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ABSTRACT

Bootstrap aggregation, commonly referred to as bagging, is a fundamental tech-
nique in ensemble learning designed to enhance the performance of predictive
models. It is well-established that the effectiveness of bagging is strongly in-
fluenced by the management of correlations among the aggregated models. For
instance, random forests, a widely-used ensemble method, address this issue by
randomly selecting features to reduce the correlation between individual tree mod-
els. In this study, we propose a method called Deep Bootstrap Aggregation for
regression tasks, which combines deep network architectures with least squares
estimation to improve the predictive accuracy of bagging models. Both theoreti-
cal analysis and empirical experiments support the effectiveness of the proposed
approach.

1 INTRODUCTION

Regression problems are frequently encountered in real-world scenarios, as they seek to uncover
the complex relationships between a set of input variables and a continuous output variable. A
conventional approach to addressing these challenges involves the use of statistical models, such as
linear models or nonparametric regression techniques. Among the various nonparametric methods,
regression trees are particularly popular for explaining the relationships between inputs and outputs.

Bishop (1995, chapter 9) and Breiman (1996) demonstrated the benefits of combining predictions
from multiple models to enhance predictive performance. Bühlmann & Yu (2002) provided a theo-
retical analysis of bagging, introducing the concept of subbagging. Later, Breiman (2001) proposed
the use of nearly uncorrelated models to further improve predictive accuracy. One notable example
of this approach is the Random Forests algorithm. Introduced by Breiman (2001), random forests
employ a strategy that aggregates predictions from multiple individual regression trees. This is ac-
complished through two primary techniques: bootstrapping the training data and randomly selecting
subsets of input variables within each bootstrap. Specifically, each tree in the random forest is built
using a bootstrapped dataset and a randomly chosen subset of input variables. The final prediction
is computed as the (unweighted) average of the predictions from all individual regression trees. For
a more in-depth understanding of random forests and their implementation, see Hastie et al. (2009),
Biau (2012), and James et al. (2021).

In random forests, the random selection of input variables aims to reduce correlations among the
bootstrapped regression trees, as lower correlations typically lead to improved predictive perfor-
mance. However, it is important to note that random input variable selection does not always achieve
this goal, making the unweighted average of predictions from individual regression trees suboptimal.
Evidence supporting this is presented in Figure 1 in Section 2.

As emphasized by Ulaş et al. (2012), the development of a robust ensemble learning methodology
hinges on four critical components: strategic selection of prediction models, precise hyperparam-
eter tuning, careful use of data sampling techniques, and deliberate selection of input variables.
Extensive efforts have been made to reduce correlations between prediction models, with a focus
on increasing model diversity (Rosen, 1996; Ho, 1998; Liu & Yao, 1999; Derbeko et al., 2002;
Kuncheva & Whitaker, 2003; Bacauskiene et al., 2009; Hsu & Srivastava, 2012) and refining en-
semble weighting schemes (Acar & Rais-Rohani, 2009; Kim et al., 2011; Shahhosseini et al., 2020;
Mao et al., 2021). Despite substantial research aimed at enhancing ensemble learning through these
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components, as comprehensively reviewed by Tuysuzoglu & Birant (2020), there remains a signifi-
cant gap in addressing the key issue of reducing correlations among prediction models.

To address this challenge, we begin by interpreting the unweighted sample mean in the bagging
procedure as the ordinary least squares (OLS) estimator within a linear model that includes only
an intercept term. To account for correlation among prediction models, it is advisable to replace
OLS with generalized least squares (GLS) estimation, which leverages model correlations to im-
prove efficiency. We propose a framework that incorporates least squares methodology within a
deep network architecture. This framework effectively manages correlations across models by inte-
grating hidden layers, leading to substantial improvements in predictive accuracy. Additionally, this
approach extends beyond enhancing random forests, making it applicable to a wide range of models
that handle continuous outputs. We demonstrate the robustness of the proposed method through
theoretical analysis and empirical validation.

The structure of this article is as follows. Section 2 formalizes our aggregation method as a least
squares estimation within the context of linear models. In Section 3, we introduce our framework and
provide a detailed exposition of the corresponding theoretical results. The framework is extended
to a deep network structure in Section 4. Sections 5 and 6 present the results of numerical studies,
including both simulated and real-world examples, to validate the effectiveness of the proposed
approach. Finally, conclusions are drawn in Section 7.

