
Optimizing Instruction Synthesis: Effective Exploration of Evolutionary
Space with Tree Search

Anonymous ACL submission

Abstract

Instruction tuning is a crucial technique for001
aligning language models with humans’ ac-002
tual goals in the real world. Extensive research003
has highlighted the quality of instruction data004
is essential for the success of this alignment.005
However, creating high-quality data manually006
is labor-intensive and time-consuming, which007
leads researchers to explore using LLMs to syn-008
thesize data. Recent studies have focused on009
using a stronger LLM to iteratively enhance010
existing instruction data, showing promising re-011
sults. Nevertheless, previous work often lacks012
control over the evolution direction, resulting013
in high uncertainty in the data synthesis pro-014
cess and low-quality instructions. In this paper,015
we introduce a general and scalable framework,016
IDEA-MCTS (Instruction Data Enhancement017
using Monte Carlo Tree Search), a scalable018
framework for efficiently synthesizing instruc-019
tions. With tree search and evaluation mod-020
els, it can efficiently guide each instruction021
to evolve into a high-quality form, aiding in022
instruction fine-tuning. Experimental results023
show that IDEA-MCTS significantly enhances024
the seed instruction data, raising the average025
evaluation scores of quality, diversity, and com-026
plexity from 2.19 to 3.81. Furthermore, in open-027
domain benchmarks, experimental results show028
that IDEA-MCTS improves the accuracy of029
real-world instruction-following skills in LLMs030
by an average of 5% in low-resource settings.031

1 Introduction032

Large language models (LLMs) have exhibited033

remarkable capabilities across a wide range of034

tasks in the field of natural language processing035

(NLP) (Brown et al., 2020; Kojima et al., 2022;036

Wei et al., 2022; Ouyang et al., 2022; Touvron037

et al., 2023; Jiang et al., 2023; OpenAI, 2023).038

Notably, LLMs can be trained to enhance their039

instruction-following skills through various meth-040

ods, including fine-tuning on human-annotated041

Seed 
Instruction:

 1+1=?

Evolution Actions
1. Add Constraints.

2.Deepening. 
3. Add Constraints

......

        
                         

Random Sample 

LLM

give a mathematical 
expression that is equal 
to 2 without using any 
mathematical operators, 
numbers, letters, or 
graphic symbols.

 Please write Python code, 
combining the basic concepts 

and theorems in number 
theory, to calculate and 
explain the value of the 

following expression in detail: 
5×123+123×123-123.
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MCTS

score:3
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Evolution Actions
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Figure 1: Iteratively enhance seed instructions using
LLMs: The prior method’s random sampling instruc-
tion evolution led to a perplexing instruction by select-
ing “Add constraints” multiple times. Our method uses
MCTS to find suitable prompts, resulting in high-value
instructions that align the language model to effectively
learn multiple skills.

data (Ouyang et al., 2022; Zhou et al., 2023b; Tou- 042

vron et al., 2023) or extracted knowledge from 043

stronger LLMs (Wang et al., 2022; Xu et al., 2023a; 044

Zhao et al., 2023; Xu et al., 2023a,b; Wang et al., 045

2024). Zhou et al. (2023b) have demonstrated that 046

this alignment can be achieved with low-resource 047

1k data. However, acquiring such data through hu- 048

man annotation remains high-cost, thus limiting 049

further progress. 050

Recent work explores synthesizing instruction 051

data with LLMs by prompting them with exam- 052

ple data or prompts and iteratively enhancing the 053

instruction data, offering an efficient and cost- 054

effective alternative to human annotation (Xu et al., 055

2023a; Luo et al., 2023b,a; Liu et al., 2023). They 056

introduced evolution prompts for LLMs, such as 057

“Add constraints”, “Increase reasoning” and “Com- 058

plete input.”, enabling LLMs to iteratively im- 059

prove seed instructions. However, the process suf- 060

fers high uncertainty due to the limited evolution 061

prompts, random selection methods, and lack of 062

control over the evolution direction. Specifically, 063
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has 12 
pencils, and 
he buys 7 
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pencils does 
John have 
now? 

provide the code 
to solve following 
question.John has 
12 pencils, and 
he buys 7 more 
pencils. How 
many pencils does 
John have now? 

Please provide the Python 
code to solve the 
following problem using a 
function. The function 
should take two arguments: 
the initial number of 
pencils and the number of 
pencils purchased. The 
function should return the 
total number of pencils 
John has now. John 
initially has 12 pencils and 
then purchases 7 additional 
pencils. Use meaningful 
variable names and include 
comments explaining each 
step. 

Reward

.....

Please provide the Python 
code to solve the following 
problem using a function. 
The function should take 
two arguments: the initial 
number of pencils and the 
number of pencils purchased. 
The function should return 
the total number of pencils 
John has now. John initially 
has 12 pencils and then 
purchases 7 additional 
pencils. Use meaningful 
variable names and include 
comments explaining each 
step. 

1+1=? 1+1=?

2+2=? 2+2*3=?

Figure 2: Framework of MCTS for instruction synthesis: 1. Selection: Choose high-value leaf nodes. 2. Expansion:
Evolve the selected leaf nodes to generate new nodes. 3. Evaluation: Assess the current node to determine a reward.
4. Simulation: Randomly evolve the current instruction to a terminal state. 5. Backpropagation: Propagate the
terminal state’s reward back through the path’s nodes.

