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Abstract

Probing and enhancing large language models’
reasoning capacity remains a crucial open
question. Here we re-purpose the reverse
dictionary task as a case study to probe
LLMs’ capacity for conceptual inference. We
use in-context learning to guide the models
to generate the term for an object concept
implied in a linguistic description. Models
robustly achieve high accuracy in this task,
and their representation space encodes informa-
tion about object categories and fine-grained
features. Further experiments suggest that
the conceptual inference ability as probed by
the reverse-dictionary task predicts model’s
general reasoning performance across multiple
benchmarks, despite similar syntactic general-
ization behaviors across models. Explorative
analyses suggest that prompting LLMs with
description=word examples may induce gen-
eralization beyond surface-level differences in
task construals and facilitate models on broader
commonsense reasoning problems.

1 Introduction

Imagine your friend was telling a story about their
hiking trip: “I glimpsed some sharp spikes before
it quickly disappeared into the woods.” What was
your friend talking about? You probably felt quite
certain that it was not a sea urchin. But was it a
hedgehog, or a porcupine, you might be wondering.
Perhaps you decided to ask a question: “How long
were these spikes?”.

As common and intuitive as the opening ex-
ample, our everyday language use builds on the
concepts in the mind. People’s exchange of words
are not merely associative responses: Through the
chosen description of aspects of the intended ref-
erent such as “sharp spikes” and “into the woods”,
the speaker informs the listener about an object that
was absent from the immediately perceived context.
By building mental representations of the possibly
intended referent from minimally what others say,

a listener can then articulate the intended referent,
form relevant questions to seek more information,
and further reason about and interact with the world
through words.

While concepts are “the glue that holds our
mental world together” (Murphy, 2004), it remains
an open question whether human-like conceptual
representations and reasoning capacities emerge
from statistical learning on linguistic input alone.
Specifically, the contemporary large language
models (LLMs) appear to be highly performant
on various language comprehension and reasoning
tasks after trained on gigantic amount of texts
with the main objective of predicting the next
token (Bubeck et al., 2023; Wei et al., 2022; Webb
et al., 2023; Hagendorff et al., 2023; Han et al.,
2024). A fruitful line of works has investigated the
large language models’ representation of words of
specific domains, such as color (Patel and Pavlick,
2022), space and time (Gurnee and Tegmark, 2024;
Geiger et al., 2023), and world states in a game (Li
et al., 2023a). These works revealed impressive
structural similarities between the conceptual
space that a model formed contextually and its
analog in the physical world where these concepts
are grounded. Other works have developed
synthetic tasks and datasets to evaluate the extent
to which the model representations fulfill critical
aspects of concepts in the human mind, such
as systematic compositionality (Lovering and
Pavlick, 2022). Despite the continuing efforts
and progress in probing large language model’s
internal representation, it has been challenging
to connect the model’s capacity of constructing
conceptual space for certain domains to a more
general problem of conceptual inference, where
the underlying concepts are not stated explicitly
but has to be inferred from the context.

Here we develop a case study that evaluates large
language models’ capacity for conceptual inference
and explores potential implications of such capacity



on model’s generalization behaviors. Inspired
by the everyday referential use of language—as
demonstrated in the opening example—we re-
purpose the classic reverse-dictionary task and
existing datasets of lexical semantics as a probe
for conceptual representation in large language
models. We consider the reverse-dictionary task
as a special case and convenient instantiation of a
general probabilistic inference problem: retrieving
a lexical entry for the underlying concept given
the information in a linguistic description, such as
producing the word “dog” in virtue of inferring
the underlying concept DOG given the description
“A domesticated descendant of the wolf.”
This task itself is simple yet ecologically relevant
to human communication. Consider a writer who
strategically creates suspense in a story, or a person
who uses words to paint an image of an object in
their mind after struggling to find the exact word
or phrase that names the object. Unlike previous
studies where language models output meaning
representation given a particular word, this word-
retrieval paradigm involves combining the words
in descriptions to construct coherent meanings,
inferring the corresponding concept, and mapping
it back to words, providing a useful testbed for
assessing the way conceptual representations are
formed flexibly in large language models.

As a starting point, we construct description—
word pairs from THINGS (Hebart et al., 2019) and
WordNet (Fellbaum, 1998), where the description
of an object is intended as definitions and hence
highly informative of the referent. We use in-
context learning paradigm to induce the task
routine in the language models. Behavioral
assessments across a variety of models show
that large language models are able to robustly
generate the corresponding lexical items with
high accuracy of exact match, given a small
number of description—word pairs in the prompt.
Representational analysis suggests that the model-
constructed conceptual space encodes information
about categorical structure and fine-grained object
features. Interestingly, models’ performances on
this reverse dictionary task does not correlates
with models’ syntactic generalization ability, which
may suggest dissociate representation of syntactic
knowledge and conceptual knowledge in large
language models. Further analysis shows that
not only is the models’ conceptual inference
performance as measured by the reverse-dictionary
probe predictive of their general conceptual rea-
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Figure 1: Illustration of the reverse-dictionary probe.
A list of N description—word demonstrations is used
to prompt an LLM to favorably evoke its conceptual
inference capacity. The model generates a word/phrase
for the object concept that is described in the query.

a youthful male person = boy

a small very thin pancake = crepe

a domesticated descendant of
the wolf =

soning ability as evaluated in downstream tasks
like commonsense reasoning, incorporating this
description=word task as prompted examples for
language models can induce significant improve-
ments on other reasoning tasks, yielding more
human-like behavior.'

2 Reverse Dictionary for Probing
Conceptual Representation

A common use of language is to talk about things in
the mind. To achieve this referential goal, listeners
have to draw flexible inferences about the concept
that a speaker intends to get across from oftentimes
a linguistic description of the referent. For example,
upon receiving “a small very thin pancake”, the
listener combines words in this description to
derive the underlying meaning, infers the likely
referred object concept, and probably retrieves
the term “crepe” for the referent. This kind of
conceptual inference is ubiquitous and necessary
to support flexible language understanding and
reasoning. To probe the behavioral signatures of
flexible inference and representation of concepts in
large language models, we re-purpose the classic
reverse-dictionary task, i.e. generating the term
given a gloss, as a minimal testbed for evaluating
language models’ capacity for conceptual inference
and the structure in the resulted representational
space for the inferred concept.

