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Abstract

Large Vision Language Models (VLMs) have
long struggled with spatial reasoning tasks. Sur-
prisingly, even simple spatial reasoning tasks,
such as recognizing “under” or “behind” relation-
ships between only two objects, pose significant
challenges for current VLMs. In this work, we
study the spatial reasoning challenge from the
lens of mechanistic interpretability, diving into
the model’s internal states to examine the inter-
actions between image and text tokens. By trac-
ing attention distribution over the image through-
out intermediate layers, we observe that success-
ful spatial reasoning correlates strongly with the
model’s ability to align its attention distribution
with actual object locations, particularly differ-
ing between familiar and unfamiliar spatial rela-
tionships. Motivated by these findings, we pro-
pose ADAPTVIS based on inference-time confi-
dence scores to sharpen the attention on highly
relevant regions when confident, while smooth-
ing and broadening the attention window to con-
sider a wider context when confidence is lower.
This training-free decoding method shows sig-
nificant improvement (e.g., up to a 50 absolute
point improvement) on spatial reasoning bench-
marks such as WhatsUp and VSR with negligi-
ble cost. We make code and data publicly avail-
able for research purposes at https://github.
com/shiqichen17/AdaptVis.
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1. Introduction
Despite rapid advancements in Large Vision-Language Mod-
els (VLMs), a significant deficiency persists, i.e., their strug-
gle with vision-centric abilities (Gao et al., 2023; Kamath
et al., 2023; Tong et al., 2024a; Chen et al., 2024a). This lim-
itation is particularly notable in spatial reasoning given the
simplicity of the task. Spatial reasoning involves inferring
basic relationships between just two objects, such as “left”,
“right”, “above”, “below”, “behind”, or “front”, as shown in
Figure 1. For example, given the image with a book “behind”
the candle in Figure 1, VLMs describe the book as being
“left” of the candle. This error is not an isolated incident
but a frequent, recurring pattern, highlighting a fundamental
bottleneck in how VLMs process visual-centric information.

Recent studies have probed the limitations of vision en-
coders like CLIP (Radford et al., 2021) in VLMs’ vision
processing (Tong et al., 2024b;a), yet a critical aspect re-
mains underexplored: how vision and text tokens interact
within the model’s internal states to construct geometric
understanding. Specifically, the model must simultaneously
identify objects while maintaining awareness of the broader
geometric context, grasping the complex geometric relation-
ships between them. This geometric understanding funda-
mentally manifests in how models distribute their attention
across the visual tokens. This unique challenge makes spa-
tial reasoning an ideal lens for studying how VLMs inter-
nally process vision-centric information.

Therefore, we open up the black box of VLMs and examine
their internal mechanisms through a suite of carefully de-
signed spatial reasoning tasks. By looking into the attention
distributions, we can systematically investigate how vision
and text tokens interact to construct, or fail to construct, ac-
curate spatial understanding. Our investigation begins with
a key observation: despite image tokens comprising around
90% of the input sequence, they receive only about 10%
of the model’s attention. This significant imbalance sug-
gests that textual priors often overshadow visual evidence,
explaining VLMs’ struggles with vision-centric tasks.

While a straightforward solution might seem to be simply
increasing attention to visual tokens, our deeper analysis re-
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Figure 1. The framework of ADAPTVIS. We adaptively intervene in the temperature of the attention logits of the image tokens. Top: For
generations with low confidence, we smoothen the attention distribution to broaden the context window for better concentration on the
correct objects. Bottom: For generations with high confidence, we trust the attention pattern and sharpen the attention distribution.

veals that the challenge lies not just in the quantity but in the
geometric distribution of visual attention. By examining at-
tention patterns across model layers, we observe a pattern in
VLMs’ attention behavior: their initial attention distribution
often reflects learned priors that may or may not align with
the actual geometric distribution over the image. This led
us to a key insight: rather than accepting this initial distri-
bution, we can dynamically intervene based on the model’s
self-belief, which is measured using its confidence score. As
shown in Figure 1, when the model exhibits high confidence
in its spatial reasoning (as measured by generation probabil-
ity), we sharpen its attention distribution to strengthen the
focus on its current beliefs. Conversely, when confidence is
low, we smooth the attention distribution to encourage the
exploration of alternative spatial relationships.

We call this confidence-guided attention intervention AD-
PATVIS, which proves remarkably effective while remaining
computationally efficient. In experiments across diverse spa-
tial reasoning benchmarks, including WhatsUp (Kamath
et al., 2023) and VSR (Liu et al., 2023), our approach
achieves substantial improvements of up to 50% points.
These gains are observed across both synthetic datasets with
clean backgrounds and real-world images with complex
scenes, demonstrating the robustness of our method.

Our visualization of this intervention strategy reveals its
underlying mechanism: by dynamically adjusting attention
patterns, we effectively guide the model’s focus to better
align with actual object locations and their spatial relation-
ships. This suggests that successful spatial reasoning isn’t
just about having the right attention mechanism, but about
having the right confidence to know when to trust or ques-
tion one’s initial spatial understanding.

2. Preliminary on VLMs
We center our analysis on investigating how VLMs dis-
tribute their attention over image tokens, aiming to gain
deeper insights into spatial reasoning errors.

Notation Large VLMs like LLaVA (Liu et al., 2024a) con-
sist of three components: a visual encoder like CLIP (Rad-
ford et al., 2021), a pretrained language model, and a pro-
jector to connect them. The visual encoder functions as
a perception tool to “see” the image, while the image in-
formation is processed through a projector to be mapped
into the token space. The LLM is often based on the trans-
former architecture, consisting of L layers stacked together.
Each layer consists of two major components: a Multi-
Head Attention (MHA) module, followed by a feed-forward
network. For each layer l, given the input X ∈ Rn×d

(where n is the number of tokens and d is the embedding
dimension), MHA performs self-attention in each head
Nh. The output is a concatenation of all heads’ outputs:
MHA(l)(X) = Concat

(
N

(l,1)
h , . . . ,N

(l,H)
h

)
Wo. Here

H is the number of heads; Nh is the output of head Nh:

N
(l,h)
h = Softmax(A(l,h))V = Softmax

(
QK⊤
√
dh

+M

)
V ,

(1)

where attention logits A(l,h) are computed via
Q = XWqh ,K = XWkh

,V = XWvh , and
Wqh ,Wkh

,Wvh ∈ Rd×dh are learnable projection matrix
of the head Nh. A causal mask Mij = 0 if i ≥ j, and −∞
otherwise, prevents tokens from attending to future tokens.
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Dataset Num of Options Num of Objects Source

4 options 6 options 1 object 2 objects Syn Real

Cont A ✓ ✓ ✓
Cont B ✓ ✓ ✓
VG one ✓ ✓ ✓
VG two ✓ ✓ ✓
COCO one ✓ ✓ ✓
COCO two ✓ ✓ ✓

<image>
USER: Where is the 
beer bottle in relation 
to the armchair? 
Answer with left, right, 
on or under.

<image>
USER: Where is the 
beer bottle in relation 
to the armchair? 
Answer with left, right, 
on, under, front or 
behind.

