zt∈[0,T ] without error,

d zt = qenc(ht, st) dt+ q̄enc(ht, st))dB
enc
t , (27)

with zero initial value. Given known ht∈[0,T ] and st∈[0,T ], the process zt is a Gaussian process.
Furthermore, for any t ∈ [0, T ], zt follows a Gaussian distribution with mean µt =

∫ t

0
qenc(hs, ss)ds

and variance σ2
t =

∫ t

0
q̄enc(hs, ss)

2ds.

Proof. Proof follows from Proposition 7.6 in Steele (2001).

Next, we recall our assumptions from the main text:
Assumption B.2. The drift coefficient functions qenc, f, p and qdec and the diffusion coefficient
functions q̄enc, p̄ and q̄dec are bounded and Borel-measurable over the interval [0, T ], and of class C3

with bounded Lipschitz continuous partial derivatives. The initial values z0, h0, z̃0, s̃0 are square-
integrable random variables.
Assumption B.3. σ and σ̄ are bounded and Borel-measurable and are of class C3 with bounded
Lipschitz continuous partial derivatives over the interval [0, T ].

One of our main results is the following:
Theorem B.4. (Explicit Regularization Induced by Zero-Drift Representation Error)
Under Assumption B.2 and B.3 and considering a loss function L ∈ C2, the explicit effects of the
zero-drift error can be marginalized out as follows:

EL (xεt ) = EL(x0t ) +R+O(ε3), (28)
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as ε→ 0, where the regularization term R is given by R := εP + ε2
(
Q+ 1

2 S
)
.

Each term of R is as follows:

P :=E∇L(x0t )⊤Φt

∑
k

ξkt , (29)

Q :=E∇L(x0t )⊤Φt

∫ t

0

Φ−1
s Hk(x0s, s)dB

k
t , (30)

S :=E
∑
k1,k2

(Φtξ
k1
t )i∇2L(x0t , t) (Φtξ

k2
t )j , (31)

where square matrix Φt is the stochastic fundamental matrix of the corresponding homogeneous
equation:

dΦt =
∂ḡk
∂x

(x0t , t) Φt dB
k
t , Φ(0) = I,

and ξkt is as the shorthand for
∫ t

0
Φ−1

s σ̄k(x
0
s, s)dB

k
t . Additionally, Hk(x0s, s) is represented by for∑

k1,k2

∂2ḡk
∂xi∂xj (x

0
s, s)

(
ξk1
s

)i (
ξk2
s

)j
.

Before proving Theorem B.4, we first show Proposition B.5 on the general case of perturbation to the
stochastic system. Consider the following perturbed system given by

d xt = (g0 (xt, t) + ε η0 (xt, t)) dt+

m∑
k=1

(gk (xt, t) + ε ηk (xt, t)) dB
k
t (32)

with initial values x(0) = x0,
Proposition B.5. Suppose that f is a real-valued function that is C2. Then it holds that, with
probability 1, as ε→ 0, for t ∈ [0, T ],

f (xεt ) = f
(
x0t
)
+ε∇f

(
x0t
)⊤
∂ε x

0
t +ε

2
(
∇f

(
x0t
)⊤
∂2εx

0
t +

1

2
∂ε x

0
t
⊤∇2f

(
x0t
)
∂ε x

0
t

)
+O

(
ε3
)
,

(33)
where the stochastic process x0t is the solution to SDE 32 with ε = 0, with its first and second-order
derivatives w.r.t ε denoted as ∂ε x0t , ∂

2
ε x

0
t .

Furthermore, it holds that ∂ε x0t , ∂
2
ε x

0
t satisfy the following SDEs with probability 1,

d ∂εx
0
t =

(
∂gk
∂x

(
x0t , t

)
∂εx

0
t + ηk

(
x0t , t

))
dBk

t ,

d ∂2εxt =

(
Ψk

(
∂εx

0
t , x

0
t , t
)
+ 2

∂ηk
∂x

(
x0t , t

)
∂εx

0
t +

∂gk
∂x

(
x0t , t

)
∂2εx

0
t

)
dBk

t ,

(34)

with initial values ∂ε x(0) = 0, ∂2ε x(0) = 0, where

Ψk : (∂ε x, x, t) 7→ ∂ε x
i ∂gk
∂xi∂xj

(x, t)∂ε x
j ,

for k = 0, 1, ...,m.

Proof. We first apply the stochastic version of perturbation theory to SDE 32. For brevity, we will
write t as B0

t and use Einstein summation convention. Hence, SDE 32 is rewritten as

dxt = γεk (xt, t) dB
k
t , (35)

with initial value x(0) = x0.

Step 1: We begin with the corresponding systems to derive the SDEs that characterize ∂ε xεt and ∂2ε x
ε
t .

Our main tool is an important result on smoothness of solutions w.r.t. initial data from Theorem 3.1
from Section 2 in Hennequin et al. (1984).

For ∂ε x, consider the SDEs

d xt = γεk (xt, t) dB
k
t , (*)

d εt = 0,
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with initial values x(0) = x0, ε(0) = ε. From an application of Theorem 3.1 from Section 2 in
Hennequin et al. (1984) on *, we have ∂ε x that satisfies the following SDE with probability 1:

d ∂εxt = (αε
k (xt, t) ∂εxt + ηk (xt, t)) dB

k
t , (36)

with initial value ∂εx0 = 0 ∈ Rn, with probability 1, where xt is the solution to Equation (35) and
the functions αε

k are given by

αε
k : (x, t) 7→ ∂gk

∂xj
(x, t) + ε

∂ηk
∂xj

(x, t) ,

where k = 0, ..., m.