We take advantage of LLMs’ in-context learning
ability and derive conceptual representation from
them by presenting language models with a small
number of demonstrations in a reverse-dictionary
format followed by a query description (Figure 1).
We compare model-generated completions given
the prompt to the name of the object that the query
description was originally written for. Specifically,
an LLM M is provided with an input sequence
w1., comprising n tokens, which contains N pairs
of descriptions and words as demonstrations ¢,

'Our code will be publicly available at github.



along with a query sentence s. During inference,
the LLM runs them through an embedding layer
and k attention layers, encodes the entire sequence
into a representation hﬁ, and then generates the
following text based on their probability estimation
pm (-|6;s). We take h% as the “summary” of
the information in the input sequence, which
immediately precedes the following predictions
that should be in semantic correspondence to the
provided description.

We would like to note that while the par-
ticular descriptions for prompting and testing
LLMs in the following experiments are close to
definitions (details of the experimental materials
in Section 2.1), they are merely chosen by
convenience. Language-based reasoning has to
deal with uncertainty, incomplete information, and
potentially huge variability in the expressions that
people could design to communicate even the
same referent. However, the reverse dictionary
setup serves as a useful special case to start
with. The chosen pairs of concrete nouns and
highly informative descriptions create a favorable
situation for language models to reveal their
competence in meaning representation and concept
inference. Models’ performances on this special
case may indirectly inform their capacity for the
challenging case of probabilistic inference.

2.1 Behavioral Analysis

We evaluate whether LLMs are able to generate
the expected term given an definitional description.
We then analyze whether model’s performances are
robust to variations in the descriptions.

Setup We conduct the experiments on 15 open-
source Transformer-based (Vaswani et al., 2017)
LLMs pretrained autoregressively for next-word
prediction, including (1) the Falcon models (Al-
mazrouei et al., 2023; Penedo et al., 2023), (2)
LLaMA (Touvron et al., 2023a,b) models, (3)
Mistral 7B (Jiang et al., 2023), (4) MPT model
(Team, 2023), (5) Phi models (Li et al., 2023b), and
(6) the Pythia suite (Biderman et al., 2023).2 These
LLMs vary in architecture, size, and pretraining
data, enabling explorative analyses of how these
factors might impact model’s conceptual inference
capacity as measured by the aforementioned
reverse-dictionary probe.

Regarding the experimental materials, we use

*We use the LLMs accessible through HuggingFace (Wolf
et al., 2019). Additional details can be found in Appendix F.1.

the description—word pairs primarily sourced from
the THINGS database (Hebart et al., 2019), which
encompasses a broad list of 1,854 concrete and
nameable object concepts. We randomly select
N word-description pairs as demonstrations and
vary N from 1 to 48 to test the impact of the
number of demonstrations on LL.Ms’ behavior. To
test the robustness of LLMs, we further include
in our analysis the corresponding descriptions of
these objects in WordNet (Fellbaum, 1998) and an
additional 200 pairs of words and human-written
descriptions created by Hill et al. (2016) (referred
as Hill200).

We evaluate model performances based on strict
exact match across 5 runs. For each concept, we
prompt an LLM to generate an answer given a
specific description and the arrow symbol “=",
truncate it by “\n”, and then assess whether the
resulting output matches the expected word or its
synonyms listed in THINGS. We opt for greedy
search as our decoding method for a simple and
equitable comparison across models.

To interpret language models’ performances on
the reverse-dictionary task, we construct several
control conditions as the baselines: (1) NL, where
no demonstration is provided and the query is
formatted in natural language as “<description>
can be called as”; (2) Mis, where each
description in the context is paired with a ran-
domly selected word distinct from those in the
demonstrations; and (3) RAND, where the pairings
between descriptions and words undergo complete
permutation across the dataset, and the LLMs are
evaluated based on the matching the randomly-
paired word given the query description. We also
compare the LLMs’ performance with that of the
task-specific models reported in previous works
(Zhang et al., 2020; Yan et al., 2020) for the reverse-
dictionary task on the Hill200 dataset.

Results In general, the LLMs we tested here
demonstrated great performance in generating
the term for the underlying object concept given
a definitional description. As shown in Fig-
ure 2, the average model performance on the
description—word pairs from THINGS database
notably improves with just three demonstrations
and plateaus at approximately 12 to 24 examples.
This indicates that a modest number of description—
word examples is sufficient to evoke the inference
ability. Performance comparison with the baselines,
especially NL, which on average drops by 25.2%
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Figure 2: Performance of LLMs in the prompted reverse
dictionary task when provided with N description—word
pairs. Model performance is measured by exact match
between the word/phrase decoded from the model and
the name of the specific object for that description.
Colored bands denote 95% confidence intervals.

compared to cases with 24 demonstrations, sug-
gests the benefit of in-context learning in helping
reveal the models’ capacity for flexible conceptual
inference. (see Appendix A.1 Table 1).

There is also notable variability across models.
LLMs’ performance increases with greater number
of parameters (p = 0.76, see Appendix A.2
Figure 7). The performance of phi-2 (2.7b), along
with the comparison between falcon-rw-7b and
falcon-7b, underscores the importance of both
scale and quality of pretraining data.

Beyond the THINGS database, we find that
LLMs adeptly adjust to diverse descriptions with
minimal performance drop, significantly surpass-
ing previous work (Yan et al., 2020) on Hill200
(74% for LLaMA2-13B compared to 43% achieved
by RoBERTa after explicit training for the reverse-
dictionary task, see Appendix A.3 Figure 8).
We also notice a modest effect of linguistic
structure degradation on models’ performances
when varying degrees of word order permutations
are applied to the description, which suggests that
the models might be at least sensitive to linguistic
structures when combining words into a meaning
representation (Model performance decreases by
18% under full permutation, see Appendix A.3
Figure 9).

To understand the potential impact of query
properties including word frequency, number
of word senses, and description length on the
model performance, we conducted a correlation

3falcon-rw-7bis trained on far less data than falcon-7b.

analysis based on all 117,659 words in Word-
Net. We found a moderate overall influence
(p = 0.14,0.08,and 0.12 respectively, see Ap-
pendix A.4 Figure 10). Further exploration into
the influence of demonstrations is left for future
work.

