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ABSTRACT

The single instruction multiple data (SIMD) capability in modern processors is
critical to improving the performance of current compute-intensive programs.
SIMD allows architectures to exploit the natural data parallelism that exists in a
wide-range of real applications (e.g., games, signal processing, etc) by executing
a single instruction on multiple data items simultaneously. Modern compilers
use vectorization techniques to exploit the SIMD capability, by detecting data
parallelism in scalar source code and transforming a group of scalar instructions
into vector-based instructions. In this work, we focus on one of the most common
vectorization techniques called loop-based vectorization, which targets loops and
optimize their performance by grouping multiple occurrences of the same operation
across loop iterations into single SIMD instructions. This is achieved by setting two
key parameters: (1) the vectorization factor (VF), and (2) the interleaving factor
(IF). Unfortunately, vectorizing loop computations effectively is a key challenging
problem for both programmers and compilers due to the large search space. For
example, manual vectorization of each loop puts a huge burden on the programmer,
is more error-prone, and/or requires expert knowledge of both the software and the
architecture. Alternatively, current compilers use fixed-cost models based on expert
heuristics to make automatic vectorization decisions. However, these models often
ignore the data dependencies, as well as the underlying computation graph. In this
paper, we propose a data-driven graph-based learning framework for automatic
vectorization, called autograph, which takes an input program, extracts the loops,
then learns a structured representation to automatically predict the correct VF/IF
factors. Our proposed framework utilizes deep reinforcement learning to learn
an optimal policy (observations to actions) from an intelligent agent in a SIMD
environment, and automatically injects the predicted vectorization pragmas into
the input program. We conducted an extensive evaluation on multiple benchmark
datasets and comparisons with state-of-the-art baselines. Our results show that for
Polybench, autograph achieves on average 2.47x performance improvement for
Polybench compared to neurovectorizer and 3.61x compared to the baseline.

1 INTRODUCTION

The single instruction multiple data (SIMD) mechanisms have been widely incorporated in modern
processors such as gaming machines, massively parallel supercomputers, as well as general-purpose
processors (Nuzman et al., 2006; Bachega et al., 2004; Peleg & Weiser, 1996). These mechanisms
allow architectures to exploit the natural parallelism that exists in software for real-world applications
(e.g., games, signal processing, etc.), by simultaneously executing the same instruction on multiple
elements of the input data. Modern compilers use vectorization techniques to exploit the SIMD capa-
bility of these architectures. Vectorization techniques allow the compiler to reveal the data parallelism
in the scalar source code and converts the code from a scalar implementation to the corresponding
functionally-correct vector implementation.This allows portions of the code to run on the processor’s
high-throughput SIMD units, without any additional effort from the programmer (Porpodas et al.,
2018). With the SIMD architecture, such operations can run in fewer cycles while using less energy
to boost performance in applications with vector computations.

Vectorization can be classified into two major methods: (i) the loop vectorizer, which operates on
loops, and (ii) the superword-level parallelism (SLP) vectorizer (Porpodas, 2017; Mendis et al.,
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Figure 1: (a) Overview of the proposed autograph framework. Autograph extracts loops from source
code in the intermediate representation format (LLVM IR). Then using compiler dependency analysis,
autograph constructs dependency graphs to capture the flow of information in the code, as well as
the semantics of the code by using the full text features of the instructions. Autograph then learns
a structured representation using an inductive GNN approach. Finally, autograph expolits deep
reinforcement to learn a mapping from embeddings to vectorization factors. (b) Comparison between
brute-force and prediction-based autograph. For each kernel, the brute-force search time is measured
by summing up the compile times and execution times shown in a log10 scale of nanoseconds with
different VFs and IFs. Although the brute-force can eventually find the best vectorization parameters,
it is ∼60 000x slower compared to autograph that only predicts the parameter without exhaustively
searching the space.

