
Workshop track - ICLR 2016

PERFORATEDCNNS: ACCELERATION THROUGH
ELIMINATION OF REDUNDANT CONVOLUTIONS

Michael Figurnov1, Dmitry Vetrov1,2, and Pushmeet Kohli3

1Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
2National Research University Higher School of Economics, Moscow, Russia

3Microsoft Research, Cambridge, UK
michael@figurnov.ru, vetrovd@yandex.ru, pkohli@microsoft.com

ABSTRACT

We propose a novel approach to reduce the computational cost of evaluation of
convolutional neural networks, a factor that has hindered their deployment in low-
power devices such as mobile phones. Inspired by the loop perforation technique
from source code optimization, we speed up the bottleneck convolutional layers by
skipping their evaluation in some of the spatial positions. We propose and analyze
several strategies of choosing these positions. Our method allows to reduce the
evaluation time of modern convolutional neural networks by 50% with a small
decrease in accuracy.

1 INTRODUCTION

The last few years have seen convolutional neural networks (CNNs) emerge as an indispensable tool
for computer vision. This has been driven by their ability to achieve state-of-the-art performance
for many challenging vision problems (Mnih et al., 2015; Schroff et al., 2015; Zheng et al., 2015).
Modern CNNs have high computational cost of evaluation, with convolutional layers usually taking
up over 80% of the time. For instance, VGG-16 network (Simonyan & Zisserman, 2015) for the
problem of object recognition requires 1.5 · 1010 floating point multiplications per image. These
computational requirements hinder the deployment of such networks on systems without GPUs and
in scenarios where power consumption is a major concern, such as mobile devices.

The problem of trading accuracy of computations for speed is well-known within the software engi-
neering community. One of the most prominent methods for this problem is loop perforation (Mi-
sailovic et al., 2010; 2011; Sidiroglou-Douskos et al., 2011). In a nutshell, this technique isolates
loops in the code that are not critical for the execution, and then reduces their computational cost
by skipping some iterations. More recently, researchers have considered problem-dependent per-
foration strategies which involve identifying data-parallel patterns, such as “stencil”, and applying
pattern-specific approximations that exploit the structure of the problem (Samadi et al., 2014).

Inspired by the general principle of perforation, we propose to reduce the computational cost of CNN
evaluation by exploiting the spatial redundancy of the network. Modern CNNs, such as AlexNet,
exploit this redundancy through the use of strides in the convolutional layers. However, increasing
convolutional strides changes the architecture of the network (intermediate representations size and
number of weights in the first fully-connected layer), which might be undesirable. Instead of using
strides, we argue for the use of interpolation (perforation) of responses in the convolutional layer. A
key element of this approach is the choice of the perforation mask, which defines the output positions
to evaluate exactly. We propose several approaches to select the perforation masks, and a method
of choosing a combination of perforation masks for different layers. In order to restore the network
accuracy, we perform fine-tuning of the perforated network. Our experiments show that this method
can reduce the evaluation time of modern CNN architectures proposed in the literature by a factor
of 2× - 4× with small decrease in accuracy.

1

Workshop track - ICLR 2016

2 RELATED WORK

Reducing the computational cost of CNN evaluation is an active area of research, with both highly
optimized implementations and approximate methods being investigated.

Implementations that exploit the parallelism available in computational architectures like GPUs
(cuda-convnet2 (Krizhevsky, 2014), CuDNN (Chetlur et al., 2014)) have allowed to significantly
reduce the evaluation time of CNNs. Since CuDNN internally reduces the computation of con-
volutional layers to the matrix-by-matrix multiplication (without explicitly materializing the data
matrix), our approach can potentially be incorporated into this library. In a similar vein, the use of
FPFGAs (Ovtcharov et al., 2015) leads to better trade-offs between speed and power consumption.
Several papers (Courbariaux et al., 2015; Gupta et al., 2015) showed that CNNs may be efficiently
evaluated using low precision arithmetic, which is important for FPFGA implementations. Most
approximate methods of decreasing the CNN computational cost exploit the redundancies of the
convolutional kernel using low-rank tensor decompositions (Denton et al., 2014; Jaderberg et al.,
2014; Lebedev et al., 2015; Zhang et al., 2015a;b). In most cases, a convolutional layer is replaced
by several convolutional layers applied sequentially, which have a much lower total computational
cost. Another direction of research is modifications of CNN architecture for speed gains (He & Sun,
2015; Jin et al., 2015; Romero et al., 2014). The resulting networks are usually CNNs, meaning that
our approach could be combined with most of these methods.

For spatially sparse inputs, it is possible to exploit this sparsity to speed up evaluation and training
(Graham, 2014b). While this approach is similar to ours in the spirit, we do not rely on spatially
sparse inputs. Instead, we sparsely sample the outputs of convolutional layer, and interpolate the
remaining values.

In a recent work, Lebedev & Lempitsky (2015) also decrease the CNN computational cost by re-
ducing the size of the data matrix. The difference is that their approach reduces the kernel filter
support, while our approach decreases the number of spatial positions in which the convolutions are
evaluated. The two methods are complementary.

Several papers have demonstrated that it is possible to significantly compress the parameters of the
fully-connected layers (where most CNN parameters reside) with a marginal error increase (Collins
& Kohli, 2014; Yang et al., 2015; Novikov et al., 2015). Since our method does not directly modify
the fully-connected layers, it is possible to combine these methods with our approach to obtain a fast
and small CNN.

3 PERFORATEDCNNS

The section provides a detailed description of our approach. Before proceeding further we introduce
the notation that will be used in the rest of the paper.

