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ABSTRACT

Convolutional Neural Network (CNN) has led to great advances in computer vi-
sion. Various customized CNN accelerators on embedded FPGA or ASIC plat-
forms have been designed to accelerate CNN and improve energy efficiency. How-
ever, the odd-number filter size in existing CNN models prevents hardware accel-
erators from having optimal efficiency. In this paper, we analyze the influences
of filter size on CNN accelerator performance and show that even-number fil-
ter size is much more hardware-friendly that can ensure high bandwidth and re-
source utilization. Experimental results on MNIST and CIFAR-10 demonstrate
that hardware-friendly even kernel CNNs can reduce the FLOPs by 1.4× to 2×
with comparable accuracy; With same FLOPs, even kernel can have even higher
accuracy than odd size kernel.

1 INTRODUCTION

In recent years, Convolutional Neural Network (CNN) has achieved great success in computer vision
area. State-of-the-art performance of image classification and object detection are both driven by
CNN ((He et al., 2015; Girshick et al., 2014; Ren et al., 2015)). However, the energy efficiency of
existing hardware such as GPU is relatively low, thus researchers have proposed various customized
CNN accelerator designs on FPGA or ASIC.

Efficient processing engine (PE) is vital to CNN accelerators. Architecture with few complex PEs
((Qiu et al., 2016; Sim et al., 2016)) or with many simple compute elements (Chen et al. (2016))
have been proposed. Special architectures such as a dynamically configurable architecture and a
specific architecture for sparse compressed NN were also proposed ((Chakradhar et al., 2010; Han
et al., 2016a)).

The efficiency of memory system in CNN accelerators also significantly affects the performance.
The tiling strategy and data reuse are useful to reduce the total communication traffic (Chen et al.
(2014a); Qiu et al. (2016)). Storing all the CNN model with on-chip memory can help minimize
energy of memory access (Chen et al. (2014b); Du et al. (2015); Han et al. (2016a)). Compression
and decompression techniques(Zhang et al. (2015); Chen et al. (2016); Han et al. (2015; 2016b)) and
data quantization (Qiu et al. (2016)) are also useful techniques to improve bandwidth utilization.

Though techniques have been proposed to improve the performance of customized CNN acceler-
ators, the odd-number filter size in existing CNNs still hinders higher hardware acceleration ef-
ficiency. From algorithm aspect, the advantage of odd-number filter size is obvious: symmetry.
However, customized CNN accelerators may perform better with even-number Conv filters such as
2×2 and 4×4 and can achieve better configurability and resource utilization.

In this paper, we investigate the effects of Conv filter size on hardware acceleration efficiency of
CNN accelerators. We propose the hardware-friendly CNN with only even-number Conv filters to
maximize the efficacy of CNN accelerators. We show that hardware-friendly CNNs can achieve
comparable or even better accuracy compared with CNN with odd-number Conv filters on MNIST
and CIFAR-10.
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Figure 1: Influences of filter size on hardware design: Adder tree structure with (a) 3×3 filter and (b) 2×2
filter; Memory access pattern with (c) 3×3 filter and (d) 2×2 filter.

2 INFLUENCES OF FILTER SIZE ON HARDWARE ACCELERATION EFFICIENCY

2.1 COMPUTATION LOGIC DESIGN
The combination of many multipliers and an adder tree is a fundamental unit for accelerating Conv
layers. For the adder tree, if the number of data in a filter is not 2n form, there will be extra register
used. As shown in Figure 1 (a), the 3 extra register sets are needed to implement an adder tree with
9 inputs. If 16-bit quantization (i.e. each parameter is represented with 16 bits) is employed, this
means 16× 3 = 48 additional registers are needed. For a 2×2 filter, as shown in Figure 1 (b), there
is no such waste of registers.

2.2 DATA DISTRIBUTOR DESIGN
State-of-the-art CNNs for large-scale object recognition tasks are too large to be store the model
on-chip. Since CNN models are usually stored in the external memory, the bandwidth utilization
efficiency is seriously concerned. Typically, DRAM offers 64-bit or 128-bit data port. If the length
of the fetched data is folds of the data port width, full bandwidth utilization can be ensured.

It is hard to ensure high bandwidth utilization with odd-number filters. For a 3×3 filter with 16-bit
quantization, 144 bits are needed to store the weights in a filter. For a 64-bit port, to load 144 bits,
triple memory accesses are needed, as shown in Figure 1 (c), and the highest possible bandwidth
usage is only 75%. For a 128-bit port, the highest possible bandwidth usage is only 56.25%. To
fully utilize the bandwidth when the filters are in odd-number sizes, the data distributor design will
be quite complicated.