For Controlled and COCO
4 Option

For VG
6 option

Figure 2. Left: Choice counts, object counts and data source by subset in WhatsUp (“Syn” = Synthetic, “Real” = Real). Right: Evaluation
prompts we use in evaluation.
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Figure 3. A striking imbalance between visual and textual atten-
tion: while image tokens take approximately 90% of the sequence
length, they receive only about 10% of the model’s total attention
on WhatsUp. This severe disparity in attention allocation suggests
that VLMs fundamentally underutilize visual information.

3. Text-Vision Attention Interactions
We hypothesize that the failure on spatial reasoning stems
from issues in the text-vision interactions, specifically due
to insufficient attention being allocated to the image tokens.
In this section, we systematically investigate the impact of
the absolute values of attention logits on the image tokens
during spatial reasoning.

Experiment settings. We select a widely-used spatial rea-
soning benchmark WhatsUp (Kamath et al., 2023) since it
contains both synthetic data and realistic data. The synthetic
data (Controlled Image) features clean backgrounds with
two objects, as shown in the upper example of Figure 1.
It comprises two subsets: Controlled A, with one large
object (e.g., table) and one small object (e.g., cup), and Con-
trolled B with two small objects (e.g., book and plate). We
use Cont A and Cont B as abbreviations in the paper. The
realistic data, as shown in the lower image of Figure 1, con-
tains complex backgrounds with multiple objects, sourced
from MS COCO (Lin et al., 2014) and Visual Genome (Kr-
ishna et al., 2017) (referred to as COCO and VG later, both
datasets include captions involving either one object or two
objects, referred to as COCO one, COCO two, VG one,
and VG two, respectively). Compared with realistic im-
ages, the synthetic images enables clearer observation of
VLMs’s inner workings with just two objects. Each image

is paired with a ground truth caption describing the spatial
relationship of two objects.

We reformat the original ⟨image, caption⟩ setting into a gen-
erative question-answering setting ⟨image, question, spa-
tial label⟩, enabling evaluation of generative models like
VLMs and tracing of internal states. Questions are gener-
ated using GPT-4 (OpenAI, 2024). Details in each subset
with prompts are shown at Figure 2. This QA task asks
about positions in a multiple-choice format, with possible
answers like “left”, “right”, “on” and so on.

For evaluation, we use LLaVA-1.5 (Liu et al., 2024a)
throughout the analysis part (Section 3 and 4). For metric,
we apply accuracy of exact match as the primary metric. To
maintain consistency in the label space across datasets, we
use a four-option setting ⟨left, right, on, under⟩ for the Con-
trolled Image and COCO subsets, and a six-option setting
⟨left, right, on, under, behind, front⟩ for the VG as it con-
tains additional spatial annotations.

To better understand model performance, we analyze the
label distribution, which provides insight into the represen-
tation of different spatial relationships within the dataset. In
Controlled Image, labels are uniformly distributed across
categories (e.g., equal number of samples for “left”, “right”,
“on”, “under”). Another interesting feature of this dataset,
which contributes to our choice to use it, is its contrastive
setting. Controlled Image includes pairs of images with
same objects in both “left” and “right” positions, and sets of
same objects exhibiting “left”, “right”, “on”, and “under” re-
lationships. It enables us further assess model performance
using pair accuracy and set accuracy, requiring correct
identification of all relationships within a pair or set, de-
fined by Kamath et al. (2023). It provides a comprehensive
evaluation of spatial relationships.

3.1. VLMs allocate sparse attention to the image.

We analyze how output tokens attend to image tokens by
extracting the attention logits across layers, and present the
following key findings: The sum of attention scores to the
image tokens is significantly lower than that to all the
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Figure 4. Accuracy of adding image attention in logit space
(which corresponds to the multiplication operation in probabil-
ity space; the x-axis of the figure represents the multiplication
coefficient). ADAPTVIS, on the other hand, utilizes multiplication
in logit space.

input text tokens, despite the considerably higher number
of image tokens. In Figure 3, we focus on the attention
scores from the first generated token and sum the attention
allocated to the image tokens in average for all attention
heads in all samples in WhatsUp. The results reveal that
image tokens receive substantially less attention, with text
tokens receiving approximately nine times more. Although
the image sequence has a length of 576, compared to the text
sequence, which typically ranges from 30 to 40 tokens in our
short question-answering setting, the model predominantly
focuses on text when generating outputs. That is, image
information is sparsely processed by the language model.

3.2. Is the answer more accurate if the model sees the
image more? Not really.

Building on earlier observations, a natural question arises:
since the attention scores assigned to the image are relatively
low compared to those for text, could increasing attention
to the image improve the factual accuracy of the model? To
investigate this, we conduct an experiment by increasing
the attention weights allocated to the entire image by the
final answer, intervening by adding positive constants to
the image attention logits across all patches , as described
by Zhang et al. (2023). In Figure 4, we observe that adding
a constant weight uniformly across all image tokens does
not improve performance on spatial reasoning tasks. This
observation motivates us to explore more intelligent ways
to focus on key visual features.

4. Visual Attention Distribution
Our analysis of text-image attention imbalance has estab-
lished that visual information is underutilized, yet simply
increasing attention to image tokens fails to improve spa-
tial reasoning. We hypothesize that the way attention is
geometrically distributed across the image is the key factor.
To investigate this hypothesis, we examine how attention

patterns are distributed spatially by mapping the 576 image
tokens in LLaVA 1.5 to their 24× 24 corresponding image
patches. This mapping enables us to trace and visualize the
geometric flow of attention, showing us not just where the
model looks, but how its attention aligns with actual spatial
relationships in the image.

4.1. The model automatically focuses on the relevant
entity when correctly answering questions.

To determine whether the model’s factual inaccuracy is
linked to incorrect attention behavior, we use YOLO (Red-
mon, 2016) to annotate the relevant entities in the images.
We compare the overlap between these annotations with
the model’s attention distribution and evaluate whether the
overlap can serve as a metric to predict the correctness of
the model’s answers. We transform the bounding box coor-
dinates obtained from YOLO annotations into image-sized
index vectors, where each element is either 0 or 1. We then
normalize these index vectors along with the attention logits
of the image attended by the final answer of certain layers
corresponding to the image patches. We then calculate the
cosine similarity of the two tensors for each sample, and
analyze this metric on Cont A. As shown in Figure 6, the
AUROC - a metric used to measure how well a model can
distinguish between positive and negative classes.) is no-
tably high in the middle layers, with results for all the layers
at Figure 7. Additional results on other subsets are presented
in the Appendix E.5.

To investigate why the middle layers exhibit the most no-
ticeable patterns, we analyze both attention scores and the
overlap AUROC (Figure 7) to track information flow and
assess each layer’s contribution. In the initial layers, atten-
tion to the input image is the highest compared to other
layers. However, the AUROC in these layers is very low,
suggesting that the model primarily captures a broad, global
understanding rather than focusing on local details. In con-
trast, the middle layers play a more critical role in refining
the model’s understanding. As shown on the right side of
Figure 7, the overlap AUROC peaks in these layers, indi-
cating that they are where the model begins to effectively
“process” image information. Additionally, the left side of
Figure 7 shows a modest peak in attention logits, further
supporting our hypothesis.