failures occur when LLMs select inappropriate evo-064

lution prompts or fail to halt the instruction synthe-065

sis process appropriately. As shown in Figure 1,066

randomly selecting the prompts can turn a seed in-067

struction like "1+1=" into a perplexing instruction.068

Language models will struggle to learn new skills069

from these low-value instructions, as humans also070

find them difficult to understand. Conversely, a few071

high-value instructions can significantly enhance072

the model’s skills, enabling it to solve real-world073

problems.074

Intuitively, simple seed instructions can evolve075

into a wide variety of forms during the evolutionary076

process. To efficiently optimize and control this077

evolution, we introduce a novel framework, IDEA-078

MCTS, which expands the evolution prompts as079

the action space and incorporates a tree search al-080

gorithm to iteratively enhance seed instruction data.081

In MCTS, each seed instruction acts as the root082

node. High-value nodes are identified through se-083

lection and use evolution prompts for further expan-084

sion, followed by simulation and backtracking, to085

find an optimal evolution action space to enhance086

the instructions. In this process, we employ cus-087

tomizable evaluation models to assess the quality,088

diversity, and complexity of the nodes, effectively089

controlling the direction of instruction evolution.090

This framework enhances instruction data and pro- 091

vides a clearer understanding of the evolution pro- 092

cess, as shown in the case analysis in Appendix D. 093

Our experimental results show that IDEA-MCTS 094

significantly enhances the seed instruction data and 095

models fine-tuned on this enhanced data exhibit 096

substantial improvements compared to previous 097

methods. We believe this work provides clear guid- 098

ance for instruction synthesis, aiding models in 099

achieving data-efficient alignment and enhancing 100

overall performance. The contributions of our work 101

are as follows: 102

• To synthesize high-value instructions for en- 103

hancing language model skills, we propose 104

IDEA-MCTS, a scalable framework that con- 105

trols the direction of instruction evolution by 106

expanding the evolution space and integrating 107

evaluation models in tree search. 108

• To enhance the efficiency and accuracy of in- 109

struction evolution, we expand the existing 110

limited evolutionary space in two ways: evolv- 111

ing general effective instructions from them- 112

selves, and evolving task-specific instructions 113

by designing meta-prompts. 114

• We demonstrate the effectiveness of our frame- 115
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work by analyzing the generated instructions116