To characterize ∂2ε xt, consider the following SDEs

d xt = γεk (xt, t) dB
k
t , (**)

d ∂ε xt = (αε
k (xt, t) ∂ε xt + ηk (xt, t)) dB

k
t ,

d εt = 0,

with initial value x(0) = x0, ∂ε x(0) = 0, ε(0) = ε.

From a similar application of Theorem 3.1 from Section 2 in Hennequin et al. (1984), the second
derivative ∂2ε x satisfies the following SDE with probability 1:

d ∂2ε xt =

(
βε
k (∂εxt, xt, t) + 2

∂ ηk
∂x

(xt, t) ∂ε xt + αε
k (xt, t) ∂

2
εxt

)
dBk

t , (37)

with initial value ∂2ε x(0) = 0 ∈ Rn, where ∂ε xt is the solution to Equation(36), x(t) is the solution
to Equation (35), and the functions

βε
k : (∂ε x, x, t) 7→ ∂ε x

j

(
∂gik

∂xl∂xj
(x, t) + ε

∂ηik
∂xl∂xj

(x, t)

)
∂ε x

l,

where k = 0, ..., m.

When ε = 0 in the obtained SDEs (35), (36) and (37), the corresponding solutions of which are
x0t , ∂ε x

0
t , ∂

2
ε x

0
t , we now have the following:

d x0t = gk
(
x0t , t

)
dBk

t , (38)

d ∂ε x
0
t =

(
∂gk
∂x

(
x0t , t

)
∂ε x

0 + ηk
(
x0t , t

))
dBk

t , (39)

d ∂2ε x
0
t =

(
Ψk

(
∂ε x

0
t , x

0
t , t
)
+ 2

∂ηk
∂x

(
x0t , t

)
∂ε x

0
t +

∂gk
∂x

(
x0t , t

)
∂2ε x

0
t

)
dBk

t , (40)

with initial values x(0) = x0, ∂ε x(0) = 0, ∂2ε x(0) = 0. In particular, Ψk := β0
k is given by

(∂εx, x, t) 7→ ∂εx
i ∂gk
∂xi∂xi

(x, t)∂εx
j .

Step 2: For the next step, we show that the solutions x0t , ∂s x
0
t , ∂

2
ε x

0
t are indeed bounded by proving

the following lemma B.6:

Lemma B.6.

E sup
t∈[0,T ]

∥∥x0t∥∥2 , E sup
t∈[0,T ]

∥∥∂ε x0t∥∥2 , and E sup
t∈[0,T ]

∥∥∂2ε x0t∥∥2 are bounded.

Proof. To simplify the notations, we take the liberty to write constants as C and notice that C is not
necessarily identical in its each appearance.

(1) We first show that E supt∈[0,T ]

∥∥x0t∥∥2 is bounded.
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From Equation (38), we have that

x0t = x0 +

∫ t

0

gk (xτ , τ) dB
k
τ .

By Jensen’s inequality. it holds that

E sup
t∈[0,T ]

∥xt∥2 ≤ C E ∥x0∥2 + C E sup
t∈[0,T ]

∥∥∥∥∫ t

0

gk
(
x0τ , τ

)
dBk

τ

∥∥∥∥2 . (41)

For the second term on the right hand side, it is a sum over k from 0 to m by Einstein notation.

For k = 0, recall that we write t as B0
t :

E sup
t∈[0,T ]

∥∥∥∥∫ t

0

g0
(
x0τ , τ

)
dτ

∥∥∥∥2 ≤C E sup
t∈[0,T ]

t

∫ t

0

∥∥g0 (x0τ , τ)∥∥2 dτ, (i)

≤C E sup
t∈[0,T ]

∫ t

0

C
(
1 +

∥∥x0τ∥∥)2 dτ, (ii)

≤C + C

∫ T

0

E sup
s∈[0,τ ]

∥∥x0s∥∥2 dτ, (iii)

where we used Jensen’s inequality, the assumption on the linear growth, the inequality property of
sup and Fubini’s theorem, respectively.

For k is equal to 1, . . . ,m,

E sup
t∈[0,T ]

∥∥∥∥∫ t

0

g1
(
x0τ,τ , τ

)
dBτ

∥∥∥∥2 ≤C E
∫ T

0

∥∥g1 (x0τ , τ)∥∥2 dτ, (iv)

≤C + C

∫ T

0

E sup
s∈[0,τ ]

∥∥x0s∥∥ dτ, (v)

where (iv) holds from the Burkholder-Davis-Gundy inequality as
∫ t

0
gk
(
x0τ , τ

)
dBτ is a continuous

local martingale with respect to the filtration Ft; and then one can obtain (v) by following a similar
reasoning of (ii) and (iii).

Hence, now from the previous inequality (41),

E sup
t∈[0,T ]

∥∥x0t∥∥2 ≤ E ∥x0∥2 + C + C

∫ T

0

E sup
s∈[0,τ ]

∥∥x0s∥∥ dτ.
By Gronwall’s Lemma, it holds true that

E sup
t∈[0,T ]

∥∥x0t∥∥2 ≤
(
C E ∥x0∥2 + C

)
exp(C).

As x0 is square-integrable by assumption, therefore we have shown that E supt∈[0,T ]

∥∥x0t∥∥2 is
bounded.

(2) We then show that E sup
t∈[0,T ]

||∂ε x0t ||2 is also bounded.