2 AGGREGATION AS A LEAST SQUARES ESTIMATION

Before introducing the proposed method, we first reformulate the bagging procedure by framing
it as an estimation problem in linear models. Let the training dataset be D = {yi,xi}ni=1, where
xi = (xi1, xi2, . . . , xip)

⊤ represents the vector of p input variables for the ith data point, and
yi = y(xi) is the observed response value corresponding to xi. The goal is to predict the output
variable y(x) at an unobserved x, using the training dataset D.

Conventionally, the bagging procedure constructs T predictors, C1, . . . , CT , each trained on a boot-
strapped dataset from D under a chosen prediction model (e.g., regression tree, K-NN regression).
We refer to C1, . . . , CT as the base predictors in this article. The aggregated prediction of y(x) is
given by:

ŷ(x) =
1

T

T∑
j=1

Cj(x). (1)

In Equation (1), each base predictor Cj(x) is assigned an equal weight of 1/T , meaning that all
base predictors contribute equally to ŷ(x). The use of Equation (1) is supported by Bishop (1995,
Chapter 9) and Breiman (1996), who show that the mean square error (MSE) of ŷ(x) is lower than
that of any single predictor Cj(x). This property makes bagging a widely adopted machine learning
algorithm.

Although equally weighted aggregation, as described in Equation (1), is computationally efficient
and easy to understand, it is important to critically reassess the assumptions underlying this ap-
proach. In the following discussion, we reformulate the aggregation step as a least squares problem,
providing an alternative perspective on equally weighted aggregation.

2.1 ORDINARY LEAST SQUARES-BASED AGGREGATION

The goal of aggregation in ensemble learning is to make predictions by combining the base pre-
dictors Cj(x), where j = 1, 2, . . . , T . Let ϵj(x) = Cj(x) − µ(x), where µ(x) = E(Cj(x)) for
j = 1, 2, . . . , T , resulting in the following expression:

Cj(x) = µ(x) + ϵj(x), j = 1, 2, . . . , T, (2)

where the expectation is taken with respect to the distribution of bootstrapped samples, and ϵj(x)
represents a random error. For a given x, the OLS estimator of µ(x) is:

µ̂OLS(x) =
1

T

T∑
j=1

Cj(x),

2
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which is equivalent to ŷ(x) in Equation (1). Thus, the conventional bagging method described in
Equation (1) can be interpreted as the OLS estimation of µ(x) under the linear model presented in
Equation (2). We refer to this method as ordinary least squares-based aggregation (OLSA).

It is well known that the OLS estimator is the best linear unbiased estimator (BLUE) under the
following two assumptions:

Var(ϵj(x)) = σ2 and Cov(ϵi(x), ϵj(x)) = 0,

i, j = 1, 2, . . . , T, i ̸= j.

However, the construction of C1(x), . . . , CT (x) involves bootstrapping the data, which can lead to
correlations between Ci(x) and Cj(x) when i ̸= j. The most extreme case arises when two boot-
strapped datasets are identical, resulting in the corresponding base predictors producing identical
predictions.

To illustrate the covariance between base predictors, we employ a random-forest model with the
random selection of ⌊√p⌋ input variables. We estimate the variance-covariance matrix of the base
predictors as follows:

Ĉov(Ci(x), Cj(x)) =
1

n− 1

n∑
k=1

(Ci(xk)− y(xk)) (Cj(xk)− y(xk)) . (3)

We use the following three functions to generate the training and testing data:

1. detpep108d: This 8-dimensional function, originally presented by Dette & Pepelyshev
(2010), exhibits substantial curvature in certain dimensions while others are scarcely uti-
lized.

2. grlee09: Created by Gramacy & Lee (2009), this function involves six variables and
exhibits significant oscillations as the input variables approach zero.

3. friedman1: One of the friedman functions introduced by Friedman (1991),
friedman1 consists of ten variables and exhibits considerable variation near zero.

Figure 1: Comparison of the variance-covariance matrices for different underlying functions.
The left, middle, and right panels correspond to the functions detpep108d, friedman1, and
grlee09, respectively.