We further separately examine the attention patterns for cor-
rectly and incorrectly answered questions. Our observations
reveal that hallucinations frequently occur due to two types
of attention failures: (1) insufficient attention to the correct
object, and (2) misplaced attention on irrelevant objects in
the image. Figure 5 illustrates these findings. More exam-
ples are shown in Appendix E.5. In the two correct examples
on the left, the attention scores are well-aligned with the
referenced entities, with sufficient focus. On the other hand,
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Figure 5. Attention visualization examples from the WhatsUp Dataset. The left two examples are answered correctly, while the right two
are incorrect. For correctly answered questions, the attention scores are precisely focused on the core entities mentioned. In contrast,
incorrect answers show attention scores distributed to irrelevant image regions. The visualizations use attention from the 17th layer, and
the title in each image is an abbreviation of “Where is A in relation to B”.
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Figure 6. The figure illustrates the AUROC of the overlap between
YOLO annotations and the attention patterns for Cont A at the
17th and 18th layers. This high AUROC suggests that attention
could be an effective metric for detecting answer correctness.
more AUROC results are shown at Appendix D.

Figure 7. Left: Variance of image token attention across layers
in Cont A, showing sparse attention on image, consistent with
other subsets (Appendix E.4). Right: The Overlap’s AUROC value
across the layer of Cont A. We can infer from the two figures that
the model “sees” the image information in the early layers and
“processes” this information in the intermediate layers. So for case
study in our paper, we use the intermediate layers.

the two incorrect examples on the right demonstrate how
the model incorrectly assigns attention, effectively “seeing”
the wrong parts of the image. While these examples high-
light the qualitative differences in attention patterns, they
do not provide a quantitative metric that aligns with our

goal–developing a method to detect the reliability of inter-
nal states and enable intervention. Therefore, the primary
challenge lies in devising effective strategies to adjust the
attention scores intelligently, given that we have no prior
information about the scores until a single inference run
generates the attention map.

4.2. SCALINGVIS: Temperature scaling to image
attention distribution

Our observations from Section 4.1 reveal that the model
often misallocates attention logits within images, leading
to errors in spatial reasoning. To address this, we aim to
enhance the model’s ability to focus on key visual features,
improving its capacity to accurately ground spatial rela-
tionships, especially in complex or ambiguous scenarios.
To achieve this, we propose a straightforward yet effec-
tive method that dynamically adjusts the image attention
by modifying the temperature of the attention distributions.
By adjusting the temperature, we can make the distribution
either sharper or smoother, effectively altering the attention
distribution. For instance, if the attention pattern is mostly
correct but lacks precision, we want to sharpens it. Con-
versely, if the attention pattern is fundamentally incorrect,
we want to smooth it out, allowing us to explore alternative
regions. This intervention targets the attention of the final
input token (at the n-th position) to the image tokens.

A
(l,h)
n,j =

{
αA

(l,h)
n,j if j ∈ I

A
(l,h)
n,j otherwise

(2)

where I represents the indices of all image tokens. In
essence, we change the temperature of image attention dis-
tribution by multiplying a coefficient α. From a physical
perspective, multiplying by a coefficient greater than 1 en-
courages the model to focus more on the original distribu-
tion, while multiplying by a coefficient less than 1 makes the
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distribution more dispersed. In experiments, we uniformly
apply this coefficient to all H heads across all L layers to
avoid the need for extensive hyperparameter search.

Experiment Setting. We select two widely-used bench-
marks on evaluating the model’s ability on spatial reason-
ing WhatsUp (Kamath et al., 2023) (introduced in Sec-
tion 2), and VSR (Liu et al., 2023), which contains con-
tains 1223 image-caption pairs with boolean labels. The
original VSR is designed in ⟨image, caption⟩ format to eval-
uate encoder models without generation capabilities. To
adapt it for our purposes, we utilize GPT-4o to generate
questions for the VSR dataset. For evaluation, we report
both accuracy and F1 scores. A small validation set is al-
located for each subset to optimize the temperature based
on validation performance, and the final test is conducted
on the test set. For both methods, the hyperparameter α
is selected from [0.5, 0.8, 1.2, 1.5.2.0]. For baselines, we
adopt DoLa (Chuang et al., 2023) as a baseline, which em-
ploys the inner knowledge to calibrate the output logits by
substracting the logits from intermediate layers. Addition-
ally, we incorporate VCD (Leng et al., 2024), which is a
contrastive decoding method to contrast the logits before
and after eliminating the image.

Results. Our results for ScalingVis are presented in Ta-
ble 1 and Table 2. By controlling the distribution of at-
tention weights, spatial reasoning performance improves
significantly, with gains of up to 37.2 absolute points. An
interesting pattern emerges: a temperature below one tends
to enhance performance on synthetic data in most cases
(3 out of 4), while a temperature above one benefits real
image datasets across all cases. Table 1 indicates that for
synthetic data, smoothing the image attention logits im-
proves performance. Conversely, for real image datasets
(COCO and VG), the optimal temperature is consistently
above one, demonstrating that a sharper attention distribu-
tion helps the language model discern relationships more
effectively. Intuitively, we believe that for familiar datasets
and spatial relationships, the model requires a sharper at-
tention distribution, as it is generally correct but may not
be sufficiently precise. In contrast, for unfamiliar datasets
and spatial relationships, a smoother attention distribution
is necessary to explore a broader context.

5. Adaptively Intervening the Attention
Distribution by Model Confidence

The findings from our study raise a key question: Since
sharpening the distribution can sometimes improve perfor-
mance while smoothing it is preferable in other cases, can
we establish a metric to determine when to make these ad-
justments adaptively? In other words, can we establish a
metric on whether we want to strengthen the original distri-

bution or break it? In this section, we explore how to assess
when to trust image attention.

5.1. Self-confidence reflects whether we can trust the
model’s image attention distribution.

We aim to determine whether an internal metric can indicate
when the model’s attention pattern is trustworthy. Since we
found that attention patterns often correlate with the cor-
rectness of the model’s generation as shown in § 4.1, we
reframe our goal as identifying a metric that helps assess
the reliability of its outputs. Following previous findings of
using generation logits as a measure of self-confidence to as-
sess generation reliability (Kadavath et al., 2022; Chen et al.,
2024b), we also adopt the logits of generated outputs to rep-
resent the model’s self-confidence. Specifically, we adjust
the coefficient for all four spatial relationships in Cont A
and Cont B, as these subsets provide a uniform distribution
of different spatial relationships. We then examine how
confidence and accuracy change in response and present the
results in Figure 8. First, when the coefficient is 1.0 (base-
line), the model exhibits significantly higher confidence
for “left” and “right” relationships while showing notably
lower confidence for other relationship types. This suggests
that the model is more familiar with “left” and “right” re-
lationships and less familiar with others. Furthermore, the
accuracy of predicting “left” and “right” relationships is
also higher, indicating the positive correlation between the
model’s self-confidence and its correctness in predicting
them. Second, we observe distinct response patterns across
different coefficients. Increasing the coefficient improves
performance for “left” and “right” relationships, whereas
decreasing it enhances performance for other relationships.
This suggests that the model responds differently based
on the relationship type, necessitating tailored intervention
methods. These insights motivate us to propose an adaptive
intervention strategy.

5.2. ADAPTVIS

Motivated by our observation that attention misallocation
leads to spatial reasoning errors and that the model exhibits
varying self-confidence and correctness across different
spatial relationships, we propose ADAPTVIS: Confidence-
aware temperature scaling, an extension of SCALINGVIS:
Confidence-Based Attention Intervention.