Notation. A convolutional layer takes as input a tensor U of size X×Y ×S and outputs a tensor V
of size X ′×Y ′×T , X ′ = X−d+ 1, Y ′ = Y −d+ 1. The first two dimensions are spatial (height
and width), and the third dimension is the number of channels (for example, for an RGB input
image S = 3). The set of T convolution kernels K is given by a tensor of size d× d× S × T . For
simplicity of notation, we assume unit stride, no zero-padding and skip the biases. The convolutional
layer output may be defined as follows:

V (x, y, t) =

d∑
i=1

d∑
j=1

S∑
s=1

K(i, j, s, t)U(x + i− 1, y + j − 1, s) (1)

Additionally, we define the set of all spatial indices (positions) of the output Ω = {1, . . . , X ′} ×
{1, . . . , Y ′}. Perforation mask I ⊆ Ω is the set of indices in which the outputs are to be calculated
exactly. Denote N = |I| the number of positions to be calculated exactly, and r = 1 − N

|Ω| the
perforation rate.

Reduction to matrix multiplication. In order to achieve high computational performance, many
deep learning frameworks, including Caffe (Jia et al., 2014) and MatConvNet (Vedaldi & Lenc,
2014), reduce computation of convolutional layers to the heavily-optimized matrix-by-matrix multi-
plication routine of basic linear algebra packages. This process, sometimes referred to as lowering,

2

Workshop track - ICLR 2016

𝑑"𝑆

𝑋%𝑌′

tensor U data matrix M

𝑌

𝑋 𝑑
𝑑
𝑆

𝑆

im2row

kernel K tensor V

× =

𝑇
𝑌′

X′

𝑇

𝑑"𝑆

𝑇
1

1

Figure 1: Reduction of convolutional layer evaluation to matrix multiplication. Our idea is to leave
only a subset of rows (defined by a perforation mask) in the data matrix M and to interpolate the
missing output values.

is illustrated in fig. 1. First, a data matrix M of size X ′Y ′ × d2S is constructed using im2row
function. The rows of M are elements of patches of input tensor U of size d × d × S. Then, M is
multiplied by the kernel tensor K reshaped into size d2S×T . The resulting matrix of size X ′Y ′×T
is the output tensor V , up to a reshape. For a more detailed exposition, see (Vedaldi & Lenc, 2014).

The matrix multiplication is by far the most computationally expensive part of the convolutional
layer evaluation. Suppose we removed all but N rows of the data matrix M . This reduces the
number of operations required for the matrix multiplication by a factor of X′Y ′

N , accelerating the
evaluation. This speedup comes at a cost of losing information about the values of the outputs for
some of the spatial positions for all the channels.

3.1 PERFORATED CONVOLUTIONAL LAYER

Our first contribution is an accelerated version of the convolutional layer, called perforated convo-
lutional layer. In a small fraction of spatial positions, the outputs of the proposed layer are equal
to the outputs of a usual convolutional layer. The remaining values are interpolated using the near-
est neighbor from the aforementioned set of positions. We evaluate other interpolation strategies in
appendix A.

The perforated convolutional layer is a generalization of the standard convolutional layer. When
the perforation mask is equal to all the output spatial positions, the perforated convolutional layer’s
output equals the conventional convolutional layer’s output.

Formally, let I ⊆ Ω be the perforation mask of spatial output to be calculated exactly (the constraint
that the masks are shared for all channels of the output is required for the reduction to matrix multi-
plication). The function `(x, y) : Ω→ I returns the index of the nearest neighbor in I according to
Euclidean distance (with ties broken randomly):

`(x, y) = (`1(x, y), `2(x, y)) = arg min
(x′,y′)∈I

√
(x− x′)2 + (y − y′)2. (2)

Note that the function `(x, y) may be calculated in advance and cached.

The perforated convolutional layer output V̂ is defined as follows:

V̂ (x, y, t) = V (`1(x, y), `2(x, y), t), (3)
where V (x, y, t) is the output of the usual convolutional layer, defined by (1). Since `(x, y) = (x, y)
for (x, y) ∈ I , the outputs in the spatial positions I are calculated exactly. The values in other po-
sitions are interpolated using the value of the nearest neighbor. In order to evaluate a perforated
convolutional layer, we only need to calculate the values V (x, y, t) for (x, y) ∈ I . This can be
done efficiently by reduction to matrix multiplication. In this case, the data matrix M contains just
N = |I| rows, instead of original X ′Y ′ = |Ω| rows. Perforation is not limited to this particular im-
plementation of a convolutional layer, and can be combined with other implementations that support
strided convolutions, such as the direct convolution approach used in cuda-convnet2 (Krizhevsky,
2014).

In our implementation, we only store the output values V (x, y, t) for (x, y) ∈ I . The interpolation
is performed implicitly by masking the reads of the following pooling or convolutional layer. This

3

Workshop track - ICLR 2016

(a) Uniform (b) Grid (c) Pooling struc-
ture

1

2

3

4

(d) Weights A(x, y)

Figure 2: Perforation masks, AlexNet conv2, r = 80.25%. Best viewed in color.

design choice has several advantages. Firstly, the memory size required to store the activations is
reduced by a factor of 1

1−r . Secondly, the following non-linearity layers and 1 × 1 convolutional
layers are also sped up, since they are applied to a smaller number of elements. Finally, it makes
interpolation computationally cheap by avoiding costly “scatter” operation. For example, when
accelerating conv3 layer of AlexNet, the interpolation cost is transferred to conv4 layer. We observe
no slowdown of conv4 layer when using GPU, and a 0-3% slowdown when using CPU.

To obtain derivatives of the perforated convolutional layer, we consider it as a composition of a
convolutional layer and interpolation defined by (3). By the chain rule, it is sufficient to calculate
the derivatives ∂V̂ (x′,y′,t′)

∂V (x,y,t) . If `(x, y) = (x′, y′) and t = t′, this derivative is equal to one; otherwise,
it is zero. In other words, during the backpropagation, the derivatives are summed over spatial
regions which share the same interpolated values.