and fine-tuning open-source models, includ-117

ing LLaMA2, LLaMA3, Phi-3, and Mis-118

tral, across different seed datasets and tasks,119

achieving a 5% improvement over the previ-120

ous random evolution method on the open-121

domain instruction-following benchmark.122

2 Related Work123

Data Synthesis for Instruction Tuning Instruc-124

tion tuning (IT) is a crucial technique for enhanc-125

ing the performance and alignment of LLMs (Taori126

et al., 2023; Chiang et al., 2023; Wang et al., 2023).127

Recent efforts have extended into open-domain IT,128

characterized by a wide range of formats and task129

types, driven by crowdsourced human-generated130

instruction-response pairs (Köpf et al.; Conover131

et al., 2023; Zhang et al., 2023a; Peng et al., 2023;132

Zhou et al., 2023b). However, the high cost of hu-133

man annotation poses significant challenges (Zhang134

et al., 2023a). One promising solution for this135

limitation is the synthesis of instruction data with136

the help of stronger LLMs (Bai et al., 2022; Ope-137

nAI, 2023; Anil et al., 2023; Team, 2023). Yet,138

using LLM-generated data increases the risk of low-139

quality examples, highlighting the need for more fo-140

cus on dataset refinement and enhancement. Some141

works (Chen et al., 2023; Lu et al., 2023; Liu et al.,142

2023) address this by prompting stronger LLMs143

to filter instruction data based on its quality, diver-144

sity, and complexity, serving as a form of refine-145

ment. However, this approach lacks the synthesis146

of new instruction, limiting the model’s instruction-147

following capabilities, especially in low-resource148

scenarios where only a small amount of data is149

available. Other works (Zhao et al., 2024; Xu150

et al., 2023a) enhance existing seed instructions151

by using LLMs with carefully designed prompt152

templates. Zhao et al. (2024) enhanced the origi-153

nal instructions using tree-structured prompts but154

focused only on the complexity and heavily relies155

on LLMs’ intrinsic knowledge. Additionally, some156

work (Xu et al., 2023a; Luo et al., 2023b,a; Liu157

et al., 2023) design a series of evolution prompts158

to iteratively guide LLMs in enhancing the seed159

instructions. However, random selection during160

instruction evolution introduces high uncertainty161

and affects the quality of generated instructions. To162

effectively enhance the seed instruction data, we163

propose IDEA-MCTS, which expands the evolu-164

tion action space, introduces evaluation models and165

iteratively improves instruction data with MCTS. 166

Tree Search for LLM Enhancement Tree 167

search methods such as BFS, A* search (Hart et al., 168

1968), and MCTS (Kocsis and Szepesvári, 2006; 169

Coulom, 2006; Ye et al., 2021; Silver et al., 2016), 170

are widely used to find an optimal state in a tree 171

structure. Integrating tree-search methods with 172

LLMs presents a novel approach to find an effec- 173

tive sequence of actions that leads to a favorable 174

outcome. Effective search strategy is crucial for 175

reasoning and planning (Hao et al., 2023; Zhou 176

et al., 2023a; Hu et al., 2023). Depth/breadth-first 177

search in (Yao et al., 2023), A* search in (Zhuang 178

et al., 2023) and MCTS in (Zhang et al., 2023b; Yu 179

et al., 2023; Hao et al., 2023; Zhou et al., 2023a; 180

Chen et al., 2024b). Feng et al. (2023); Tian et al. 181

(2024); Chen et al. (2024a) have utilized tree search 182

for LLM self-improvement. Unlike previous ap- 183

proaches, we leverage the powerful generative ca- 184

pabilities of LLMs and MCTS for instruction syn- 185

thesis. 186

3 Approach 187

In this section, we introduce the novel framework 188

IDEA-MCTS, which enhances the quality, diver- 189

sity, and complexity of seed instructions with a 190

stronger LLM, using MCTS. We first define the 191

problem, including the state, action space, and re- 192

ward function. Then, we discuss the expansion of 193

evolution prompts from two key aspects and the use 194

of MCTS with LLM to efficiently explore the ac- 195

tion spaces. Finally, we fine-tune models based on 196

the instruction data generated by the LLM, proving 197

the effectiveness of the framework in low-resource 198

settings. 199

3.1 Problem Setting 200

We begin with a seed instruction sample x as the 201

root node and employ a stronger language model 202

pθ. Our goal is to improve the quality, diversity, 203

and complexity of x. To achieve this, we use evo- 204

lution prompts, such as ‘add constraints’, as our 205

action space. During the tree search, intermediate 206

instructions generated by the LLM, denoted as zt, 207

serve as new nodes. 208

zt+1 = pθ(zt, a) (1) 209

By applying an action a, which is an evolution 210

prompt to wrap the state zt, we obtain the next in- 211

struction zt+1 via pθ. We assess each intermediate 212

instruction zt based on its quality, diversity, and 213
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Please rate according to the accuracy and quality . Score 1-5. You can give a score of 6 if the question is 
high quality. You should respond with the format: [1] Score:  [2] Score: 
[1] <Instruction 1>  [2] <Instruction 2>  [3] <Instruction 3>  [4] <Instruction 4>  [5] <Instruction 5>
(Quality)

Please rate according to the difficulty and complexity. Score 1-5. You can give a score of 6 if the question 
is too complex for you to answer it. You should respond with the format:[1] Score:  [2] Score: 
[1] <Instruction 1> [2] <Instruction 2>
(Complexity)

Please identify tags of user intentions in the following instruction and provide an explanation for each tag. 
Please response in the JSON format {"tag": str, "explanation": str}.
 Instruction: <Instruction>
(Diversity)  

Figure 3: Evaluation prompt used to assess the quality, complexity, and diversity of instructions. Instruction diversity
is measured by the number of distinct intents.

complexity. The value v(zt) of an instruction is214

determined using the following equation:215

v(zt) = pθq(zt) + pθd(zt) + pθc(zt) (2)216

In this equation, pθq(zt), pθd(zt), and pθc(zt)217

represent the quality, diversity, and complexity218

scores of the instruction zi, respectively. Notably,219

instruction diversity is measured by the number of220

distinct intents. Further details about these value221

scores will be discussed in the following sections.222

By integrating these elements, we aim to create223

a framework that robustly enhances seed instruc-224

tions.225

Quality & Complexity & Diversity Following226

the (Liu et al., 2023; Lu et al., 2023), we con-227

tinue training based on models, EVOL_QUALITY,228

EVOL_COMPLEXITY, and InsTagger from these229

works with 1k data points. We apply a random evo-230

lution method(Xu et al., 2023a) to create new data231

points from a base sample, gradually adjusting their232

complexity, quality, and diversity of instruction.233

We evaluate these data points using ChatGPT and234

train an automatic scoring model with LLaMA2-235

7B to predict ChatGPT’s scores. The evaluation236

prompt we use is shown in Figure 3. These scoring237

models are used to assess the quality, complexity,238

and diversity of instructions as rewards in MCTS.239

3.2 Instruction Evolution with MCTS240

In our framework, we leverage a stronger language241

model pθ and value function v to evolve the seed242

instruction x using MCTS, as shown in Figure 2.243

Intuitively, more precise and diverse evolution244

prompts contribute to enhancing the quality of seed245

instructions. To achieve this, we first expand the 246

evolution prompts from two ways, general effec- 247

tive and task-specific instructions. We explore the 248

open-space evolution prompts, that contribute a 249

general effective instructions such as goals, key 250

constraints, and requirements (Xu et al., 2023a; 251

Tianle Li*, 2024). On the other hand, we aim to 252

ensure that the seed instructions can effectively 253

transfer to task-specific contexts. With LLMs, we 254

design the meta prompts, as shown in Figure 4, 255

to extract task-related evolution prompts that con- 256

tain the words "such as." As shown in Table 1, 257

the designed evolution prompts can enhance both 258

the depth and breadth of the seed instruction. We 259

show more details about the evolution prompts in 260

Appendix B. 261

Then we construct a decision tree. MCTS pro- 262

ceeds for k episodes, starting from the root (ini- 263

tial state) and progressively expanding this tree 264

through two primary steps: Selection and Expan- 265

sion. During Selection, the child with the highest 266

Upper Confidence bounds applied to Trees (UCT) 267

value (Kocsis and Szepesvári, 2006; Coulom, 2006) 268

is chosen for the next iteration. The UCT of a child 269

state z is computed as follows: 270

UCT (z) = V (z) + C ·
√

ln(N(p))

N(z)
(3) 271

where N(z) represents the number of visits to node 272

z, and V (z) is the value function (expected return). 273

During Expansion, multiple child states z are ex- 274

plored from the current state p by sampling n ac- 275

tions. The child node with the highest UCT value is 276

selected for expansion in the subsequent iteration. 277
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Evolution Space Description

Add Global and Local Goals
Add one or more global and local goals into the instruction to enhance
its direction and purpose.

Add Key Constraints
Add one or more constraints where necessary to define its limitations
and boundaries.

Add Task Requirements
Specify one or more detailed requirements to clarify the tasks within
the instruction.

Add Problem-Solving Skills Add one or more problem-solving task skills.

Add Reasoning Complexity Increase complexity by adding one or more reasoning elements.

Add Domain Knowledge
Add one or more areas of domain-specific knowledge, such as
medicine, law, finance, IT technology.

Add Life Topics
Add one or more life topics. Topics can range from health and
nutrition, cooking, photography, music, and travel, to parenting.

Add Real-World Applications
Add one or more real-world applications to provide practical context
and applicability, such as education, customer service, and Business.

Add Emotional Expression
Add one or more emotional content elements such as excitement or
concern.

Format the Input Style
Define one or more input formatting styles, such as a doctor, teacher,
or customer.

Format the Output Style
Specify one or more output formats, such as report format or summa-
rized in paragraphs.

Refine the Factuality
Refine the instruction to make it more factual and clear, to ensure it
is more factual, clear, and able to be responded to.