From the SDE (39), as we have derived that

∂ε x
0
t =

∫ t

0

∂gk
∂x

(
x0τ , τ

)
∂ε x

0
τ + ηk

(
x0τ , τ

)
dBk

τ ,

then we have

E sup
t∈[0,τ ]

∥∥∂ε x0t∥∥2 ≤ C E sup
t∈[0,τ ]

∥∥∥∥∫ t

0

∂gk
∂x

(
x0τ , τ

)
∂ε x

0
τ dB

k
τ

∥∥∥∥2 + C E sup
t∈[0,T ]

∥∥∥∥∫ t

0

ηk
(
x0τ , τ

)
dBk

τ

∥∥∥∥2 .
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For k = 0, we have

E sup
t∈[0,T ]

∥∥∥∥∫ t

0

∂g0
∂x

(
x0τ , τ

)
∂ε x

0
τdt

∥∥∥∥2 + E sup
t∈[0,T ]

∥∥∥∥∫ t

0

η0
(
x0τ , τ

)
dτ

∥∥∥∥2 , (vi)

≤C E sup
t∈[0,T ]

∫ t

0

∥∥∥∥∂g0∂x (x0τ , t)
∥∥∥∥2 ∥∥∂ε x0τ∥∥2 dτ + CE sup

t∈[0,T ]

∫ t

0

∥∥η0 (x0τ , τ)∥∥2 dτ, (vii)

≤C E sup
s∈[0,T ]

∥∥∥∥∂g0∂x (x0s, s)
∥∥∥∥2 sup

t∈[0,T ]

∫ t

0

∥∥∂ε x0τ∥∥2 dτ + C E sup
t∈[0,T ]

∫ t

0

C
(
1 +

∥∥x0τ∥∥)2 dτ,
≤C + C E sup

t∈[0,T ]

∫ t

0

∥∥∂ε x0τ∥∥2 dτ + C E sup
t∈[0,T ]

∫ t

0

∥∥x0τ∥∥2 dτ, (viii)

≤C + C

∫ T

0

E sup
s∈[0,τ ]

∥∥∂ε x0s∥∥2 dτ + C E sup
t∈[0,T ]

∥∥x0t∥∥2 ,
where to get to (vi), we used Jensen’s inequality; for (vii), we used the linear growth assumption an
η0, then we obtain (viii) by as derivatives of function g0 are bounded by assumption.
Similarly, for k = 1, ..., m,

C E sup
t∈[0,T ]

∥∥∥∥∫ t

0

∂g1
∂xi

(
x0τ , τ

)
∂ε x

0
τdBτ

∥∥∥∥2 + C E sup
t∈[0,T ]

∥∥∥∥∫ t

0

η1
(
x0τ , τ

)
dBτ

∥∥∥∥2 ,
≤C E

∫ T

0

∥∥∥∥∂g1∂x (x0τ , τ)
∥∥∥∥2 ∥∥∂ε x0τ∥∥2 dτ + C E

∫ T

0

∥∥η1 (x0τ , τ)∥∥2 dτ, (ix)

≤C + C

∫ T

0

E sup
s∈[0,τ ]

||∂ε x0s||2dτ + C E sup
t∈[0,T ]

||x0t ||2, (x)

where we obtain (ix) by the Burkholder-Davis-Gundy inequality and (x) by following similar steps as
have shown in (vii) and (viii).
We are now ready to sum up each term to acquire a new inequality:

E sup
t∈[0,T ]

∥∥∂ε x0t∥∥2 ≤C + C E sup
t∈[0,T ]

∥∥x0t∥∥2 + C

∫ T

0

E sup
s∈[0,τ ]

∥∥∂ε x0s∥∥2 dτ.
By Gronwall’s lemma, we have that

E sup
t∈[0,T ]

∥∥∂ε x0t∥∥2 ≤

(
C + C E sup

t∈[0,T ]

∥∥x0t∥∥2
)
exp(C).

As it is previously shown that E supt∈[0,τ ] ∥x◦(t)∥
2 is bounded, it is clear that E supt∈[0,T ]

∥∥∂ε x0t∥∥2
is bounded too.

(3) From similar steps, one can also show that E sup
t∈[0,T ]

∥∥∂2ε x0t∥∥2 is bounded.

Step 3: Having shown that x0t , ∂ε x
0
t , ∂

2
ε x

0
t are bounded, we proceed to bound the remainder term by

proving the following lemma.

Lemma B.7. For a given ε ∈ R, let

Rε := (t, ω) 7→ 1

ε3
(
xε(t, ω)− x0(t, ω)− ε∂εx

0(t, ω)− ε2∂2ε x
0(t, ω)

)
,

where the stochastic process xεt is the solution to Equation (32). Then it holds true that

E sup
t∈[0,T ]

∥Rε(t)∥2 is bounded.
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Proof. The main strategy of this proof is to first rewrite ε3Rε as the sum of some simpler terms and
then to bound each term. To simplify the notation, we denote x̃εt as x0t + ε∂ε x

0
t + ε2 ∂2εx

0
t .

For k = 0, .., n, we define the following terms:

θk(t) :=

∫ t

0

gk (x
ε
τ , τ)− gk (x̃

ε
τ , τ) dB

k
τ ,

φk(t) :=

∫ t

0

gk (x̃
ε
τ , τ)− gk

(
x0τ , τ

)
− ε

∂gk
∂x

(
x0τ , τ

)
∂ε x

0
τ − ε2Ψk

(
∂ε x

0
τ , x

0
τ , τ
)
− ε2

∂gk
∂xi

(
x0τ , τ

)
∂2ε x

0
τdB

k
τ ,

σk(t) := −ε
∫ t

0

ηk
(
x0τ , τ

)
+ 2ε

∂η

∂x

(
x0τ , τ

)
∂ε x

0
τdB

k
τ .

Hence, we have ε3Rε(t) =
∑1

k=0 θk(t) + φk(t) + σk(t).