3.2 PERFORATION MASKS

We propose several ways of generating the perforation masks, or choosing N = (1 − r)|Ω| points
from Ω. In order to visualize the perforation masks I , we use binary matrices, with black squares in
positions indicated by the set I . We only consider the perforation masks that are independent of the
input object and leave exploration of input-dependent perforation masks to the future work.

Uniform perforation mask is just N points chosen randomly without replacement from the set Ω.
However, as can be seen from fig. 2a, for N � |Ω|, the points tend to cluster. This is undesirable,
because a more scattered set I would reduce the average distance to the set I .

The idea of grid perforation mask is to choose a set of scattered points. Define

Kx =
⌊√

N
X ′

Y ′

⌋
,Ky =

⌊√
N

Y ′

X ′

⌋
. (4)

A natural way to choose scattered points is to use a grid I = {a(1), . . . , a(Kx)} ×
{b(1), . . . , b(Ky)}. If X ′ is divisible by Kx, then we can simply pick a(i) = X′

Kx
i. For the gen-

eral case, we adopt the pseudorandom integer sequence generation scheme from (Graham, 2014a).
First, a random value u ∈ (0, 1) from uniform distribution is generated. Then, the indices a(i) are
obtained as follows:

a(i) =
⌈X ′
Kx

(i− 1 + u)
⌉
. (5)

The indices b(1), . . . , b(Ky) are computed similarly. An example of grid mask is shown on fig. 2b.

Pooling structure mask exploits the structure of the overlaps of pooling operators. Denote by
A(x, y) the number of times an output of the convolutional layer is used in the pooling operators.
An example of the values of A(x, y) is shown on fig. 2d. The grid-like pattern is caused by the fact
that the pooling has size 3×3 and is applied with stride 2 (these parameters are quite popular and are
used in Network in Network and AlexNet). Intuitively, interpolating an output of the convolutional
layer that is used in just one pooling operator is much better than interpolating an output that is
used, say, four times. In other words, the higher the value of A(x, y) is, the more important it is to
include (x, y) in the set I . The pooling structure mask is obtained by picking top-N positions with
the highest values of A(x, y) and the ties broken randomly. The result is illustrated on fig. 2c.

4

Workshop track - ICLR 2016

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.05

0.1

0.15

0.2

0.25

0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(a) B(x, y), origi-
nal network

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) B(x, y), perfo-
rated network

(c) Impact
mask, r = 90%

Figure 3: Top: ImageNet images and corresponding values of impact G(x, y;V) for AlexNet conv2
layer. Bottom: average impacts and impact perforation mask for AlexNet conv2. Best viewed in
color.

Impact mask estimates the impact of perforation of each position on the CNN loss function, and
then chooses the least important positions.

Denote by L(V) the loss function of the CNN (such as class negative log-likelihood) as a function
of the considered convolutional layer outputs V . Next, suppose V ′ is obtained from V by replacing
one element (x0, y0, t0) with a neutral value zero. We estimate the magnitude of change of the loss
function (impact of the position) using first-order Taylor expansion:

|L(V ′)− L(V)| ≈
∣∣∣ X∑
x=1

Y∑
y=1

T∑
t=1

∂L(V)

∂V (x, y, t)
(V ′(x, y, t)− V (x, y, t))

∣∣∣
=
∣∣∣ ∂L(V)

∂V (x0, y0, t0)
V (x0, y0, t0)

∣∣∣. (6)

The value ∂L(V)
∂V (x0,y0,t0) may be obtained using backpropagation. In case of a perforated convolu-

tional layer, we calculate the derivatives with respect to the convolutional layer output V (not the
interpolated output V̂). This makes the impact of the previously perforated positions zero, and sums
the impact of the non-perforated positions over all the outputs which share the value.

Since we are interested in the total impact of a spatial position (x, y) ∈ Ω, we take a sum over all
the channels and average this estimate of impacts over the training dataset:

G(x, y;V) =

T∑
t=1

∣∣∣ ∂L(V)

∂V (x, y, t)
V (x, y, t)

∣∣∣ (7)

B(x, y) = EV∼ training set G(x, y;V) (8)

Finally, the impact mask is formed by taking the top-N positions with the highest values of B(x, y).
Examples of the values of G(x, y;V), B(x, y) and impact mask are shown on fig. 3. Note that
the regions of high value of G(x, y;V) usually contain the most salient features of the image. The
averaged weights B(x, y) tend to be higher in the center, since ImageNet’s images usually contain a
centered object. Additionally, a grid-like structure similar to the one seen in pooling structure mask
is evident. Impact perforation mask tends to focus on the center of an image, but also places some
points on the borders.

Since perforation of any layer changes the impacts of all the layers, in the experiments we iterate
between increasing the perforation rate of a layer and recalculation of impacts. We find that this
improves results by co-adapting the perforation masks of different convolutional layers.

5

Workshop track - ICLR 2016

Network Dataset Error CPU time GPU time Mem. Mult. # conv
NIN CIFAR-10 top-1 10.4% 4.6 ms 0.8 ms 5.1 MB 2.2 · 108 3

AlexNet ImageNet top-5 19.6% 16.7 ms 2.0 ms 6.6 MB 0.5 · 109 5
VGG-16 top-5 10.1% 300 ms 29 ms 110 MB 1.5 · 1010 13

Table 1: Details of the CNNs used for the experimental evaluation. Timings, memory consump-
tion and number of multiplications are normalized by the batch size. Memory consumption is the
memory required to store activations (intermediate results) of the network during the forward pass

3.3 CHOOSING THE PERFORATION CONFIGURATIONS

For whole network acceleration, it is important to find a combination of per-layer perforation rates
that would achieve high speedup at low error increase. To do this, we employ a simple greedy
strategy. We use a single perforation mask type and a fixed range of increasing perforation rates.
Denote by t the evaluation time of the accelerated network and by e the objective (we use class
negative log-likelihood for a subset of training images). Let t0 and e0 be the respective values for
the original (non-accelerated) network. At each iteration, we try to increase the perforation rate for
each layer, and choose the layer for which this results in the minimal value of the cost function e−e0

t0−t .
This cost function reflects that we would like to obtain high decrease of the running time with low
increase of the objective.