Create a New One
Create one instruction within the same domain to introduce fresh
perspectives.

Table 1: Expanded Space for Instruction Evolution.

In Evaluation, we assess the quality, complexity,278

and diversity of the instruction data using the value279

function v, which serves as the node’s reward. In280

Simulation, selection and expansion are performed281

repeatedly until a termination state is reached, con-282

structing the rollout policy. The termination state283

occurs when the tree’s depth or node value meets284

a specified threshold. Backpropagation is per-285

formed at the end of an episode: the return v is286

used to update every V (z) along the path using the287

formula:288

V (z) = Vold(z) ·
(
N(z)− 1

N(z)

)
+

v

N(z)
(4)289

where Vold(z) denotes the old value function.290

MCTS relies on an environment model to re-291

verse steps and build a search tree, imposing strict292

assumptions. This constraint does not apply to293

LLMs. Our method allows resetting to any step294

by copying historical text input, overcoming the295

limitation. By integrating MCTS with LLMs, we296

demonstrate how heuristic search algorithms can 297

efficiently evolve instructions by leveraging the 298

powerful generative capabilities of LLMs. 299

Finally, after evolving the seed instructions, we 300

obtain responses from the stronger LLM and fine- 301

tune the open-source model. To ensure clarity and 302

logic, we avoided complex templates from previ- 303

ous works (Wei et al., 2021; Longpre et al., 2023). 304

Instead, our method follows a straightforward in- 305

struction template (Taori et al., 2023). 306

4 Experiments 307

4.1 Experiments Setting 308

Baselines We compare our method with manu- 309

ally annotated data and other techniques for en- 310

hancing instructional data using a stronger LLM. 311

We also present the baselines utilized in our exper- 312

iments. Seed serves as the baseline without any 313

enhancement methods. LIMA (Jha et al., 2023) 314

contains 1k human-annotated high-quality instruc- 315
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Method
Metric

Quality Instag Complexity Average

Seed 3.58 1.60 1.40 2.19
Lima 3.58 1.99 2.09 2.55

Tree-instruct 4.37 2.40 2.44 3.07
WizardLM 3.82 2.30 2.52 2.87

WizardLM+ 4.01 2.80 2.70 3.17
MCTS 3.96 3.12 3.51 3.53

MCTS+ 4.56 3.24 3.62 3.81

Table 2: Statistics of instruction dataset. The "+" symbol
indicates methods that expand the evolution prompts
space.

tions data, showing notable improvement for LLMs.316

Tree-instruct (Zhao et al., 2024) enhances the com-317

plexity of instruction data by adding nodes to the318

semantic tree. WizardLM (Xu et al., 2023a; Luo319

et al., 2023a,b) stands out by prompting LLM to320

evolve instruction data randomly step by step.321

Test Datasets Many studies have focused on322

assessing the capabilities of LLMs (Liang et al.,323

2022). However, the challenge remains unresolved.324

A prevalent method involves using the powerful325

language model as the evaluator (Li et al., 2023a;326

Zheng et al., 2024; Chiang et al., 2023; Chen et al.,327

2023).328

In our framework, we employ two distinct meth-329

ods to assess the model’s capabilities: LLM eval-330

uation and human evaluation. Specifically, we331

use Alpaca-Eval (Li et al., 2023b) and MT-Bench332

(Zheng et al., 2024) to assess real-world instruction-333

following capabilities. We show more details in334

Appendix A. In the Alpaca-Eval, we compare our335

model’s output with Text-Davinci-003 and use336

GPT-3.5-turbo to evaluate and score the output in337

MT-Bench. Additionally, we evaluate the model’s338

capabilities in the NLP benchmark with the Open-339

LLM Leaderboard, which comprises four tasks:340

ARC (Clark et al., 2018), HellaSwag (Zellers et al.,341

2019), GSM8K (Cobbe et al., 2021), and Truth-342

fulQA (Lin et al., 2022).343

Experiment Setting We randomly select 1,000344

seed instructions each from Alpaca-52K (Taori345

et al., 2023) and Dolly (Conover et al., 2023) as346

a low-resource setting. We initialize our MCTS347

evolution process with the stronger LLM, GPT-3.5-348

turbo model. When calling this API, we define349

the temperature parameter to 0.7, set the maximum350

token limit to 2048, and apply no penalty. In the351

MCTS setup, we generate evolution prompts for the352

Your goal is to analyze the task-specific 
instructions  and extract features that are 
essential for high-quality instructions in this 
task-specific context. Then Use these features 
to create evolution prompt as actions that can 
improve the seed instructions. Follow the steps 
below: 
1. Identify Key Features: Analyze the task-
specific instructions and list the key features of 
them. 
2. Define Evolution Actions: Based on the 
identified features, define evolution prompt as 
action that can enhance the ##seed instructions. 
##seed instructions:{seed instructions} 
##task-specific instructions:{task-specific 
instructions}

Figure 4: Meta prompt used in LLM: Extracting evolu-
tionary prompt actions from task-related contexts.

seed instructions based on the task-specific Alpaca- 353

eval benchmark. The terminal state is defined as 354

either reaching a depth of more than 4 or achiev- 355

ing a reward of more than 10. For each iteration, 356

we expand 5 nodes per step, and the MCTS pro- 357

cess is iterated 3 times. We randomly select 1,000 358

data points from the generated data, collected from 359

paths between the root node and terminal state 360

nodes, as training data for the low-resource set- 361

ting. During tuning, the foundational models for 362

our experiments are the LLaMA2-7B, Mistral-7B, 363

LLaMA3-8B, and Phi-3. To efficiently fine-tune 364

these models, we adopted the QLORA approach 365

(Dettmers et al., 2023). Throughout the tuning pro- 366

cess, we maintained a batch size of 32 and ended 367

the process after a maximum of 800 training steps. 368

It’s important to note that these preliminary experi- 369

ments were conducted on a single GPU with 48GB 370

of memory. For technical execution, we harnessed 371

the capabilities of HuggingFace Transformers, Py- 372

Torch, and Accelerate, ensuring strict adherence 373

to academic integrity and standards throughout the 374

entire process. 375

4.2 Statistical Analysis of the Data Evolved 376

from MCTS 377

We conduct a comprehensive analysis of the 378

evolved instruction data from three critical dimen- 379

sions: quality, complexity, and diversity with the 380

EVOL_QUALITY, EVOL_COMPLEXITY, and In- 381

sTagger. As shown in Table 2, the Seed contains 382

1,000 instructions selected from the Alpaca-52K. 383

The WizardLM contains 1,000 instructions ob- 384

tained through random evolution, while the MCTS 385
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Model Method
Metrics