For θk(t), we have

E sup
t∈[0,T ]

∥θk(t)∥2 ≤ C E sup
t∈[0,T ]

∫ t

0

∥∥gk (xεφ, e)− gk
(
x̃εφ, τ

)∥∥2 dτ, (i)

≤ C

∫ T

0

E sup
t∈[0,tau]

∥xεt − x̃εt∥
2
dτ, (ii)

≤ C

∫ T

0

E sup
t∈[0,τ ]

∥Rε(t)∥2 dτ, , (iii)

where to obtain (i) we used Jensen’s inequality when k = 0 and by the Burkholder-Davis-Gundy
inequality when k = 1, used the Lipschitz condition of gk to obtain (ii), and for (iii), it is because
ε3Rε(t) = x̃εt − xεt .
We note that from Taylor’s theorem, for any s ∈ [0, t], k = 0, 1, there exists some εs ∈ (0, ε) s.t.

gk (x̃
ε
s, s)− gk

(
x0s, s

)
− ε

∂gk
∂x

(
x0s, s

)
∂εx

0
s = ε2

∂gk
∂x

(x̃εss ) ∂2ε x
0
s + ε2Ψ

(
∂ε x

0
s, x̃

εs
s , s

)
. (42)

For φk(t), we have

E sup
t∈[0,T ]

∥φk(t)∥2

≤C E sup
t∈[0,T ]

∫ t

0

∥∂gk
∂x

(x̃εss ) ∂2ε x
0
s +Ψk

(
∂ε x

0
s, x̃

εs
s , s

)
− ∂gk

∂x

(
x0s
)
∂2ε x

0
s −Ψk

(
∂ε x

0
s, x

0
s, s
)
∥2ds,

(iv)

≤ C E sup
t∈[0,T ]

∫ t

0

∥∥∥∥∂gk∂x (x̃εss )− ∂gk
∂x

(
x0s
)∥∥∥∥2 ∥∥∂2ε x0s∥∥2 + ∥∥Ψk

(
∂εx

0
s, x̃s, s

)
−Ψk

(
∂εx

0
s, x

0
s, s
)∥∥2 ds,

(v)

≤C E sup
t∈[0,T ]

∫ t

0

∥∥x̃εss − x0s
∥∥2 (C +

∥∥∂2ε x0s∥∥2) ds, (vi)

≤C E sup
t∈[0,T ]

∫ t

0

∥∥ε∂ε x0s + ε2∂2ε x
0
s

∥∥2 (C +
∥∥∂2ε x0s∥∥2) ds,

≤C

(
E sup

t∈[0,T ]

∥∥∂ε x0s∥∥2) + E sup
t∈[0,T ]

∥∥∂2ε x0s∥∥2)
)(

C + E sup
t∈[0,T ]

∥∥∂2ε x0s∥∥2
)
, (vii)

where for (iv), we used Equation (42) and Jensen’s inequality for k = 0 and the Burkholder-Davis-
Gundy inequality for k = 1; to obtain (v), we applied Jensen’s equality; we then derived (vi) from
the Lipschitz conditions of gk and Ψk; and finally another application of Jensen’s inequality gives
(vii) which is bounded as a result from the Lemma B.6.
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For σk(t),

sup
t∈[0,T ]

∥σ0(t)∥2 ≤C ε

∫ T

0

E sup
s∈[0,t]

∥∥ηk (x0s, s)∥∥2 + CE sup
s∈[0,t]

∥∥∥∥∂ηk∂x (x0s, s)
∥∥∥∥2 ∥∥∂ε x0s∥∥2 dt, (ix)

≤C

∫ T

0

C

(
1 + E sup

s∈[0,t]

∥∥x0s∥∥2
)

+ CE sup
t∈[0,T ]

∥∥∥∥∂ηk∂x (x0t , t)
∥∥∥∥2 ∫ T

0

E sup
s∈[0,t]

∥∥∂εx0s∥∥2 dt,
(x)

≤ c+ C E sup
t

∈ [0, T ]
∥∥x0s∥∥2 + C E sup

t∈[0,T ]

∥∥∥∥∂η∂x (x0t , t)
∥∥∥∥2 E sup

t∈[0,T ]

∥∥∂εx0t∥∥2 ,
(xi)

where we obtained (ix) by Jensen’s inequality when k = 0 and by Burkholder-Davis-Gundy inequality
when k = 1, and (x) by the linear growth assumption on ηk; one can see that (xi) is bounded by
recalling the Lemma B.6 and the assumption that ηk has bounded derivatives.

Hence, by Jensen’s inequality and Gronwall’s lemma, we have

E sup
t∈[0,T ]

∥Rε(t)∥2 ≤C

K∑
k=0

E sup
t∈[0,T ]

∥θk(t)∥2 + E sup
t∈[0,T ]

∥φk(t)∥2 + E sup
t∈[0,T ]

∥σk(t)∥2 ,

≤C + C

∫ T

0

E sup
t∈[0,τ ]

∥Rε(t)∥2 dτ,

≤C exp (C) .

Therefore, E sup ∥Rε(t)∥2 is bounded.

Finally, it is now straightforward to show Equation (33) by applying a second-order Taylor expansion
on f

(
x0t + ε∂εx

0
t + ε2∂2εx

0
t +ε3Rε(t)

)
.

We are now ready to show Theorem 3.7. One notes that Corollary 3.8 directly follows from the result
too.

