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Abstract
Probing and enhancing large language models’001
reasoning capacity remains a crucial open002
question. Here we re-purpose the reverse003
dictionary task as a case study to probe004
LLMs’ capacity for conceptual inference. We005
use in-context learning to guide the models006
to generate the term for an object concept007
implied in a linguistic description. Models008
robustly achieve high accuracy in this task,009
and their representation space encodes informa-010
tion about object categories and fine-grained011
features. Further experiments suggest that012
the conceptual inference ability as probed by013
the reverse-dictionary task predicts model’s014
general reasoning performance across multiple015
benchmarks, despite similar syntactic general-016
ization behaviors across models. Explorative017
analyses suggest that prompting LLMs with018
description⇒word examples may induce gen-019
eralization beyond surface-level differences in020
task construals and facilitate models on broader021
commonsense reasoning problems.022

1 Introduction023

Imagine your friend was telling a story about their024

hiking trip: “I glimpsed some sharp spikes before025

it quickly disappeared into the woods.” What was026

your friend talking about? You probably felt quite027

certain that it was not a sea urchin. But was it a028

hedgehog, or a porcupine, you might be wondering.029

Perhaps you decided to ask a question: “How long030

were these spikes?”.031

As common and intuitive as the opening ex-032

ample, our everyday language use builds on the033

concepts in the mind. People’s exchange of words034

are not merely associative responses: Through the035

chosen description of aspects of the intended ref-036

erent such as “sharp spikes” and “into the woods”,037

the speaker informs the listener about an object that038

was absent from the immediately perceived context.039

By building mental representations of the possibly040

intended referent from minimally what others say,041

a listener can then articulate the intended referent, 042

form relevant questions to seek more information, 043

and further reason about and interact with the world 044

through words. 045

While concepts are “the glue that holds our 046

mental world together” (Murphy, 2004), it remains 047

an open question whether human-like conceptual 048

representations and reasoning capacities emerge 049

from statistical learning on linguistic input alone. 050

Specifically, the contemporary large language 051

models (LLMs) appear to be highly performant 052

on various language comprehension and reasoning 053

tasks after trained on gigantic amount of texts 054

with the main objective of predicting the next 055

token (Bubeck et al., 2023; Wei et al., 2022; Webb 056

et al., 2023; Hagendorff et al., 2023; Han et al., 057

2024). A fruitful line of works has investigated the 058

large language models’ representation of words of 059

specific domains, such as color (Patel and Pavlick, 060

2022), space and time (Gurnee and Tegmark, 2024; 061

Geiger et al., 2023), and world states in a game (Li 062

et al., 2023a). These works revealed impressive 063

structural similarities between the conceptual 064

space that a model formed contextually and its 065

analog in the physical world where these concepts 066

are grounded. Other works have developed 067

synthetic tasks and datasets to evaluate the extent 068

to which the model representations fulfill critical 069

aspects of concepts in the human mind, such 070

as systematic compositionality (Lovering and 071

Pavlick, 2022). Despite the continuing efforts 072

and progress in probing large language model’s 073

internal representation, it has been challenging 074

to connect the model’s capacity of constructing 075

conceptual space for certain domains to a more 076

general problem of conceptual inference, where 077

the underlying concepts are not stated explicitly 078

but has to be inferred from the context. 079

Here we develop a case study that evaluates large 080

language models’ capacity for conceptual inference 081

and explores potential implications of such capacity 082
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on model’s generalization behaviors. Inspired083

by the everyday referential use of language—as084

demonstrated in the opening example—we re-085

purpose the classic reverse-dictionary task and086

existing datasets of lexical semantics as a probe087

for conceptual representation in large language088

models. We consider the reverse-dictionary task089

as a special case and convenient instantiation of a090

general probabilistic inference problem: retrieving091

a lexical entry for the underlying concept given092

the information in a linguistic description, such as093

producing the word “dog” in virtue of inferring094

the underlying concept DOG given the description095

“A domesticated descendant of the wolf.”096

This task itself is simple yet ecologically relevant097

to human communication. Consider a writer who098

strategically creates suspense in a story, or a person099

who uses words to paint an image of an object in100

their mind after struggling to find the exact word101

or phrase that names the object. Unlike previous102

studies where language models output meaning103

representation given a particular word, this word-104

retrieval paradigm involves combining the words105

in descriptions to construct coherent meanings,106

inferring the corresponding concept, and mapping107

it back to words, providing a useful testbed for108

assessing the way conceptual representations are109

formed flexibly in large language models.110

As a starting point, we construct description–111

word pairs from THINGS (Hebart et al., 2019) and112

WordNet (Fellbaum, 1998), where the description113

of an object is intended as definitions and hence114

highly informative of the referent. We use in-115

context learning paradigm to induce the task116

routine in the language models. Behavioral117

assessments across a variety of models show118

that large language models are able to robustly119

generate the corresponding lexical items with120

high accuracy of exact match, given a small121

number of description–word pairs in the prompt.122

Representational analysis suggests that the model-123

constructed conceptual space encodes information124

about categorical structure and fine-grained object125

features. Interestingly, models’ performances on126

this reverse dictionary task does not correlates127

with models’ syntactic generalization ability, which128

may suggest dissociate representation of syntactic129

knowledge and conceptual knowledge in large130

language models. Further analysis shows that131

not only is the models’ conceptual inference132

performance as measured by the reverse-dictionary133

probe predictive of their general conceptual rea-134

...
a domesticated descendant of  
the wolf ⇒

a youthful male person ⇒ boy

a small very thin pancake ⇒ crepe

dog

pup

canine
…

Figure 1: Illustration of the reverse-dictionary probe.
A list of N description–word demonstrations is used
to prompt an LLM to favorably evoke its conceptual
inference capacity. The model generates a word/phrase
for the object concept that is described in the query.

soning ability as evaluated in downstream tasks 135

like commonsense reasoning, incorporating this 136

description⇒word task as prompted examples for 137

language models can induce significant improve- 138

ments on other reasoning tasks, yielding more 139

human-like behavior.1 140

2 Reverse Dictionary for Probing 141

Conceptual Representation 142

A common use of language is to talk about things in 143

the mind. To achieve this referential goal, listeners 144

have to draw flexible inferences about the concept 145

that a speaker intends to get across from oftentimes 146

a linguistic description of the referent. For example, 147

upon receiving “a small very thin pancake”, the 148

listener combines words in this description to 149

derive the underlying meaning, infers the likely 150

referred object concept, and probably retrieves 151

the term “crepe” for the referent. This kind of 152

conceptual inference is ubiquitous and necessary 153

to support flexible language understanding and 154

reasoning. To probe the behavioral signatures of 155

flexible inference and representation of concepts in 156

large language models, we re-purpose the classic 157

reverse-dictionary task, i.e. generating the term 158

given a gloss, as a minimal testbed for evaluating 159

language models’ capacity for conceptual inference 160

and the structure in the resulted representational 161

space for the inferred concept. 162

We take advantage of LLMs’ in-context learning 163

ability and derive conceptual representation from 164

them by presenting language models with a small 165

number of demonstrations in a reverse-dictionary 166

format followed by a query description (Figure 1). 167

We compare model-generated completions given 168

the prompt to the name of the object that the query 169

description was originally written for. Specifically, 170

an LLM M is provided with an input sequence 171

w1:n comprising n tokens, which contains N pairs 172

of descriptions and words as demonstrations ℓ, 173

1Our code will be publicly available at github.
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along with a query sentence s. During inference,174