2019), which operates on straight-line code. Loops in repetitive tasks are commonly used in modern
programs to save time and code size. Therefore, in this work, we focus on the loop vectorizer. One of
the key challenges is to define the vectorization factor (VF) and the interleaving factor (IF) (Nuzman
et al., 2006). The VF determines how many instructions to pack together from different iterations of
the loop. The IF determines the stride of the memory accesses of the packed instructions (Haj-Ali
et al., 2020). Hence, the goal of loop vectorization is to search for the optimal VF and IF, given
a program. As shown in Figure 1(b), even though brute-force search has the ability to find the
optimal/best vectorization parameter, the compiler cannot support the exhaustive search due to its
time-consuming process. The brute-force method exhaustively searches the vectorization parameter
for each loop in a kernel while taking a significant amount of time. For a kernel with N loops with
M interleaving factors (IFs) and K vectorization factors (VFs), the search space is O(NMK).

Since manual vectorization is error-prone and difficult to maintain, modern compilers such as
LLVM use auto-vectorization techniques that rely on linear and constant-cost models to predict the
vectorization factors (Tian et al., 2016; Trifunovic et al., 2009). However, these cost models don’t
consider the computation graph or loop dependencies, thus, they are not capable of capturing the
natural structural dependencies and semantics of the wide-range of software programs that exist
in today’s real-world applications. Machine learning has been proposed to improve these cost
models (Stock et al., 2012; Wang & O’Boyle, 2018) by extracting hand-engineered features from
assembly code and using supervised learning techniques to predict the vectorization factors. However,
these methods are still incapable of automatically learning a representation that can capture the
computation graph, as well as the dependencies of input codes. As we will show in evaluation, by
accounting for structural dependencies we improve performance by 1.26x.

In this work, we propose a framework that learns a representation that is capable of reasoning about
the flow of information and the semantics in the code, while capturing the structural dependencies
in the computation graph. More specifically, in Figure 1(a), we propose an end-to-end graph-based
deep learning framework for compiler auto-vectorization, called autograph, that takes an input code,
extracts the loops, then learns a structured representation to automatically predict the correct VF/IF
factors. Autograph utilizes deep reinforcement learning to learn an optimal policy (graph embeddings
to VF/IF pairs) from an intelligent agent in a SIMD environment, and automatically injects the
predicted vectorization pragmas into the input program to achieve better performance. We conducted
an extensive evaluation on multiple benchmarks and comparisons with state-of-the-art baselines. Our
experimental results show that for Polybench, autograph achieves on average 2.47x performance
improvement for Polybench compared to neurovectorizer and 3.61x compared to the baseline.

2



Under review as a conference paper at ICLR 2023

We summarize the main contributions as follows:

• We propose an end-to-end graph-based deep learning framework for compiler auto-
vectorization, autograph, that is capable of reasoning about the flow of information and the
semantics in the code, while capturing the structural dependencies in the computation graph.

• We develop a deep reinforcement learning approach within the loop vectorizer capable of
learning the optimal vectorization factors of a complex program.

• The proposed autograph framework is general and flexible to accommodate different repre-
sentations of code to predict the vectorization factors.

2 RELATED WORK

Automatic vectorization has been widely studied for improving application performance on SIMD
architectures (Nuzman et al., 2006; Tian et al., 2016). Some of the existing work in auto-vectorization
focuses on designing cost models for calculating expected execution time of vectorized loops
(Trifunovic et al., 2009; Nuzman et al., 2011). For example, Trifunovic et al. (2009) develops a cost
model to compare the performance of various vectorization alternatives and their interactions with
other loop optimizations. Other work relies on heuristics for automatic vectorization, such as the
vector-instruction aware and heuristic-guided search system proposed in (McFarlin et al., 2011) for
automatic vectorization of fast Fourier transforms.