Recall from Section 5.1 that we observe two distinct pat-
terns in the model’s factuality behavior: (1) synthetic data
presents more unfamiliar cases than the real data, and (2)
VLMs could express uncertainty through confidence scores.
These insights motivate using confidence scores as a metric
for adaptive intervention in the model’s internal states. Our
intuition is straightforward: when confidence is low, suggest-
ing that the attention pattern may be unreliable, we smooth

6



Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas

Model has higher confidence for left / right than on / under / front / behind, indicating that the model is more familiar with certain relationships.

For low-confidence relationships: coefficient <1 improves performance. For high-confidence relationships: coefficient >1 improves performance.

Figure 8. 1 : Change in accuracy with the coefficient on Cont A. 2 : Change in confidence with the coefficient on Cont A. 3 : Change
in accuracy with the coefficient on Cont B. 4 : Change in confidence with the coefficient on Cont B. The baseline (greedy decode)
corresponds to a coefficient of 1.

Figure 9. Attention scores on the patches before and after our intervention in the 17th layer for the images in synthetic datasets Cont A
and Cont B. We employ a “smoothing” intervention method to expand the context length of the model’s focused area. From the figure,
it is evident that the model’s focused position undergoes significant changes after our intervention.

Figure 10. Attention scores on the patches before and after our intervention in the 17th layer for the images in real datasets COCO and
VG. We utilize a “sharpening” intervention method to enhance the original attention pattern. The highlighted areas remain largely
consistent, with our method serving to reinforce the focus rather than significantly altering it.

the attention distribution. This encourages the model to
explore a broader range of image regions, increasing the

likelihood of focusing on the correct patches. Conversely,
when confidence is high and attention is dispersed across
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A
(l,h)
n,j =

{
α1A

(l,h)
n,j if j ∈ I

A
(l,h)
n,j otherwise

, if C < β (3a) A
(l,h)
n,j =

{
α2A

(l,h)
n,j if j ∈ I

A
(l,h)
n,j otherwise

, if C > β (3b)

Model Controlled A Controlled B COCO one COCO two VG one VG two
Acc P Acc S Acc Acc P Acc S Acc Acc Acc Acc Acc

LLaVA-1.5 60.3 40.6 0.0 73.1 41.6 3.7 53.0 58.2 35.9 40.8
+VCD 61.5 ↑1.2 39.4 ↓1.2 0.0 73.4 ↑0.3 42.2 ↑0.6 3.7 53.3 ↑0.3 58.2 35.8 ↓0.1 42.5 ↑1.7

+DoLa 61.2 ↑0.9 41.6 ↑1.0 0.0 73.4 ↑0.3 42.2 ↑0.6 3.7 53.7 ↑0.7 57.5 ↓0.7 36.2 ↑0.3 42.1 ↑1.3

+SCALINGVIS 64.5 ↑4.2 40.6 0.0 75.2 ↑2.1 44.6 ↑3.0 9.8 ↑6.1 53.6 ↑0.6 59.4 ↑1.2 42.7 ↑6.8 48.1 ↑7.3

+ADAPTVIS 84.9 ↑24.6 61.2 ↑20.6 30.3 ↑30.3 83.8 ↑10.7 55.7 ↑14.1 18.3 ↑14.6 53.6 ↑0.6 59.9 ↑1.7 42.7 ↑6.8 48.1 ↑7.3

LLaVA-1.6 48.2 37.6 0.0 63.0 39.1 3.7 59.7 41.8 31.6 7.3
+VCD 61.8 ↑13.6 41.8 ↑4.2 10.9 ↑10.9 65.4 ↑2.4 41.6 ↑2.5 7.3 ↑3.6 60.6 ↑0.9 44.9 ↑3.1 33.8 ↑2.2 11.6 ↑4.3

+DoLa 48.2 37.6 0.0 62.7 ↓0.3 39.1 3.7 59.7 41.5 ↓0.3 31.5 ↓0.1 7.3
+SCALINGVIS 97.0 ↑48.8 76.4 ↑38.8 54.5 ↑54.5 73.4 ↑10.4 48.9 ↑9.8 15.9 ↑12.2 63.1 ↑3.4 47.7 ↑5.9 38.2 ↑6.6 14.6 ↑7.3

+ADAPTVIS 98.2 ↑50.0 78.8 ↑41.2 57.0 ↑57.0 73.4 ↑10.4 48.9 ↑9.8 15.9 ↑12.2 63.1 ↑3.4 47.7 ↑5.9 35.2 ↑3.6 17.2 ↑9.9

Table 1. Results on Controlled A, Controlled B, COCO, and VG datasets. (Metrics in ×10−2). Best-performing method per model and
dataset are highlighted in bold. P Acc and S Acc represents Pair Acc and Set Acc.

Model VSR

Exact Match F1 Score

LLaVA-1.5 62.4 51.3
+VCD 62.4 50.6 ↓0.7
+DoLa 62.8 ↑0.4 53.2 ↑1.9
+SCALINGVIS 64.9 ↑2.5 62.5 ↑11.2
+ADAPTVIS 65.0 ↑2.6 62.5 ↑11.2

LLaVA-1.6 58.8 29.4
+VCD 58.8 29.4
+DoLa 59.3 ↑0.5 31.2 ↑1.8
+SCALINGVIS 59.1 ↑0.3 30.6 ↑1.2
+ADAPTVIS 62.7 ↑3.9 39.3 ↑9.9

Table 2. Results on the VSR dataset (Exact Match and F1) (Metrics
in ×10−2). Best-performing method per model and dataset are
highlighted in bold.

the image, we sharpen the distribution to concentrate on key
objects more effectively. Specifically, we apply the targeted
intervention to the attention of the last input token (at the
n-th position) directed toward the image tokens as shown
in Equation 3a, 3b. Overall, we use a large α > 1 when the
Confidence C is large, which sharpens the attention distribu-
tion, and the relevant objects are paid more attention to; we
use a small α < 1 when the confidence C is small, which
mitigates the model’s excessive concentration on certain
image tokens and makes the overall attention distribution
smoother across the image.

Evaluation Settings. We employ the same setting with
SCALINGVIS as shown in 4.2. For hyperparameter choice
and robustness, we show in Appendix E.3.

Results Our main results are presented in Table 1 and
Table 2. By controlling the distribution of attention weights,
we observe a significant improvement in spatial reason-
ing ability, with gains of up to 50 absolute points. In
most cases, ADAPTVIS achieves the best performance, par-
ticularly for synthetic datasets like Cont A and Cont B, as
shown in Table 1, where it significantly outperforms the
generalized method SCALINGVIS. These findings suggest
that model performance varies considerably with the label
distribution of the dataset, and smoothing the distribution
(by applying a coefficient smaller than 1) enhances perfor-
mance. For real-image datasets like COCO and VG, the
adaptive method performs slightly better than the gener-
alized approach, indicating the model’s robustness across
different label distributions. Example cases are shown in
Figure 9 and Figure 10, illustrating the smooth effect and
focus effect (α < 1 and α > 1), respectively. It is important
to note that the LLaVA-series models are trained on the
COCO dataset, which makes them highly confident and fa-
miliar with COCO and VG image types. Hence trusting the
model’s self-belief and sharpening image attention improves
performance. Notably, for datasets containing more unfa-
miliar images, the adaptive setting proves to be significantly
more effective.