We generate 1000 training data points uniformly distributed in [0, 1] for each input dimension and
use the three functions, plus a random error term with zero mean and variance equal to 10 percent
of the signal variance, to generate the output values. We construct T = 10 base predictors via
10 bootstrapped datasets. Then, we apply Equation (3) to estimate the variance and covariance
between the 10 base predictors. The results are presented in Figure 1. To better visualize the
variance-covariance matrices, we apply a log scale to each entry of the matrices. The off-diagonal
elements represent the covariances between predictors, showing that predictors generated using all
functions are correlated. Furthermore, predictors constructed from different underlying functions
exhibit varying levels of correlation.

In the following section, we propose a new aggregation approach based on the linear-model frame-
work in (2) to address the above issue. This method will be shown to significantly improve prediction
performance via simulated and real-world data experiments.
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3 GENERALIZED LEAST SQUARE-BASED AGGREGATION

Based on the observation in Figure 1, which displays varying magnitudes of variances and correla-
tions among the base predictors, it is reasonable to improve the OLSA method using GLS estimation
as follows:

µ̂GLS(x) = (1⊤
TΣΣΣ

−11T )
−11⊤

TΣΣΣ
−1C(x),

where 1T is the T × 1 vector of ones, C(x) is the vector of Cj(x) values for j = 1, . . . , T , and ΣΣΣ
is the variance-covariance matrix of C(x). We refer to this method as Generalized Least Squares-
based Aggregation (GLSA). It is known that µ̂GLS(x) is the BLUE of µ(x) under the model in
Equation (2), according to the Gauss-Markov theorem, when ΣΣΣ is not proportional to the identity
matrix. This implies that the MSE of GLSA is lower than that of conventional bagging.

The matrix ΣΣΣ, estimated by Equation (3), accounts for the unequal variances and nonzero correla-
tions between base predictors. It can be observed that:

Var(µ̂GLS(x)) =
(
1⊤
TΣΣΣ

−11T

)−1
=

1∑T
i=1

∑T
j=1ΣΣΣ

−1
ij

,

where ΣΣΣ−1
ij denotes the ijth element of ΣΣΣ−1. Let wGLS = (1⊤

TΣΣΣ
−11T )

−11⊤
TΣΣΣ

−1 denote the vector
of weights assigned to each base predictor in the computation of µ̂GLS(x). Notably, wGLS depends
solely on the variance-covariance matrix ΣΣΣ constructed from the training data and is independent of
the location of the testing data.

To examine the variance reduction achieved by employing GLSA compared to OLSA, we define RΣΣΣ

as a measure that quantifies the extent of variance reduction facilitated by GLSA:

RΣΣΣ =
Var(µ̂OLS(x))− Var(µ̂GLS(x))

Var(µ̂OLS(x))
= 1− T 2(∑T

i=1

∑T
j=1ΣΣΣ

−1
ij

)(∑T
i=1

∑T
j=1ΣΣΣij

) .
Using the Cauchy-Schwarz inequality, it can be shown that: T∑

i=1

T∑
j=1

ΣΣΣ−1
ij

 T∑
i=1

T∑
j=1

ΣΣΣij

 ≥ T 4.

This demonstrates that RΣΣΣ satisfies the inequality RΣΣΣ ≥ 1− 1
T 2 . The lower bound 1− 1

T 2 increases
with T , indicating that the variance reduction becomes more significant as T grows. When equal-
ity holds, it implies that Var(µ̂OLS(x)) = T 2 · Var(µ̂GLS(x)), highlighting a substantial variance
reduction through GLSA compared to OLSA.

In the remainder of this section, we examine the relationship between the number of predictors
T and the variances of µ̂OLS(x) and µ̂GLS(x). We use a random-forest model with ⌊√p⌋ input
variables. The training dataset, consisting of 400 observations, was generated using the functions
detpep108d, friedman1, and grlee09. We begin with five base models and incrementally
add five more in each subsequent iteration. For the GLSA method, the covariance matrix ΣΣΣ is
estimated using Equation (3).

Figure 2 presents the values of RΣΣΣ and the variances of µ̂OLS(x) and µ̂GLS(x). To facilitate com-
parison, RΣΣΣ and the variances of the predictors are plotted on the same graph. A key observation
is that the proposed method significantly reduces the variance of the predictors, with the variance
of µ̂GLS decreasing monotonically as T increases. While the variances for both OLSA and GLSA
decrease as T increases in the friedman1 and detpep108d functions, the rate of increase in
RΣΣΣ is slower, indicating that the improvement achieved by applying GLSA to these functions is less
pronounced. In contrast, RΣΣΣ increases consistently, suggesting that a larger number of predictors
may lead to more substantial improvements using GLSA. In summary, increasing T generally re-
sults in higher RΣΣΣ. Additionally, the trends of RΣΣΣ, Var(µ̂OLS(x)), and Var(µ̂GLS(x)) vary based on
the choice of base models and the underlying functions.