In recent years, some research has also explored machine learning strategies for compiler optimiza-
tion (Leather & Cummins, 2020; Trofin et al., 2021; Wang & O’Boyle, 2018). For instance, the
SuperGraph-SLP (Porpodas, 2017) and VW-SLP (Porpodas et al., 2018) propose improved vector-
ization algorithms based on Superword-Level Parallelism (SLP). The SuperGraph-SLP operates
on a larger region to enable it to vectorize code that was previously unreachable. The VW-SLP
varies the vector width at the granularity of the instruction level. This allows the algorithm to better
adjust the code in SIMD and provide more parallelism. The MLGO framework (Trofin et al., 2021)
introduces machine learning methods such as policy gradient and evolution strategies to LLVM
compiler optimizations. Mammadli et al. (2020) employs a deep reinforcement learning (DRL)
method to the phase ordering in one of the compiler optimizations. Neuro-vectorizer (Haj-Ali et al.,
2020) develops a DRL approach for loop-level auto-vectorization. However, (Wang & O’Boyle,
2018) only provides a general survey of how to do feature engineering and provide optimization for
compilers using machine learning. In addition, (Mendis et al., 2019) focuses on SLP vectorization
whereas the focus of this work is loop vectorization. Therefore, both of them are not proper baselines.

In contrast to neuro-vectorizer, autograph is the first to propose a structured learning framework
for loop auto-vectorization, which converts codes that contain loops to graphs and learns structured
representations from code graphs. This structured representation can better capture the dependencies
among instructions compared to previous work that only relies on the code text features. Autograph
can be used across different architectures with different SIMD capabilities. The only requirements of
autograph are (1) the ability to run applications on such architecture so we can collect the true label;
and (2) compiler support to compile code with VF and IF into SIMD instructions.

3 PROPOSED FRAMEWORK

In this work, we propose an end-to-end graph-based deep learning framework, called autograph, to
predict vectorization factors. The proposed autograph framework is shown in Figure 1(a). Target
programs are translated to obtain low-level virtual machine (LLVM) intermediate representation
(IR) instructions of extracted loops to be vectorized. The IR instructions are then analyzed via
compiler dependency analysis in terms of data, control, and function calls to construct dependency
graphs. The graphs are then fed into a structured representation learning module that includes
graph unsupervised learning and supervised learning to generate hidden embeddings. Finally, these
embeddings are fed to the DRL agent to predict the vectorization factors VF and IF. The agent automat-
ically injects vectorization pragmas, e.g., #pragma clang loop vectorize_width(32)
interleave_count(16). The agent uses the clang compiler to generate the executable of the
program and runs it to gather the runtime, which is further used to calculate a reward for the RL agent.
During inference / testing, the well trained agent can be exploited to predict VF/IF pairs and find
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the corresponding runtime information. The autograph framework injects pragmas only as hints to
help the compiler to generate the vectorized assembly instructions of loops such as Advanced Vector
Extensions (AVX) in Intel architecture.

Graph representation of code. Code captures computations and communications within and
between different high-level functions. Therefore, it is of great importance to understand the
heterogeneous structural organizations and dynamics of programs such as data flow from one
instruction to another. However, traditional data-flow and control-flow graphs do not reveal the
relationship between programs and underlying resources. Many recent graph representations of code
Xiao et al. (2019; 2021; 2017) can identify the spatio-temporal information flow by analyzing data
dependencies between LLVM IR instructions collected at run-time. Moreover, PrograML Cummins
et al. (2021) is a graph representation for programs as input to a machine learning model. The
graph incorporates data-flow, control-flow, and call-flow that closely match the data structures used
traditionally in inter-procedural data flow analysis. In our implementation, we use PrograML to
generate code graphs.

Inductive representational graph unsupervised learning. From the code graphs, the autograph
framework learns a representation that can reason about the information flow and the semantics in the
code, while capturing the structural dependencies in the computation graph. Therefore, we propose
inductive graph representation learning to learn embeddings of the nodes in an unsupervised way to
understand semantics and structures of the code. The objective is formally formulated as follows.

Given a graph G(V,E), learn an embedding of the nodes from the graph topological structures and
the node attributes such as LLVM IR, without using any node labels.