6. Related Work
The first line of related work focuses on the attention pat-
terns in LMs. Some studies on attention patterns in LLMs
reveal biased attention across context windows, such as
ineffective use of the middle context (Liu et al., 2024b)
and initial token attention sinks (Xiao et al., 2023). While
some approaches use fine-tuning to overcome these bi-
ases (An et al., 2024), training-free methods like input-
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adaptive calibration (Yu et al., 2024b) and position-specific
interventions (Yu et al., 2024a) offer efficient alternatives.
PASTA (Zhang et al., 2023), a closely related method, em-
phasizes attention on selected segments for specific heads;
we extend this to VLMs without manual segment specifica-
tion or multiple validation runs. Our work is also related to
failure analysis in VLMs, VLMs have been shown to halluci-
nate more in multi-object recognition tasks and rely on spu-
rious correlations (Chen et al., 2024c), with systematic vi-
sual limitations highlighted from a CLIP perspective (Tong
et al., 2024b). Our work also connects to the decoding
strategies for reducing hallucinations decoding strategies to
mitigate hallucinations include contrastive decoding focus-
ing on image regions (Leng et al., 2024), preference tuning
through data augmentation (Wang et al., 2024), and meth-
ods leveraging contrastive layers for enhanced knowledge
extraction (Chuang et al., 2023), as well as activation-based
optimal answer identification (Chen et al., 2024b).

7. Conclusion and Future Work
Our research uncovers the inner working mechanism of
VLMs during spatial reasoning, which is a critical limita-
tion in VLMs and constrains their practical utility when
requiring geometric understanding of visual scenes. We
identify critical insights through an in-depth study of atten-
tion behaviors across layers: 1) VLMs allocate surprisingly
insufficient attention to image tokens; 2) the location of
attention on image tokens is more crucial than quantity; and
3) generation confidence serves as a reliable indicator of its
familiarity with the image and the correctness of its attention
pattern. Based on these findings, we propose ADAPTVIS, a
novel decoding method that dynamically adjusts attention
distribution, significantly improving spatial reasoning per-
formance. Future research could focus on further exploring
the mechanism of VLMs on complicated geometric struc-
ture understanding, such as long-horizon spatial reasoning,
and investigate other spatial reasoning bottlenecks.

Impact Statement
Our research into the spatial reasoning capabilities of Large
Vision Language Models (VLMs) has significant implica-
tions across various domains of artificial intelligence and
its real-world applications. First and foremost, our find-
ings highlight a critical limitation in current VLMs: while
they excel at object recognition, they struggle with basic
spatial relationships. This gap between recognition and spa-
tial understanding has far-reaching consequences for the
practical deployment of VLMs in scenarios requiring ge-
ometric comprehension of visual scenes. Industries such
as robotics, autonomous navigation, and assistive technolo-
gies for the visually impaired are particularly affected. For
instance, a robot that can identify objects but cannot un-

derstand their spatial relationships may struggle with tasks
like picking and placing items or navigating complex envi-
ronments. Similarly, autonomous vehicles might face chal-
lenges in interpreting traffic scenarios accurately, potentially
compromising safety.

Our development of ADAPTVIS, a novel decoding method
that dynamically adjusts attention distribution based on the
model’s confidence, represents a significant step forward.
By enhancing VLMs’ performance on spatial reasoning
tasks, ADAPTVIS could unlock new possibilities in various
fields. In healthcare, improved spatial reasoning could lead
to more accurate interpretation of medical imaging, poten-
tially improving diagnostic accuracy. In augmented reality
applications, better spatial understanding could enable more
immersive and interactive experiences. For assistive tech-
nologies, enhanced spatial reasoning could provide more
accurate and useful descriptions of environments to visually
impaired individuals, significantly improving their indepen-
dence and quality of life.

Looking ahead, our work opens up new avenues for research
in AI and cognitive science. The exploration of mechanism
interpretability in VLMs, particularly for complex geometric
structures and long-horizon spatial reasoning, could provide
insights into how artificial systems process and understand
spatial information. This could not only advance AI capa-
bilities but also contribute to our understanding of human
spatial cognition. Additionally, investigating the role of
training data memorization in spatial reasoning bottlenecks
could lead to more efficient and effective training methods
for future AI models.

In conclusion, our research not only addresses a fundamen-
tal limitation in current VLMs but also paves the way for
more versatile and capable AI systems. As we continue
to advance VLMs’ capabilities in visually-driven tasks re-
quiring nuanced spatial understanding, we have the poten-
tial to significantly impact various sectors of society, from
healthcare and assistive technologies to urban planning and
environmental monitoring. The future research ahead in this
field is both exciting and challenging, requiring ongoing
collaboration between researchers, ethicists, and policymak-
ers to ensure that these advancements benefit society as a
whole.
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Appendix
A. Limitations
Firstly, our methods, SCALINGVIS and ADAPTVIS, specifi-
cally address model-related spatial hallucinations and self-
alignment issues but are not designed to handle errors out-
side the language model’s capabilities, such as the CLIP fail-
ures discussed by Tong et al. (2024b). Secondly, ADAPTVIS
relies on distribution-based confidence to adaptively set the
confidence threshold β, we also observe that the optimal α
and β is different across different distributions and prompts.
This dependence on a validation set for tuning poses a limi-
tation on its applicability.

B. Additional Results on Qwen2-VL
We further expand our intervention experiments and atten-
tion analysis on Qwen2-VL, the results on spatial reasoning
benchmarks and on general benchmarks are shown in Ta-
ble 3 and Table 4 respectively. We intervene in the image
attention distribution using our temperature-scaling method,
showing consistent improvements below, particularly in
challenging cases. For example, on VG two object, where
the baseline performance is the lowest among all bench-
marks, our method yields a significant improvement of 10+
absolute points. The gains observed on Qwen2-VL further
demonstrate the generalizability of our approach. Exper-
iments on more benchmarks shown in Table 4, including
POPE (Li et al., 2023), GQA (Hudson & Manning, 2019),
and TextVQA (Singh et al., 2019), which proves that at-
tention intervention can maintain the performance on more
general tasks without hurting the performance. Compared
with spatial reasoning tasks, general QA tasks achieve rela-
tively smaller improvement. A possible reason is that such
tasks are less sensitive to the geometric structured distribu-
tion of image attention. For example, given a question like
“Is there a dog in this picture?”, the model only needs to
detect the presence of an object, and is therefore less likely
to suffer from misallocated attention across spatial regions.

We also conduct an attention analysis to verify whether our
observation of the sparsity of image attention compared
to textual tokens still holds. The results are shown in Ta-
ble 6. Here we calculate the Qwen2-VL’s attention scores
below (average attention logits for single text/image tokens
respectively), which matches our previous claim that image
receives much less attention than the text tokens is generally
valid for VLMs. And we also conduct the uncertainty ex-
periments to show our uncertainty conclusion is also valid.
The results are shown in Table 5. It shows that spatial rela-

Benchmark Qwen2-VL +Attention Intervention

VSR 78.96 81.60 ↑2.64
Coco one obj 76.64 78.03 ↑1.39
Coco two obj 75.28 76.52 ↑1.24
VG one obj 74.89 75.11 ↑0.22
VG two obj 56.22 66.95 ↑10.73
Controlled A 98.18 98.18 ↑0.00
Controlled B 91.73 92.97 ↑1.24

Table 3. Performance of Qwen2-VL before and after the attention
intervention on spatial reasoning benchmarks.