4 EXPERIMENTS

We use three convolutional neural networks of increasing size and computational complexity: Net-
work in Network (Lin et al., 2014), AlexNet (Krizhevsky et al., 2012) and VGG-16 (Simonyan &
Zisserman, 2015). See table 1 for more details. In all networks, we attempt to perforate all the con-
volutional layers, except for 1× 1 convolutional layers of NIN. We perform timings on a computer
with a quad-core Intel Core i5-4460 CPU, 16 GB RAM and a single NVidia Geforce GTX 980 GPU.
The batch size used for timings is 128 for NIN, 256 for AlexNet and 16 for VGG-16. The networks
are obtained from Caffe Model Zoo. For AlexNet, the Caffe reimplementation is used which is
slightly different from the original architecture (pooling and normalization layers are swapped). We
use a fork of MatConvNet framework1 for all experiments, except for fine-tuning of AlexNet and
VGG-16, for which we use a fork of Caffe 2.

We begin our experiments by comparing the proposed perforation masks in a common scenario used
in the papers: acceleration of a single AlexNet layer. Then, we compare whole-network acceleration
with the best-performing masks to baselines such as decrease of input images size and increase of
strides. This requires retraining of the network, so we use a smaller NIN network. Finally, we show
that perforation scales to large network by presenting the whole-network acceleration results for
AlexNet and VGG-16.

4.1 SINGLE LAYER RESULTS

We explore the speedup-error trade-off of the proposed perforation masks on the two bottleneck
convolutional layers of AlexNet, conv2 and conv3, which consume 23.6% and 24.3% of the eval-
uation time on GPU, respectively. Conv2 is followed by a max-pooling, while conv3 is followed
by another convolutional layer, meaning that the pooling structure perforation mask is only applica-
ble to conv2. Figure 4 presents the results of this experiment. We see that impact perforation mask
works best for conv2 layer, while grid mask performs very well for conv3. The standard deviation of
results is small for all the perforation masks, with the exception of uniform mask for high speedups
(where it is outperformed by the grid mask). The results are similar for both CPU and GPU, showing
applicability of our method for both platforms. Note that if we consider the best perforation mask
for each speedup value, then we see that conv2 layer is easier to accelerate than conv3 layer. We
observe this pattern in other experiments: layers immediately followed by a max-pooling are easier

1https://github.com/mfigurnov/perforated-cnn-matconvnet
2https://github.com/mfigurnov/perforated-cnn-caffe

6

https://github.com/mfigurnov/perforated-cnn-matconvnet
https://github.com/mfigurnov/perforated-cnn-caffe

Workshop track - ICLR 2016

CPU speedup (times)
1 2 3 4 5 6

T
op

-5
 e

rr
or

 in
cr

ea
se

 (
%

)

0

2

4

6

8

10
Uniform
Grid
Pooling structure
Impact

(a) conv2, CPU

GPU speedup (times)
1 2 3 4 5 6

T
op

-5
 e

rr
or

 in
cr

ea
se

 (
%

)

0

2

4

6

8

10

(b) conv2, GPU

CPU speedup (times)
1 2 3 4 5 6

T
op

-5
 e

rr
or

 in
cr

ea
se

 (
%

)

0

2

4

6

8

10
Uniform
Grid
Impact

(c) conv3, CPU

GPU speedup (times)
1 2 3 4 5 6

T
op

-5
 e

rr
or

 in
cr

ea
se

 (
%

)

0

2

4

6

8

10

(d) conv3, GPU

Figure 4: Acceleration of a single layer of AlexNet for different mask types without fine-tuning.
Values are averaged over 5 runs.

Method CPU time ↓ Error ↑ (%)
Impact mask, r = 3

4 , 3× 3 filters 9.1××× +1
Impact mask, r = 5

6 5.3× +1.4
Impact mask, r = 4

5 4.2× +0.9
(Lebedev & Lempitsky, 2015) 10××× top-1 +1.1
(Lebedev & Lempitsky, 2015) 5× top-1 +0.4

(Jaderberg et al., 2014) 6.6× +1
(Lebedev et al., 2015) 4.5× +1
(Denton et al., 2014) 2.7× +1

Table 2: Acceleration of AlexNet’s conv2. Top: our results after fine-tuning, bottom: previously
published results. Result of Jaderberg et al. (2014) provided by Lebedev et al. (2015). The exper-
iment with reduced spatial size of the kernel (3 × 3, instead of 5 × 5) suggests that perforation is
complimentary to the “brain damage” method of Lebedev & Lempitsky (2015) which also reduces
the spatial support of the kernel.

to accelerate than the layers followed by a convolutional layer. Additional results for NIN network
are presented in appendix B.

We compare our results to the previously published results on acceleration of AlexNet’s conv2 in
table 2. Measured by a commonly used metric, CPU acceleration achieved for the 1% top-5 er-
ror increase, our method performs slightly worse than the state-of-the-art. However, perforation is
complementary to those methods, since they are based on modifications of the filter kernel, while
perforation exploits spatial redundancy of the output values. Motivated by the results of Lebedev
& Lempitsky (2015) that the spatial support of conv2 convolutional kernel may be reduced with a
small error increase, we reduce the kernel’s spatial size from 5× 5 to 3× 3 and apply impact perfo-
ration mask. This leads to state-of-the-art 9.1× acceleration for 1% top-5 error increase. Using the
more sophisticated method of Lebedev & Lempitsky (2015) to reduce the spatial support may lead
to further improvements.