4 DEEP BOOTSTRAP AGGREGATION VIA MULTI-LAYER GLSA

Numerous factors can influence the performance of GLSA. A critical issue is the potential instability
encountered during the inversion of the variance-covariance matrix ΣΣΣ. This instability arises from
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Figure 2: Comparison of RΣΣΣ and variance of predictors. The left, middle, and right panels employ
the functions: detpep108d, friedman1 and grlee09 respectively.

numerical errors inherent in the inversion process, which can significantly impair the performance
of GLSA. These numerical inaccuracies are especially problematic in high-dimensional settings or
when ΣΣΣ is nearly singular, leading to unreliable estimates. In this section, we first demonstrate this
difficulty and then propose a solution by incorporating a deep network structure into GLSA.

4.1 NON-STABLE PERFORMANCE FOR GLSA

Suppose we aim to aggregate the predictors C1, C2, . . . , CT . Figure 3 provides evidence of insta-
bility when using GLSA. We use the friedman1, friedman2, and friedman3 functions with
noise centered at zero and variance equal to 10 percent of the signal variance to sample 200 training
data points, where friedman2 and friedman3 are also from Friedman (1991). Additionally, we
use 400 testing data points to evaluate each model—bagging trees and random forests—and each
aggregation method—OLSA and GLSA.

Figure 3: Trends in MSE performance as the number of predictors increases. The left, middle, and
right panels correspond to friedman1, friedman2, and friedman3, respectively. The upper
panels use bagging trees, while the lower panels use random forests.

For OLSA, it is clear that the MSE of bagging trees and random forests decreases as the number
of predictors increases, consistent with the intuitive understanding that aggregating more predictors
improves overall prediction accuracy. For GLSA, however, in certain cases—such as friedman3
with random forests—the MSE reaches a minimum at specific points and then increases as the
number of predictors continues to grow. Even more concerning, in cases like friedman2 with
bagging trees, the MSE shows a monotonically increasing trend, which is undesirable.

To address this issue, we propose an enhanced modification of GLSA, called Multi-Stage General-
ized Least Squares-Based Aggregation (M-GLSA), by incorporating a deep network structure into
the aggregation procedure. This approach is able to effectively combine base predictors from differ-
ent stages of the aggregation process, improving stability and further enhancing predictive accuracy.
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4.2 MULTI-STAGE GLSA

A deep network consists of several layers. In this article, we treat each layer as a stage in the
aggregation procedure. M-GLSA aggregates a subset of predictors using GLSA at each stage and
produces a final predictor after the last stage. Let C = (C1, . . . , CT ) represent the set of base
predictors to be aggregated. At stage 1, we divide C into T1 subsets, where each subset contains
T1,1, . . . , T1,T1 base predictors. We use Ti,j to denote the number of predictors in the jth subset at
the ith stage. At stage 1, we aggregate the predictors in each subset using GLSA to obtain the stage 1
predictors C1 = (C1,1, C1,2, . . . , C1,T1), where C1,j denotes the jth predictor at stage 1. Similarly,
we divide C1 into T2 subsets, with each subset containing T2,1, . . . , T2,T2 predictors. GLSA is then
applied to obtain the stage 2 predictors C2 = (C2,1, . . . , C2,T2

). Recursively, this process continues,
with GLSA being performed at each stage using appropriately sized subsets, until the final predictors
are obtained.

Note that each stage consists of multiple aggregation steps, with each step involving only a subset
of the predictors from the previous stage. This property reduces the dimensionality of the variance-
covariance matrix ΣΣΣ in each step and provides a more accurate estimate of ΣΣΣ. However, M-GLSA
has several hyperparameters, including the number of predictors T , the number of stages G, the
subset sizes at each stage T1,1, . . . , Ti,Ti

for i = 1, . . . , G, and the number of subsets at each stage
T1, . . . , TG. In the following, we discuss the selection of suitable hyperparameters, taking into
account computational time, performance, and numerical stability.