the LLM runs them through an embedding layer175

and k attention layers, encodes the entire sequence176

into a representation hk
n, and then generates the177

following text based on their probability estimation178

pM (·|ℓ; s). We take hk
n as the “summary” of179

the information in the input sequence, which180

immediately precedes the following predictions181

that should be in semantic correspondence to the182

provided description.183

We would like to note that while the par-184

ticular descriptions for prompting and testing185

LLMs in the following experiments are close to186

definitions (details of the experimental materials187

in Section 2.1), they are merely chosen by188

convenience. Language-based reasoning has to189

deal with uncertainty, incomplete information, and190

potentially huge variability in the expressions that191

people could design to communicate even the192

same referent. However, the reverse dictionary193

setup serves as a useful special case to start194

with. The chosen pairs of concrete nouns and195

highly informative descriptions create a favorable196

situation for language models to reveal their197

competence in meaning representation and concept198

inference. Models’ performances on this special199

case may indirectly inform their capacity for the200

challenging case of probabilistic inference.201

2.1 Behavioral Analysis202

We evaluate whether LLMs are able to generate203

the expected term given an definitional description.204

We then analyze whether model’s performances are205

robust to variations in the descriptions.206

Setup We conduct the experiments on 15 open-207

source Transformer-based (Vaswani et al., 2017)208

LLMs pretrained autoregressively for next-word209

prediction, including (1) the Falcon models (Al-210

mazrouei et al., 2023; Penedo et al., 2023), (2)211

LLaMA (Touvron et al., 2023a,b) models, (3)212

Mistral 7B (Jiang et al., 2023), (4) MPT model213

(Team, 2023), (5) Phi models (Li et al., 2023b), and214

(6) the Pythia suite (Biderman et al., 2023).2 These215

LLMs vary in architecture, size, and pretraining216

data, enabling explorative analyses of how these217

factors might impact model’s conceptual inference218

capacity as measured by the aforementioned219

reverse-dictionary probe.220

Regarding the experimental materials, we use221

2We use the LLMs accessible through HuggingFace (Wolf
et al., 2019). Additional details can be found in Appendix F.1.

the description–word pairs primarily sourced from 222

the THINGS database (Hebart et al., 2019), which 223

encompasses a broad list of 1,854 concrete and 224

nameable object concepts. We randomly select 225

N word-description pairs as demonstrations and 226

vary N from 1 to 48 to test the impact of the 227

number of demonstrations on LLMs’ behavior. To 228

test the robustness of LLMs, we further include 229

in our analysis the corresponding descriptions of 230

these objects in WordNet (Fellbaum, 1998) and an 231

additional 200 pairs of words and human-written 232

descriptions created by Hill et al. (2016) (referred 233

as Hill200). 234

We evaluate model performances based on strict 235

exact match across 5 runs. For each concept, we 236

prompt an LLM to generate an answer given a 237

specific description and the arrow symbol “⇒”, 238

truncate it by “\n”, and then assess whether the 239

resulting output matches the expected word or its 240

synonyms listed in THINGS. We opt for greedy 241

search as our decoding method for a simple and 242

equitable comparison across models. 243

To interpret language models’ performances on 244

the reverse-dictionary task, we construct several 245

control conditions as the baselines: (1) NL, where 246

no demonstration is provided and the query is 247

formatted in natural language as “<description> 248

can be called as”; (2) MIS, where each 249

description in the context is paired with a ran- 250

domly selected word distinct from those in the 251

demonstrations; and (3) RAND, where the pairings 252

between descriptions and words undergo complete 253

permutation across the dataset, and the LLMs are 254

evaluated based on the matching the randomly- 255

paired word given the query description. We also 256

compare the LLMs’ performance with that of the 257

task-specific models reported in previous works 258

(Zhang et al., 2020; Yan et al., 2020) for the reverse- 259

dictionary task on the Hill200 dataset. 260

Results In general, the LLMs we tested here 261

demonstrated great performance in generating 262

the term for the underlying object concept given 263

a definitional description. As shown in Fig- 264

ure 2, the average model performance on the 265

description–word pairs from THINGS database 266

notably improves with just three demonstrations 267

and plateaus at approximately 12 to 24 examples. 268

This indicates that a modest number of description– 269

word examples is sufficient to evoke the inference 270

ability. Performance comparison with the baselines, 271

especially NL, which on average drops by 25.2% 272
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mpt-7b
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llama-13b

llama2-7b
llama2-13b
mistral-7b

Figure 2: Performance of LLMs in the prompted reverse
dictionary task when provided with N description–word
pairs. Model performance is measured by exact match
between the word/phrase decoded from the model and
the name of the specific object for that description.
Colored bands denote 95% confidence intervals.

compared to cases with 24 demonstrations, sug-273

gests the benefit of in-context learning in helping274

reveal the models’ capacity for flexible conceptual275

inference. (see Appendix A.1 Table 1).276

There is also notable variability across models.277

LLMs’ performance increases with greater number278

of parameters (ρ = 0.76, see Appendix A.2279

Figure 7). The performance of phi-2 (2.7b), along280

with the comparison between falcon-rw-7b and281

falcon-7b, underscores the importance of both282

scale and quality of pretraining data3.283

Beyond the THINGS database, we find that284

LLMs adeptly adjust to diverse descriptions with285

minimal performance drop, significantly surpass-286

ing previous work (Yan et al., 2020) on Hill200287

(74% for LLaMA2-13B compared to 43% achieved288

by RoBERTa after explicit training for the reverse-289

dictionary task, see Appendix A.3 Figure 8).290

We also notice a modest effect of linguistic291

structure degradation on models’ performances292

when varying degrees of word order permutations293

are applied to the description, which suggests that294

the models might be at least sensitive to linguistic295

structures when combining words into a meaning296

representation (Model performance decreases by297

18% under full permutation, see Appendix A.3298

Figure 9).299

To understand the potential impact of query300

properties including word frequency, number301

of word senses, and description length on the302

model performance, we conducted a correlation303

3falcon-rw-7b is trained on far less data than falcon-7b.