Proof. (Theorem 3.7) From Proposition B.5, it is noteworthy to point out that the derived SDEs (34)
for ∂ε x0t and ∂2ε x

0
t are vector-valued general linear SDEs. With some steps of derivations, one can

express the solutions as:

∂ε x
0
t =Φt

∫ t

0

Φ−1
s

(
η0(x

0
s, s)−

m∑
k=1

∂gk
∂x

(x0s, s)ηk(x
0
s, s)

)
ds+ Φt

∫ t

0

Φ−1
s ηk(x

0
s, s)dB

k
s (a)

∂2ε x
0
t =Φt

∫ t

0

Φ−1
s

(
Ψ0(x

0
s, ∂ε x

0
s, s) + 2

∂η0
∂x

(x0s, s)∂ε x
0
s

−
m∑

k=1

∂gk
∂x

(x0s, s)
(
Ψk(x

0
s, ∂ε x

0
s, s) + 2

∂ηk
∂x

(x0s, s)∂ε x
0
s)
))

ds,

+Φt

∫ t

0

Φ−1
s

m∑
k=1

(
Ψk(x

0
s, ∂ε x

0
s, s) + 2

∂ηk
∂x

(x0s, s)∂ε x
0
s

)
dBk

s , (b)

where n× n matrix Φt is the fundamental matrix of the corresponding homogeneous equation:

dΦt =
∂gk
∂x

(x0t , t) Φt dB
k
t , (43)

with initial value
Φ(0) = I. (44)
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It is worthy to note that the fundamental matrix Φt is non-deterministic and when ∂gi
∂x and ∂gj

∂x
commutes, Φt has explicit solution

Φt = exp

(∫ t

0

∂gk
∂x

(x0s, s)dB
k
s − 1

2

∫ t

0

∂gk
∂x

(x0s, s)
∂gk
∂x

(x0s, s)
⊤ds

)
. (45)

Having obtained the explicit solutions, one can plug in corresponding terms and obtain the results of
Theorem 3.7) after a Taylor expansion of the loss function L.
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C ERROR ACCUMULATION DURING THE INFERENCE PHASE AND ITS
EFFECTS TO VALUE FUNCTIONS

Theorem C.1. (Error accumulation due to initial representation error )
Let δ := E ∥ε∥ and dε := E supt∈[0,T ]

∥∥hεt − h0t
∥∥2 + ∥∥z̃εt − z̃0t

∥∥2. It holds that as δ → 0,

dε ≤ δ C (J0 + J1) + δ2 C (exp (H0 (J0 + J1)) + exp (H1 (J0 + J1))) +O(δ3), (46)
where

J0 =exp (Fh + Fz + Ph) , J1 = exp
(
P̄h

)
,

H0 =Fhh + Fhz + Fzh + Fzz + Phh, H1 = P̄hh

Fh =C E sup
t∈[0,T ]

∥∥∥∥∂f∂h +
∂f

∂a
∂hρ

∥∥∥∥2
F

, Fz = C E sup
t∈[0,T ]

∥∥∥∥∂f∂z +
∂f

∂a
∂zρ

∥∥∥∥2
F

,

Ph =C E sup
t∈[0,T ]

∥∥∥∥∂p∂h
∥∥∥∥2
F

, P̄h = C E sup
t∈[0,T ]

∥∥∥∥∂p̄∂h
∥∥∥∥2
F

,

Fhh =C E sup
t∈[0,T ]

∥∥∥∥∂2f∂h2
+

∂2f

∂h∂a
∂hρ+

∂f

∂a
∂2hhρ

∥∥∥∥2
F

,

Fhz =C E sup
t∈[0,T ]

∥∥∥∥ ∂2f∂h∂z
+

∂2f

∂z∂a
∂hρ+

∂f

∂a
∂2zhρ

∥∥∥∥2
F

Fzh =C E sup
t∈[0,T ]

∥∥∥∥ ∂2f∂h∂z
+

∂2f

∂h∂a
∂zρ+

∂f

∂a
∂2hzρ

∥∥∥∥2
F

Fzz =C E sup
t∈[0,T ]

∥∥∥∥∂2f∂z2
+

∂2f

∂z∂a
∂zρ+

∂f

∂a
∂2zzρ

∥∥∥∥2
F

,

Phh =C E sup
t∈[0,T ]

∥∥∥∥∂2p∂h2

∥∥∥∥2
F

, P̄hh = C E sup
t∈[0,T ]

∥∥∥∥∂2p̄∂h2

∥∥∥∥2
F

,

where for brevity, when functions always have inputs (z̃0t , h
0
t , t), we adopt the shorthand to write, for

example, f(z̃0t , h
0
t , t) as f .

Before proving the main result C.1, we first show the general case of perturbation in initial values.
Consider the following general system with noise at the initial value:

dxt = g0 (xt, t) dt+ gk (xt, t) dB
k
t , (47)

x(0) = x0 + ε, (48)

where the initial perturbation ε ∈ Rn × Ω. As gk are C2,α
g functions, by the classical result on the

existence and the uniqueness of solution to SDE, there exists a unique solution to Equation (47),
denoted as xεt or xε(t).

To simplify the notation, we write ∂i xεt := ∂xε(t)
∂xi , ∂2ij x

ε
t =

∂2xε
t

∂xi∂xj , for i, j = 1, . . . , n that are,
respectively, the first and second-order derivatives of the solution xε(t) w.r.t. the changes in the
corresponding coordinates of the initial value. When ε = 0 ∈ Rn, we denote the solutions to
Equation (47) as x0t with its first and second derivatives ∂i x0t , ∂

2
ij x

0
t , respectively.

Proposition C.2. Let δ := E ∥ε∥, it holds that

E sup
t∈[0,T ]

∥∥xεt − x0t
∥∥2 ≤

∑
k=0,1

C δ

(
C E sup

t∈[0,T ]

∥∥∥∥∂gk∂x (x0t , t)

∥∥∥∥2
F

)

+C δ2 exp

C E sup
t∈[0,T ]

∥∥∥∥∂2gk∂x2
(x0t , t)

∥∥∥∥2
F

∑
k̄=0,1

exp

(
C E sup

t∈[0,T ]

∥∥∥∥∂gk̄∂x (x0t , t)

∥∥∥∥2
F

)+O(δ3),

(49)
as δ → 0.
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Proof. Similar to the previous section, for notational convenience, we write t as B0
t and employs

Einstein summation notation. Hence, Equation (47) can be shorten as

dxt = gk (xt, t) dB
k
t , (50)

with initial values x(0) = x0 + ε.