Taken together, these results indicate the ef-
fectiveness and robustness of prompting LLMs
to carry out a reverse-dictionary task, laying out
the foundation for using this task as a probe
for extracting conceptual representation from the
model as well as understanding the implications
of inference capacity as measured in this task on
model’s general reasoning ability. Large language
models’ good performance, as indicated by the high
accuracy of exact match, also provides evidence
for their general capacity of conceptual inference.

2.2 Representation Analysis

Human’s conceptual representation of objects sup-
ports rich inferences about features and properties.
When thinking of a hedgehog, we also infer that
it can be skilled at climbing and digging, typically
curls into a tight spiny ball when threatened, and
belongs to the category of mammals. These pieces
of information can powerfully guide subsequent
reasoning. Given large language models’ relatively
good performances on the reverse-dictionary task
in the behavioral analysis, a question naturally
arises: does the representational space constructed
from the LLMs encode information about the
category structure and fine-grained properties
related to the inferred object concept?

Setup We run the same set of models as the
behavioral analysis on the reverse-dictionary task
with 24 demonstrations of description = word.
We extract the vector h” at the “="symbol of the
query description as the “summary” representations
of the inferred concept. To probe the structure
of the representational space, we conduct two
experiments: categorization and feature decoding.

Following Hebart et al. (2020), we use the
high-level natural categories from the THINGS
database as the gold-standard category structure
and employ a cross-validated nearest-centroid
classifier to assess if the representations derived
from conceptual inference are organized in a way
that support similarity-based categorization.

We then explore whether model representations
encode information about fine-grained features
associated with the concepts. We use the XCSLB
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Figure 3: A t-SNE visualization of representations derived from LLaMA?2-13B under different task conditions.
Representations are extracted at the “="" symbol. Category assignments are based on the THINGS data.

dataset (Misra et al., 2022), which comprises 3,645
human-generated binary descriptive features, such
as live under water (true for JELLYFISH and false
for BUTTERFLY). We train feature-specific logistic
regression models to predict the feature value for
the test items and report the average F) scores
and area under the curve (AUC) in 10-fold cross-
validation, similar to the evaluation procedure in
Zheng et al. (2019).

In comparison, we run the same categorization
and feature decoding experiments with baseline
representations, including static word embeddings
and LLM representations that are contextually
formed but not in the context of concept infer-
ence: (1) FASTTEXT, the static word embeddings
trained using fastText on Common Crawl and
Wikipedia (Grave et al., 2018), which is commonly
used to investigate the knowledge derived from
language data, (2) SPOSE (Hebart et al., 2020),
an embedding that supports stable prediction of
human similarity judgments over the concepts in
THINGS as well as the categorization behavior, (3)
WORD, the word representations derived through
inputting the word to LLMs, (4) DESCRIPTION,
the representation of the description LLMs form
before seeing the delimiter and (5) W2W, where
we give N demonstrations in the format of “<Word>
= <Word>" to LLMs to elicit prediction of the
same word as in the reverse-dictionary case, but
successful prompt completion does not necessarily
engage in reasoning about the concept underlying
the input word. We also include representations
derived from the baselines outlined in the previous
subsection (MIS and NL).

Results The summary representation extracted
from LLMs generally supports similarity-based
categorization, achieving an average performance
at around 90% and surpassing all the baselines
including FASTTEXT (78%) and SPOSE (86%).
Crucially, the contextualized representation formed
in the word=-word input repetition task (W2W)
yields worse performance (ranging from about 60%
to 85%) compared to the description=-word task,
and the difference in the strutural alignment with
human-annotated category space is qualitatively
notable when visualizing the representational space
in lower dimensions in Figure 3. This suggests
that while LLMs have learned richly-structured
word representations—at least for concrete nouns—
that support categorization to some degree, the
representations that the models formed given
the reverse-dictionary probe produce a more
structurally-aligned representational space for the
underlying concepts. This is also evidenced by the
subpar performance of other baselines including
WORD, DESC, NL and MIS (see Appendix B.1
Table 4), which shows that simply providing the
descriptions or words alone to LLMs does not
necessarily gives rise to a representational space
that structurally aligns with human-like object
categories as closely as the ones extracted from
the reverse-dictionary probe.

In addition to the great performance in object
categorization, we find that the representations
that LLMs construct contain decodable informa-
tion about fine-grained features. On average,
model representations achieve a F) score of
approximately 80% and an AUC of around 96%



in terms of mapping representations to binary
features annotated in XCSLB. Across models,
feature decoding performances are higher for
taxonomic and encyclopedic features over visual
and perceptual ones (Detailed results are shown in
Appendix B.2 Table 5 and Figure 11). This might
stem from the exclusive reliance on language data
in the model training procedure. We also note that
certain baselines, especially W2W, also perform
relatively well in decoding fine-grained object
properties despite less compelling performance
in the categorization experiment. We conjecture
that while the word representations of LLMs
might not be structured in such a way that readily
supports simple similarity-based categorization,
they may still encode fine-grained distinctions
among different lexical concepts that enables
effective learning of binary feature classifiers.

3 Implications of Conceptual Inference
on Models’ Generalization Behaviors

The reverse-dictionary probe as introduced in Sec-
tion 2 measures LLMs’ competence for conceptual
inference via a specific test case. One might
wonder whether results from this minimal test case
reveal any meaningful behavioral signatures about
models’ general language-based reasoning ability.

There are reasons to think of this reverse-
dictionary task as not just yet another new thing
that LLMs can do, but a useful and targeted probe
into the model’s capacity to perform a canoni-
cal computation that underlies various complex
reasoning behaviors. To explore this idea, we
conduct three experiments to study the relationship
between model’s conceptual inference capacity,
as measured by the reverse-dictionary probe, and
model’s generalization behaviors.

3.1 Conceptual Inference Ability Predicts
Commonsense Reasoning Performance

Setup We conduct a correlation analysis to
examine the relationship between conceptual in-
ference and the general commonsense reason-
ing abilities of LLMs. We take widely-used
benchmarks to evaluate LLMs’ general knowledge
and reasoning ability, including Commonsense QA
(CSQA) (Talmor et al., 2019), ARC easy (ARC-
E) and challenge (ARC-C) (Clark et al., 2018),
OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), Hellaswag
(Zellers et al., 2019) and BoolQ (Clark et al.,
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Figure 4: Correlation between LLMs’ overall perfor-
mance averaged across different reasoning tasks and
their average conceptual inference performance in the
reverse dictionary task with 24 demonstrations provided.