help_base koala self_instruct oasst vicuna overall

LLaMA2

Seed 39.53 49.36 38.10 55.85 45.00 45.59
Lima 44.96 42.95 30.95 51.60 33.75 40.68
Tree-instruct 47.29 50.64 46.43 62.23 40.00 50.50
WizardLM 44.96 45.51 43.65 51.60 42.50 46.46
MCTS+ (ours) 51.94 50.64 45.24 63.83 42.50 51.61

LLaMA3

Seed 58.14 54.49 51.98 64.89 47.50 56.27
Lima 44.19 41.67 38.10 52.13 36.25 42.98
Tree-instruct 53.49 57.05 55.95 67.55 52.50 58.21
WizardLM 56.59 52.56 51.98 68.09 52.50 57.08
MCTS+ (ours) 53.49 61.54 62.70 70.21 46.25 60.37

Phi-3

Seed 46.51 55.13 55.16 64.89 43.75 55.22
Lima 41.86 50.64 41.27 60.11 43.75 48.36
Tree-instruct 51.94 57.05 51.59 69.08 51.25 57.52
WizardLM 51.94 55.77 51.19 68.09 46.25 56.09
MCTS+ (ours) 57.36 57.05 59.52 72.34 65.00 62.36

Mistral

Seed 56.59 55.77 52.78 70.21 45.00 57.52
Lima 41.86 48.08 42.86 53.72 36.25 45.59
Tree-instruct 55.04 59.62 53.57 69.62 46.25 58.39
WizardLM 57.36 55.77 52.78 70.21 41.25 57.52
MCTS+ (ours) 61.24 60.90 58.33 72.87 58.75 62.80

Table 3: Results of different instruction-tuned models on Alpaca-Eval (%).

MT-Bench

Turn-1 Turn-2 Average Score

Seed 6.25 5.54 5.90
Lima 6.71 6.61 6.66
Tree-instruct 6.55 6.03 6.29
WizardLM 6.63 6.45 6.54
MCTS 6.71 6.61 6.66
WizardLM+ 6.56 7.14 6.69
MCTS+ 6.74 7.14 6.94

Table 4: Results of different instruction-tuned models
on MT-Bench.

contains 1,000 instructions obtained through the386

MCTS evolution. MCTS+ method can achieve the387

highest scores across all evaluation metrics (Liu388

et al., 2023; Lu et al., 2023), demonstrating signif-389

icant improvement in quality, diversity, and com-390

plexity. It outperforms the Seed, with average391

scores increasing from 2.19 to 3.81. The expansion392

of the instruction evolution space proves to be a393

highly effective strategy for enhancing the quality394

of instruction data.395

4.3 Main results396

The main results presented below are based on397

LLM evaluations and further human evaluations398

are provided in Appendix C.399

Table 3 demonstrates that models fine-tuned with400

data evolved from MCTS+ exhibit better perfor-401

mance compared to other fine-tuning methods. In402

particular, LLaMA2 and LLaMA3 can show sig- 403

nificant gains with MCTS+, with improvements 404

of 6.02% and 4.1%, respectively, over the Seed 405

method. Furthermore, Phi-3 and Mistral fine- 406

tuned with MCTS+ method outperform previous 407

methods across various skills, including help_base, 408

koala, self_instruct, oasst, and vicuna. Notably, 409

the Mistral model achieves a win rate of 61.24% 410

in help_base, surpassing the previous highest win 411

rate by 3.88 obtained using the WizardLM method. 412

Overall, Mistral exhibits a 5.28% enhancement in 413

performance compared to the WizardLM method. 414

These results show that MCTS effectively enhances 415

models’ instruction-following capabilities better 416

than traditional methods. Additionally, fine-tuning 417

with the LIMA method does not significantly im- 418

prove the model’s performance on Alpaca-eval, 419

suggesting potential generalization limitations of 420

manually annotated models. 421

4.4 Generalization 422

During the expanded evolution process, with a fo- 423

cus on task-specific instruction data features on 424

Alpaca-Eval, we also evaluate the model’s perfor- 425

mance on the open-domain benchmark MT-Bench 426

and assess its capabilities on the NLP benchmark, 427

OpenLLM. Additionally, we consider the effective- 428

ness of using Dolly as a seed dataset. 429

As shown in Table 4, the MCTS+ method en- 430

hances both the model’s single-turn and multi-turn 431

dialogue capabilities. The single-turn score is im- 432

proved from 6.25 (Seed) to 6.74 (MCTS+), while 433
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Model Method
Metrics

help_base koala self_instruct oasst vicuna overall

LLaMA2

Tree-instruct 51.16 51.28 60.11 42.46 43.75 49.81
WizardLM 44.19 49.36 60.11 42.46 41.25 48.07
MCTS 44.96 51.92 62.23 44.84 41.25 50.00
WizardLM+ 50.39 53.21 59.57 42.86 37.50 49.50
MCTS+ 49.61 51.92 63.30 44.84 42.50 51.18

Table 5: Results of different instruction-tuned models on Alpaca-Eval using Dolly as the Seed Dataset (%).