Even-number filters can help ensure the bandwidth utilization. For a 2N×2N filter with 16-bit
quantization, where N is a natural number, the total number of bits is 64N2. For a 64-bit port, the
bandwidth utilization is definitely 100%. For a 128-bit port, the bandwidth usage can be up to 100%
(loading two filters at the same time), 90%, and 96% when N is 1, 2, and 3 respectively. An example
is shown in Figure 1 (d) where the filter size is 2×2. When the data port width is 64-bit and 16-bit
quantization is employed, only one-time memory access is needed to load all the weights.

3 HARDWARE-FRIENDLY CONVOLUTIONAL NEURAL NETWORK

Since CNNs with even-number Conv filters can help improve the efficiency of customized CNN
accelerators, we propose the hardware-friendly CNN with only even-number Conv filters. In this
section, we evaluate the performance of hardware-friendly CNNs on MNIST (LeCun et al. (1998))
and CIFAR-10 (Krizhevsky & Hinton (2009)). All experiments are done with MXnet Chen et al.
(2015). The experiment platform consists of an Intel Xeon E5-2690 CPUs@2.90GHz and the 2
NVIDIA TITAN X GPUs.

The notation is: MP means max pooling, FC means Fully-Connected layer, lr is the initial learning
rate, lr-factor is the factor that times the learning rate for every lr-factor-epoch, and batch-size is
the number of images in each mini batch. When training the networks, no data augmentation, pre-
processing, or pre-training is employed.
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Figure 2: Test error and normalized computational complexities (FLOPs) of (a) LeNet5 on MNIST and (b)
VGG11-Nagadomi on CIFAR-10. With comparable accuracy, even kernel can reduce the FLOP by 50% on
cifar dataset and 30% on mnist dataset; with comparable FLOPs, even kernel can have higher accuracy than
odd size kernel. .

3.1 MNIST

For experiments on MNIST, we used the LeNet (LeCun et al. (1998)). The architecture of the
original LeNet is:
20Conv5→ Tanh→MP2→ 50Conv5→ Tanh→MP2→ FC500→ Tanh→ FC10.

We train the LeNet for 300 epochs, in which the lr is 0.002, lr-factor is 0.995, lr-factor-epoch is 1,
and batch-size is 128.

We report he best validation error rate of LeNet with different settings on MNIST in Figure 2 (a), in
which blue and orange columns represent test errors and computational complexities respectively.
As shown in the figure, replacing the 5×5 Conv filters in LeNet with 4×4 or other even-number
ones does not introduce high error rate. Since smaller Conv filter demands few multiplications in
one Conv operation, generally, the total number of operations can be reduce by using smaller even-
number Conv filters. But the increase of feature map size lead to the increase of total computations.

3.2 CIFAR-10

We used the VGG11-Nagadomi network (nag) in experiments on CIFAR-10. The architecture of the
original VGG11-Nagadomi network is:

2× (64Conv3→ ReLU)→MP2→ 2× (128Conv3→ ReLU)→MP2→
4× (256Conv3→ ReLU)→MP2→ 2× (FC1024→ ReLU)→ FC10.

We train the VGG11-Nagadomi for 2000 epochs, in which the lr is 0.01, lr-factor is 0.995, lr-factor-
epoch is 2, and batch-size is 256.

Results of VGG11-Nagadomi network on CIFAR-10 are shown in Figure 2 (b). For the original
VGG11-Nagadomi network, the validation error on CIFAR-10 is 8.54%. After replacing the 3×3
Conv filters with 2×2 ones, the size of feature maps in the network changes. We remove the padding
in the later Conv layer in each pair of Conv layers to ensure the input feature map of each MP layer
remains the same. As the middle columns in Figure 2 (b) show, the validation error rises to 8.67%,
but the total computations is reduce to 49% of the original network. Since the total computation
number is reduced when simply replacing 3×3 Conv filters with 2×2 ones, we increase the filter
numbers and the out feature vector length of FC layers by 1.5× to balance the total operations. In
this case, the total computations rise to 1.10× compared with the original network but the test error
is reduced to 7.86%. We notice that, keeping the original ratio between filter number in different
layers when balancing the total computations may be favorable to achieve the best accuracy.

4 CONCLUSION

In this paper we propose hardware-friendly convolution neural network using even-sized kernel and
its advantage over traditional odd-sized kernel. We analyzed the hardware benefit of even sized
kernel w.r.t both arithmetic unit and memory system. Even sized kernel greatly reduces the number
of computation while maintaining comparable prediction accuracy: on mnist on cifar-10 it reduced
the computation by 1.4× to 2× with less than 0.1% loss of accuracy. On the other hand, shrinking
the kernel from 3x3 to 2x2 at the same time of increasing the number of channels, such that the
total number of computation remains the same, will result in better prediction accuracy. This will
facilitate building hardware inference engine with higher efficiency.
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