2019). The tasks in these benchmarks are all
formatted as multiple-choice questions, where a
model is typically presented with a query (e.g.,
“Where is a bald eagle safe?””) and evaluated
by their accuracy in ranking the correct answer
(e.g., “wildlife refuge”) with the highest probability
among alternatives (e.g., “in washington” and
“open country”).

We use the test sets of each task for evaluation
if publicly available; otherwise we resort to the
development set. LLMs are evaluated in a zero-shot
manner through natural language prompt templates,
with the score of each answer computed as the
sum of log-likelihoods LLMs assign to it (see
Appendix C.1 for details).

Results Figure 4 shows a significant correlation
between LLMs’ conceptual inference ability, as
probed through the reverse-dictionary task, and
their average performance across various com-
monsense reasoning tasks (see Appendix C.2
Figure 12 for correlation results on each task).
These findings suggest that the degree to which a
model can flexibly engage with concept inference,
even as measured in such a constrained domain
(concepts of concrete objects), might account for
the observed cross-model differences in general
reasoning capacity.

3.2 Relationship between Conceptual
Inference and Syntactic Generalization

Meaning composition entails combining words in
a way that conforms to the syntactic structure
(Partee et al., 1984), but do LLMs rely on
syntactic knowledge for constructing conceptual
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Figure 5: Correlation between the LLMs’ syntactic
generalization ability, as measured by BLiMP (Left)
and SyntaxGym (Right), and their average performance
in the conceptual inference task with 24 demonstrations.

representations? Experiment 2 investigates the
relationship between conceptual inference and
syntactic generalization in LLMs by comparing
their performance probed by the reverse-dictionary
task with that in targeted syntactic evaluations.

Setup We use two benchmarks for evaluating
models’ syntactic generalization: SyntaxGym
(Hu et al., 2020; Gauthier et al., 2020) and the
Benchmark of Linguistic Minimal Pairs (BLiMP;
Warstadt et al., 2020), which cover a wide range of
linguistic phenomena. Both benchmarks construct
controlled English stimuli to assess a model’s
syntactic generalization behavior. The evaluation
paradigm of SyntaxGym is based on whether
a language model generates human-like differ-
entiable expectations about upcoming linguistic
materials given the structural information in the
prefix. BLiMP’s paradigm compares a model’s
likelihood assignments between a well-formed
sentence and minimally different ungrammatical
counterpart. We prepend a [BOS] token to each
sentence before inputting it to the model. We report
the accuracy averaged across the test suites for both
benchmarks. Accuracy scores for particular test
suites can be found in Figure 13 in the Appendix.

Results While large language models exhibit
significant variability in their conceptual inference
ability as measured by the reverse-dictionary
task in Section 2, the vast majority of the
models tested here perform similarly well on the
syntactic generalization benchmarks (Figure 5).
The falcon-rw models, trained exclusively on

web data (Penedo et al., 2023), are the outliers
that achieve comparatively lower performance
in syntactic evaluation, potentially because the
web data contains a lot of noises and language
production errors. This result also suggests
that the observed correlation between a model’s
performance on the reverse-dictionary task and its
performance on other reasoning tasks are not an
epiphenomenon of a powerful model being good
at every tasks. From a different perspective, a
model’s syntactic generalization ability does not
seem to improve along with an increased capacity
for conceptual inference. This raises a puzzle
for future work about the relationship between
linguistic generalization and conceptual reasoning
in large language models.

3.3 Generalizing Reverse Dictionary to
Commonsense Reasoning

Our final experiment investigates whether guiding
LLMs for conceptual inference may facilitate
the models in approaching tasks that involves
reasoning about items congruent with the meaning
of a given phrase, even if the query task may be
substantially different from the prompt examples
in terms of the content of the involved reasoning
process. We focus on commonsense reasoning and
use ProtoQA (Boratko et al., 2020) for experiment.
ProtoQA presents prototypical situations with
many plausible answers, with some more typical
than others, e.g., “Name something that you might
forget in a hotel room”. We analyze the impact
of conceptual inference on LLLMs’ behavior by
comparing their performance with that in zero-shot
scenarios and under different prompts.

Setup We use the development set of ProtoQA
for evaluation as the answers to the test sets are
not publicly available. We follow the evaluation
protocol in the original paper, where diverse
answers sampled from LLMs are compared with
human-generated ones through the criteria of exact
match and matching with synonyms in WordNet.
We report Max Answers @k and Max Incorrect @£,
where Max Answers @k restricts the total number
of answers to k, and Max Incorrect@¥k halts after
k unmatched answers are provided (Additional
details can be found in Appendix E.1). To evaluate
the influence of conceptual inference on LLMs’
behavior, as in Section 2, we provide the LLM
with an input sequence wy., that comprises N
description=-word pairs ¢ and a query sentence
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Figure 6: Performance of LLaMA2-13B in ProtoQA
evaluated by Max Answers@10 under the natural
language task prompt (NL) and formatted reverse dictio-
nary prompt with NV description=-word demonstrations.

s drawn from the evaluation dataset. We then
compare the performance when N = {1, 12,24}
demonstrations are given and incorporate the NL
baseline, where we use the natural language prompt
templates modified for next-word prediction.

Results The performance of LLMs in ProtoQA
improves given the reverse-dictionary demonstra-
tions (Figure 6), generally surpassing the zero-
shot setting where task-specific natural language
templates are used (Detailed results are shown
in Appendix E.2 Table 6). While LLMs exhibit
the ability to generate reasonable answers when
prompted with NL, the responses are typically
verbose and occasionally contain irrelevant infor-
mation. When guided by reverse-dictionary exam-
ples, LLMs tend to produce precise answers that
align more closely with human-generated answers,
without any modification of the original questions
(see Table 7 in the Appendix for examples of LLM-
generated answers). While we do not claim that
the reverse dictionary demonstrations work better
than other task-specific prompts or hand-designed
templates that align with the next-word prediction
pretraining objective, the observed generalization
ability of LLMs suggests that the reverse-dictionary
demonstrations can guide the LLMs to go beyond a
specific task construal and learn to construct useful
representations for commonsense reasoning.