To begin, we find the SDEs that characterize ∂i xεt and ∂2ij x
ε
t , for i, j = 1, ..., n.

For ∂i xεt , we apply Theorem 3.1 from Section 2 in Hennequin et al. (1984) on Equation (50) and
∂i x

ε
t satisfy the following SDE with probability 1,

d∂i x
ε
t =

∂gk
∂x

(xεt , t) ∂i x
ε
tdB

k
t (51)

with initial value ∂ixε0 to be the unit vector ei = (0, 0, . . . , 1, . . . , 0) that is all zeros except one in
the ith coordinate.

For ∂2ij x
ε
t , we again apply Theorem 3.1 from Section 2 in Hennequin et al. (1984) on the SDE (51)

and obtain that ∂2ijx
ε
b satisfy the following SDE with probability 1,

d∂2ij x
ε
t = Ψk (x

ε
t , ∂i x

ε
t , t) ∂

2
ij x

ε
tdB

k
t , (52)

with the initial value ∂ij xε(0) = ej , where

Ψk : Rd × Rd × [0, T ] → Rd×d, (x, ∂i x, t) 7→
(

∂2glk
∂xu∂xv

(xεt , t)

)
l,u,v

∂i x
v.

For the next step, we show that with probability 1, the following holds

xεt = x0t + εi ∂i x
0
t +

1

2
εiεj ∂2ij x

0
t +O

(
ε3
)
, (53)

as ∥ε∥ → 0.
One can follow the similar steps of proofs for Lemma (B.6) and (B.7) in the previous section to show
that E supt∈[0,T ]

∥∥x0t∥∥2 , E supt∈[0,T ]

∥∥∂ix0t∥∥2 , E supt∈[0,T ]

∥∥∂2ijx0t∥∥2 and the remainder term are
bounded. Hence, Equation (53) holds with probability 1.

Indeed, for E supt∈[0,T ]

∥∥∂i x0t∥∥2, it holds that

E sup
t∈[0,T ]

∥∥∂i x0t∥∥2 ≤C ∥ei∥2 +
∑
k=0,1

E sup
t∈[0,T ]

C

∫ t

0

∥∥∥∥∂gk∂x (x0s, s)

∥∥∥∥2
F

∥∂i xs∥2 ds (54)

≤
∑
k=0,1

C exp

(
C E sup

t∈[0,T ]

∥∥∥∥∂gk∂x (x0t , t)

∥∥∥∥2
F

)
. (55)

Similarly, for E supt∈[0,T ]

∥∥∂2ij x0t∥∥2, it holds that

E sup
t∈[0,T ]

∥∥∂2ij x0t∥∥2 ≤C ∥ei∥2 +
∑
k=0,1

E sup
t∈[0,T ]

C

∫ t

0

∥∥∥∥∂2gk∂x2
(x0s, s)

∥∥∥∥2
F

∥∥∂i x0s∥∥2 ∥∥∂2ij x0s∥∥2 ds
(56)

≤C

1∑
k=0

exp

(
C E sup

t∈[0,T ]

∥∥∥∥∂2gk∂x2
(x0t , t)

∥∥∥∥2
F

∥∥∂i x0t∥∥2
)

(57)

≤C
∑
k=0,1

exp

(
C E sup

t∈[0,T ]

∥∥∥∥∂2gk∂x2
(x0t , t)

∥∥∥∥2
F

exp

(
C E sup

t∈[0,T ]

∥∥∥∥∂gk∂x (x0t , t)

∥∥∥∥2
F

))
.

(58)

Therefore, we could obtain the proposition by applying Jensen’s inequality to Equation (53) and
plugging with 55 and 56.
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Now we are ready to prove Theorem C.1. We note that one could then obtain Corollary 4.2 without
much more effort by a standard application of Taylor’s theorem.

Proof. (Proof for Theorem C.1)

At (ht, z̃t, π(ht, z̃t)), where the local optimal policy π(ht, z̃t), denoted as a∗t , there exists an open
neighborhood V ⊆ A of a∗t such that a∗t is the local maximizer for Q(ht, z̃t, ·) by definition.
Then, ∂Q

∂a (ht, z̃t, a
∗
t ) = 0, and ∂2Q

∂a2 (ht, z̃t, a) is negative definite. As ∂2Q
∂a2 is non-degenerate in the

neighborhood V , by the implicit function theorem, there exists a neighborhood U × V of (ht, z̃t, a∗t )
such that there exists a C2 map ρ : U → V such that ∂Q

∂a (h, z̃, ρ(h, z̃)) = 0 and ρ(h, z̃) is the

local maximizer of Q(h, z̃, ·) for any h, z̃ ∈ U . Furthermore, we have that ∂h ρ = −∂2Q
∂a2

−1
∂2Q
∂a∂h .

Similarly, other first-terms and second-order terms ∂zρ, ∂2zzρ, ∂
2
zhρ, ∂

2
hzρ, ∂

2
hhρ can be explicitly

expressed without much additional effort (e.g., in Loomis and Sternberg (2014), Cartan (2017)).

The rest of the proof is easy to see after plugging in the corresponding terms from Proposition
C.2.
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D EXPERIMENTAL DETAILS

In this section, we provide additional details and results beyond thoese in the main paper.

D.1 MODEL IMPLEMENTATION AND TRAINING

Our baseline is based on the DreamerV2 Tensorflow implementation. Our theoretical and empirical
results should not matter on the choice of specific version; so we chose DreamerV2 as its codebase
implementation is simpler than V3. We incorporated a computationally efficient approximation of the
Jacobian norm for the sequence model, as detailed in Hoffman et al. (2019), using a single projection.
During our experiments, all models were trained using the default hyperparameters (see Table 6) for
the MuJoCo tasks. The training was conducted on an NVIDIA A100 and a GTX 4090, with each
session lasting less than 15 hours.