Benchmark Qwen2-VL +Attention Intervention

POPE-Overall 86.32 87.09 ↑0.77
POPE-P 86.47 87.29 ↑0.82
POPE-A 85.07 85.80 ↑0.73
POPE-R 87.46 88.22 ↑0.76
GQA 62.09 62.17 ↑0.08
TextVQA 79.18 79.26 ↑0.08

Table 4. Performance of Qwen2-VL before and after the attention
intervention on additional general benchmarks.

tionships with lower confidence, such as “Left” and “Under”
tend to exhibit lower accuracy when compared to those
with higher confidence, like “On” and “Right”. After the
intervention with AdaptVis, certain spatial relationships like
“Left” show improved performance, accompanied by an in-
crease in confidence. This demonstrates a pattern consistent
with our observations for LLaVA, as depicted in Figure 8 in
Section §4.

Benchmark Text attention Image attention

Controlled A 1.57e-02 7.59e-05
Controlled B 1.58e-02 7.69e-05
Coco one obj 1.77e-02 4.48e-04
Coco two obj 1.65e-02 3.50e-04
VG one obj 1.54e-02 4.75e-04
VG two obj 1.42e-02 4.19e-04

Table 5. Average text-token and image-token attention scores
across benchmarks.

C. Related work
C.1. Attention Patterns in Language Models

Ongoing research has shown how large language models
(LLMs) exhibit biased attention across different parts of the
context window. Liu et al. (2024b) find that LLMs fail to
effectively utilize the information in the middle of a long
context window. Meanwhile, Xiao et al. (2023) reveals an
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Figure 11. Examples of our fixed case for α = 0.5.

Figure 12. Examples of our fixed case for α = 2.0.

attention sink at the initial tokens of the input. Besides fine-
tuning methods to overcome such biases (An et al., 2024),
some training-free methods have been proposed with the
benefit of their efficiency. Yu et al. (2024b) proposes to
use input-adaptive calibration to adjust the attention scores,
while Yu et al. (2024a) intervenes in position-specific hidden
dimensions to alleviate the lost-in-the-middle phenomenon.
A closely related work to ours is PASTA (Zhang et al.,
2023), which emphasizes the attention scores of specific
text segments for selected attention heads. We further de-
velop this motivation on vision language models. Moreover,
our method does not require a manual specification of the
emphasized segment or multiple validation runs to identify
effective attention heads.

C.2. Failure Analysis of Vision-Language Models

Our work relates to research on hallucination detection in
VLMs. Chen et al. (2024c) examine multi-object recogni-
tion tasks, observing that VLMs exhibit more hallucinations
when dealing with multiple objects compared to single-
object scenarios. They also note a similar phenomenon to
our findings: the distribution of tested object classes impacts
hallucination behaviors, suggesting that VLMs may rely on
shortcuts and spurious correlations. Additionally, Tong et al.

(2024b) analyze VLM failures from a CLIP perspective,
highlighting that the visual capabilities of recent VLMs still
face systematic shortcomings, partly due to CLIP’s limita-
tions in specific cases.

C.3. Decoding Strategies for Reducing Hallucinations

This work is also connected to various decoding and tun-
ing strategies aimed at mitigating hallucinations in VLMs.
Leng et al. (2024) introduce a contrastive decoding method
that emphasizes certain image regions. Wang et al. (2024)
propose a data-augmentation approach to create image-
intensive datasets, followed by preference tuning on this
enhanced data. Furthermore, knowledge extraction tech-
niques such as the method proposed by Chuang et al.
(2023) improve decoding by leveraging contrastive layers
for better knowledge extraction. Similarly, Activation De-
coding (Chen et al., 2024b) identifies optimal answers as
those with the highest activation values within the context.

D. Case Study
We show more case we could fix in Figure 11 and Figure 12.
We show more attention examples at Figure 13.
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Benchmark Qwen2-VL Unc. +ScalingVis Unc. Qwen2-VL Acc +ScalingVis Acc

Left 0.4408 0.4474 70.11 74.71
On 0.5758 0.5668 100 100
Right 0.5982 0.5911 100 100
Under 0.5554 0.5418 98.82 98.82

Table 6. Uncertainty (Unc.) and accuracy (Acc) on spatial-relation categories before and after applying ScalingVis.

Figure 13. Examples of image attentions. Visualization here is adopted from 14th layers’ attention scores.

E. Further Analysis
E.1. Other metrics to distinguish the distributions

We further explored additional metrics to distinguish the
distributions and uncover their underlying characteristics
during our preliminary experiments. Specifically, we exam-
ined entropy and skewness. Entropy was selected based on
the hypothesis that parameter differences may stem from
the familiarity of attention patterns in real images, which
are generally correct, versus synthetic images, where these
patterns tend to be incorrect. We posit that the model can ex-
press ”familiarity” through certain metrics derived from the
attention scores. For example, we hypothesize that the en-
tropy of attention will be lower when the model encounters
familiar cases.

E
(
A(l,h)

n,j

)
= −

t∑
j=1

P̃
(
A(l,h)

n,j

)
log P̃

(
A(l,h)

n,j

)
(4)

In Equation 4,A(l,h)
n,j denotes the attention scores assigned

by the h-th head in the l-th layer to the j-th token in se-
quence n. The summation runs over j = 1 to t, where t
is the total number of tokens considered for this attention
distribution. P̃

(
A(l,h)

n,j

)
is the normalized probability dis-

tribution of these attention scores. This entropy measures
the uncertainty or spread of the attention distribution across
tokens.

Our experimental results in Figure 14 indicate that the at-
tention distribution is heavily influenced by image features.

Notably, the attention distribution is more concentrated in
synthetic datasets than in real images. We attribute this
to the fact that synthetic images tend to contain fewer ob-
jects, resulting in a sharper attention distribution. However,
this concentration does not provide a reliable metric for
measuring familiarity. Another possible metric is skewness.
Another possible metric is skewness, which captures the
asymmetry of the attention distribution. A high skewness
suggests that the attention is predominantly focused on a few
positions, while a low skewness indicates a more balanced
spread across multiple regions. By examining skewness,
we aim to identify whether the attention is being dispropor-
tionately allocated to particular image features, which could
provide additional insights into how familiarity is expressed
through attention patterns. We could see from Figure 14
that Synthetic datasets show a higher skewness. However,
it also related with the object distribution, which is not the
real factor behinds the difference.

S
(
A(l,h)

n,j

)
=

∑t
j=1 (j − µA)

3
P̃j

σ3
A

(5)

The summation runs over j = 1 to t, where t is the num-
ber of tokens considered in the attention distribution. P̃j

denotes the probability assigned to the j-th token in the nor-
malized attention distribution. The term µA is the mean of
the distribution, and σA is its standard deviation. The skew-
ness is calculated as the normalized third central moment,
which measures the asymmetry of the attention distribution:
a positive value indicates a distribution skewed to the right,
while a negative value indicates a skew to the left.
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Figure 14. The skewness and entropy distribution comparison between different subsets. Here we use Controlled Images and COCO
datasets due to all of them are in four option label space, which enables us to eliminate the influence of prompts.