4 Related Work

The impressive performance of LLMs across
various language comprehension benchmarks has
sparked debates about conceptual representations
in these models (Bender and Koller, 2020; Pi-
antadosi and Hill, 2022; Mitchell and Krakauer,

2023) as well as their relevance to understanding
the human mind (Binz and Schulz, 2023a; Frank,
2023; Hardy et al., 2023). Previous work suggests
that LLMs demonstrate human-like behavior in
some aspects of reasoning (Webb et al., 2023;
Hagendorff et al., 2023; Dasgupta et al., 2022;
Han et al., 2024) and semantic structure (Hansen
and Hebart, 2022; Marjieh et al., 2022), but these
models tend to be overly sensitive to contextual
variations (Binz and Schulz, 2023b; Wu et al.,
2023; Suresh et al., 2023). Analyses of their
representations demonstrate their effectiveness in
encoding world knowledge (Da and Kasai, 2019;
Forbes et al., 2019) and dynamically forming world
state representations (Li et al., 2023a; Yamakoshi
et al., 2023; Li et al., 2021). Research has also
looked into model’s ability to reason about and
make inductive inferences about object properties
(Misra et al., 2023; Han et al., 2024).

Our work complements existing approaches by
focusing on a canonical example of conceptual
inference: naming an intended referent that is
described indirectly. A special case of this general
inference problem, reverse dictionary, has been
a familiar problem in the NLP community, and
approached with trained or fine-tuned task-specific
neural network models (Hill et al., 2016; Zhang
et al., 2020; Yan et al., 2020; Siddique and Su-
fyan Beg, 2023). We combine this classic task with
a novel dataset of object concepts (THINGS) to
develop a minimal testbed for probing conceptual
representations in large language models, adding
new kinds of evidence to the threads of research on
evaluating language models’ reasoning capacity.

5 Conclusion

Concepts bridge the thoughts and the words. Here
we take the classic reverse dictionary task to probe
the conceptual inference capacity in large language
models. Given a few description—word pairs,
LLMs effectively learn to infer concepts from
complex linguistic descriptions. The contextually-
formed representational space in the models struc-
turally aligns with the space of object categories
and maintains fine-grained distinctions across
individual concepts along various feature dimen-
sions. To the degree that large language models
demonstrate promising behaviors in a minimal case
of conceptual inference, our approach may open
new questions about the nature and limit of their
learned capacity for meaning representation.



Limitations

Compositionality in natural language is complex
and intricate. While the reverse dictionary task in
principle involves combining word representation
into a conceptual representation, the design of
this study does not afford an in-depth analysis of
phrase-level meaning composition. In addition, this
work does not provide a mechanistic explanation
of how LLMs achieve the ability to do reverse
dictionary task after being prompted with a few
demonstrations.

Our experimental materials use definitional
descriptions about concrete objects. Although
this is an intentional choice, we note here that it
might constrain how well the experimental results
can generalize to a general case of probabilistic
inference. While our main research objective is not
about building a reverse dictionary, wider range of
words and terms, including different part-of-speech
categories and domains, are needed to critically
assess the potential of turning a prompted LLM into
aready-to-go reverse dictionary application. On the
side of understanding conceptual representations
in LLMs, diverse domains of concepts are also
relevant for painting a fuller picture of the models’
competence and potential limitations.
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A Additional Materials for Reverse
Dictionary as a Probe for Conceptual
Inference

A.1 Comparison with Baselines

Table 1 compares the performance of LLMs with
the baselines outlined in Section 2. Larger models
generally achieve better performance, whereas
they tend to be susceptible to noise introduced
by demonstrations. However, the Pythia models
(pythia-1b4, pythia-6b9, and pythia-12b) and
falcon-rw-7b appear less sensitive to demonstra-
tions, showing performance improvement over NL
even when the pairings between descriptions and
words are permuted, similar to previous research
suggesting that some models may not heavily
rely on the ground truth input-label mapping
provided in the demonstrations (Min et al., 2022).
Exploration of the phenomenon is left for future
work.

Model DEMO NL Mis RAND
pythia-1b4 46.5 162 350 243
pythia-2b8 524 259 55 6.1
pythia-6b9 60.1 306 47.0 52.5
pythia-12b 63.8 31.1 463 338
phi-1.5 52.1 281 6.6 26.3
phi-2 655 408 0.1 0.2
falcon-rw-1b 519 29.1 244 245
falcon-rw-7b  67.8 456 545 409
falcon-7b 725 395 1.7 4.5
mpt-7b 709 505 0.1 0.1
1lama-7b 709 473 44 18.6
1lama-13b 73.8 500 0.5 0.1
1lama2-7b 73.0 495 1.0 04
1lama2-13b 783 572 0.1 0.1
mistral-7b 77.6 580 1.8 0.1

Table 1: Comparison of LLMs’ performance (DEMO)
and the baselines with 24 demonstrations provided,
except for NL, where the template is formatted in
natural language with no demonstration.
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Figure 7: Correlation between the size of LLMs and
their average conceptual inference ability measured as
exact match accuracy on the reverse dictionary task with
24 demonstrations provided.

A.2 Relationship between Conceptual
Inference Ability and Model Size

Figure 7 shows the relationship between the size
of LLMs and their average performance in the
reverse dictionary task when provided with 24
demonstrations. We notice a significant correlation.

A.3 Impact of Variation in Descriptions

Setup As in Section 2, we randomly select 24
description—word pairs from THINGS as demon-
strations and the query sentence is sourced from
alternative databases: (1) 1,797 concepts in
THINGS with descriptions obtained from Word-
Net*, and (2) 200 pairs of words and human-
written descriptions created by Hill et al. (2016),
where the words are randomly chosen from the
top 3000 most frequent tokens in the British
National Corpus (Leech et al., 1994) but not
within the top 100. There is no information
about the synonyms of the words in Hill et al.
(2016), which may affect the performance to some
extent. We therefore also calculate the exact match
performance based on the words themselves in
terms of THINGS and WordNet for comparison.
Additionally, we examine the robustness of LLMs
to degraded syntactic structure by introducing
varying degrees of word order permutations to the
query description. Specifically, we take 30%, 60%
and 100% words from the query description in the
THINGS database, randomly shuffle their order,
and put them back to the description. For all our
experiments here, we compute a model’s average
performance across 5 runs.

4Out of the 1,854 concepts, 1,797 are linked with WordNet
in THINGS.
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Model Hill200
pythia-1b4 41.8
pythia-6b9 48.7
falcon-rw-7b 62.4
falcon-7b 57.6
1lama2-7b 67.3
1lama2-13b 73.6
Zhang et al. (2020)  32.0
Yan et al. (2020) 43.0

Table 2: Comparison of LLMs’ performance with 24
demonstrations (DEMO) and previous works (Zhang
et al., 2020; Yan et al., 2020) on the Hill200 dataset. We
use the reported accuracy @1 for comparison.