Model Method ARC-Easy ARC-Challenge HellaSwag TruthfulQA GSM8k Average

LLaMA2

Seed 80.30 52.82 77.96 29.80 13.04 50.78
Lima 80.43 53.07 78.54 31.18 14.10 51.59
Tree-instruct 80.85 53.92 78.80 33.09 13.80 52.01
WizardLM 80.81 54.10 78.81 32.51 13.50 51.95
MCTS+ 81.02 54.10 78.94 33.73 13.72 52.30

Table 6: Results of different instruction-tuned models on the NLP benchmark, OpenLLM (%).

the multi-turn score is increased from 4.54 (Seed)434

to 7.15 (MCTS+). This results in an overall aver-435

age score improvement from 5.90 (Seed) to 6.94436

(MCTS+), highlighting the method’s effectiveness437

in handling more complex, multi-turn dialogues.438

Using Dolly as the seed instruction dataset, Ta-439

ble 5 shows that the MCTS+ method can achieve440

the best performance, with a 3% improvement441

compared to the WizardLM method. Specifically,442

the overall score is improved from 48.07% (Wiz-443

ardLM) to 51.18% (MCTS+). In individual metrics,444

MCTS+ can improve the help_base from 44.19 to445

49.61, koala from 49.36% to 51.92%, self_instruct446

from 60.11% to 63.30%, oasst from 42.46% to447

44.84%, and vicuna from 41.25% to 42.50%.448

As shown in Table 6, despite being fine-tuned on449

very different instruction-following prompts, the450

model’s capabilities in NLP tasks show a slight451

improvement, with a 1.5% increase compared to452

the seed method.453

4.5 Ablation experiment454

Our method can be proved effective in two key ar-455

eas: expanding the action space and using MCTS456

evolution. As shown in Table 7, models with ex-457

panded action space (denoted as + methods) con-458

sistently outperform those without it, regardless459

of using random or MCTS evolution. For exam-460

ple, the Mistral using the MCTS+ method shows a461

3.72% improvement over the WizardLM method.462

Additionally, data evolved through MCTS main-463

tains high quality, further improving the instruction-464

following abilities of the model. The Phi-3 model,465

Model Method Overall (%)

LLaMA2

WizardLM 46.46
MCTS 47.89
WizardLM+ 49.32
MCTS+ 51.61

LLaMA3

WizardLM 57.08
MCTS 57.52
WizardLM+ 58.12
MCTS+ 60.37

Phi-3

WizardLM 56.09
MCTS 57.64
WizardLM+ 59.44
MCTS+ 62.36

Mistral

WizardLM 57.52
MCTS 57.57
WizardLM+ 60.11
MCTS+ 62.80

Table 7: Ablation study results on Alpaca-Eval (%).

using MCTS evolution, improves performance by 466

1.5% before action space expansion and by 2.92% 467

after expansion. 468

5 Conclusion 469

In this paper, we introduce a novel framework 470

that leverages the power of MCTS combined with 471

heuristic evaluation to synthesis high-value instruc- 472

tion data. Our statistical analysis validates the 473

framework’s effectiveness in synthesizing high- 474

value data. By fine-tuning open-source models 475

with these evolved instructions, models achieve 476

competitive competitive performance compared to 477

previous methods. 478
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Limitations479

We need to acknowledge that the process of us-480

ing LLMs for evolving instructions with MCTS is481

opaque and incurs API costs. Knowledge distilla-482

tion might balance the trade-off between expenses483

and synthesizing high-quality instructions. On the484

other hand, we have demonstrated the effectiveness485

of MCTS-evolved instructions under low-resource486

conditions. Further exploration of scaling laws487

could enhance our understanding of the framework.488
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A Benchmark Details767

Alpaca-Eval (Li et al., 2023b) is a comprehen-768

sive evaluation framework incorporating examples769

from diverse datasets, including self-instruct (Wang770

et al., 2022), open-assistant (Köpf et al.), Vicuna771

(Chiang et al., 2023) and Koala (Geng et al., 2023).772

This framework uses English instructions across773

multiple categories and tasks to evaluate model774

performance in real-world scenarios.775

MT-Bench (Zheng et al., 2024) is a benchmark776

designed to assess models’ multi-turn conversa-777

tional and instruction-following abilities. It con-778

tains 80 high-quality, multi-turn questions that779

represent common use cases. The development780

of MT-Bench is informed by eight categories of781

user prompts: writing, roleplay, extraction, reason-782

ing, math, coding, stem knowledge, and humani-783

ties/social sciences knowledge.784

B Evolution Prompts785

We designed the evolution prompts to serve as the786

action space. As shown in Figure 6, it demon-787

strates a complete evolution prompt. By adding788

10-20 words at each step, we ensure the iterative789

enhancement of the instruction data. Additionally,790

we presented the case of evolution action, as shown791

in 8.792

C Human Eval793

We conducted a blind pairwise comparison be-794

tween two models: one trained on data generated795

by MCTS and the other on data generated through796

random evolution (WizardLM). For this evaluation,797

we recruited 3 well-educated annotators. Each an-798

notator was presented with two responses: one799

from the MCTS-based model and one from the800

random evolution-based model, with their sources801

randomly shuffled to ensure anonymity. The anno-802

tators evaluated each response based on the follow-803

ing criteria (Xu et al., 2023a): (1) Relevance, (2)804

Knowledgeability, (3) Reasoning, (4) Calculation,805

and (5) Accuracy. They judged which response806

was superior for each comparable instance. To esti-807

mate the win rate, we compared the frequency of808

model wins with MCTS. As shown in Figure 5, the809

model trained on MCTS-generated data achieved810

significantly better results than the model trained811

on randomly evolved data. This demonstrates the812

effectiveness of the MCTS method. Detailed re-813

sults based on the LLaMA2 are provided in Tables814

9, 10, 11, 12, 13, and 14.815

D Case Study 816

We present a case study in Figure 7 to show the iter- 817

ative evolution of a seed instruction. Starting with 818

the seed instruction, "Name the three Baltic states," 819

we progressively refine it to, "Can you please tell 820

me the names of the three Baltic states and ex- 821

press excitement while sharing them? You can 822

also describe their location on a map.". This pro- 823

cess, guided by evaluation models, enhances the 824

efficiency of evolving instructions. High-value in- 825

structions are identified and used as the basis for 826

further evolution. Examples of instructions before 827

and after the evolution are provided in Table 15. 828
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Figure 5: Manual evaluation of the results on Alpaca-eval.