analysis based on all 117,659 words in Word- 304

Net. We found a moderate overall influence 305

(ρ = 0.14, 0.08, and 0.12 respectively, see Ap- 306

pendix A.4 Figure 10). Further exploration into 307

the influence of demonstrations is left for future 308

work. 309

Taken together, these results indicate the ef- 310

fectiveness and robustness of prompting LLMs 311

to carry out a reverse-dictionary task, laying out 312

the foundation for using this task as a probe 313

for extracting conceptual representation from the 314

model as well as understanding the implications 315

of inference capacity as measured in this task on 316

model’s general reasoning ability. Large language 317

models’ good performance, as indicated by the high 318

accuracy of exact match, also provides evidence 319

for their general capacity of conceptual inference. 320

2.2 Representation Analysis 321

Human’s conceptual representation of objects sup- 322

ports rich inferences about features and properties. 323

When thinking of a hedgehog, we also infer that 324

it can be skilled at climbing and digging, typically 325

curls into a tight spiny ball when threatened, and 326

belongs to the category of mammals. These pieces 327

of information can powerfully guide subsequent 328

reasoning. Given large language models’ relatively 329

good performances on the reverse-dictionary task 330

in the behavioral analysis, a question naturally 331

arises: does the representational space constructed 332

from the LLMs encode information about the 333

category structure and fine-grained properties 334

related to the inferred object concept? 335

Setup We run the same set of models as the 336

behavioral analysis on the reverse-dictionary task 337

with 24 demonstrations of description ⇒ word. 338

We extract the vector hk
n at the “⇒”symbol of the 339

query description as the “summary” representations 340

of the inferred concept. To probe the structure 341

of the representational space, we conduct two 342

experiments: categorization and feature decoding. 343

Following Hebart et al. (2020), we use the 344

high-level natural categories from the THINGS 345

database as the gold-standard category structure 346

and employ a cross-validated nearest-centroid 347

classifier to assess if the representations derived 348

from conceptual inference are organized in a way 349

that support similarity-based categorization. 350

We then explore whether model representations 351

encode information about fine-grained features 352

associated with the concepts. We use the XCSLB 353
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Figure 3: A t-SNE visualization of representations derived from LLaMA2-13B under different task conditions.
Representations are extracted at the “⇒” symbol. Category assignments are based on the THINGS data.

dataset (Misra et al., 2022), which comprises 3,645354

human-generated binary descriptive features, such355

as live under water (true for JELLYFISH and false356

for BUTTERFLY). We train feature-specific logistic357

regression models to predict the feature value for358

the test items and report the average F1 scores359

and area under the curve (AUC) in 10-fold cross-360

validation, similar to the evaluation procedure in361

Zheng et al. (2019).362

In comparison, we run the same categorization363

and feature decoding experiments with baseline364

representations, including static word embeddings365

and LLM representations that are contextually366

formed but not in the context of concept infer-367

ence: (1) FASTTEXT, the static word embeddings368

trained using fastText on Common Crawl and369

Wikipedia (Grave et al., 2018), which is commonly370

used to investigate the knowledge derived from371

language data, (2) SPOSE (Hebart et al., 2020),372

an embedding that supports stable prediction of373

human similarity judgments over the concepts in374

THINGS as well as the categorization behavior, (3)375

WORD, the word representations derived through376

inputting the word to LLMs, (4) DESCRIPTION,377

the representation of the description LLMs form378

before seeing the delimiter and (5) W2W, where379

we give N demonstrations in the format of “<Word>380

⇒ <Word>” to LLMs to elicit prediction of the381

same word as in the reverse-dictionary case, but382

successful prompt completion does not necessarily383

engage in reasoning about the concept underlying384

the input word. We also include representations385

derived from the baselines outlined in the previous386

subsection (MIS and NL).387

Results The summary representation extracted 388

from LLMs generally supports similarity-based 389

categorization, achieving an average performance 390

at around 90% and surpassing all the baselines 391

including FASTTEXT (78%) and SPOSE (86%). 392

Crucially, the contextualized representation formed 393

in the word⇒word input repetition task (W2W) 394

yields worse performance (ranging from about 60% 395

to 85%) compared to the description⇒word task, 396

and the difference in the strutural alignment with 397

human-annotated category space is qualitatively 398

notable when visualizing the representational space 399

in lower dimensions in Figure 3. This suggests 400

that while LLMs have learned richly-structured 401

word representations—at least for concrete nouns— 402

that support categorization to some degree, the 403

representations that the models formed given 404

the reverse-dictionary probe produce a more 405

structurally-aligned representational space for the 406

underlying concepts. This is also evidenced by the 407

subpar performance of other baselines including 408

WORD, DESC, NL and MIS (see Appendix B.1 409

Table 4), which shows that simply providing the 410

descriptions or words alone to LLMs does not 411

necessarily gives rise to a representational space 412

that structurally aligns with human-like object 413

categories as closely as the ones extracted from 414

the reverse-dictionary probe. 415

In addition to the great performance in object 416

categorization, we find that the representations 417

that LLMs construct contain decodable informa- 418

tion about fine-grained features. On average, 419

model representations achieve a F1 score of 420

approximately 80% and an AUC of around 96% 421
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in terms of mapping representations to binary422

features annotated in XCSLB. Across models,423

feature decoding performances are higher for424

taxonomic and encyclopedic features over visual425

and perceptual ones (Detailed results are shown in426

Appendix B.2 Table 5 and Figure 11). This might427

stem from the exclusive reliance on language data428

in the model training procedure. We also note that429

certain baselines, especially W2W, also perform430

relatively well in decoding fine-grained object431

properties despite less compelling performance432

in the categorization experiment. We conjecture433

that while the word representations of LLMs434

might not be structured in such a way that readily435

supports simple similarity-based categorization,436

they may still encode fine-grained distinctions437

among different lexical concepts that enables438

effective learning of binary feature classifiers.439

3 Implications of Conceptual Inference440

on Models’ Generalization Behaviors441

The reverse-dictionary probe as introduced in Sec-442

tion 2 measures LLMs’ competence for conceptual443

inference via a specific test case. One might444

wonder whether results from this minimal test case445

reveal any meaningful behavioral signatures about446

models’ general language-based reasoning ability.447

There are reasons to think of this reverse-448

dictionary task as not just yet another new thing449

that LLMs can do, but a useful and targeted probe450

into the model’s capacity to perform a canoni-451

cal computation that underlies various complex452

reasoning behaviors. To explore this idea, we453

conduct three experiments to study the relationship454

between model’s conceptual inference capacity,455

as measured by the reverse-dictionary probe, and456

model’s generalization behaviors.457

3.1 Conceptual Inference Ability Predicts458

Commonsense Reasoning Performance459

Setup We conduct a correlation analysis to460

examine the relationship between conceptual in-461

ference and the general commonsense reason-462

ing abilities of LLMs. We take widely-used463

benchmarks to evaluate LLMs’ general knowledge464

and reasoning ability, including CommonsenseQA465

(CSQA) (Talmor et al., 2019), ARC easy (ARC-466

E) and challenge (ARC-C) (Clark et al., 2018),467

OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk468

et al., 2020), SIQA (Sap et al., 2019), Hellaswag469

(Zellers et al., 2019) and BoolQ (Clark et al.,470
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Figure 4: Correlation between LLMs’ overall perfor-
mance averaged across different reasoning tasks and
their average conceptual inference performance in the
reverse dictionary task with 24 demonstrations provided.