The node embeddings are learned in a classification task: given a set of positive node pairs generated
from random walks on the target graph and negative node pairs that are randomly selected from the
graph, learn a binary classifier that predicts whether the existing node pairs in the graph are likely to
appear in a random walk. In this way, the classifier is able to learn a mapping from each graph with
node attributes and structural dependencies in the code into an embedding.

The architecture of the classifier is defined as follows. Node pairs together with initial features are
passed into a layer that (1) uses a mean aggregator that aggregates the representations of each node in
its immediate neighborhood into a vector, (2) concatenates the node’s current representation, and
(3) is fed through a fully connected layer with the ReLU activation function followed by the L2
normalization. Therefore, the classifier generates the embedding for each node in a graph. The
general math operation of the forward pass of this model can be described as follows.

h
(l+1)
N(i) = mean_aggregate(hl

j ,∀j ∈ N(i)) (1)

h
(l+1)
i = σ(W × concat(hl

i, h
(l+1)
N(i) + b)) (2)

h
(l+1)
i = L2_norm(hl

i) (3)
where h encodes the hidden representations of the nodes; N is a neighborhood function: v → 2V ,
mean_aggregate is a differentiable mean aggregator function; σ is a fully connected layer followed
by the ReLU activation function; W is the weight matrix; L2_norm is the L2 normalization function.

Next, we use the dot product of the incident nodes’ representations for each edge to calculate the edge
score. Once the node-level embedding and edge score are calculated, we use binary cross entropy
loss with the help of scores as the loss function as follows.

su∼v = h(l+1)
u · h(l+1)

v (4)

L = −
∑

u∼v∈N

su∼v(yu∼vlog(ŷu∼v) + (1− yu∼v)log(1− ŷu∼v)) (5)

where nodes u and v are selected from node pairs N ; yu∼v and ŷu∼v are the predicted and true link
labels between u and v, respectively.

Feature Representation. The initial features used in the unsupervised graph model are directly
collected from the full text feature in each node of a graph. The graphs are generated from PrograML
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to capture the information flow between instructions. Therefore, associated with each node is one
LLVM IR instruction. We tokenize all of the instructions to create a vocabulary that contains high-
level structures, types, constants, and syntax. Next, for each full text in a node, if a token exists in
this vocabulary, we mark the corresponding index as 1, and 0 otherwise. Therefore, by adopting this
approach, the size of the node embedding is the same as the size of the vocabulary.

Refined latent embedding supervised learning. One drawback in the graph representation of
codes is that two graphs could be identical but the vectorization parameters are totally different, due
to different number of iterations in the loops. This makes it difficult to learn optimal VF/IF pairs for
performance improvement.

Figure 2: The architecture of the supervised
model.

Therefore, in order to mitigate this issue, based on the
feature embeddings learned from the unsupervised
model, we further refine them into the supervised
model to provide better accuracy and performance
improvement. The architecture of the supervised
model is one layer of graph neural network (GNN),
connected with one fully connected feed-forward neu-
ral network (FCNN), shown in Figure 2. In order to
take into consideration the number of iterations in
each for-loop, we insert them into the FCNN. There-
fore, the hidden embedding size going into the FCNN
is NGNN +N ′, where NGNN is the embedding size
for the GNN and N ′ is the number of loops in each file of a benchmark.

Deep reinforcement learning. So far, autograph generates structural embeddings for code graphs
via graph unsupervised learning and further refines them in terms of better accuracy and performance
improvement over O3 via graph supervised learning. Next, autograph learns the optimal mapping
from the embeddings to the VF and IF pairs in an end-to-end fashion with reinforcement learning
(RL). The rationale of employing the proposed end-to-end RL framework is that (1) it does not require
labels to train the agent to prevent the time-consuming exhaustive search; (2) compared to supervised
learning that optimizes the accuracy, it relies on the reward function that involves the normalized
execution time to improve the system-level speedup; (3) it is hardware-agnostic, meaning that while
switching to another hardware platform, this RL framework does not require the exhaustive search
to collect new labels before training compared to supervised learning. In RL, an agent continually
interacts with an environment to learn and maximize the reward. Unlike supervised learning, RL can
be tuned to co-optimize multiple objectives and be more efficient in terms of samples as it does not
require a label.