Results As shown in Figure 8, LLMs consistently
maintain high performance across various de-
scriptions, outperforming previous work explicitly
training models including RoBERTa (Liu et al.,
2019) for the same task in Hill200 (Table 2). We
also note that the observed decline in performance
for Hill200 may be attributable to the lack of syn-
onym information. We observe modest effects of
degraded syntacti structure on LLMs’ performance
on the reverse dictionary task, with degradation
in performance becoming more pronounced as
a higher degree of word order permutation is
introduced (Figure 9). This shows some degree
of robustness to input noise in LLMs and suggests
that these models are at least sensitive to syntactic
structure in the input when constructing conceptual
representations.

A.4 Impact of Query Properties

Setup We randomly select 24 demonstrations
from the THINGS database and test the perfor-
mance of LLMs across the entire WordNet with
117,659 words in total. Due to the ambiguity
of the pretraining corpus of LLMs, we use word
frequencies from Speer (2022) as a proxy, which is
based on multiple sources such as Wikipedia and
Books. The number of senses is directly obtained
from WordNet, and the description length is
determined by the word count of each description.

Results The performance of the models, along
with the correlation between the performance
and word frequency, number of senses, and
description length, is illustrated in Table 3 and
Figure 10. Predicting words at the extremes of
frequency proves challenging, akin to previous
task-specific neural models that were explicitly
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Figure 9: Performance of LLMs in the reverse-dictionary task when presented with descriptions in THINGS with
varying degree of word order violations, evaluated by exact matching of words or their synonyms. Error bars
represent standard error computed from the average performance of different models across 5 runs.

trained for the reverse dictionary problem (Zhang
et al., 2020; Yan et al., 2020). The infrequent
words can be more difficult for LLMs to learn,
as suggested by previous work (McCoy et al.,
2023; Chang and Bergen, 2022; Kandpal et al.,
2023). Conversely, the most frequent words, such
as be, have, do, make, take, use etc., tend to
be more polysemous (Casas et al., 2019) and
may be inherently harder to describe precisely,
which make them challenging to predict. The
length of the description positively correlates the
performance as well, possibly due to the provision
of more comprehensive information in lengthier
descriptions, facilitating the identification of the
exact word.

B Additional Materials for the Analysis of
Model Representations

B.1 Categorization

Method For categorization, we leave each con-
cept out in turn and compute the centroid for each
category by averaging the representations of the
remaining concepts within it. The classification is
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based on the cosine distance between the concept
and each centroid.

Data Following Hebart et al. (2020), we remove
subcategories of other categories, concepts belong-
ing to multiple categories and categories with fewer
than ten concepts. This results in 18 out of 27
categories in THINGS, including animal, body
part, clothing, container, electronic device, food,
furniture, home decoration, medical equipment,
musical instrument, office supply, part of car, plant,
sports equipment, tool, toy, vehicle and weapon.
These categories comprise 1,112 concepts.

Results Table 4 presents the categorization re-
sults for all LLMs and baselines. LLMs generally
achieve an average performance at around 90% for
THINGS, surpassing all the baselines including
FASTTEXT and SPOSE. The NL baseline achieve
a relatively high accuracy, in line with its perfor-
mance in the concept inference task.

B.2 Feature Ratings

Data As described in Section 2.2, we use the
XCSLB feature norm for our analysis. XCSLB in-
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Model Accuracy WordFreq NumSenses DescLength
pythia-1b4 12.8 0.148 0.068 0.088
pythia-6b9 21.7 0.136 0.061 0.138
falcon-rw-7b 28.6 0.131 0.070 0.114
falcon-7b 31.5 0.144 0.098 0.116
1lama2-7b 349 0.144 0.102 0.127
1lama2-13b 40.8 0.121 0.069 0.137

Table 3: LLMs’ performance in conceptual inference over the 117,659 words in WordNet, measured by exact
match (Accuracy). The columns WordFreq, NumSenses, and DescLength represent the Spearman’s rank correlation
coefficients between accuracy and each of these three factors.

cludes 3,645 descriptive features for 521 concepts.
We take the concepts that overlap with those in
THINGS and remove features that are too sparse
with fewer than 20 concepts. This results in 257
features associated with 388 concepts in total.

Results The results for feature prediction of
LLMs in XCSLB, measured by F score and AUC,
are depicted in Figure 11. The comparison with
baselines is presented in Table 5.

C Additional Materials for Relationship
between Conceptual Inference and
General Abilities

C.1 Details of Evaluation

Considering the multiple-choice format of the
reasoning tasks, let wy.,, be the prompt composed
of n tokens, and wy,1.¢; denote the i-th possible
answer with ¢; — n tokens among all candidates C.
We evaluate LLMs by their accuracy in ranking
the correct answer with the highest probability,
where the score of each answer is calculated as

Zgi:n+1 log pag (we | wey).
C.2 Results

The correlation between LLMs’ performance in
conceptual inference and their performance in each
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reasoning task is shown in Figure 12.

D Additional Materials for Relationship
between Conceptual Inference and
Syntactic Generalization

LLMs’ performance across different linguistic
phenomena tested in BLIMP and SyntaxGym are
shown in Figure 13. The lack of correlation, along
with the inferior performance of falcon-rw mod-
els, suggests that LLMs’ syntactic generalization
ability might be dissociable from their capacity to
construct conceptual representations.