       
              
              

           
  

             
           

         
       

            
           

        
       

 
  

 

I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version
which those famous AI systems (e.g., ChatGPT and GPT4) find a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and
responded by humans.
Your rewriting cannot omit the non-text parts such as the table and code in
#Given Prompt#:. Also, please do not omit the input in #Given Prompt#.
You should complicate the given prompt using the following method:
Add one or more constraints where necessary into #Given Prompt# to define its 
limitations and boundaries.
You should try your best not to make the #Rewritten Prompt# become verbose,
#Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
‘#Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’
are not allowed to appear in #Rewritten Prompt#
#Given Prompt#: <Here is instruction> #Rewritten Prompt#:

Figure 6: The Evolution Prompt: Add Key Constraints.
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Evolution Action Instruction Evolution Case

Add Global and Local Goals

Original: "Please help me write an article about climate change."
Evolved: "Please help me write an article about climate change,
aiming to educate readers on the causes and effects of climate change
and suggest individual actions to combat it."

Add Key Constraints
Original: "Please help me design a website."
Evolved: "Please help me design a website that supports mobile
access, and meets accessibility standards."

Add Task Requirements
Original: "Please help me prepare a meeting report."
Evolved: "Please help me prepare a meeting report including next
quarter’s sales strategy recommendations."

Add Problem-Solving Skills
Original: "Please help me solve this math problem. "
Evolved: "Please help me solve this math problem and explain each
step and the mathematical principles used. "

Add Reasoning Complexity
Original: "Please provide some productivity tips."
Evolved: "Please provide some productivity tips, considering differ-
ent work environments. Explain why these tips are effective."

Add Domain Knowledge

Original: "Please explain blockchain technology."
Evolved: "Please provide a detailed explanation of blockchain tech-
nology from an IT perspective, including its principles, applications,
and future trends."

Add Life Topics
Original: "Please give me some healthy eating advice."
Evolved: "Please give me some healthy eating advice, especially for
people who exercise regularly."

Add Real-World Applications
Original: "Please explain artificial intelligence."
Evolved: "Please explain artificial intelligence and provide examples
of its applications in education, customer service, and business."

Add Emotional Expression
Original: "Please help me plan a trip."
Evolved: "Please help me plan an exciting trip, including some
unique attractions and experiences to ensure the journey is fun."

Format the Input Style
Original: "Please give me some investment advice."
Evolved: "As a financial advisor, please give me some stock invest-
ment advice, especially beginner strategies."

Format the Output Style
Original: "Please summarize this article."
Evolved: "Please summarize this article in a report format, including
main points, supporting data, and conclusions."

Refine the Factuality

Original: "Please describe the process of recycling."
Evolved: "Please accurately describe the process of recycling plastic
bottles, including the collection, sorting, cleaning, shredding, and
reprocessing steps."

Create a New One
Original: "Please give me some time management advice."
Evolved: "Please give me some advice on how to manage time
efficiently throughout the day."

Table 8: Examples of Evolution Action
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Instruction: When were smartphones first made?

MCTS-Evolved Response Randomly-Evolved Response

Smartphones have been around since the early 2000s,
but the first model that can be considered a true smart-
phone was the Apple iPhone, which was released in
2007. The iPhone was a revolutionary device, intro-
ducing features such as a touchscreen, web browsing,
and the App Store, which allowed users to download
and install third-party applications. It was also the
first phone to popularize the concept of a "smart"
device.

2007 is considered to be the first year that smart-
phones were commercially available. The first smart-
phone to be released was the Apple iPhone, which
was launched in June 2007.

Table 9: Comparison of LLama2’s responses to the instruction about the history of smartphones using different
methods of data-driven fine-tuning.

Instruction: Why does it feel like less effort to watch 3-hour long TV episodes back to back than a film?

MCTS-Evolved Response Randomly-Evolved Response

It is commonly believed that watching TV episodes
back-to-back has a psychological effect that makes
it feel like less effort than watching a film. Here are
some reasons why:
1. Repetitive narrative: TV shows typically have a
longer narrative arc, with multiple episodes building
up to a larger storyline. Watching multiple episodes
in a row allows for the repetition of the same charac-
ters, setting, and plot points, which can create a sense
of familiarity and ease.
2. Slower pace: TV shows often have a slower pace
than films, with more time devoted to character devel-
opment and dialogue. Watching multiple episodes in
a row can make the narrative feel less rushed, as the
characters and their interactions unfold over a longer
period.
3. Emotional investment: When watching a TV show,
viewers often develop emotional investment in the
characters and storylines. When viewers watch mul-
tiple episodes back-to-back, they are able to maintain
this investment, as they are immersed in the world of
the show for a longer period.
4. Comfort and familiarity: Watching TV shows
back-to-back can create a sense of comfort and famil-
iarity

It is likely due to the way our brains process and
perceive time. When watching a 3-hour long TV
episode, our brains may perceive it as a single con-
tinuous unit, allowing us to experience a sense of
flow and continuity. On the other hand, a film typi-
cally has distinct acts or segments, each with its own
beginning, middle, and end. This makes it easier
for our brains to break up the time spent watching it
into smaller segments, which may feel more effort-
ful. Additionally, the structure of TV episodes often
lends itself to binge-watching, as they are designed
to be consumed in large doses. The consistency of
the narrative and character arcs, combined with the
familiarity of the setting and characters, can also con-
tribute to the perception of less effort when watching
multiple episodes back to back.