4.2 BASELINES

We compare PerforatedCNNs with the baseline methods of decreasing the computational cost of
CNNs by exploiting the spatial redundancy. Unlike perforation, these methods decrease the size of
the activations (intermediate outputs) of the CNN. For a network with fully-connected (FC) layers,
this would change the number of CNN parameters in the first FC layer, effectively modifying the
architecture. To avoid this, we use NIN network for CIFAR-10 dataset, which replaces FC layers
with global average pooling (mean-pooling over all spatial positions in the last layer). Additionally,
this network is fairly small, which allows to retrain quickly.

We consider the following baseline methods. Resize. The input image is downscaled with the
aspect ratio preserved. Stride. The strides of the convolutional layers are increased, meaning that

7

Workshop track - ICLR 2016

CPU speedup (times)
1 2 3 4

T
op

-1
 e

rr
or

 (
%

)

10

20

30

40

50

60
Resize
Stride
Frac. stride
Grid
Impact

(a) Original network

CPU speedup (times)
1 2 3 4

T
op

-1
 e

rr
or

 (
%

)

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

(b) After retraining

Figure 5: Comparison of whole network perforation (grid and impact mask) with baseline strategies
(resizing the input images, increasing the strides of convolutional layers) for acceleration of CIFAR-
10 NIN network.

the convolutions are evaluated on a regular grid. The missing values are simply omitted from the
output, decreasing the output size. For example, for stride value 2, every second output value in both
horizontal and vertical direction is omitted, making the output four times smaller. Fractional stride.
Stride of the convolutional layer can only take integer values, which might not be flexible enough.
Motivated by fractional max-pooling Graham (2014a) and grid perforation mask, we introduce a
modification of strides which evaluates convolutions on a non-regular grid (with varying step size),
providing a more fine-grained control over the output size and speedup. We use grid perforation
mask generation scheme to choose the output positions to evaluate.

We compare these strategies to perforation of all the layers with the two types of masks which
performed best in the previous section: grid and impact. Note that “grid” is in fact equivalent to
fractional strides, but with missing values being interpolated.

All the methods, except resize, require a parameter value per convolutional layer, leading to a large
number of possible configurations. We use the original network to explore this space of config-
urations. For impact, we tune the perforation rates using the greedy algorithm. For stride, we
evaluate all possible combinations of parameters. For grid and fractional strides, for each layer
we consider the set of rates 1

3 ,
1
2 , . . . ,

8
9 ,

9
10 (for fractional strides this is the fraction of convolu-

tions calculated), and evaluate all possible combinations of such rates. Then, for each method, we
build Pareto-optimal front of parameters which produced smallest error increase for a given CPU
speedup. Finally, we train the network weights “from scratch” (starting from random initialization)
for the Pareto-optimal configurations with accelerations close to 2×, 3×, 4×. For fractional strides,
we had to use fine-tuning, since it performed significantly better than training from scratch.

The results are displayed on fig. 5. Impact perforation is the best strategy both for the original
network and after training the network from scratch, with grid perforation being slightly worse.
Interestingly, in the case of training the network from scratch, increasing the strides is a very com-
petitive strategy. Convolutional strides are used in many CNNs, such as AlexNet, to decrease the
computational cost of training and evaluation. Our results show that if changing the intermediate
representations size and training the network from scratch is an option, then it is indeed a good
strategy. Fractional strides perform poorly compared to strides, even though fractional strides is a
more general strategy. A possible reason is that fractional strides “downsample” the outputs of a
convolutional layer non-uniformly, making such outputs hard to process by the next convolutional
layer.

4.3 WHOLE NETWORK RESULTS

We evaluate the effect of perforation of all the convolutional layers of three CNN models. To tune
the perforation rates, we employ the greedy method described in section 3.3. We use twenty perfo-
ration rates: 1

3 ,
1
2 ,

2
3 , . . . ,

18
19 ,

19
20 . For NIN and AlexNet we use the impact perforation mask, and for

VGG-16 the grid perforation mask. We find that using the grid mask for VGG-16 greatly simplifies
fine-tuning, and that using more than one type of perforation masks does not improve the results. Ob-
taining the perforation rates configuration takes about one day for the largest network we considered,

8

Workshop track - ICLR 2016

Network Device Speedup Mult. ↓ Mem. ↓ Error ↑ (%) Tuned error ↑ (%)

NIN

CPU
2.2× 2.5× 2.0× +1.5 +0.4
3.1× 4.4× 3.5× +5.5 +1.9
4.2× 6.6× 4.4× +8.3 +2.9

GPU
2.1× 3.6× 3.3× +4.5 +1.6
3.0× 10.1× 5.7× +18.2 +5.6
3.5× 19.1× 9.2× +37.4 +12.4

AlexNet

CPU
2.0× 2.1× 1.8× +10.7 +2.3
3.0× 3.5× 2.6× +28.0 +6.1
3.6× 4.4× 2.9× +60.7 +9.9

GPU
2.0× 2.0× 1.7× +8.5 +2.0
3.0× 2.6× 2.0× +16.4 +3.2
4.1× 3.4× 2.4× +28.1 +6.2

VGG-16

CPU
2.0× 1.8× 1.5× +15.6 +1.1
3.0× 2.9× 1.8× +54.3 +3.7
4.0× 4.0× 2.5× +71.6 +5.5

GPU
2.0× 1.9× 1.7× +23.1 +2.5
3.0× 2.8× 2.4× +65.0 +6.8
4.0× 4.7× 3.4× +76.5 +7.3

Table 3: Full network acceleration results. Arrows indicate increase or decrease of the metric. Mult.
is reduction of the number of multiplications in convolutional layers (theoretical speedup). Mem. is
reduction of memory required to store the network activations. Tuned error is the error after training
from scratch (NIN) or fine-tuning (AlexNet, VGG16) of the accelerated network’s weights.