2019). The tasks in these benchmarks are all 471

formatted as multiple-choice questions, where a 472

model is typically presented with a query (e.g., 473

“Where is a bald eagle safe?”) and evaluated 474

by their accuracy in ranking the correct answer 475

(e.g., “wildlife refuge”) with the highest probability 476

among alternatives (e.g., “in washington” and 477

“open country”). 478

We use the test sets of each task for evaluation 479

if publicly available; otherwise we resort to the 480

development set. LLMs are evaluated in a zero-shot 481

manner through natural language prompt templates, 482

with the score of each answer computed as the 483

sum of log-likelihoods LLMs assign to it (see 484

Appendix C.1 for details). 485

Results Figure 4 shows a significant correlation 486

between LLMs’ conceptual inference ability, as 487

probed through the reverse-dictionary task, and 488

their average performance across various com- 489

monsense reasoning tasks (see Appendix C.2 490

Figure 12 for correlation results on each task). 491

These findings suggest that the degree to which a 492

model can flexibly engage with concept inference, 493

even as measured in such a constrained domain 494

(concepts of concrete objects), might account for 495

the observed cross-model differences in general 496

reasoning capacity. 497

3.2 Relationship between Conceptual 498

Inference and Syntactic Generalization 499

Meaning composition entails combining words in 500

a way that conforms to the syntactic structure 501

(Partee et al., 1984), but do LLMs rely on 502

syntactic knowledge for constructing conceptual 503
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Figure 5: Correlation between the LLMs’ syntactic
generalization ability, as measured by BLiMP (Left)
and SyntaxGym (Right), and their average performance
in the conceptual inference task with 24 demonstrations.

representations? Experiment 2 investigates the504

relationship between conceptual inference and505

syntactic generalization in LLMs by comparing506

their performance probed by the reverse-dictionary507

task with that in targeted syntactic evaluations.508

Setup We use two benchmarks for evaluating509

models’ syntactic generalization: SyntaxGym510

(Hu et al., 2020; Gauthier et al., 2020) and the511

Benchmark of Linguistic Minimal Pairs (BLiMP;512

Warstadt et al., 2020), which cover a wide range of513

linguistic phenomena. Both benchmarks construct514

controlled English stimuli to assess a model’s515

syntactic generalization behavior. The evaluation516

paradigm of SyntaxGym is based on whether517

a language model generates human-like differ-518

entiable expectations about upcoming linguistic519

materials given the structural information in the520

prefix. BLiMP’s paradigm compares a model’s521

likelihood assignments between a well-formed522

sentence and minimally different ungrammatical523

counterpart. We prepend a [BOS] token to each524

sentence before inputting it to the model. We report525

the accuracy averaged across the test suites for both526

benchmarks. Accuracy scores for particular test527

suites can be found in Figure 13 in the Appendix.528

Results While large language models exhibit529

significant variability in their conceptual inference530

ability as measured by the reverse-dictionary531

task in Section 2, the vast majority of the532

models tested here perform similarly well on the533

syntactic generalization benchmarks (Figure 5).534

The falcon-rw models, trained exclusively on535

web data (Penedo et al., 2023), are the outliers 536

that achieve comparatively lower performance 537

in syntactic evaluation, potentially because the 538

web data contains a lot of noises and language 539

production errors. This result also suggests 540

that the observed correlation between a model’s 541

performance on the reverse-dictionary task and its 542

performance on other reasoning tasks are not an 543

epiphenomenon of a powerful model being good 544

at every tasks. From a different perspective, a 545

model’s syntactic generalization ability does not 546

seem to improve along with an increased capacity 547

for conceptual inference. This raises a puzzle 548

for future work about the relationship between 549

linguistic generalization and conceptual reasoning 550

in large language models. 551

3.3 Generalizing Reverse Dictionary to 552

Commonsense Reasoning 553

Our final experiment investigates whether guiding 554

LLMs for conceptual inference may facilitate 555

the models in approaching tasks that involves 556

reasoning about items congruent with the meaning 557

of a given phrase, even if the query task may be 558

substantially different from the prompt examples 559

in terms of the content of the involved reasoning 560

process. We focus on commonsense reasoning and 561

use ProtoQA (Boratko et al., 2020) for experiment. 562

ProtoQA presents prototypical situations with 563

many plausible answers, with some more typical 564

than others, e.g., “Name something that you might 565

forget in a hotel room”. We analyze the impact 566

of conceptual inference on LLMs’ behavior by 567

comparing their performance with that in zero-shot 568

scenarios and under different prompts. 569

Setup We use the development set of ProtoQA 570

for evaluation as the answers to the test sets are 571

not publicly available. We follow the evaluation 572

protocol in the original paper, where diverse 573

answers sampled from LLMs are compared with 574

human-generated ones through the criteria of exact 575

match and matching with synonyms in WordNet. 576

We report Max Answers@k and Max Incorrect@k, 577

where Max Answers@k restricts the total number 578

of answers to k, and Max Incorrect@k halts after 579

k unmatched answers are provided (Additional 580

details can be found in Appendix E.1). To evaluate 581

the influence of conceptual inference on LLMs’ 582

behavior, as in Section 2, we provide the LLM 583

with an input sequence w1:n that comprises N 584

description⇒word pairs ℓ and a query sentence 585

7



Exact Match WordNet Match
0.0

0.2

0.4

M
ax

 A
ns

w
er

s@
10

Zero-shot task prompt (NL)
With description word demo (N = 1)
With description word demo (N = 12)
With description word demo (N = 24)

Figure 6: Performance of LLaMA2-13B in ProtoQA
evaluated by Max Answers@10 under the natural
language task prompt (NL) and formatted reverse dictio-
nary prompt with N description⇒word demonstrations.