Therefore, in this section, we propose a deep RL (DRL) based mapper. We seek to overcome the
drawbacks of the brute force, random search, and supervised learning to improve the accuracy and
the performance of the vectorized code over O3 at run-time. We represent the process of mapping the
embeddings to the VF and IF pairs as a Markov decision process (MDP) and apply DRL to learn the
optimal mapping given an embedding as a state and a reward function for the quality of a mapping.
We represent the vectorized kernels running on a specific hardware platform as an environment, and
VF/IF pairs as a set of actions to maximize the reward function.

Markov decision process (MDP). MDP is a discrete-time stochastic control process that can solve
memoryless RL problems in decision making. At each time step t, the process is in some state st
and an action at is chosen to find the next state st+1 with an unknown probability p(st+1|st, at).
An agent A(at|st; θ) selects a sequence of actions followed by an optimal policy π∗ via learned
parameters θ. The agent activates the action at under the state st in the environment and the reward
r(st, at) is returned back to the agent.

We consider the selection of vectorization parameters VF / IF as an MDP. The state space consists of
hidden feature embeddings learned from the supervised model. The action space consists of different
discrete vectorization parameters. The agent’s task, then, is to pick VF and IF for a given embedding
from the code at given st to maximize a reward function under the environment.
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Reward function. The reward function is used to evaluate and learn the optimal policy. We design an
immediate reward below for the current state st under the action at.

r(st, at) =
(tbaseline − t(st, at))

tbaseline
(6)

where tbaseline is the execution time of a file running with the -O3 flag in the LLVM workflow; tst,at

is the execution time for the current VF / IF pair.

We calculate the difference of runtimes between the current vectorization at for the kernel st and the
baseline running with the compiler flag O3 in LLVM. Next, it is normalized by the baseline runtime
so that the reward function is robust to variations in the programs’ execution times.

Agent: fully connected neural network (FCNN). The agent is used to select an action at (VF/IF
pair) from the state st (embeddings) to find the optimal policy that maximizes the cumulative
reward R =

∑T
t=1 γ

tr(at, st) where γ ∈ [0, 1] is a decay factor. The inputs to the agent are
feature embeddings extracted from graphs via supervised models. Q values are used to represent the
maximum cumulative reward the agent can obtain by taking the action at in the state st. Then, the
optimal value Q∗(st, at) can be calculated by Bellman equation Sutton & Barto (2018) as follows.

Q∗(st, at) = E[rt+1 + γmax
at+1

Q ∗ (st+1, at+1|st, at)] (7)

We then follow Q-learning to update Q values.

Qt+1(st, at)← (1− α)Qt(st, at) + α[r(st, at) + γmax
at+1

Qt(st+1, at+1)] (8)

where α ∈ [0, 1] is the learning rate.

Environment: vectorized code running on hardware. The environment interacts with the agent to
receive possible actions (VF/IF pairs). Once an action is obtained, the environment injects the
vectorization pragma into the code, compiles it into the executable, and runs it to get the runtime
information. Next, the environment provides an immediate reward (eq. 6). This reward is returned
back to the agent to help make better decisions next time.

4 EVALUATION

In this section, we discuss the hardware configurations, baselines, and datasets, along with experi-
mental results to investigate the effectiveness of the proposed autograph framework.

4.1 EXPERIMENTAL SETUP

Configurations. The unsupervised learning, supervised learning, and DRL are performed in Ubuntu
20.04.3 LTS with 64 CPU threads and 2 GPUs. The CPU is an Intel(R) Xeon(R) Gold 5218 CPU at
2.30 GHz. One GPU is an NVIDIA TESLA V100, the other is an NVIDIA TITAN RTX TU102.