Recall that when selecting the number of base predictors T in bagging trees and random forests, the
goal is to choose a value of T large enough to reach a stable MSE. We adopt the same approach in
M-GLSA. After completing the kth stage, the predictors Ck are more accurate compared to those
in Ci, i = 1, . . . , k − 1. This is evident because the number of base predictors used to construct
each predictor at stage k is greater than that in the preceding stages. However, if the number of
stages G is chosen to be large, the predictors in the final stages may potentially lead to a singular
variance-covariance matrix. In our experience, two stages (G = 2) are sufficient to reduce the subset
size at each step to approximately

√
T , assuming a suitable choice of T . Based on this observation,

we focus on two-stage GLSA, referred to as 2-GLSA. Figure 4 illustrates the comparison between
GLSA and 2-GLSA.

Figure 4: Comparison of the two GLSA methods. The left-hand side shows the diagram of GLSA,
while the right-hand side illustrates the diagram of 2-GLSA.

From the above discussion, we suggest that 2-GLSA with a sufficiently large number of predictors T
is sufficient for producing stable predictors. For selecting the subset size at each stage, let us assume
the variance-covariance matrix ΣΣΣ = σ2IT and consider OLSA. Suppose we apply two-stage OLSA
as with 2-GLSA to aggregate T predictors C = (C1, . . . , CT ). Let T1,1, . . . , T1,T1 denote the sizes
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of the subsets at stage 1, where
∑T1

j=1 T1,j = T . The predictors after stage 1 become

C1,t =

T1,t∑
j=1

1

T1,t
C(

∑t−1
k=1 T1,k)+j , ∀t ∈ 1, . . . , T1.

Note that the predictor C1,t at stage 1 is simply the average of the predictors in the tth subset. The
predictors C1,t, t = 1, . . . , T1, still have the same variance scale and remain uncorrelated. Hence,
we can derive the final predictor as follows:

T1∑
t=1

1

T1
C1,t =

T1∑
t=1

T1,t∑
j=1

1

T1T1,t
C(

∑t−1
k=1 T1,k)+j .

Given the assumptionΣΣΣ = σ2IT , if we want to achieve the lowest variance of the predictor produced
by 2-OLSA, the subset sizes in stage 1 should be as equal as possible. Therefore, we recommend
that the subset sizes in stage 1 be identical. Specifically, T1,j = T/T1 for all j = 1, . . . , T1. In this
case, there exists an integer S such that S = T/T1, and we only need to determine S. A heuristic
method for choosing S and T1 is to find a pair of values such that both are close to

√
T . This aims to

balance the number of predictors allocated to each stage. If S or T1 is chosen far from
√
T , stability

may not be achieved in either stage 1 or stage 2, as the number of predictors allocated to one stage
could become excessively large. The most extreme case occurs when S is chosen as 1 or T , resulting
in instability in stage 2 and stage 1, respectively. We use Algorithm 1 below to illustrate the 2-GLSA
procedure.

Algorithm 1 2-GLSA
Require: Base predictors C1 . . . , CT , training set D, number of subsets S

1: T1 = T/S ▷ Number of subsets in stage 1
2: Randomly split the base predictors into S subset with equal size.
3: for t = 1 to T1 do ▷ For each subset
4: Use the base predictors in subset t to estimate the variance-covariance matrix, denoted by

ΣΣΣt, via Equation (3).
5: Wt = (111⊤SΣΣΣ

−1
t 111S)

−1111⊤SΣΣΣ
−1
t

6: Obtain C1,t by weighted averaging the base predictors in subset t using Wt

7: end for
8: Use C1,t, t = 1, ..., T1 to estimate the variance-covariance matrix, denoted by ΣΣΣ, via Equation

(3).
9: Return (111⊤T1

ΣΣΣ−1111T1
)−1111⊤T1

ΣΣΣ−1(C1,1, ..., C1,T1
)⊤

5 SIMULATION STUDIES

In this section, we conduct a comparative analysis using simulation data to assess the perfor-
mance of 2-GLSA in comparison with random forests. We conduct experiments using six simu-
lated datasets obtained from the Virtual Library of Simulation Experiments (VLSE; Surjanovic &
Bingham (2023)). Our primary objective is to evaluate the performance of random forests under
various ensemble procedures and different numbers of base predictors. Specifically, we utiliz the
friedman1, friedman2, friedman3, grlee09, and detpep108d functions, as discussed
in earlier sections. Additionally, we include the welchetal92 function, a simulation model with
20 input variables introduced by Welch et al. (1992). Table 1 summarizes these functions along with
the number of training and testing data points.