Dataset Relationship Types

Right Left On Under Behind Front

Controlled A 92 92 130 92 0 0
Controlled B 102 102 0 0 102 102
VG one 376 392 192 198 2 0
VG two 137 127 3 0 5 19
COCO one 564 576 363 744 0 0
COCO two 129 150 86 75 0 0

Table 7. Gold Answer Frequency by Spatial Relation in WhatsUp
dataset.

E.2. Label statistics in WhatsUp

We present the golden labels’ distribution in Table 7. We
can see that the label space in synthetic datasets is balanced
while the real image datasets are imbalanced with more
“left” and “right” and fewer other relationships.

Label Distribution and the familarity To determine
whether to focus more on the image or the text, we begin
by analyzing existing datasets to identify potential patterns.
Our investigation starts with an examination of label dis-
tributions across different subsets of the WhatsUp dataset.
As shown in Figure 15, there is a clear label imbalance in
the real-image datasets including COCO two and VG two,
i.e., only a small portion of the samples have the relation
of “behind” and “front”. This may be attributed to anno-
tation bias, where left and right are easier to distinguish
than other relationships. In contrast, the synthetic datasets,
Cont A and Cont B, which are carefully curated, display
more balanced label distributions. Additionally, we evalu-
ate the model’s confidence scores across the ground-truth
spatial relations by following the approach of Kadavath
et al. (2022), where the probability of the generated output
is used to compute confidence. Figure 15 reveals that the
model is unconfident with specific spatial relationships,
such as “on” and “under” where it shows a colder color
at Figure 15, while demonstrating higher confidence in
recognizing more common relationships where it shows
a warmer color. In Figure 8, we observe that the model

performs better on confident relationships. For example, in
the first figure on the left, when the coefficient is set to 1 (the
baseline), the ground-truth samples labeled as “left” and

“right” exhibit significantly better performance compared to
those labeled as “on” and “under”. This observation aligns
with our intuition that model tends to be more confident
when it performs well and less confident when it struggles.
This finding is also consistent with previous work showing
that models can convey their uncertainty through confidence
scores (Kadavath et al., 2022; Xiong et al., 2024). Moti-
vated by this, we propose using confidence as a metric to
gauge the model’s familiarity with spatial relationships in
images.

Statistics of LLaVA training data To categorize six
different spatial relationships, we check whether specific
phrases appear in the “llava v1 5 mix665k.json”, which is
the training data of LLaVA and increment corresponding
counters. For the left relationship, we look for phrases such
as “left side,” “left of,” “to the left,” and “on the left.” Simi-
larly, for the right relationship, we detect phrases like “right
side,” “right of,” “to the right,” and “on the right.” The on
relationship is identified using phrases like “are on the,” “is
on the,” and “located on,” ensuring they do not co-occur
with “on the left” or “on the right.” To detect the under rela-
tionship, we check for phrases such as “under the,” “beneath
the,” or “below the.” For the front relationship, we look for
phrases like “are in front of,” “is in front of,” and “locate in
front of.” Finally, the behind relationship is identified by
the phrase “behind the.”. The results are shown in Figure 15.

E.3. Hyperparameter choice and robustness

For ADAPTVIS We use the same hyperparameters for
SCALINGVIS as in Section 4.2. For ADAPTVIS, we op-
timize α1, α2, and β using the validation set (randomly
sampled 20% from each subset) from each distribution. We
also show our robustness for hyperparameters in Appendix.
Notably, we find that model performance is robust across a
range of these hyperparameters, generalizing effectively to
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Left-right relationships are more 
prevalent in real data than other types

The training data for LLaVA primarily consists 
of real data and also contains biases

Model are more confident 
with the “left” and “right”

Figure 15. 1 : Label distributions across subsets capturing relationships between object pairs in WhatsUp. For real datasets like COCO
and VG, a severe label imbalance is evident, with “left” and “right” being more common than other relationships. 2 show the statistics
in LLaVA training data. We could see imbalance problem still holds. 3 : The model’s average confidence in different golden spatial
relationships within these four-option subsets in WhatsUp. “On etc” includes “on, above, top”, while “Under etc” includes “under, below,
bottom”. The red heatmap box highlights instances where the model is confident in its generation, while the blue box indicates the
opposite. We can observe that for familiar relationships, such as “left” and “right” (highlighted with two red boxes), the model shows
higher confidence.

other subsets within the same distribution (as demonstrated
in Table 8). We maintain consistency by using the same
range of α values for both methods. For β, we adjust per
dataset: for WhatsUP, we select values from [0.3, 0.65] for
LLaVA-1.6 and [0.2, 0.55] for LLaVA-1.5 with a grid size
of 0.05 (this higher range is due to LLaVA-1.6 generally
exhibiting higher confidence than LLaVA-1.5); for VSR,
we take the mean value of the average confidence scores
corresponding to the two labels.

Out-of-Domain Test of Hyperparameters. We evalu-
ated the generalizability of common hyperparameters across
datasets. To this end, we applied the same set of four-option
prompts to Controlled Images and COCO subsets. Results
in Table 8 indicate that ADAPTVIS consistently performs
well across all subsets, confirming its generalizability.

Model Cont A Cont B Coco one Coco two
Acc P-Acc S-Acc Acc P-Acc S-Acc Acc Acc

LLaVA 60.3 40.6 0.0 73.1 41.6 3.7 53.0 58.2
+Ours 60.3 41.8 ↑1.2 2.4 ↑2.4 76.5 ↑3.4 48.3 ↑6.7 13.5 ↑9.8 53.6 ↑0.6 59.4 ↑1.2

Best α α1 = 0.5 α2 = 1.2 β = 0.3

Table 8. OOD test results on WhatsUp (Metrics in ×10−2) for
LLaVA1.5. Arrows show growth over baseline. P-Acc and S-Acc
are Pair and Set Accuracy.

E.4. More Attention Analysis

The sparcity To determine whether our observation about
the sparse attention pattern holds across benchmarks, we
examine the attention patterns in other subsets of WhatsUp.
Figure 16 presents the attention pattern for Cont B, while

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layers
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1.0
Sc
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Image Attention Logits by Layers

Sum of Image's Attention
Sum of Text's Attention

Figure 16. The variance of image token’s attention scores through
the layers in Cont B benchmark.

Figure 17. Image attention on COCO and VG dataset.

Figure 17 illustrates the attention pattern for real images.
Consistently, we observe that image attention remains sparse
across all subsets.

AUROC Analysis of attention score and confidence we
conduct a calibration experiment using two statistical ap-
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Figure 18. AUROC of attention scores in 17th layer relative to
model’s confidence.

proaches. The first approach sums the attention scores as-
signed to the image as a metric, while the second extracts
the highest attention score among the image tokens. These
metrics are then evaluated to assess their effectiveness in
distinguishing between correct and incorrect generations.
However, as shown in Figure 18, the AUROC score using
attention (the yellow and green bar) is consistently lower
than the AUROC score of the model’s self-confidence (the
yellow bar), which we measure by the probability of the
output tokens. Additionally, we observe that the maximum
attention score provides better calibration than the average
attention score, suggesting that key information aligns more
closely with maximal attention values. This suggests that
the assumption “the more attention the model pays to the
image, the more accurate the results” holds only partially
true.