Hyperparameter Value
eval_every 1e4
prefill 1000
train_every 5
rssm.hidden 200
rssm.deter 200
model_opt.lr 3e-4
actor_opt.lr 8e-5
replay_capacity 2e6
dataset_batch 16
precision 16
clip_rewards tanh
expl_behavior greedy
encoder_cnn_depth 48
decoder_cnn_depth 48
loss_scales_kl 1.0
discount 0.99
jac_lambda 0.01

Table 6: Hyperparameters for DreamerV2 model.
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D.2 ADDITIONAL RESULTS ON GENERALIZATION ON PERTURBED STATES

In this experiment, we investigated the effectiveness of Jacobian regularization in model trained
against a baseline during the inference phase with perturbed state images. We consider three types of
perturbations: (1) Gaussian noise across the full image, denoted as N (µ1, σ

2
1) ; (2) rotation; and (3)

noise applied to a percentage of the image, N (µ2, σ
2
2). (In Walker task, µ1 = µ2 = 0.5, σ2

2 = 0.15;
in Quadruped task, µ1 = 0, µ2 = 0.05, σ2

2 = 0.2.) In each case of perturbations, we examine a
collection of noise levels: (1) variance σ2 from 0.05 to 0.55; (2) rotation degree α 20 and 30; and (3)
masked image percentage β% from 25 to 75.

D.3 WALKER TASK

β% mask, N (0.5, 0.15) mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
25% 882.78 28.57199976 929.778 10.13141451
30% 878.732 40.92085898 811.198 7.663919934
35% 856.32 37.56882045 799.98 29.75286097
40% 804.206 47.53578989 688.382 43.21310246
45% 822.97 80.36907477 601.862 42.49662057
50% 725.812 43.87836335 583.418 76.49237076
55% 768.68 50.71423045 562.574 59.88315135
60% 730.864 23.37324967 484.038 90.38940234
65% 696.936 65.26307708 516.936 41.44549462
70% 687.346 70.9078686 411.922 45.85808832
75% 685.492 63.22171723 446.74 40.66898799

Table 7: Walker. Mean and standard deviation of accumulated rewards under masked perturbation of
increasing percentage.

full, N (0.5, σ2) mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
0.05 894.594 39.86907737 929.778 40.91
0.10 922.854 27.28533819 811.198 98.79
0.15 941.512 16.47165049 799.98 106.01
0.20 840.706 66.12470628 688.382 70.78
0.25 811.764 75.06276427 601.862 83.65
0.30 779.504 53.29238107 583.418 173.59
0.35 807.996 34.35949621 562.574 79.30
0.40 751.986 85.20137722 484.038 112.43
0.45 663.578 60.18862658 516.936 90.25
0.50 618.982 61.10094983 411.922 116.94
0.55 578.62 64.25840684 446.74 84.44

Table 8: Walker. Mean and standard deviation of accumulated rewards under Gaussian perturbation
of increasing variance.

rotation, α◦ mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
20 423.81 12.90174678 391.65 35.33559636
30 226.04 23.00445979 197.53 15.26706914

Table 9: Walker. Mean and standard deviation of accumulated rewards under rotations.
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D.4 QUARDRUPED TASK

β% mask, N (0.5, 0.15) mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
25% 393.242 41.10002579 361.764 81.41175179
30% 384.11 20.70463958 333.364 101.7413185
35% 354.222 53.14855379 306.972 16.02275164
40% 329.404 39.1193856 266.088 51.20298351
45% 360.662 36.86801622 281.342 47.85950867
50% 321.556 27.66758085 222.222 22.0668251
55% 300.258 31.44931987 203.578 14.38754218
60% 321 18.42956321 217.98 23.81819368
65% 304.62 20.75493676 209.238 47.14895407
70% 301.166 18.2485583 193.514 60.83781004
75% 304.92 18.63214963 169.58 30.83637462

Table 10: Quadruped. Mean and standard deviation of accumulated rewards under masked perturba-
tion of increasing percentage.

full, N (0, σ2) mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
0.10 416.258 20.87925573 326.74 40.30425536
0.15 308.218 24.26432093 214.718 15.7782198
0.20 314.29 44.73612075 218.756 35.41520832
0.25 293.02 24.29582269 190.78 26.22250465
0.30 269.778 21.83423047 207.336 39.1071161
0.35 282.046 13.55303767 217.048 29.89589972
0.40 273.814 19.81361476 190.208 59.61166975
0.45 267.18 17.5276068 195.606 18.91137964
0.50 268.838 29.45000543 194.082 26.76677642
0.55 252.54 22.516283 150.786 24.53362855

Table 11: Quadruped. Mean and standard deviation of accumulated rewards under Gaussian pertur-
bation of increasing variance.

rotation, α◦ mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
20 787.634 101.5974723 681.032 133.7507948
30 610.526 97.74499159 389.406 61.5997198

Table 12: Quadruped. Mean and standard deviation of accumulated rewards under rotations.
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D.5 ADDITIONAL RESULTS ON ROBUSTNESS AGAINST ENCODER ERRORS

In this experiment, we evaluate the robustness of model trained with Jacobian regularization against
two exogenous error signals (1) zero-drift error with µt = 0, σ2

t (σ2
t = 5 in Walker, σ2

t = 0.1 in
Quadruped), and (2) non-zero-drift error with µt ∼ [0, 5], σ2

t ∼ [0, 5] uniformly. λweight of Jacobian
regularization is 0.01. In this section, we included plot results of both evaluation and training scores.