To evaluate the efficacy of the proposed methodology, we conduct 100 randomized experiments,
each involving the generation of new training and testing datasets. In these experiments, random
noise with zero mean and a variance equal to 10% of the signal variance is added to both the train-
ing and testing data, drawn from a uniform distribution on (0, 1). We use OLSA as the benchmark
for comparison with 2-GLSA. Three choices of the number of base predictors T are considered:
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Table 1: Summary of simulation data
Function Dimension Number of training data Number of testing data

welchetal92 20 800 2000
detpep108d 8 200 2000
grlee09 6 200 2000
friedman1 10 200 2000
friedman2 4 200 2000
friedman3 4 200 2000

20, 50, 100. Additionally, we also assess the performance of M-GLSA, where a complete factoriza-
tion of the number of base predictors is used to determine the subset size at each stage of aggregation.
For example, with T = 20 base predictors, the aggregation process is organized into three stages
due to 20 = 2× 2× 5:

• Stage 1: Produce 10 aggregated predictors, each derived from the aggregation of 2 base
predictors.

• Stage 2: From the 10 predictors generated in Stage 1, produce 5 aggregated predictors,
each resulting from the aggregation of 2 predictors from Stage 1.

• Stage 3: In the final stage, all 5 predictors from Stage 2 are aggregated to form the final
predictor.

The above procedure is also applied to T = 50 = 2 × 5 × 5 and T = 100 = 2 × 2 × 5 × 5 for
M-GLSA.

Figure 5 provides a comprehensive summary of performance across six different functions, de-
picted through boxplots. The performance metrics are presented on a logarithmic scale of MSE.
Table 2 summarizes the MSE and its confidence interval across all functions and methods. The
results demonstrate significant improvements with the 2-GLSA method, particularly for the func-
tions welchetal92 and detpep108d. Notably, 2-GLSA consistently outperforms OLSA across
nearly all functions and settings. The trend indicates that 2-GLSA reduces MSE as the number
of base predictors increases, similar to the behavior observed with OLSA. Additionally, while M-
GLSA shows superior performance over 2-GLSA in certain scenarios, it is constrained by its higher
computational time due to the multiple executions of GLSA.

Table 2: Summary of performance with simulation data using confidence of MSE
Functions # of trees Methods

M-GLSA 2-GLSA OLSA

welchetal92
20 27.6208± 0.2786 27.6457± 0.3044 29.3192± 0.3559
50 26.2047± 0.2573 26.1688± 0.2648 27.6145± 0.3114

100 25.7058± 0.2565 25.5648± 0.2451 27.0280± 0.2853

detpep108d
20 39.9922± 0.5177 39.8543± 0.5325 40.2140± 0.5782
50 37.9753± 0.4936 37.9961± 0.5043 38.1998± 0.5036

100 37.3278± 0.5101 37.3399± 0.5136 37.5388± 0.5184

grlee09
20 0.2611± 0.0045 0.2628± 0.0047 0.2772± 0.0052
50 0.24699± 0.0046 0.2450± 0.0041 0.2623± 0.0042

100 0.2426± 0.0039 0.2351± 0.0041 0.2599± 0.0039

friedman1
20 11.8795± 0.1512 11.7927± 0.1519 11.8502± 0.1457
50 11.2672± 0.1354 11.2584± 0.1431 11.3068± 0.1409

100 11.0430± 0.1268 11.0251± 0.1305 11.1576± 0.1392

friedman2
20 41520± 632 41436± 625 41598± 651
50 39626± 617 39657± 592 39734± 600

100 38989± 590 39313± 589 39263± 578

friedman3
20 0.04387± 0.00099 0.04389± 0.00113 0.04364± 0.00103
50 0.04235± 0.00101 0.04189± 0.00094 0.04213± 0.00097

100 0.04160± 0.00092 0.04193± 0.00102 0.04152± 0.00095

6 APPLICATIONS

We demonstrate two applications of the proposed 2-GLSA. The first is a real-world data application,
and the second addresses a subsampling issue in big data.
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Figure 5: Comparison of prediction performance on simulation data. The figure shows boxplots of
the MSE on a logarithmic scale.