E Additional Materials for Generalizing
Reverse Dictionary to Commonsense
Reasoning

E.1 Details of Setup

The ground truth answers for ProtoQA consist of
a ranked list of clusters of answers collected from
humans. Similar to Boratko et al. (2020), we use
Nucleus Sampling (Holtzman et al., 2020) to get
100 sampled answers from LLMs per question,
sort the answers by frequency counts, and obtain
a ranked list of 10 answers ordered from most
to least common. The answers are then matched
with clusters of ground truth answers. In terms of



Model DEMO NL Mis W2W WORD DESCR
pythia-1b4 88.0 819 863 65.8 51.4 65.6
pythia-2b8 89.7 844 795 78.0 57.9 69.5
pythia-6b9 90.7 832 895 844 59.9 72.6
pythia-12b 90.7 824 883 84.7 59.6 74.4
phi-1.5 89.2 81.3 823 80.0 60.4 72.1
phi-2 914 856 394 845 70.5 66.7
falcon-rw-1b  89.1 87.7 84.3 8l1.1 66.6 74.4
falcon-rw-7b 904 87.7 90.5 86.2 55.9 75.1

falcon-7b 90.6 79.6 735 78.0 31.5 56.8
mpt-7b 903 89.0 61.1 819 39.8 75.5
1lama-7b 90.6 540 638 715 68.4 58.4
1lama-13b 89.5 543 576 380 62.3 62.3
1lama2-7b 89.0 71.1 728 44.0 60.9 67.6

1lama2-13b 904 862 576 87.1 70.1 75.9
mistral-7b 915 874 450 86.7 60.7 73.7
FASTTEXT 77.9
SPOSE 85.9

Table 4: Accuracy of using representations derived from LLMs under the reverse dictionary task (DEMO) and
other baseline representations for similarity-based categorization. DEMO, PERM, and MIS are representations
derived from LLMs with 24 demonstrations provided. DESCR denotes the DESCRIPTION baseline where we take
the representations of LLMs prior to encountering the delimiter “=-".

Model DEMO NL Mis W2W WORD DESCR
pythia-1b4 78.6/9577 756/954 76.0/953 66.6/937 63.6/90.5 66.5/93.1
pythia-2b8 80.1/959 775/957 743/949 74.6/956 655/91.7 69.2/94.1
pythia-6b9 80.6/96.1 77.7/957 79.3/958 77.9/96.5 68.4/92.6 69.9/944
pythia-12b 81.2/964 78.0/96.0 80.1/96.1 79.7/96.8 69.1/93.3 70.4/94.6
phi-1.5 78.6/95.8 75.8/953 742/94.8 75.5/955 67.6/92.1 67.7/93.6
phi-2 80.4/964 78.0/96.0 68.8/933 79.9/969 73.9/94.8 68.6/94.0
falcon-rw-1b 80.0/96.1 77.3/95.6 76.3/95.1 758/959 69.1/92.3 68.1/93.8
falcon-rw-7b 80.9/964 79.0/96.2 80.0/96.1 77.6/965 69.2/92.6 71.1/949
falcon-7b 81.0/96.5 792/962 752/947 77.2/958 71.2/92.8 67.9/93.4
mpt-7b 81.0/964 79.8/962 73.2/94.8 78.1/96.6 7T719/94.0 71.4/95.1
11lama-7b 81.3/964 78.6/959 7727949 784/96.8 759/954 69.1/94.1
1lama-13b 81.7/96.5 78.5/96.1 748/94.6 79.0/96.8 7T42/949 69.6/94.4
1lama2-7b 81.1/96.5 79.8/96.2 753/950 77.2/963 729/94.6 70.1/94.6
11ama2-13b 80.7/96.6 79.8/964 69.3/93.9 79.3/96.7 76.7/955 66.5/94.5
mistral-7b 80.6/96.5 79.7/963 743/946 79.4/96.8 758/953 69.8/94.7
FASTTEXT 76.3/95.1

SPOSE 68.4/924

Table 5: Performance of LLMs (DEMO) and other baselines in predicting semantic features in XCSLB evaluated by
the average F; (/AUC) score. DEMO and MIS are the representations derived from LLMs with 24 demonstrations
provided. DESCR denotes the DESCRIPTION baseline where we take the representations of LLMs prior to
encountering the delimiter.
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Figure 11: Performance of using LLMs’ representations to predict the object features in XCSLB. Performance is
measured by F} score (Left) and AUC (Right). Each point denotes a feature of a certain type.

exact match, the answers generated by LLMs are
compared with those within each cluster, receiving
a score of 1 if they match any string in it and
0 otherwise. For WordNet match, the answers
generated by LLMs are tokenized and match with
the synsets in WordNet associated with the gold
answers. The overall score is computed based
on a reward matrix where each cluster’s size
determines the reward assigned if the generated
answers achieve a score of 1. For more details, see
Boratko et al. (2020).

For this experiment, we select three LLMs
across various model series that demonstrate
relatively good performance in the reverse dictio-
nary task, including 11ama2-13b, falcon-7b, and
pythia-6b9. During generation, we set the max
tokens to 28, and both top_p and temperature to
1.0, as well as a repetition penalty of 1.0.

E.2 Results

Impact of conceptual inference on ProtoQA
The performance of LLMs in ProtoQA under
different conditions is shown in Table 6.

Examples of LLM-generated answers Exam-
ples of LLM-generated answers for ProtoQA are
shown in Table 7.

F Implementation Details

F.1 Large Language Models

Detailed information about the LLMs used in our
experiments is presented in Table 8.
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F.2 Prompt Templates

Table 9 shows the prompt templates in terms of NL
for all the reasoning tasks. The prompt templates
for ProtoQA is shown in Table 10.

F.3 Hyperparameters

We set the max tokens to 28 for all generation
tasks. In terms of ProtoQA involving nucleus
sampling, we set both top_p and temperature to
1.0, alongside a repetition penalty of 1.0, to ensure
a fair comparison across models.
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falcon-rw-7b 6 | 66. BACFAPARERY 456 A MG falcon-rw-7b
1lama-7b 4 d I .3 93.8 715 76.9 735 89.1 1lama-7b
mpt-7b X { : 7 935720 781 756 905 mpt-7b
falcon-7b | ¥ 4 .0 91.0 745 70.7 794 87.3 falcon-7b
1lama2-7b b b ] .0 945 727 776 79.3 88.6 1lama2-7b
1lama-13b 8 0 922729 757 785 89.0 1lama-13b
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o‘d&

é‘d

Figure 13: Performance of LLMs across different linguistic phenomena in BLiMP and SyntaxGym. The LLMs are
ranked by their average performance in conceptual inference with 24 demonstrations.
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Exact Match ‘WordNet Match

Max Answers Max Incorrect Max Answers Max Incorrect
1 3 5 10 1 3 5 1 3 5 10 1 3 5
Human* 784 744 725 733|558 694 724|784 768 76.0 77.0|59.0 74.0 77.9