Baselines. The autograph framework incorporates GraphSAGE (Hamilton et al., 2017) to extract
feature embeddings in an unsupervised fashion, GCN (Kipf & Welling, 2016) to further refine the
embeddings to improve accuracy and performance, and DRL. DRL is implemented with RLlib
(Liang et al., 2017) and Tune (Liaw et al., 2018), built on top of Ray (Moritz et al., 2018), open-
source libraries for RL that offer high scalability, hyper-parameter tuning and numerous application
interfaces. In the GraphSAGE setup, the number of layers is 1 and learning rate is 0.001 with the
dropout rate of 0.1. In the GCN setup, the number of layers is 2 and learning rate is 0.001. In the
DRL setup, the learning rate is 0.0001 with 800,000 steps and 15,000 training batch size. The sizes of
hidden layers are both 256. The neuro-vectorizer framework incorporates code2vec (Alon et al., 2019)
and DRL. The open-source code code2vec is modified to work with the RL agent implementation
(Haj-Ali et al., 2020). The DRL hyperparameters are the same as autograph. We run a brute-force
search on all of the datasets to find the optimal run-times and the best vectorization factors VF and IF,
and use them as labels for supervised models. We also implement two supervised models, one with
code2vec and FCNN and another one with GCN and FCNN. The batch size is 64. Both FCNNs have
2 layers with 0.001 learning rate. We run all of the models 5 times and report mean and standard
deviation.
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Table 1: Impact of different pipelines.

Pipelines Accuracy Speedup
GraphSAGE-GCN 18.45%±1.24% 1.47± 0.14

GCN 13.22%±1.16% 1.23±0.21
GraphSAGE-Pooling-FCNN 12.67%±1.45% 1.17±0.15

Table 2: Impact of different GNN architectures.

GNN Accuracy Speedup
GCN 18.45%±1.24% 1.47± 0.14
GAT 15.30%±1.17% 1.32 ± 0.11

GGNN 19.12%±0.93% 1.52± 0.12

Datasets. We use LORE suite of kernels (Chen et al., 2017) to train and test DRL. Specifically,
we use the SPEC 2006 (Henning, 2006), NPB (Bailey et al., 1995), and Polybench (Pouchet, 2012)
kernels as testing, and the rest of benchmarks as training. In addition, we transfer the learned model
in DRL to further test the GCC (Haj-Ali et al., 2020) and Mibench (Guthaus et al., 2001) benchmarks.
GCC contains a set of loops that was created to test the auto-vectorization capabilities of GCC.
We parameterized the loops in terms of a number of arrays, arithmetic operations and data sizes to
increase the number of kernels to 744. Mibench is a set of representative embedded benchmarks
such as telecommunication, networking, security, office, and automation; we use the MiBench subset
selected in the neuro-vectorizer paper.

4.2 FRAMEWORK COMPARISON

Training loss and reward mean. We validate how well autograph is trained in terms of train-
ing loss and reward mean for LORE with different batch sizes and fully-connected neural net-
works (FCNN). As we can see from Figure 3, if the number of timesteps is small (< 100,000),
the agent in DRL is unable to explore most of the high-dimensional state space and thus fails
to converge to an optimal policy. Therefore, training loss is high and reward mean is small.
But as we gradually increase the number of timesteps, the agent can explore the region and
find a better policy. Note that there is also a diminishing return when we increase the num-
ber of timesteps further beyond a point where the training loss and reward almost converge to
a number. Therefore, in the following evaluation, we set the number of timesteps to 800, 000
to ensure that the agent is well trained, leading to small training loss and high reward mean.

Figure 3: Reward mean and training loss as a function of the
number of timesteps with different batch sizes (a-b) and FCNN
architectures (c-d).