VGG-16. In order to decrease the error of the accelerated network, we tune the network’s weights.
We do not observe any problems with backpropagation, such as exploding/vanishing gradients. The
results are presented in table 3. Perforation damages the network performance significantly, but
network weights tuning restores most of the accuracy. All the considered networks may be accel-
erated by a factor of two on both CPU and GPU, with under 2.6% increase of error. Theoretical
speedups (reduction of the number of multiplications) are usually close to the empirical ones. Ad-
ditionally, the memory required to store network activations is significantly reduced by storing only
the non-perforated output values.

The only paper we are aware of that accelerates whole VGG-16 model is (Zhang et al., 2015a),
achieving a 2.9× GPU speedup with +0.3% increase of error, which is superior to our results.
However, their method deepens the network, making network training harder and increasing the
memory required to store activations. Additionally, this result is achieved by a combination of a
matrix decomposition method exploiting output channels redundancy and a method of Jaderberg
et al. (2014) based on convolutional kernel spatial redundancy. Using just the second component,
they report +9.7% increase of error for 2.9× GPU acceleration, which is inferior to our results. As a
direction of future research, it would be interesting to combine the channel redundancy elimination
method with perforation.

5 CONCLUSION

We have presented PerforatedCNNs which exploit redundancy of intermediate representations of
modern CNNs to reduce the evaluation time and memory consumption. Perforation requires only a
minor modification of the convolution layer, and obtain speedups close to theoretical ones on both
CPU and GPU. Compared to increasing the strides of convolutions, PerforatedCNNs achieve lower
error, are more flexible and do not change the architecture of a CNN (number of parameters in the
fully-connected layers and size of the intermediate representations). Retaining the architecture al-
lows to easily plug in PerforatedCNNs into the existing computer vision pipelines and only perform
fine-tuning of the network, instead of complete retraining.

An interesting direction of future work is using several sets of perforation masks with different
running time for a single network (with the same parameters). This way, the same network can

9

Workshop track - ICLR 2016

be run with varying budget of time without reloading of the parameters. This might be useful, for
example, to handle peak loads in the datacenters. Such extension is not applicable to most of the
existing approaches to acceleration of CNNs, since they typically modify the network parameters.

In this work, we have proposed and analyzed several ways to select input-independent perforation
masks. Our experiments suggest that this choice is important to reduce the error introduced by per-
foration. In future, we plan to explore the connection between PerforatedCNNs and visual attention
by considering perforation masks that are conditioned on the network’s input, and can achieve higher
speedups by only processing the salient parts of the input. Unlike recent works on visual attention
(Mnih et al., 2014; Ba et al., 2015; Jaderberg et al., 2015) which consider rectangular crops of an
image, PerforatedCNNs can process non-rectangular and even disjoint salient parts of the image by
choosing appropriate perforation masks in the convolutional layers.

ACKNOWLEDGMENTS

We would like to thank Alexander Kirillov and Dmitry Kropotov for helpful discussions, and Yandex
for providing computational resources for this project. This work was supported by RFBR project
No. 15-31-20596 (mol-a-ved) and by Microsoft: Moscow State University Joint Research Center
(RPD 1053945).

REFERENCES

Ba, Jimmy, Salakhutdinov, Ruslan R, Grosse, Roger B, and Frey, Brendan J. Learning wake-sleep recurrent
attention models. In Advances in Neural Information Processing Systems, pp. 2575–2583, 2015.

Chen, Tianqi. Matrix shadow library. https://github.com/dmlc/mshadow, 2015.

Chetlur, Sharan, Woolley, Cliff, Vandermersch, Philippe, Cohen, Jonathan, Tran, John, Catanzaro, Bryan, and
Shelhamer, Evan. cuDNN: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

Collins, Maxwell D. and Kohli, Pushmeet. Memory bounded deep convolutional networks. arXiv preprint
arXiv:1412.1442, 2014.

Courbariaux, Matthieu, Bengio, Yoshua, and David, Jean-Pierre. Low precision arithmetic for deep learning.
ICLR, 2015.

Denton, Emily L, Zaremba, Wojciech, Bruna, Joan, LeCun, Yann, and Fergus, Rob. Exploiting linear structure
within convolutional networks for efficient evaluation. NIPS 27, pp. 1269–1277, 2014.

Graham, Benjamin. Fractional max-pooling. arXiv preprint arXiv:1412.6071, 2014a.

Graham, Benjamin. Spatially-sparse convolutional neural networks. arXiv preprint arXiv:1409.6070, 2014b.

Gupta, Suyog, Agrawal, Ankur, Gopalakrishnan, Kailash, and Narayanan, Pritish. Deep learning with limited
numerical precision. ICML, 2015.

He, Kaiming and Sun, Jian. Convolutional neural networks at constrained time cost. CVPR, 2015.

Jaderberg, Max, Vedaldi, Andrea, and Zisserman, Andrew. Speeding up convolutional neural networks with
low rank expansions. BMVC, 2014.

Jaderberg, Max, Simonyan, Karen, Zisserman, Andrew, et al. Spatial transformer networks. In Advances in
Neural Information Processing Systems, pp. 2008–2016, 2015.

Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev, Sergey, Long, Jonathan, Girshick, Ross, Guadarrama,
Sergio, and Darrell, Trevor. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of
the ACM International Conference on Multimedia, pp. 675–678. ACM, 2014.

Jin, Jonghoon, Dundar, Aysegul, and Culurciello, Eugenio. Flattened convolutional neural networks for feed-
forward acceleration. ICLR, 2015.

Krizhevsky, Alex. cuda–convnet2. https://github.com/akrizhevsky/cuda-convnet2/, 2014.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convolutional
neural networks. NIPS 25, pp. 1097–1105, 2012.

10

https://github.com/dmlc/mshadow
https://github.com/akrizhevsky/cuda-convnet2/

Workshop track - ICLR 2016

Lebedev, Vadim and Lempitsky, Victor. Fast convnets using group-wise brain damage. arXiv preprint
arXiv:1506.02515, 2015.