GPT-2* NL | 56 159 183 232 | 33 151 193 | 62 185 23.0 305 | 43 179 242
NL | 174 152 16.0 152 | 82 133 145|246 258 275 279 |13.0 214 247
1 184 215 20.7 209|104 179 195 | 19.1 24.0 23.6 268|122 199 221
12 | 21.0 219 234 279|121 199 227|225 251 273 315|133 239 265
24 | 213 23.6 25.1 295|130 21.7 245|231 275 305 342|148 251 30.7
NL | 17.0 194 184 173 | 93 162 165|214 275 28.6 323|125 227 26.6
LLaMA2 1 11.0 128 13.0 139 | 6.1 108 126 | 135 145 152 73 | 73 123 145
7B 12 | 194 20.8 227 259|104 17.0 226|228 242 260 312|131 196 254
24 | 154 20.7 262 299 | 7.7 17.8 258 | 187 228 29.1 346 | 95 207 293
NL | 19.1 192 17.7 163 | 115 156 16.0 | 258 26.1 25.8 259|148 21.7 23.6
LLaMA2 1 16.0 209 212 243 | 73 17.6 206 | 19.0 244 265 29.7| 93 220 255
13B 12 | 199 204 22,6 268 |11.0 185 234|227 238 264 319|137 225 276
24 | 22.0 238 26.6 31.1| 128 21.6 256|254 283 333 37.6| 151 269 326

Falcon 7B

Table 6: Performance of humans and LLMs in ProtoQA. Data of GPT-2* and human performance are obtained from
the original paper (Boratko et al., 2020).
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Question Name a sport that requires a lot of equipment.
football, hockey, soccer, baseball, golf, motocross, basketball, fencing, high

Human . . L .
jump, sky-diving, snowboard, swimming, tennis, ...
“SEBA inline hockey The other two are ice hockey and roller hockey What is
an inline hockey stick Ice hockey has,”
“wrestling Wrestling mats used for judo judo and judo training are one of the
most popular accessories,”
“sailing This popular sport can be extremely expensive if you arent careful One
of the more common items that people will need is,”
“basketball The league will produce 17 Tag games during the 2018 MLB season
NL which will be held as part,”
“golf Aside from tickets to 18 holes and maybe a sleeve of golf balls golfers can
get away,”’
“beach volleyball Players require shoes knee pads shorts and at least,”
“IHL hockey which requires ten or more people to play The other sports that
need more than seven people are boxing rodeo,”
“rock climbing Head to an indoor rock climbing gym or check out a local gym
that offers indoor bouldering,” ...
DEMO24 “golf,” “gear,” “tennis,” “skiing,” “football,” “rugby,” “lawn bowling,” “ball

LT3

game,” “fishing,” “cricket,” ...

Question Name something that people usually do before they leave the house for work?
brush their teeth, go to the bathroom, showering, wash, bath, eat something,
Human have breakfast, drink coffee, dress up, grab keys, lock the door, turn the lights
off, comb, look in the mirror, say goodbye, jogging, pray, ...
“to check the weather forecast read more,”
“have a cup of coffee This beverage gives them the extra energy that they need
so they can complete their daily tasks and finish their work,”
“have breakfast A healthy breakfast can ensure people start the day feeling
satisfied and energized You can then translate your satisfaction into the work,”
“turn on the radio It is a reflex And this was a Wall Street Journal poll People
dont think about how they,”
“to have breakfast Same thing with your GSD It would be important that you
NL provide proteinpacked food to your dog for its,”
“to walk the dog And when they come back they already are looking for their
tired little friend to have a nice cuddle,”
“shop Groceries housewares home improvement stores etc For me I can only
buy things that I can carry on,”
“to have a early morning coffee People who dont like coffee usually prefers tea
But most people drink coffee everyday The,”
"take a smoke For chainsmokers this is a daily ritual that could cost them an
arm and a leg if they, ” ...
“commute,” “breakfast,” “get dressed,” “brush teeth”, “morning routine,
ready,” “wake up,” “shower,” “shave,” ...

DEMO024 get

L2 T3 L2 NT3

Table 7: Some examples of the answers to the questions in ProtoQA generated by LLaMA?2-13B under different
conditions.
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Series Models Dataset #Tokens

tiiuae/falcon-rw-1b RefinedWeb 350B
Falcon tiiuae/falcon-rw-7b (enhanced with curated 350B
titnae/falcon-7b corpora like the Pile) 1.5T

huggyllama/llama-7b CommonCrawl, C4,

LLaMA 1 Github, Wikipedia, Books, 1T
huggyllama/llama-13b ArXiv, StackExchange
meta-llama/Llama-2-7b data from publicly avail-

LLaMA 2 meta-llama/LLlama-2-13b able sources 2T

Mistral mistralai/Mistral-7B-v0.1

. mC4, C4, RedPajama, the
MPT mosaicml/mpt-7b Stack Dedup 1T
. microsoft/phi-1_5 (1.3b) cod§—language and syn- 30B
Phi microsoft/phi-2 (2.7b) thetic data (augmented 14T
P ’ with filtered web data) )
EleutherAI/pythia-1.4b-deduped
Pythia EleutherAI/pythia-2.8b-deduped Pile (deduplicated) 300B

EleutherAI/pythia-6.9b-deduped
EleutherAl/pythia-12b-deduped

Table 8: LLMs used for our experiments. The dataset column for mistral-7b is empty due to lack of information
about its pretraining data.

Dataset NL Template
Question: [Question]

A

SQ Answer: [Answer]
Question: [Question]

ARC (E & C) Answer: [Answer]
Question: [Question]

HellaSwag Answer: [Answer]
Goal: [Question]

PIQA Answer: [Answer]
[Context]

SIQA Question: [Question]
Answer: [Answer]
Question: [Question]

OpenbookQA Answer: [Answer]
[Context]

BoolQ Question: [Question]
Answer: [Answer]

Table 9: Prompt templates for various reasoning tasks in NL.

ProtoQA Question NL Template

Name something ... [Answer] One thing ... is [Answer]

Tell me something ... [Answer] One thing ... is [Answer]

Name a(/an) ... [Answer] One ... is [Answer]

How can you tell ... [Answer] One way to tell ... is [Answer]

Give me a(/an) ... [Answer] One ... is [Answer]

Table 10: Prompt templates translating the original questions in ProtoQA to NL that fits the next-word prediction
objective of LLMs.
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https://huggingface.co/tiiuae/falcon-rw-7b
https://huggingface.co/tiiuae/falcon-7b
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