s drawn from the evaluation dataset. We then586

compare the performance when N = {1, 12, 24}587

demonstrations are given and incorporate the NL588

baseline, where we use the natural language prompt589

templates modified for next-word prediction.590

Results The performance of LLMs in ProtoQA591

improves given the reverse-dictionary demonstra-592

tions (Figure 6), generally surpassing the zero-593

shot setting where task-specific natural language594

templates are used (Detailed results are shown595

in Appendix E.2 Table 6). While LLMs exhibit596

the ability to generate reasonable answers when597

prompted with NL, the responses are typically598

verbose and occasionally contain irrelevant infor-599

mation. When guided by reverse-dictionary exam-600

ples, LLMs tend to produce precise answers that601

align more closely with human-generated answers,602

without any modification of the original questions603

(see Table 7 in the Appendix for examples of LLM-604

generated answers). While we do not claim that605

the reverse dictionary demonstrations work better606

than other task-specific prompts or hand-designed607

templates that align with the next-word prediction608

pretraining objective, the observed generalization609

ability of LLMs suggests that the reverse-dictionary610

demonstrations can guide the LLMs to go beyond a611

specific task construal and learn to construct useful612

representations for commonsense reasoning.613

4 Related Work614

The impressive performance of LLMs across615

various language comprehension benchmarks has616

sparked debates about conceptual representations617

in these models (Bender and Koller, 2020; Pi-618

antadosi and Hill, 2022; Mitchell and Krakauer,619

2023) as well as their relevance to understanding 620

the human mind (Binz and Schulz, 2023a; Frank, 621

2023; Hardy et al., 2023). Previous work suggests 622

that LLMs demonstrate human-like behavior in 623

some aspects of reasoning (Webb et al., 2023; 624

Hagendorff et al., 2023; Dasgupta et al., 2022; 625

Han et al., 2024) and semantic structure (Hansen 626

and Hebart, 2022; Marjieh et al., 2022), but these 627

models tend to be overly sensitive to contextual 628

variations (Binz and Schulz, 2023b; Wu et al., 629

2023; Suresh et al., 2023). Analyses of their 630

representations demonstrate their effectiveness in 631

encoding world knowledge (Da and Kasai, 2019; 632

Forbes et al., 2019) and dynamically forming world 633

state representations (Li et al., 2023a; Yamakoshi 634

et al., 2023; Li et al., 2021). Research has also 635

looked into model’s ability to reason about and 636

make inductive inferences about object properties 637

(Misra et al., 2023; Han et al., 2024). 638

Our work complements existing approaches by 639

focusing on a canonical example of conceptual 640

inference: naming an intended referent that is 641

described indirectly. A special case of this general 642

inference problem, reverse dictionary, has been 643

a familiar problem in the NLP community, and 644

approached with trained or fine-tuned task-specific 645

neural network models (Hill et al., 2016; Zhang 646

et al., 2020; Yan et al., 2020; Siddique and Su- 647

fyan Beg, 2023). We combine this classic task with 648

a novel dataset of object concepts (THINGS) to 649

develop a minimal testbed for probing conceptual 650

representations in large language models, adding 651

new kinds of evidence to the threads of research on 652

evaluating language models’ reasoning capacity. 653

5 Conclusion 654

Concepts bridge the thoughts and the words. Here 655

we take the classic reverse dictionary task to probe 656

the conceptual inference capacity in large language 657

models. Given a few description–word pairs, 658

LLMs effectively learn to infer concepts from 659

complex linguistic descriptions. The contextually- 660

formed representational space in the models struc- 661

turally aligns with the space of object categories 662

and maintains fine-grained distinctions across 663

individual concepts along various feature dimen- 664

sions. To the degree that large language models 665

demonstrate promising behaviors in a minimal case 666

of conceptual inference, our approach may open 667

new questions about the nature and limit of their 668

learned capacity for meaning representation. 669
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Limitations670

Compositionality in natural language is complex671

and intricate. While the reverse dictionary task in672

principle involves combining word representation673

into a conceptual representation, the design of674

this study does not afford an in-depth analysis of675

phrase-level meaning composition. In addition, this676

work does not provide a mechanistic explanation677

of how LLMs achieve the ability to do reverse678

dictionary task after being prompted with a few679

demonstrations.680

Our experimental materials use definitional681

descriptions about concrete objects. Although682

this is an intentional choice, we note here that it683

might constrain how well the experimental results684

can generalize to a general case of probabilistic685

inference. While our main research objective is not686

about building a reverse dictionary, wider range of687

words and terms, including different part-of-speech688

categories and domains, are needed to critically689

assess the potential of turning a prompted LLM into690

a ready-to-go reverse dictionary application. On the691

side of understanding conceptual representations692

in LLMs, diverse domains of concepts are also693

relevant for painting a fuller picture of the models’694

competence and potential limitations.695
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A Additional Materials for Reverse 1062

Dictionary as a Probe for Conceptual 1063

Inference 1064

A.1 Comparison with Baselines 1065

Table 1 compares the performance of LLMs with 1066

the baselines outlined in Section 2. Larger models 1067

generally achieve better performance, whereas 1068

they tend to be susceptible to noise introduced 1069

by demonstrations. However, the Pythia models 1070

(pythia-1b4, pythia-6b9, and pythia-12b) and 1071

falcon-rw-7b appear less sensitive to demonstra- 1072

tions, showing performance improvement over NL 1073

even when the pairings between descriptions and 1074

words are permuted, similar to previous research 1075

suggesting that some models may not heavily 1076

rely on the ground truth input-label mapping 1077

provided in the demonstrations (Min et al., 2022). 1078

Exploration of the phenomenon is left for future 1079

work. 1080

Model DEMO NL MIS RAND

pythia-1b4 46.5 16.2 35.0 24.3
pythia-2b8 52.4 25.9 5.5 6.1
pythia-6b9 60.1 30.6 47.0 52.5
pythia-12b 63.8 31.1 46.3 33.8
phi-1.5 52.1 28.1 6.6 26.3
phi-2 65.5 40.8 0.1 0.2
falcon-rw-1b 51.9 29.1 24.4 24.5
falcon-rw-7b 67.8 45.6 54.5 40.9
falcon-7b 72.5 39.5 1.7 4.5
mpt-7b 70.9 50.5 0.1 0.1
llama-7b 70.9 47.3 4.4 18.6
llama-13b 73.8 50.0 0.5 0.1
llama2-7b 73.0 49.5 1.0 0.4
llama2-13b 78.3 57.2 0.1 0.1
mistral-7b 77.6 58.0 1.8 0.1

Table 1: Comparison of LLMs’ performance (DEMO)
and the baselines with 24 demonstrations provided,
except for NL, where the template is formatted in
natural language with no demonstration.
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Figure 7: Correlation between the size of LLMs and
their average conceptual inference ability measured as
exact match accuracy on the reverse dictionary task with
24 demonstrations provided.

A.2 Relationship between Conceptual1081

Inference Ability and Model Size1082

Figure 7 shows the relationship between the size1083

of LLMs and their average performance in the1084

reverse dictionary task when provided with 241085

demonstrations. We notice a significant correlation.1086

A.3 Impact of Variation in Descriptions1087

Setup As in Section 2, we randomly select 241088

description–word pairs from THINGS as demon-1089

strations and the query sentence is sourced from1090

alternative databases: (1) 1,797 concepts in1091

THINGS with descriptions obtained from Word-1092

Net4, and (2) 200 pairs of words and human-1093

written descriptions created by Hill et al. (2016),1094

where the words are randomly chosen from the1095

top 3000 most frequent tokens in the British1096

National Corpus (Leech et al., 1994) but not1097

within the top 100. There is no information1098

about the synonyms of the words in Hill et al.1099

(2016), which may affect the performance to some1100

extent. We therefore also calculate the exact match1101

performance based on the words themselves in1102

terms of THINGS and WordNet for comparison.1103

Additionally, we examine the robustness of LLMs1104

to degraded syntactic structure by introducing1105

varying degrees of word order permutations to the1106

query description. Specifically, we take 30%, 60%1107

and 100% words from the query description in the1108

THINGS database, randomly shuffle their order,1109

and put them back to the description. For all our1110

experiments here, we compute a model’s average1111

performance across 5 runs.1112

4Out of the 1,854 concepts, 1,797 are linked with WordNet
in THINGS.

Model Hill200
pythia-1b4 41.8
pythia-6b9 48.7
falcon-rw-7b 62.4
falcon-7b 57.6
llama2-7b 67.3
llama2-13b 73.6
Zhang et al. (2020) 32.0
Yan et al. (2020) 43.0

Table 2: Comparison of LLMs’ performance with 24
demonstrations (DEMO) and previous works (Zhang
et al., 2020; Yan et al., 2020) on the Hill200 dataset. We
use the reported accuracy@1 for comparison.