Lebedev, Vadim, Ganin, Yaroslav, Rakhuba, Maksim, Oseledets, Ivan, and Lempitsky, Victor. Speeding-up
convolutional neural networks using fine-tuned CP-decomposition. ICLR, 2015.

Lin, Min, Chen, Qiang, and Yan, Shuicheng. Network in network. ICLR, 2014.

Misailovic, Sasa, Sidiroglou, Stelios, Hoffmann, Henry, and Rinard, Martin. Quality of service profiling. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1, pp. 25–
34. ACM, 2010.

Misailovic, Sasa, Roy, Daniel M, and Rinard, Martin C. Probabilistically accurate program transformations. In
Static Analysis, pp. 316–333. Springer, 2011.

Mnih, Volodymyr, Heess, Nicolas, Graves, Alex, et al. Recurrent models of visual attention. In Advances in
Neural Information Processing Systems, pp. 2204–2212, 2014.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel, Bellemare, Marc G,
Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Novikov, Alexander, Podoprikhin, Dmitry, Osokin, Anton, and Vetrov, Dmitry. Tensorizing neural networks.
NIPS, 2015.

Ovtcharov, Kalin, Ruwase, Olatunji, Kim, Joo-Young, Fowers, Jeremy, Strauss, Karin, and Chung, Eric S. Ac-
celerating deep convolutional neural networks using specialized hardware. Microsoft Research Whitepaper,
2015.

Romero, Adriana, Ballas, Nicolas, Kahou, Samira Ebrahimi, Chassang, Antoine, Gatta, Carlo, and Bengio,
Yoshua. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Samadi, Mehrzad, Jamshidi, Davoud Anoushe, Lee, Janghaeng, and Mahlke, Scott. Paraprox: Pattern-based
approximation for data parallel applications. In Proceedings of the 19th international conference on Archi-
tectural support for programming languages and operating systems, pp. 35–50. ACM, 2014.

Schroff, Florian, Kalenichenko, Dmitry, and Philbin, James. Facenet: A unified embedding for face recognition
and clustering. CVPR, 2015.

Sidiroglou-Douskos, Stelios, Misailovic, Sasa, Hoffmann, Henry, and Rinard, Martin. Managing performance
vs. accuracy trade-offs with loop perforation. Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering, pp. 124–134, 2011.

Simonyan, Karen and Zisserman, Andrew. Very deep convolutional networks for large-scale image recognition.
ICLR, 2015.

Vedaldi, Andrea and Lenc, Karel. MatConvNet – convolutional neural networks for MATLAB. arXiv preprint
arXiv:1412.4564, 2014.

Yang, Zichao, Moczulski, Marcin, Denil, Misha, de Freitas, Nando, Smola, Alexander J., Song, Le, and Wang,
Ziyu. Deep fried convnets. ICCV, 2015.

Zhang, Xiangyu, Zou, Jianhua, He, Kaiming, and Sun, Jian. Accelerating very deep convolutional networks
for classification and detection. arXiv preprint arXiv:1505.06798, 2015a.

Zhang, Xiangyu, Zou, Jianhua, Ming, Xiang, He, Kaiming, and Sun, Jian. Efficient and accurate approxima-
tions of nonlinear convolutional networks. CVPR, 2015b.

Zheng, Shuai, Jayasumana, Sadeep, Romera-Paredes, Bernardino, Vineet, Vibhav, Su, Zhizhong, Du, Dalong,
Huang, Chang, and Torr, Philip H. S. Conditional random fields as recurrent neural networks. ICCV, 2015.

11

Workshop track - ICLR 2016

Theoretical speedup (times)
1 2 3 4 5 6

T
op

-5
 e

rr
or

 in
cr

ea
se

 (
%

)

0

2

4

6

8

10
Uniform
Grid
Pooling structure
Impact

(a) conv2, nearest neighbor

Theoretical speedup (times)
1 2 3 4 5 6

T
op

-5
 e

rr
or

 in
cr

ea
se

 (
%

)

0

2

4

6

8

10

(b) conv2, replace with zero

Theoretical speedup (times)
1 2 3 4 5 6

T
op

-5
 e

rr
or

 in
cr

ea
se

 (
%

)

0

2

4

6

8

10

(c) conv2, barycentric

Theoretical speedup (times)
1 2 3 4 5 6

T
op

-5
 e

rr
or

 in
cr

ea
se

 (
%

)

0

2

4

6

8

10
Uniform
Grid
Impact

(d) conv3, nearest neighbor

Theoretical speedup (times)
1 2 3 4 5 6

T
op

-5
 e

rr
or

 in
cr

ea
se

 (
%

)

0

2

4

6

8

10

(e) conv3, replace with zero

Theoretical speedup (times)
1 2 3 4 5 6

T
op

-5
 e

rr
or

 in
cr

ea
se

 (
%

)

0

2

4

6

8

10

(f) conv3, barycentric

Figure 6: Comparison of with different interpolation strategies for perforated pixels. AlexNet net-
work

A INTERPOLATION STRATEGY

In the paper, perforated values are interpolated using the value of the nearest neighbor. We compare
this strategy to two alternatives: replacing with a constant zero and barycentric interpolation. For the
second option, we perform Delaunay triangulation of the non-perforated points set. If a perforated
point is in the interior of a triangle, then it is interpolated by a weighted sum of the values in the
three vertices, with barycentric coordinates used as weights. Exterior perforated points are simply
assigned the value of the nearest neighbor.

The results of comparison on AlexNet are presented on figure 6. We measure theoretical speedup
(reduction of number of multiplications) to ignore the differences in implementations of the inter-
polation schemes. Replacing the missing values with zero is clearly not sufficient for successful
acceleration of conv3 layer. Compared to nearest neighbor, barycentric interpolation slightly im-
proves results for pooling structure mask in conv2 and grid interpolation mask in conv3 layer, but
performs similarly or worse in other cases. Overall, nearest neighbor interpolation provides a good
trade-off between complexity of the method (number of memory accesses per interpolated value)
and the achieved error.

