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ABSTRACT

This paper applies a deep convolutional/highway MLP framework to classify ge-
nomic sequences on the transcription factor binding site task. To make the model
understandable, we propose an optimization driven strategy to extract “motifs”, or
symbolic patterns which visualize the positive class learned by the network. We
show that our system, Deep Motif (DeMo), extracts motifs that are similar to, and
in some cases outperform the current well known motifs. In addition, we find that
a deeper model consisting of multiple convolutional and highway layers can outper-
form a single convolutional and fully connected layer in the previous state-of-the-art.

1 INTRODUCTION

Understanding genetic sequences is one of the fundamental tasks of health advancements due to the
high correlation of genes with diseases and drugs. An important problem within genetic sequence
understanding is related to transcription factors (TFs), which are regulatory proteins that bind to DNA.
Each different TF binds to specific transcription factor binding sites (TFBSs) on the DNA sequence to
regulate cell machinery. We focus on the task of accurately classifying and understanding the DNA
subsequences that TFs bind to, which will allow us to better understand the underlying biological
processes and potentially influence biomedical studies of human health.1

Chromatin immunoprecipitation (ChIP-seq) technologies and databases such as ENCODE (Consor-
tium et al., 2012) have made binding site sequences available for hundreds of different TFs. Despite
these advancements, there are two major drawbacks: (1) ChIP-seq experiments are slow and expensive,
(2) although ChIP-seq experiments can find the binding site locations, they cannot find patterns that
are common across all of the positive binding sites which can give insight as to why TFs bind to those
locations. Thus, there is a need for large scale computational methods that can not only make accurate
binding site classifications, but also produce clear patterns that represent the positive binding sites.

In order to computationally predict the binding sites, researchers initially used subset frequency counts
(Stormo, 2000). Such generative frequency based searching techniques may, however, fail to generalize
to unseen examples (Setty & Leslie, 2015). Discriminative techniques such as SVMs have shown to
outperform the generative methods by using k-mer features (Ghandi et al., 2014; Setty & Leslie, 2015),
but the string kernel based algorithms are limited by the computational complexity of the number of
training and testing sequences.

Most recently, DeepBind (Alipanahi et al., 2015) has shown state-of-the-art results on the TFBS clas-
sification task by using a neural network based approach. A neural network model is particularly well
suitable for the TFBS task considering that it is scalable to a large number of genomic sequences.
Although DeepBind achieves better accuracy than previous methods, they use a shallow model with
only one convolutional and one fully connected layer. It has been widely shown that the deeper, or
multiple layer models outperform shallow models (Szegedy et al., 2015; Srivastava et al., 2015). For
the TFBS task, there is a need to model long range dependencies. Therefore, we introduce a deeper
model which is able to detect higher level features from the raw nucleotide sequences and make more
accurate binding site classifications.

As with many biomedical tasks, obtaining high accuracy results is not of sole importance. There is
a need to find interpretable visualizations which help understand the biological process of interest.
For TFBS classifications, this is typically done by finding “motifs”, or consensus sequences which

1This task classifies whether or not there is a binding site for a particular TF of interest when given an input
DNA sequence.
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Figure 1: DeMo overview.
Shown with 2 convolutional
layers and 2 Highway MLP
layers. Our final model has
3 convolutional layers with
128 filters of length-5 at
each layer, and 5 fully con-
nected highway MLP layers
with 32 nodes at each layer.

define the positive binding sites for a particular TF. Motifs are represented by position weight matrices
(PWMs) corresponding to the probability of each character occurring at a specific position (see Fig. 2)
(Stormo, 2013). DeepBind finds motifs by mapping the strongest activations of each feature map in
the convolutional layer back to the input space for each positive example in their test set, and then
counts the nucleotide frequencies of all subsequences to compute a PWM. However, this method is
dependent on the specific testing sequences used, and does not represent positive TFBS patterns in
general. We present a method (section 2), which finds motifs that depict the notion of a positive TFBS
class learned by our model, and is not specific to any particular sequence. We argue that this method
is more applicable for the biomedical task where it is important to get a general understanding of what
a positive TFBS site looks like rather than the strong subsequences of specific positive samples.

The two major contributions of our Deep Motif (DeMo) model are: (1) we are able to achieve state-
of-the-art TFBS classification accuracies by using a deep convolutional/highway MLP network, (2) we
show that we can extract visual representations of positive binding sites from our model.

2 NETWORK DETAILS AND MOTIF EXTRACTION

Since ChIP-seq experiments output the binding sites in the format of sequences of nucleotide base
pairs (i.e. strings with characters A,T,C,G), we can use similar sequence learning models to those
used in NLP classification tasks such as sentiment analysis. We introduce the DeMo model (fig. 1)
which uses multiple convolutional layers and a highway multi-layer perceptron (MLP) to make binary
classifications. Our experimental results prove that DeMo outperforms the previous state-of-the-art
model on the TFBS classification task.