Results As shown in Figure 8, LLMs consistently 1113

maintain high performance across various de- 1114

scriptions, outperforming previous work explicitly 1115

training models including RoBERTa (Liu et al., 1116

2019) for the same task in Hill200 (Table 2). We 1117

also note that the observed decline in performance 1118

for Hill200 may be attributable to the lack of syn- 1119

onym information. We observe modest effects of 1120

degraded syntacti structure on LLMs’ performance 1121

on the reverse dictionary task, with degradation 1122

in performance becoming more pronounced as 1123

a higher degree of word order permutation is 1124

introduced (Figure 9). This shows some degree 1125

of robustness to input noise in LLMs and suggests 1126

that these models are at least sensitive to syntactic 1127

structure in the input when constructing conceptual 1128

representations. 1129

A.4 Impact of Query Properties 1130

Setup We randomly select 24 demonstrations 1131

from the THINGS database and test the perfor- 1132

mance of LLMs across the entire WordNet with 1133

117,659 words in total. Due to the ambiguity 1134

of the pretraining corpus of LLMs, we use word 1135

frequencies from Speer (2022) as a proxy, which is 1136

based on multiple sources such as Wikipedia and 1137

Books. The number of senses is directly obtained 1138

from WordNet, and the description length is 1139

determined by the word count of each description. 1140

Results The performance of the models, along 1141

with the correlation between the performance 1142

and word frequency, number of senses, and 1143

description length, is illustrated in Table 3 and 1144

Figure 10. Predicting words at the extremes of 1145

frequency proves challenging, akin to previous 1146

task-specific neural models that were explicitly 1147
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Figure 8: Performance of LLMs when confronted with various descriptions evaluated by exact matching of words
or their synonyms. Larger models robustly adapts to diverse descriptions, and their performance is affected by the
increasing degree of word order violations in the descriptions. Error bars represent computed from the average
performance of different models across 5 runs.
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Figure 9: Performance of LLMs in the reverse-dictionary task when presented with descriptions in THINGS with
varying degree of word order violations, evaluated by exact matching of words or their synonyms. Error bars
represent standard error computed from the average performance of different models across 5 runs.

trained for the reverse dictionary problem (Zhang1148

et al., 2020; Yan et al., 2020). The infrequent1149

words can be more difficult for LLMs to learn,1150

as suggested by previous work (McCoy et al.,1151

2023; Chang and Bergen, 2022; Kandpal et al.,1152

2023). Conversely, the most frequent words, such1153

as be, have, do, make, take, use etc., tend to1154

be more polysemous (Casas et al., 2019) and1155

may be inherently harder to describe precisely,1156

which make them challenging to predict. The1157

length of the description positively correlates the1158

performance as well, possibly due to the provision1159

of more comprehensive information in lengthier1160

descriptions, facilitating the identification of the1161

exact word.1162

B Additional Materials for the Analysis of1163

Model Representations1164

B.1 Categorization1165

Method For categorization, we leave each con-1166

cept out in turn and compute the centroid for each1167

category by averaging the representations of the1168

remaining concepts within it. The classification is1169

based on the cosine distance between the concept 1170

and each centroid. 1171

Data Following Hebart et al. (2020), we remove 1172

subcategories of other categories, concepts belong- 1173

ing to multiple categories and categories with fewer 1174

than ten concepts. This results in 18 out of 27 1175

categories in THINGS, including animal, body 1176

part, clothing, container, electronic device, food, 1177

furniture, home decoration, medical equipment, 1178

musical instrument, office supply, part of car, plant, 1179

sports equipment, tool, toy, vehicle and weapon. 1180

These categories comprise 1,112 concepts. 1181

Results Table 4 presents the categorization re- 1182

sults for all LLMs and baselines. LLMs generally 1183

achieve an average performance at around 90% for 1184

THINGS, surpassing all the baselines including 1185

FASTTEXT and SPOSE. The NL baseline achieve 1186

a relatively high accuracy, in line with its perfor- 1187

mance in the concept inference task. 1188

B.2 Feature Ratings 1189

Data As described in Section 2.2, we use the 1190

XCSLB feature norm for our analysis. XCSLB in- 1191
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Figure 10: Impact of word frequency, number of senses and description length on the performance of LLMs in
inferring concepts based on their descriptions. The log frequency of a word is calculated as the base-10 logarithm of
its occurrence per billion words. The Spearman’s correlation is averaged across different LLMs.

Model Accuracy WordFreq NumSenses DescLength
pythia-1b4 12.8 0.148 0.068 0.088
pythia-6b9 21.7 0.136 0.061 0.138
falcon-rw-7b 28.6 0.131 0.070 0.114
falcon-7b 31.5 0.144 0.098 0.116
llama2-7b 34.9 0.144 0.102 0.127
llama2-13b 40.8 0.121 0.069 0.137

Table 3: LLMs’ performance in conceptual inference over the 117,659 words in WordNet, measured by exact
match (Accuracy). The columns WordFreq, NumSenses, and DescLength represent the Spearman’s rank correlation
coefficients between accuracy and each of these three factors.

cludes 3,645 descriptive features for 521 concepts.1192

We take the concepts that overlap with those in1193

THINGS and remove features that are too sparse1194

with fewer than 20 concepts. This results in 2571195

features associated with 388 concepts in total.1196

Results The results for feature prediction of1197

LLMs in XCSLB, measured by F1 score and AUC,1198

are depicted in Figure 11. The comparison with1199

baselines is presented in Table 5.1200

C Additional Materials for Relationship1201

between Conceptual Inference and1202

General Abilities1203

C.1 Details of Evaluation1204

Considering the multiple-choice format of the1205

reasoning tasks, let w1:n be the prompt composed1206

of n tokens, and wn+1:ci denote the i-th possible1207

answer with ci − n tokens among all candidates C.1208

We evaluate LLMs by their accuracy in ranking1209

the correct answer with the highest probability,1210

where the score of each answer is calculated as1211 ∑ci
t=n+1 log pM (wt | w<t).1212

C.2 Results1213

The correlation between LLMs’ performance in1214

conceptual inference and their performance in each1215

reasoning task is shown in Figure 12. 1216

D Additional Materials for Relationship 1217

between Conceptual Inference and 1218

Syntactic Generalization 1219

LLMs’ performance across different linguistic 1220

phenomena tested in BLiMP and SyntaxGym are 1221

shown in Figure 13. The lack of correlation, along 1222

with the inferior performance of falcon-rw mod- 1223

els, suggests that LLMs’ syntactic generalization 1224

ability might be dissociable from their capacity to 1225

construct conceptual representations. 1226

E Additional Materials for Generalizing 1227

Reverse Dictionary to Commonsense 1228

Reasoning 1229

E.1 Details of Setup 1230

The ground truth answers for ProtoQA consist of 1231

a ranked list of clusters of answers collected from 1232

humans. Similar to Boratko et al. (2020), we use 1233

Nucleus Sampling (Holtzman et al., 2020) to get 1234

100 sampled answers from LLMs per question, 1235

sort the answers by frequency counts, and obtain 1236

a ranked list of 10 answers ordered from most 1237

to least common. The answers are then matched 1238

with clusters of ground truth answers. In terms of 1239
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Model DEMO NL MIS W2W WORD DESCR