B SINGLE LAYER RESULTS FOR NIN NETWORK

In section 4.1, we have considered single-layer acceleration of conv2 and conv3 layers of AlexNet.
Here we present additional results for acceleration of the three non-1 × 1 convolutional layers of
NIN network. Each convolutional layer is followed by two 1 × 1 convolutions (which we treat as
a part of non-linearity) and a pooling operation. Therefore, pooling structure mask is applicable to
all layers. The results are presented on figure 7. We observe a similar pattern to the one observed in
AlexNet conv2 and conv3 layers: grid and impact perforation masks perform best.

C EMPIRICAL AND THEORETICAL SPEEDUPS

As noted in (Denton et al., 2014), achieving empirical speedups that are close to the theoretical ones
(reduction of the number of multiplications) is quite complicated. We find that our method generally

12

Workshop track - ICLR 2016

CPU speedup (times)
1 2 3 4

T
op

-1
 e

rr
or

 in
cr

ea
se

 (
%

)

0

1

2

3

4

5

6 Uniform
Grid
Pooling structure
Impact

(a) conv1, CPU

GPU speedup (times)
1 2 3 4

T
op

-1
 e

rr
or

 in
cr

ea
se

 (
%

)

0

1

2

3

4

5

6

(b) conv1, GPU

CPU speedup (times)
1 2 3 4

T
op

-1
 e

rr
or

 in
cr

ea
se

 (
%

)

0

1

2

3

4

5

6

(c) conv2, CPU

GPU speedup (times)
1 2 3 4

T
op

-1
 e

rr
or

 in
cr

ea
se

 (
%

)

0

1

2

3

4

5

6

(d) conv2, GPU

CPU speedup (times)
1 2 3 4

T
op

-1
 e

rr
or

 in
cr

ea
se

 (
%

)

0

1

2

3

4

5

6

(e) conv3, CPU

GPU speedup (times)
1 2 3 4

T
op

-1
 e

rr
or

 in
cr

ea
se

 (
%

)

0

1

2

3

4

5

6

(f) conv3, GPU

Figure 7: Acceleration of a single layer of CIFAR-10 NIN network for different mask types without
fine-tuning. Values are averaged over 5 runs.

NIN AlexNet VGG-16
CPU GPU CPU GPU CPU GPU

conv1 4.4× 2.7× 3.2× 2.7× 2.5× 2.2×
conv2 3.8× 3.5× 3.3× 3.0× 2.6× 2.1×
conv3 3.7× 3.3× 4.1× 3.7× 3.2× 2.5×
conv4 - - 3.9× 3.5× 3.1× 2.6×
conv5 - - 3.6× 3.4× 3.5× 2.8×
conv6 - - - - 3.5× 2.9×
conv7 - - - - 3.4× 2.9×
conv8 - - - - 3.6× 3.6×
conv9 - - - - 3.6× 3.7×

conv10 - - - - 3.6× 3.7×
conv11 - - - - 3.7× 3.6×
conv12 - - - - 3.7× 3.6×
conv13 - - - - 3.8× 3.6×

Table 4: Per-layer empirical speedups for uniform perforation mask with r = 0.75. Theoretical
speedup is 4× in all cases. Results are averaged over 5 runs

allows to do that, see table 4. For example, for theoretical speedup 4×, AlexNet conv2 empirical
acceleration is 3.8× for CPU and 3.5× for GPU. The results are below the theoretical speedup in
almost all cases due to the additional memory accesses required. The perforation mask type does
not seem to affect the speedup. The difference between the empirical speedups on CPU and GPU
highlights that it is important to choose per-layer perforation rates for the target device.

D IMPLEMENTATION DETAILS

Convolutional layer is typically applied to each image of the mini-batch sequentially. Fig. 8 shows
the number of multiplications per second achieved by a quad-core Intel CPU and NVidia Geforce

13

Workshop track - ICLR 2016

Perforation rate
0 0.2 0.4 0.6

M
ul

tip
lic

at
io

ns
 p

er
 s

ec
on

d

#1010

5

5.5

6

6.5

7

7.5

8

8.5

9

(a) CPU
Perforation rate

0 0.2 0.4 0.6 0.8

M
ul

tip
lic

at
io

ns
 p

er
 s

ec
on

d

#1011

1

2

3

4

5

6

(b) GPU

Figure 8: Efficiency of matrix-by-matrix multiplication (measured in multiplications per second) of
the data matrix M by the kernel matrix K, for different perforation rates. AlexNet, conv2 layer

GTX 980 GPU on the bottleneck operation of evaluation of the convolutional layer: matrix multi-
plication of the data matrix M by the kernel matrix K. We see that increasing the perforation rate
reduces the efficiency of the operation, especially for GPU, which is as expected: GPUs work best
for large inputs. Thus, for a fair comparison with the non-accelerated implementation, we stack
b 1

1−r c images of the mini-batch, to match the size of the original data matrix. This requires a tensor
transpose operation after the matrix multiplication, but we find that this operation is comparatively
fast. The same idea is used in MShadow library (Chen, 2015). We also perform stacking of images
for the baseline methods (resize, stride and fractional stride).

E PAPER REVISIONS

v1. Initial version.

v2. ICLR 2016 submission.

v3. Updated ICLR 2016 submission. Released the source code, expanded the conclusion, added new
appendix B, and performed other small modifications according to the feedback from the reviewers.

v4. ICLR 2016 workshop style file.

14

	Introduction
	Related Work
	PerforatedCNNs
	Perforated convolutional layer
	Perforation masks
	Choosing the perforation configurations

	Experiments
	Single layer results
	Baselines
	Whole network results

	Conclusion
	Interpolation strategy
	Single layer results for NIN network
	Empirical and theoretical speedups
	Implementation details
	Paper revisions