D.5.1 WALKER TASK

Under the Walker task, Figures 3 and 4 show that model with regularization is significantly less
sensitive to perturbations in latent state zt compared to the baseline model without regularization.
This empirical observation supports our theoretical findings in Corollary 3.8, which assert that the
impact of latent representation errors on the loss function L can be effectively controlled by regulating
the model’s Jacobian norm.

Figure 3: Walker. Eval (left) and train scores (right) under latent error process µt = 0, σ2
t = 5

.

Figure 4: Walker. Eval (left) and train scores (right) under latent error process µt ∼ [0, 5], σ2
t ∼ [0, 5].
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D.5.2 QUADRUPED TASK

Under the Quadruped task,we initially examined a smaller latent error process (µt = 0, σ2
t = 0.1) and

observed that the model with Jacobian regularization converged significantly faster, even though the
adversarial effects on the model without regularization were less severe (Figure 5). When considering
the more challenging latent error process (µt ∼ [0, 5], σ2

t ∼ [0, 5]), we noted that the regularized
model remained significantly less sensitive to perturbations in latent state zt, whereas the baseline
model struggled to learn (Figure 6). These empirical observations reinforce our theoretical findings
in Corollary 3.8, demonstrating that regulating the model’s Jacobian norm effectively controls the
impact of latent representation errors.

Figure 5: Quad. Eval (left) and train scores (right) under latent error process µt = 0, σ2
t = 0.1.

Figure 6: Quad. Eval (left) and train scores (right) under latent error process µt ∼ [0, 5], σ2
t ∼ [0, 5].
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D.6 COMPARISON OF JACOBIAN REGULARIZATION AND AUGMENTATION METHODS WITH
KNOWN PERTURBATION TYPES

In cases where additional knowledge about perturbation is available, such as when the perturbation
type is known a priori (which could be unrealistic), one could consider using augmentation methods by
training with perturbed observations to improve robustness. We considered training with observation
images augmented with (1) randomly-masked Gaussian noises N (0.15, 0.1) and (2) rotations 10◦.

full, N (0.5, σ2
1) rotation, +α◦ mask β%, N (0.5, 0.15)

clean σ2
1 = 0.35 σ2

1 = 0.5 α = 20 α = 30 β = 50 β = 75
Jac Reg 967.12 742.32 618.98 423.81 226.04 725.81 685.49

Aug w. N (0.15, 0.1) 847.19 182.33 127.72 286.63 213.93 767.92 187.66
Aug w. rotation 10◦ 860 286.26 184.84 695.34 424.88 347.66 256.84

Baseline 966.53 615.79 333.47 391.65 197.53 583.41 446.74

Table 13: Evaluation on unseen states by various perturbation (Clean means without perturbation).
λ = 0.01.

g = 9.8 g = 6 g = 4 g = 2
Jac Reg 967.12 906.42 755.18 679.24

Aug w. N (0.15, 0.1) 847.19 771.34 624.4 428.45
Aug w. rotation 10◦ 860 582.22 486.84 356.9

Baseline 966.53 750.36 662.86 381.14

Table 14: Evaluation on unseen dynamics by various gravity constants (g = 9.8 is default). λ = 0.01.
As shown in Table 13 and 14, the experimental results indicate that models trained with Jacobian
regularization outperform those using augmentation methods when faced with perturbations different
from those used during augmentation. While state augmentation is effective when the inference
perturbations match those used in training, it struggles to generalize to unseen perturbations. In
contrast, Jacobian regularization is less dependent on the diversity and relevance of augmented data
samples, as it directly targets the learning dynamics of the world model. This makes it more broadly
applicable and reduces the likelihood of overfitting, avoiding the risk of the model becoming overly
specialized to specific perturbation patterns, which is a common challenge with data augmentation.
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D.7 VISUALIZATIONS OF RECONSTRUCTED STATE TRAJECTORY UNDER EXOGENOUS
ZERO-DRIFT AND NON-ZERO DRIFT LATENT REPRESENTATION ERROR.

In this section, we present visualizations of reconstructed state trajectory samples, included in the
revision to illustrate the error propagation of exogenous zero-drift and non-zero drift error signals in
latent states, both with and without Jacobian regularization.

As depicted in Figures 7 and 8, the reconstructed states for the baseline model without Jacobian
regularization appear blurry and less structured, indicating that the model has not effectively captured
the underlying dynamics of the environment. In contrast, the reconstructed states for the model with
Jacobian regularization are sharper and more accurately reflect the true dynamics of the environment.
The visual comparison highlights the robustness brought by Jacobian regularization against latent
noises.

Figure 7: Quad. Open-loop reconstructed trajectories under zero-drift latent representation error
(µt = 0, σ2

t = 5) with right and without left Jacobian regularization.

Figure 8: Walker. Open-loop reconstructed trajectories under non-zero drift latent representation error
(µt ∼ [0, 5], σ2

t ∼ [0, 5]) with lower and without upper Jacobian regularization.
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D.8 ADDITIONAL RESULTS ON FASTER CONVERGENCE ON TASKS WITH EXTENDED HORIZON.

In this experiment, we evaluate the efficacy of Jacobian regularization in extended horizon tasks,
specifically by increasing the horizon length in MuJoCo Walker from 50 to 100 steps. We tested two
regularization weights λ = 0.1 and λ = 0.05. Figure 9 demonstrates that models with regularization
converge faster, with λ = 0.05 achieving convergence approximately 100,000 steps ahead of the
model without Jacobian regularization. This supports the findings in Theorem 4.1, indicating that
regularizing the Jacobian norm can reduce error propagation, especially over longer time horizons.

Figure 9: Extended horizon Walker task. Eval (left) and train scores (right).

Figure 10: Extended horizon Walker task. Eval (left) and train scores (right).
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