pythia-1b4 88.0 81.9 86.3 65.8 51.4 65.6
pythia-2b8 89.7 84.4 79.5 78.0 57.9 69.5
pythia-6b9 90.7 83.2 89.5 84.4 59.9 72.6
pythia-12b 90.7 82.4 88.3 84.7 59.6 74.4
phi-1.5 89.2 81.3 82.3 80.0 60.4 72.1
phi-2 91.4 85.6 39.4 84.5 70.5 66.7
falcon-rw-1b 89.1 87.7 84.3 81.1 66.6 74.4
falcon-rw-7b 90.4 87.7 90.5 86.2 55.9 75.1
falcon-7b 90.6 79.6 73.5 78.0 31.5 56.8
mpt-7b 90.3 89.0 61.1 81.9 39.8 75.5
llama-7b 90.6 54.0 63.8 71.5 68.4 58.4
llama-13b 89.5 54.3 57.6 38.0 62.3 62.3
llama2-7b 89.0 71.1 72.8 44.0 60.9 67.6
llama2-13b 90.4 86.2 57.6 87.1 70.1 75.9
mistral-7b 91.5 87.4 45.0 86.7 60.7 73.7
FASTTEXT 77.9
SPOSE 85.9

Table 4: Accuracy of using representations derived from LLMs under the reverse dictionary task (DEMO) and
other baseline representations for similarity-based categorization. DEMO, PERM, and MIS are representations
derived from LLMs with 24 demonstrations provided. DESCR denotes the DESCRIPTION baseline where we take
the representations of LLMs prior to encountering the delimiter “⇒”.

Model DEMO NL MIS W2W WORD DESCR

pythia-1b4 78.6 / 95.7 75.6 / 95.4 76.0 / 95.3 66.6 / 93.7 63.6 / 90.5 66.5 / 93.1
pythia-2b8 80.1 / 95.9 77.5 / 95.7 74.3 / 94.9 74.6 / 95.6 65.5 / 91.7 69.2 / 94.1
pythia-6b9 80.6 / 96.1 77.7 / 95.7 79.3 / 95.8 77.9 / 96.5 68.4 / 92.6 69.9 / 94.4
pythia-12b 81.2 / 96.4 78.0 / 96.0 80.1 / 96.1 79.7 / 96.8 69.1 / 93.3 70.4 / 94.6
phi-1.5 78.6 / 95.8 75.8 / 95.3 74.2 / 94.8 75.5 / 95.5 67.6 / 92.1 67.7 / 93.6
phi-2 80.4 / 96.4 78.0 / 96.0 68.8 / 93.3 79.9 / 96.9 73.9 / 94.8 68.6 / 94.0
falcon-rw-1b 80.0 / 96.1 77.3 / 95.6 76.3 / 95.1 75.8 / 95.9 69.1 / 92.3 68.1 / 93.8
falcon-rw-7b 80.9 / 96.4 79.0 / 96.2 80.0 / 96.1 77.6 / 96.5 69.2 / 92.6 71.1 / 94.9
falcon-7b 81.0 / 96.5 79.2 / 96.2 75.2 / 94.7 77.2 / 95.8 71.2 / 92.8 67.9 / 93.4
mpt-7b 81.0 / 96.4 79.8 / 96.2 73.2 / 94.8 78.1 / 96.6 71.9 / 94.0 71.4 / 95.1
llama-7b 81.3 / 96.4 78.6 / 95.9 77.2 / 94.9 78.4 / 96.8 75.9 / 95.4 69.1 / 94.1
llama-13b 81.7 / 96.5 78.5 / 96.1 74.8 / 94.6 79.0 / 96.8 74.2 / 94.9 69.6 / 94.4
llama2-7b 81.1 / 96.5 79.8 / 96.2 75.3 / 95.0 77.2 / 96.3 72.9 / 94.6 70.1 / 94.6
llama2-13b 80.7 / 96.6 79.8 / 96.4 69.3 / 93.9 79.3 / 96.7 76.7 / 95.5 66.5 / 94.5
mistral-7b 80.6 / 96.5 79.7 / 96.3 74.3 / 94.6 79.4 / 96.8 75.8 / 95.3 69.8 / 94.7
FASTTEXT 76.3 / 95.1
SPOSE 68.4 / 92.4

Table 5: Performance of LLMs (DEMO) and other baselines in predicting semantic features in XCSLB evaluated by
the average F1 (/AUC) score. DEMO and MIS are the representations derived from LLMs with 24 demonstrations
provided. DESCR denotes the DESCRIPTION baseline where we take the representations of LLMs prior to
encountering the delimiter.
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Figure 11: Performance of using LLMs’ representations to predict the object features in XCSLB. Performance is
measured by F1 score (Left) and AUC (Right). Each point denotes a feature of a certain type.

exact match, the answers generated by LLMs are1240

compared with those within each cluster, receiving1241

a score of 1 if they match any string in it and1242

0 otherwise. For WordNet match, the answers1243

generated by LLMs are tokenized and match with1244

the synsets in WordNet associated with the gold1245

answers. The overall score is computed based1246

on a reward matrix where each cluster’s size1247

determines the reward assigned if the generated1248

answers achieve a score of 1. For more details, see1249

Boratko et al. (2020).1250

For this experiment, we select three LLMs1251

across various model series that demonstrate1252

relatively good performance in the reverse dictio-1253

nary task, including llama2-13b, falcon-7b, and1254

pythia-6b9. During generation, we set the max1255

tokens to 28, and both top_p and temperature to1256

1.0, as well as a repetition penalty of 1.0.1257

E.2 Results1258

Impact of conceptual inference on ProtoQA1259

The performance of LLMs in ProtoQA under1260

different conditions is shown in Table 6.1261

Examples of LLM-generated answers Exam-1262

ples of LLM-generated answers for ProtoQA are1263

shown in Table 7.1264

F Implementation Details1265

F.1 Large Language Models1266

Detailed information about the LLMs used in our1267

experiments is presented in Table 8.1268

F.2 Prompt Templates 1269

Table 9 shows the prompt templates in terms of NL 1270

for all the reasoning tasks. The prompt templates 1271

for ProtoQA is shown in Table 10. 1272

F.3 Hyperparameters 1273

We set the max tokens to 28 for all generation 1274

tasks. In terms of ProtoQA involving nucleus 1275

sampling, we set both top_p and temperature to 1276

1.0, alongside a repetition penalty of 1.0, to ensure 1277

a fair comparison across models. 1278
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Figure 12: Correlation between LLMs’ performance across different reasoning tasks and their average performance
in conceptual inference with 24 demonstrations provided. The significant correlation across different tasks suggests
a pivotal role of conceptual inference in LLMs’ general ability.
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Figure 13: Performance of LLMs across different linguistic phenomena in BLiMP and SyntaxGym. The LLMs are
ranked by their average performance in conceptual inference with 24 demonstrations.
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Exact Match WordNet Match
Max Answers Max Incorrect Max Answers Max Incorrect