Ablation - different pipelines.
In this part, we investigate the
impact of graph unsupervised
learning (to understand the struc-
tures of graphs) and graph su-
pervised learning (to further re-
fine the features). As shown
in Table 1, with graph unsuper-
vised learning such as Graph-
SAGE, GraphSAGE-GCN can
provide 1.40x higher in terms
of accuracy and 1.20x in terms
of speedup, compared to only
GCN. With the graph supervised
learning model such as GCN,
GraphSAGE-GCN can provide
1.46x higher in terms of accuracy
and 1.26x in terms of speedup,
compared to GraphSAGE-Pooling-FCNN.

Ablation - GNN architectures. In this part, we investigate the effect of different GNN architectures
such as GCN, GAT, and GGNN used in the supervised learning on the overall accuracy and speedup.
Experimental results in Table 2 indicate that using more complicated models such as GAT and GGNN
does not contribute significantly to higher accuracy and speedup compared to GCN with only 1.03x
improvement. However, training GAT and GGNN takes more time compared to GCN. Therefore, we
choose GCN in the current implementation.

Figure 4: The reward of each kernel in the LORE
dataset for neuro-vectorizer and autograph.

Reward. We compare the DRL part in auto-
graph and neuro-vectorizer in terms of the re-
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wards of all kernels in the LORE dataset. As we
can see in Figure 4, many kernels have larger
rewards so the red line is above the blue line.
This indicates that in general, autograph could
provide better performance improvement com-
pared to neuro-vectorizer. It could be also val-
idated by comparing the geometric mean of
the rewards from autograph (1.17) and neuro-
vectorizer (1.09).

Distributions of true labels and predictions.
We compare the distributions of true labels rang-
ing from 0 to 24 due to 5 VFs and 5 IFs, the neuro-vectorizer predictions, and autograph predictions
in LORE. As shown in Figure 5, the cumulative distribution of the autograph predictions is much
closer to that of true labels than neuro-vectorizer. Furthermore, the Kullback–Leibler (KL) divergence
(DIV) between autograph and true labels (1034.10 bits) is much smaller than the KL DIV between
neuro-vectorizer and true labels (3995.66 bits). Therefore, it validates that autograph has a wider
action distribution and is more similar to the distribution of true labels.

Figure 5: Distributions of true labels, autograph,
and neuro-vectorizer predictions.

Average accuracy and normalized speedup.
We train and test all of the models on LORE.
Accuracy is measured by calculating the num-
ber of times where the ground truth is the same
as the predicted action, divided by the total num-
ber of kernels. The ground truth is collected
from choosing the optimal execution time by
exhaustively searching from the space of the
vectorization parameters. The predicted action
is collected from the results from each model
when a new kernel arrives.

Tables 3, 4, and 5 show the average accuracy and
speedup normalized to O3 runtimes for neuro-
vectorizer, autograph, code2vec, and GCN, respectively. In NPB, Polybench, and SPEC 2006 kernels,
autograph outperforms neuro-vectorizer by 5.97x, 2.2x, and 1.31x in terms of the accuracy and 1.06x,
1.16x, and 1.18x in terms of the geometric speedup compared to O3. This is because autograph learns
the graph structures that can be used to predict the labels. Furthermore, compared to supervised
learning, the DRL-based approaches achieve 1.22x, 1.35x, and 1.19x better in terms of speedup.

Table 3: NPB kernels.

ML models Original vectorization Effective vectorization1
Accuracy Speedup Accuracy Speedup

autograph 19.41%±1.42% 1.16±0.05 20.19%±1.89% 1.17±0.07
neuro-vectorizer 3.25%±1.88 1.09±0.04 3.80%±1.96 1.11±0.06
code2vec 7.72%±0.65% 0.95±0.02 8.42%±0.83% 0.97±0.03
GCN 8.91%±0.56% 1.04±0.03 9.67%±0.73% 1.07±0.05

1 It is measured by pruning some kernels with less than 1.02x brute-force speedup compared to O3 baseline.

Table 4: Polybench kernels with original vectorization. Polybench is a benchmark for polyhedral
transformations that operate on loops, so pruning leads to the same kernels.