E.5. AUROC anlysis of the overlap between YOLO and
the attention scores

We present the AUROC of the overlap between YOLO an-
notations and attention scores on the Controlled A dataset
in Figure 19 and Figure 20. The results demonstrate that the
AUROC is remarkably high in the middle-to-high layers,
indicating that the attention pattern can serve as a reliable
metric for detecting factual errors.

However, in some cases, this relationship is not as appar-
ent, as shown in Figures 21, 22, 23, and 24. In these in-
stances, the AUROC remains relatively modest, which can
largely be attributed to errors in YOLO’s annotations. We
identified four primary error types leading to mismatches
between YOLO annotations and actual object instances:
Missed Detection, Misclassification, Bounding Box Error,
and Ambiguous Refer. These error patterns are illustrated
in Figure 25.
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Figure 19. AUROC of the overlap between YOLO annotations and the attention patterns on all layers in Cont A benchmark.
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Figure 20. AUROC of the overlap between YOLO annotations and the attention patterns on all layers in Cont B benchmark.
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Figure 21. AUROC of the overlap between YOLO annotations and the attention patterns on all layers in COCO one benchmark.

Figure 22. AUROC of the overlap between YOLO annotations and the attention patterns on all layers in COCO two benchmark.
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Figure 23. AUROC of the overlap between YOLO annotations and the attention patterns on all layers in VG one benchmark.

Figure 24. AUROC of the overlap between YOLO annotations and the attention patterns on all layers in VG two benchmark.
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Where is the sandwich in the photo?
Fail to detect sandwich
Missed Detection

Where is the cat in relation to the refrigerator?
Fail to detect refrigerator
Missed Detection

Where is the man in relation to the lady?
Two ladies detected on both directions
Ambiguous Refer

Where is the phone in relation to the woman?
Phone bounding box too large
Bounding Box Error

Where is the man in the photo? 
Recognize the elephant as a man
Misclassification VG_one

VG_twoVG_two

COCO_one COCO_two

Figure 25. Error cases in YOLO annotation. Under each image we present the related question, the error in YOLO annotation and its type,
and the source where the image and question comes from.
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E.6. What changes after our intervention?

How the confidence changes by using different αs? To
illustrate the impact of coefficients greater or less than 1 on
different relationships, Figure 8 shows accuracy and confi-
dence variance for various ground-truth relationships. Re-
sults indicate that for familiar relationships like “left” (red)
and “right” (blue), coefficients greater than 1 boost accuracy
and confidence. Conversely, for less familiar relationships
like “under” (green) and “on” (yellow), coefficients less
than 1 improve accuracy and confidence.

How do the absolute values of attention scores vary be-
fore and after intervention? Figure 26 visualizes the at-
tention logits for two-option Cont A (α=0.5) and six-option
VG (α=2). An α of 0.5 decreases the absolute value of
logits across layers, while an α of 2 increases them as lay-
ers progress. This indicates that an α larger than 1 could
strengthen the model’s orginal attention pattern.

E.7. Prompt Sensitivity Analysis

To assess the robustness of our method, we varied the num-
ber of options in prompts for specific WhatsUp subsets. For
Cont A and Cont B, we reduce the number of options to
two, simplifying the task. Conversely, for COCO subsets,
we increase the options to six, making it more challenging.
Table 27 shows that our SCALINGVIS method maintains
consistent performance across all cases, demonstrating ro-
bustness.

E.8. Reverse curse?

Additionally, we observe that the model exhibits a “reverse
curse” phenomenon similar to that has been seen in language
models (Berglund et al., 2023).

When we reverse the order of the entities in Cont A (e.g.,
asking the model, “Where is the armchair in relation to
the beer bottle?” instead of “Where is the beer bottle in
relation to the armchair?”), there is a significant drop in per-
formance. As shown in Figure 28, the model’s performance
declines dramatically from a high score to an exceptionally
low one. This reveals that the existing VLMs’s attention pat-
tern and generation results could be significantly impacted
by the prompt. Our methods, however, consistently improve
the model’s performance. It suggests that adaptively in-
tervening the attention score is a generalizable method for
different prompts.

E.9. Efficiency

We evaluate inference times for different decoding methods
in Table 9. ScalingVis introduces only negligible additional
computation time compared to the baseline (greedy decod-
ing). However, due to the need for computing the threshold,

Baseline ScalingVis AdaptVis

Time (set baseline to 1) 1.00 1.02 1.64

Table 9. Inference-time statistics. It shows that ScalingVis intro-
duces negligible computation compared to the baseline.

Dataset POPE-A POPE-P POPE-R POPE-AVG GQA VQAv2

Baseline 81.0 86.4 88.4 85.3 56.1 74.0
ScalingVis 81.8 86.6 88.6 85.6 56.3 74.2

Table 10. Results on QA benchmarks. POPE-A is POPE-
Adversarial. POPE-P is POPE-Popular. POPE-R is POPE-random.
POPE-AVG the is average score of the three subsets.

AdaptVis incurs higher computational overhead.

E.10. Results on More Benchmarks

We further evaluate our method on several Question An-
swering benchmarks, including POPE (Li et al., 2023),
GQA (Hudson & Manning, 2019), and VQAv2 (Antol et al.,
2015). As shown in Table 10, our method consistently out-
performs the baseline across all benchmarks, demonstrating
its strong generalization capability in the general Question
Answering setting.

F. URLs of Code and Data
We provide the code and data at https://anonymous.
4open.science/r/AdaptVis-B73C.

The running arguments are configured as follows:
dataset specifies the evaluation dataset (e.g.,
Controlled Images A); model-name selects the model
(e.g., llava1.5); method determines the evaluation ap-
proach (scaling vis or adapt vis). For scaling vis,
weight1 can be set to values in [0.5, 0.8, 1.2, 1.5, 2.0]. For
adapt vis, weight1 ranges in [0.5, 0.8] and weight2 in
[1.2, 1.5, 2.0], with threshold controlling the adaptation
sensitivity. The --download flag enables automatic
dataset downloading.
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Figure 26. Attention logit distribution before (blue) and after (pink) intervention in the 14th layer (a randomly chosen middle layer). From
left to right, the plots represent: mean and max attention values across heads for Cont A, and mean and max attention for Cont B. Red
dots mark cases corrected by our intervention. We could see that α of 0.5 shifts the line left, while α of 2 shifts it right.

Model
Cont A Cont B Coco one Coco two

Acc P Acc S Acc Acc P Acc S Acc Acc Acc

LLaVA-1.5 76.4 43.0 4.8 74.6 41.0 1.2 30.8 42.6

+Ours 86.4 ↑10.0 61.2 ↑18.2 27.9 ↑23.1 87.8 ↑13.2 59.3 ↑18.3 22.0 ↑20.8 36.0 ↑5.2 48.6 ↑7.3

Best α 0.5 0.5 2 2

Figure 27. Results on WhatsUp (Metrics in ×10−2) when changing prompts for other
option numbers. Arrows show improvement over greedy decoding.
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Figure 28. Performance comparison before and
after SCALINGVIS intervention (α = 0.5).
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