1 3 5 10 1 3 5 1 3 5 10 1 3 5
Human∗ 78.4 74.4 72.5 73.3 55.8 69.4 72.4 78.4 76.8 76.0 77.0 59.0 74.0 77.9
GPT-2∗ NL 5.6 15.9 18.3 23.2 3.3 15.1 19.3 6.2 18.5 23.0 30.5 4.3 17.9 24.2

Falcon 7B

NL 17.4 15.2 16.0 15.2 8.2 13.3 14.5 24.6 25.8 27.5 27.9 13.0 21.4 24.7
1 18.4 21.5 20.7 20.9 10.4 17.9 19.5 19.1 24.0 23.6 26.8 12.2 19.9 22.1
12 21.0 21.9 23.4 27.9 12.1 19.9 22.7 22.5 25.1 27.3 31.5 13.3 23.9 26.5
24 21.3 23.6 25.1 29.5 13.0 21.7 24.5 23.1 27.5 30.5 34.2 14.8 25.1 30.7

LLaMA2
7B

NL 17.0 19.4 18.4 17.3 9.3 16.2 16.5 21.4 27.5 28.6 32.3 12.5 22.7 26.6
1 11.0 12.8 13.0 13.9 6.1 10.8 12.6 13.5 14.5 15.2 7.3 7.3 12.3 14.5
12 19.4 20.8 22.7 25.9 10.4 17.0 22.6 22.8 24.2 26.0 31.2 13.1 19.6 25.4
24 15.4 20.7 26.2 29.9 7.7 17.8 25.8 18.7 22.8 29.1 34.6 9.5 20.7 29.3

LLaMA2
13B

NL 19.1 19.2 17.7 16.3 11.5 15.6 16.0 25.8 26.1 25.8 25.9 14.8 21.7 23.6
1 16.0 20.9 21.2 24.3 7.3 17.6 20.6 19.0 24.4 26.5 29.7 9.3 22.0 25.5
12 19.9 20.4 22.6 26.8 11.0 18.5 23.4 22.7 23.8 26.4 31.9 13.7 22.5 27.6
24 22.0 23.8 26.6 31.1 12.8 21.6 25.6 25.4 28.3 33.3 37.6 15.1 26.9 32.6

Table 6: Performance of humans and LLMs in ProtoQA. Data of GPT-2∗ and human performance are obtained from
the original paper (Boratko et al., 2020).
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Question Name a sport that requires a lot of equipment.

Human
football, hockey, soccer, baseball, golf, motocross, basketball, fencing, high
jump, sky-diving, snowboard, swimming, tennis, ...

NL

“SEBA inline hockey The other two are ice hockey and roller hockey What is
an inline hockey stick Ice hockey has,”
“wrestling Wrestling mats used for judo judo and judo training are one of the
most popular accessories,”
“sailing This popular sport can be extremely expensive if you arent careful One
of the more common items that people will need is,”
“basketball The league will produce 17 Tag games during the 2018 MLB season
which will be held as part,”
“golf Aside from tickets to 18 holes and maybe a sleeve of golf balls golfers can
get away,”
“beach volleyball Players require shoes knee pads shorts and at least,”
“IHL hockey which requires ten or more people to play The other sports that
need more than seven people are boxing rodeo,”
“rock climbing Head to an indoor rock climbing gym or check out a local gym
that offers indoor bouldering,” ...

DEMO24
“golf,” “gear,” “tennis,” “skiing,” “football,” “rugby,” “lawn bowling,” “ball
game,” “fishing,” “cricket,” ...

Question Name something that people usually do before they leave the house for work?

Human
brush their teeth, go to the bathroom, showering, wash, bath, eat something,
have breakfast, drink coffee, dress up, grab keys, lock the door, turn the lights
off, comb, look in the mirror, say goodbye, jogging, pray, ...

NL

“to check the weather forecast read more,”
“have a cup of coffee This beverage gives them the extra energy that they need
so they can complete their daily tasks and finish their work,”
“have breakfast A healthy breakfast can ensure people start the day feeling
satisfied and energized You can then translate your satisfaction into the work,”
“turn on the radio It is a reflex And this was a Wall Street Journal poll People
dont think about how they,”
“to have breakfast Same thing with your GSD It would be important that you
provide proteinpacked food to your dog for its,”
“to walk the dog And when they come back they already are looking for their
tired little friend to have a nice cuddle,”
“shop Groceries housewares home improvement stores etc For me I can only
buy things that I can carry on,”
“to have a early morning coffee People who dont like coffee usually prefers tea
But most people drink coffee everyday The,”
"take a smoke For chainsmokers this is a daily ritual that could cost them an
arm and a leg if they, ” ...

DEMO24
“commute,” “breakfast,” “get dressed,” “brush teeth”, “morning routine,” “get
ready,” “wake up,” “shower,” “shave,” ...

Table 7: Some examples of the answers to the questions in ProtoQA generated by LLaMA2-13B under different
conditions.
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Series Models Dataset #Tokens

Falcon
tiiuae/falcon-rw-1b
tiiuae/falcon-rw-7b
tiiuae/falcon-7b

RefinedWeb
(enhanced with curated
corpora like the Pile)

350B
350B
1.5T

LLaMA 1
huggyllama/llama-7b
huggyllama/llama-13b

CommonCrawl, C4,
Github, Wikipedia, Books,
ArXiv, StackExchange

1T

LLaMA 2
meta-llama/Llama-2-7b
meta-llama/Llama-2-13b

data from publicly avail-
able sources

2T

Mistral mistralai/Mistral-7B-v0.1

MPT mosaicml/mpt-7b
mC4, C4, RedPajama, the
Stack Dedup

1T

Phi
microsoft/phi-1_5 (1.3b)
microsoft/phi-2 (2.7b)

code-language and syn-
thetic data (augmented
with filtered web data)

30B
1.4T

Pythia

EleutherAI/pythia-1.4b-deduped
EleutherAI/pythia-2.8b-deduped
EleutherAI/pythia-6.9b-deduped
EleutherAI/pythia-12b-deduped

Pile (deduplicated) 300B

Table 8: LLMs used for our experiments. The dataset column for mistral-7b is empty due to lack of information
about its pretraining data.

Dataset NL Template

CSQA
Question: [Question]
Answer: [Answer]

ARC (E & C)
Question: [Question]
Answer: [Answer]

HellaSwag
Question: [Question]
Answer: [Answer]

PIQA
Goal: [Question]
Answer: [Answer]

SIQA
[Context]
Question: [Question]
Answer: [Answer]

OpenbookQA
Question: [Question]
Answer: [Answer]

BoolQ
[Context]
Question: [Question]
Answer: [Answer]

Table 9: Prompt templates for various reasoning tasks in NL.

ProtoQA Question NL Template
Name something ... [Answer] One thing ... is [Answer]
Tell me something ... [Answer] One thing ... is [Answer]
Name a(/an) ... [Answer] One ... is [Answer]
How can you tell ... [Answer] One way to tell ... is [Answer]
Give me a(/an) ... [Answer] One ... is [Answer]

Table 10: Prompt templates translating the original questions in ProtoQA to NL that fits the next-word prediction
objective of LLMs.
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