ML models Accuracy Speedup
autograph 19.87% ± 0.53% 1.31 ± 0.05
neuro-vectorizer 9.05% ± 1.23% 1.13 ± 0.12
code2vec 8.22% ± 0.58% 0.97 ± 0.04
GCN 9.80% ± 0.77% 1.09 ± 0.08
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Figure 6: Performance in the SPEC 2006 (a), NPB (b), and Polybench (c) kernels with highest
brute-force speedups normalized to O3.

Table 5: SPEC 2006 kernels.

ML models Original vectorization Effective vectorization
Accuracy Speedup Accuracy Speedup

autograph 6.42%±0.37% 1.04±0.02 11.49%±0.85% 1.24±0.04
neuro-vectorizer 4.91%±0.52% 1.02±0.01 9.52%±1.08% 1.05±0.02
code2vec 3.32%±0.22% 0.94±0.03 6.19%±0.43% 1.04±0.05
GCN 4.86%±0.41% 0.97±0.01 9.15%±0.77% 1.09±0.01

Normalized performance for top kernels. Figure 6(a-c) shows the normalized performance on
SPEC 2006 (a), NPB (b), and Polybench (c) for brute-force search, supervised code2vec, supervised
GCN, neuro-vectorizer, and autograph. These kernels are selected based on the top normalized
speedup of brute-force compared to O3. Compared to neuro-vectorizer, autograph can provide at
most 6.51x performance improvement over O3 for some files because autograph represents kernels
as structured graphs and learns their representational embeddings unveiling their hidden structures.

Table 6: GCC with original vectorization. GCC is a synthetic benchmark for loop transformations, so
pruning leads to the same kernels.

ML models Accuracy Speedup
autograph 26.51% ± 0.36% 1.62 ± 0.07
neuro-vectorizer 9.73% ± 1.23% 1.22 ± 0.16
code2vec 8.07% ± 0.61% 1.08 ± 0.06
GCN 8.80% ± 0.79% 1.15 ± 0.08

Table 7: MiBench subset. We use the same subset of Mibench as in neuro-vectorizer to validate the
effectiveness of autograph.

ML models Original vectorization Effective vectorization
Accuracy Speedup Accuracy Speedup

autograph 7.25%±0.43% 1.1±0.03 16.12%±0.98% 1.41±0.07
neuro-vectorizer 5.21%±0.52% 1.06±0.02 11.66%±1.23% 1.12±0.04
code2vec 3.78%±0.24% 0.95±0.03 7.76%±0.48% 1.09±0.06
GCN 4.71%±0.45% 1.03±0.04 9.75%±0.92% 1.11±0.08

Transfer learning on GCC and MiBench. It is important to see how well the machine learn-
ing models generalize to completely new datasets. To that end, we evaluate on two benchmarks
different models that are trained on LORE. GCC, compared to MiBench, is more beneficial to
auto-vectorization because it is a synthetic benchmark for loops that are designed to be vectorized.
As shown in Table 6 and 7, autograph can achieve on average 2.72x higher accuracy and 1.33x higher
performance than neuro-vectorizer. Compared to the supervised learning models, autograph can
provide on average 1.5x normalized performance improvement over baseline O3. We can conclude
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that the auto-vectorization is limited to code with rich portions of loops that can be vectorized. It is
not suitable for benchmarks such as MiBench where the loops constitute a small portion of the code.

5 CONCLUSION

We propose Autograph, an end-to-end framework for compiler auto-vectorization that automatically
extracts loops, constructs dependency graphs, and learns structured representations that capture both
the structural dependencies of the computation graph and the semantics of the code. Autograph uses
a deep reinforcement learning approach to predict vectorization factors and injects the vectorization
pragmas with the optimal VF/IF factors in the code to achieve better performance. Our extensive
experiments and comparisons on multiple benchmark datasets show that for Polybench, autograph
achieves on average 2.47x performance improvement for Polybench compared to neurovectorizer
and 3.61x compared to the baseline.
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