Table 10: Comparison of LLama2’s responses to the instruction about the effort involved in watching TV episodes
versus films using different methods of data-driven fine-tuning.
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Instruction: In what genres does the given movie or series fall? Manifest

MCTS-Evolved Response Randomly-Evolved Response

The movie or series you mentioned, "Manifest," falls
under the genres of drama, science fiction, and mys-
tery.

The movie or series you mentioned, "Manifest," falls
under the genres of drama and science fiction.

Table 11: Comparison of LLama2’s responses to the instruction about the genres of "Manifest" using different
methods of data-driven fine-tuning.

Instruction: Answer the following literature question as accurately as possible based on your
knowledge of literature for high school students.

What does the green light symbolize at the end of the book? The Great Gatsby.

MCTS-Evolved Response Randomly-Evolved Response

In the novel "The Great Gatsby" by F. Scott Fitzger-
ald, the green light symbolizes Gatsby’s unattainable
dreams and hopes. It is a beacon of hope and desire,
representing Gatsby’s longing for Daisy Buchanan
and his unrealistic expectations of achieving her love
and happiness.

In the novel "The Great Gatsby" by F. Scott Fitzger-
ald, the green light symbolizes Gatsby’s unattainable
dream of winning Daisy back.

Table 12: Comparison of LLama2’s responses to the instruction about "The Great Gatsby" using different methods
of data-driven fine-tuning.

Instruction: The movie tagline is the film’s advertising slogan, usually printed on posters prior to
the official release. It is a short description or comment on a movie to capture the essence of the

movie, and ultimately make you watch the movie. Here is an example: Movie: Joker (2019)

MCTS-Evolved Response Randomly-Evolved Response

"Put on a Happy Face." "A gritty origin story that will leave you laughing in
the dark."

Table 13: Comparison of LLama2’s responses to the instruction about creating a tagline for the movie "Joker" using
different methods of data-driven fine-tuning.
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Instruction: Can you give any tips on how to cook a juicy, medium-rare steak?

MCTS-Evolved Response Randomly-Evolved Response

Certainly! Here are some tips for cooking a juicy,
medium-rare steak:
1. Use high-quality, grass-fed, or organic beef. The
quality of the meat will make a significant difference
in the flavor and tenderness.
2. Season your steak with salt and pepper before
cooking. This helps to enhance the flavor of the meat
and helps to draw out moisture.
3. Heat a cast-iron skillet or grill pan over medium-
high heat. Preheat the skillet or grill pan for a few
minutes before adding the steak.
4. Cook the steak for about 3 minutes per side for a
1-inch thick steak. Flip the steak only once to ensure
even cooking.
5. Use a meat thermometer to check the internal
temperature. A medium-rare steak should be cooked
to an internal temperature of 135-140°F.
6. Let the steak rest for 5-10 minutes before slicing
or serving. This allows the juices to redistribute and
the flavors to develop

Certainly! Here are some tips for cooking a juicy,
medium-rare steak:
1. Use high-quality, grass-fed beef: Using high-
quality beef is essential for achieving a juicy and
flavorful steak. Choose beef that is grass-fed and free
from added hormones or antibiotics.
2. Trim the fat: Remove as much fat as possible from
the steak before cooking. This will help prevent the
steak from becoming greasy and ensure a more even
cooking.
3. Use a meat thermometer: It is essential to monitor
the internal temperature of the steak while cooking.
A meat thermometer is the best tool for ensuring that
the steak is cooked to your desired level of doneness.
Aim for a temperature of 130-135°F (54-57°C) for a
medium-rare steak.
4. Season the steak: Before cooking, season the steak
with salt and pepper, or your favorite spice mix. This
will enhance the flavor of the steak and help to retain
moisture

Table 14: Comparison of LLama2’s responses to the instruction about cooking a medium-rare steak using different
methods of data-driven fine-tuning.

Seed Instruction Evolved Instruction

Create a list of ingredients to make a
traditional lasagna.

Can you compile a tantalizing list of ingredients for
both a traditional and a vegetarian lasagna recipe,
each with no more than 10 ingredients, ensuring they
are both delicious and visually appealing?

Generate a conversation between two
friends talking about a dream they shared

Generate a detailed conversation between two
friends talking about a vivid and exciting dream they
shared last night.

Create a list of ten shared characteristics
between birds and reptiles.

Can you generate a list of ten common traits shared
by avian and reptilian species, utilizing biological
taxonomy and comparative anatomy?

Name five famous French writers.

Imagine you are preparing a presentation for a
literary seminar. Can you name five famous French
writers from the 19th and 20th centuries, provide
brief biographical information for each, and cite at
least one notable work? Emphasize their
contributions to French culture and literature, and
highlight the impact of their works on the global
literary community.

What are the best methods for controlling
finances?

Can you identify and implement the most effective
and sustainable methods for managing personal
finances in today’s technology-driven society? This
should include detailed budgeting techniques and
saving strategies that leverage modern financial tools
and apps.

Table 15: Seed and Evolved Instructions with MCTS.
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Name the three Baltic states.

Can you please tell me the names of 
the three Baltic states?

names of the three Baltic states.

Can you tell me the names of the three 
Baltic states and share them with 

excitement?
Please provide the names of the three 

Baltic states.

Can you please tell me the names of the 
three Baltic states and express excitement 
while sharing them? you can describe their 

location on a map.

List the names of three countries in the 
Baltic region and describe their location on 

a map.

Can you please tell me the names of 
the three Baltic states, along with their 

capital cities?

Can you please tell me the names of the 
three Baltic states and express excitement 

while sharing them? Additionally, describe 
their location on a map. The goal is to 
provide an engaging and informative 

answer that sparks curiosity about these 
countries.

Formatting Input Style

ADD Requirements

ADD Emotion

ADD Goals

ADD Requirements

Figure 7: A Case of Instruction Evolution with MCTS.
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