6.1 REAL DATA STUDIES

We utilize two datasets, namely the Boston Housing dataset and the Concrete Compressive Strength
dataset, to illustrate the practical application of 2-GLSA. The Boston Housing dataset, originally
documented by Harrison & Rubinfeld (1991), is a widely adopted benchmark in machine learn-
ing studies and comprises 506 samples characterized by 12 features. The Concrete Compressive
Strength dataset, introduced by Yeh (2007), contains 1030 samples with 8 features. This dataset is
particularly suited for exploring ensemble learning techniques due to the intricate and interconnected
nature of its features.

We conduct 100 random divisions of training and testing datasets, with 20% of the samples used
as the testing set. For this analysis, we utilize 1000 base predictors (T = 1000). As in Section 5,
we consider three aggregation mehods: OLSA, 2-GLSA, and M-GLSA with omplete factorization.
Table 3 presents the MSE and its confidence interval across the two datasets and three aggregation
methods. The 2-GLSA method consistently outperforms other aggregation techniques. Additionally,
the confidence intervals associated with the MSE for 2-GLSA are notably smaller compared to the
other methods in both datasets.

Table 3: Summary of performance (MSE) in real data
Dataset M-GLSA 2-GLSA OLSA

Boston 10.52± 1.52 10.27± 1.39 10.70± 1.51
concrete 30.31± 2.27 26.82± 2.14 33.98± 2.47

6.2 SUBSAMPLING

Numerous studies have explored subsampling methods designed to select a subset of data points
from large datasets. For instance, Joseph & Mak (2021) introduced a robust supervised subsampling
method referred to as supercompress that demonstrates resilience across various statistical models.
In this subsection, we apply the 2-GLSA method to aggregate base predictors constructed from a
subset of the full dataset, with OLSA and supercompress used as benchmarks. We use 1-Nearest-
Neighbor as the base model. Our focus is on predicting the seventh output of the SARCOS dataset,
as previously examined in Rasmussen & Williams (2006), utilizing all 21-dimensional inputs. In
the experiments, a random subset of 500, 1000, 1500, and 2000 out of 44,484 data points is sampled
for training in each iteration, with the exception of supercompress, which is itself a well-established
subdata selection technique. We generate T = 10 and T = 20 base predictors, respectively. A
pre-specified testing dataset of 449 data points, suggested by Rasmussen & Williams (2006), is used
to evaluate the performance of each method.
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Figure 6 illustrates the MSE results. The results indicate that OLSA performs significantly bet-
ter than supercompress, regardless of the number of base models aggregated. Notably, 2-GLSA
outperforms OLSA. This suggests that the proposed 2-GLSA is a promising approach and can be
effectively adopted in a subsampling framework within the context of big data.

Figure 6: Boxplot of MSE across different numbers of base predictors and aggregation methods.
The boxplot displays the MSE for five different methods (2-GLSA with 20 base predictors, OLSA
with 20 base predictors, 2-GLSA with 40 base predictors, OLSA with 40 base predictors, and su-
percompress) across four subsampling sizes (500, 1000, 1500, and 2000).

7 CONCLUSION AND FUTURE WORK

Previous research primarily focused on mitigating predictor correlations through algorithmic mod-
ifications or the development of sampling strategies. In contrast, the primary innovation of this
study lies in directly addressing predictor correlations within the context of ensemble learning. Our
approach leverages the training data not only to build predictors but also to extract valuable infor-
mation for estimating predictor correlations. Empirical evidence from both theoretical analysis and
numerical experiments confirms that our method significantly reduces MSE in prediction. One par-
ticularly noteworthy outcome is the substantial improvement observed in the random-forest models
when applying Generalized Least Squares-based Aggregation, paving the way for new applications
of random forests. Importantly, our methodology is simple to implement and does not require pa-
rameter tuning. Additionally, we introduce a computationally efficient statistic that facilitates the
assessment of expected improvements when using Generalized Least Squares-based Aggregation.

Correlations manifest across various aspects of ensemble learning, and these phenomena extend
to other applications as well. For example, in cross-validation, the average loss is computed from
models constructed using overlapping subsets of training data. Similarly, in stochastic gradient
descent, random sampling of subsets of observed data determines the direction sequentially. When
the selected subsets overlap, the directions tend to align, leading to high correlations. A potential
avenue for future research involves addressing correlations in other application domains beyond
ensemble learning. It is also worth noting that the correlation patterns observed in this study vary
depending on the datasets and base predictors used. Therefore, another promising direction for
future research is to explore the origins of these correlations and deepen our understanding of the
underlying mechanisms.
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