Deeper Model: We use the raw nucleotide characters as inputs to our network, which are encoded
into a one-hot encoding. The encoded input then gets fed through 3 convolutional layers containing
convolutions of 128 feature maps and rectified linear units (ReLUs). The first 2 layers contain a length
2 max-pooling. All of our filter sizes are length 5, which is much shorter than the 24 length filters of
the one convolutional layer in DeepBind (Alipanahi et al., 2015). However, we note that since we use
a length 2 max-pooling in the first two layers, the final convolution actually “sees” 20 characters from
the input sequence, so it is simply a deeper representation of their one layer of filters. The output of the
convolutional layers are then max-pooled across the temporal domain resulting in a 128-dimensional
vector. We use dropout (Srivastava et al., 2014)for regularization in the convolutional layers.

Traditionally, following the convolutional layers are fully connected MLP layers. Recently, a new
technique called highway networks (Srivastava et al., 2015) have proven effective for deeper represen-
tations. Highway networks use gating units which learn to regulate the flow of information through a
network. Kim et al. (2015) showed that a highway MLP was more effective than a standard MLP when
used after a series of convolutions, hypothesizing that highway networks are especially well-suited
to work with convolutional layers due to their ability to adaptively combine local features. We use a
depth-5 fully connected highway network after the max-pooled output of the convolutional layers, each
layer having 32 nodes. The output of the highway MLP is fed to a 2-way softmax function.

Class Visualization: Upon training completion, we propose a strategy to extract class specific visual-
izations, providing an easy interpretation of what the model has learned. Similar to the methods used
in Simonyan et al. (2013), we seek to optimize the following equation where P+(S) is the probability
of the input sequence S (matrix of input length × 4, where 4 is our alphabet size) being a positive
TFBS computed by the softmax output of our trained model for a specific TF:

argmax
S

P+(S) + λ‖S‖22 (1)

where λ is the regularization parameter. We find a locally optimal S through backpropagation, where
the optimization is with respect to the input sequence and the model weights remain unchanged. Each
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element of the input matrix S is uniformly initialized to 0.25, and then S is optimized using (1). We
clip the optimized values to the interval [0, 1] and convert S into a PWM, using Laplace smoothing.

Connecting to Previous Studies: Simonyan et al. (2013) showed that visualisations of a certain class
can be obtained from a ConvNet by optimizing the input, where the samples are images rather than
sequences. Vidovic et al. (2015) showed that it is possible to extract the underlying “motif” from
a discriminative model, but do it on kernel machines. Lastly, Zhang et al. (2015) show that deep
character-level ConvNets can outperform other models for sequence classification. However, they do
not do any type of visual analysis to understand why it works well. DeMo connects all three of these
works into a single model which can make high accuracy predictions on biomedical sequences, and
also produce a motif which represents a positive binding site class.

3 EXPERIMENTS AND RESULTS

In order to prove the effectiveness of a deeper model on the TFBS task, we ran DeMo on the same 108
leukemia cell TF datasets used in Alipanahi et al. (2015). Each TF dataset has an average of 30,819
training sequences, and each sequence consists of 101 DNA-base characters (A,C,G,T). Due to the
separate train/test data for each TF, we train a separate model for each individual TF dataset.

For the TFBS classification task, our model outperforms DeepBind’s by achieving a higher AUC for
86 out of the 108 TF datasets. A comparison is shown in figure 2. In addition, our model achieves a
median AUC of 0.946 whereas DeepBind’s is 0.931.
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Figure 2: (a) DeMo
AUC - DeepBind AUC
for each of the 108
TFs. DeMo outper-
forms DeepBind on 86
of the 108 datasets. (b)
Comparison of DeMo
motifs vs JASPAR mo-
tifs for 2 different TFs.
Motifs are shown using
information content in
bits.

To evaluate our motifs, we do a comparison against JASPAR motifs (Mathelier et al., 2015), which are
widely known within the biological community to be the “gold standard” representations of positive
binding sites for hundreds of TFs. We were limited to a comparison of 57 out of our 108 TF datasets by
the TFs which JASPAR has motifs for. Although our method can generate motifs up to length 101 (size
of our input sequences), JASPAR motifs are much shorter, so we compare the JASPAR motifs against
all equal sized windows in our motif. To compare the similarity of our motifs, we use a tool called
Tomtom (Gupta et al., 2007; Bailey et al., 2009), which compares a specific motif against JASPAR
motifs and returns significant matches using their defined statistical measure of motif-motif similarity.
Out of the 57 tested, we find that 35 of our motifs significantly match JASPAR motifs (q-value <
0.5). A comparison of motifs can be seen in figure 2. In addition, we compare how well our motifs
score on unseen sequences using the Average Motif Affinity (AMA) tool (Buske et al., 2010; Bailey
et al., 2009), which scores a set of sequences given a motif, treating each position in the sequence as a
possible binding site. We find that our motifs are able to outscore JASPAR motifs on 17 out of the 57
motifs when we run the AMA tool on a set of unseen test sequences that are known positive binding
sites. It is important to note that although the JASPAR motifs have been carefully generated using an
ensemble approach with much larger TFBS datasets compared to ours, they are not guaranteed to be
accurate representations of the positive binding sites.

4 CONCLUSION

We present Deep Motif (DeMo), a convolutional/highway MLP network which outperforms the state-
of-the-art baseline for 86 different TFBS datasets, as well as generate motifs, or interpretable patterns
that represent the important transcription factor binding patterns. Although our experiments are on
genomic sequence classifcation, DeMo is a generic model for visualizing sequence classifcation tasks.
We believe our model is applicable to other sequence classification tasks which demand a visual inter-
pretation of the classes.
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