
Under review as a conference paper at ICLR 2024

LEARNING STRUCTURED SPARSE NEURAL NET-
WORKS USING GROUP ENVELOPE REGULARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an efficient method to learn both unstructured and structured sparse
neural networks during training, utilizing a novel generalization of the sparse en-
velope function (SEF) used as a regularizer, termed weighted group sparse enve-
lope function (WGSEF). The WGSEF acts as a neuron group selector, which is
leveraged to induce structured sparsity. The method ensures a hardware-friendly
structured sparsity of a deep neural network (DNN) to efficiently accelerate the
DNN’s evaluation. Notably, the method is adaptable, letting any hardware spec-
ify group definitions, such as filters, channels, filter shapes, layer depths, a single
parameter (unstructured), etc. Owing to the WGSEF’s properties, the proposed
method allows to a pre-define sparsity level that would be achieved at the training
convergence, while maintaining negligible network accuracy degradation or even
improvement in the case of redundant parameters. We introduce an efficient tech-
nique to calculate the exact value of the WGSEF along with its proximal operator
in a worst-case complexity of O(n), where n is the total number of group vari-
ables. In addition, we propose a proximal-gradient-based optimization method to
train the model, that is, the non-convex minimization of the sum of the neural net-
work loss and the WGSEF. Finally, we conduct an experiment and illustrate the
efficiency of our proposed technique in terms of the completion ratio, accuracy,
and inference latency.

1 INTRODUCTION

In the last decade, far-reaching progress has been achieved in the study of neural networks, as these
achieve the best performance in many machine learning tasks. Nonetheless, modern networks are
becoming gradually larger with an enormous number of parameters with the cost of rising storage,
memory footprint, computing resources and energy consumption Deng et al. (2020); Cheng et al.
(2017). Notwithstanding, it has been shown in recent studies Han et al. (2015a); Ullrich et al. (2017);
Molchanov et al. (2017) that the latest neural networks tend to be highly over-parametrized in the
sense that a relatively large amount of parameters are redundant and could have been pruned (or,
nullified) without degrading the network precision.

Over-parametrization has two notable problematic effects: first, it can very easily results in overfit-
ting Allen-Zhu et al. (2019), as well as memorizing random patterns in the data Zhang et al. (2021),
leading to inferior generalization. Second, it becomes quite challenging to deploy these networks to
low hardware edge devices due to, e.g., high computational cost results in a large consumption of
power and a long inference time, and a substantial redundant memory space for storing is needed
(which obviously would never be available on edge devices). This has led to the search for sparse
efficient and effective neural network architectures which has become increasingly a front challenge.

The most common way to tackle the first issue, namely, avoiding overfitting for better generalization
is, to use properly suitable regularization, while the accepted approach to address the second problem
is to apply post-training model compression techniques. However, the sparsification technique, i.e.,
regularizing the number of parameters during training, would result in both model compression and
overfit-regularization.

Quite recently, the idea of structured sparsification was used in Wen et al. (2016b); Bui et al. (2021)
to learn sparse neural networks that leverage tensor arithmetic in dedicated neural processing units

1

Under review as a conference paper at ICLR 2024

(NPUs). In a nutshell, structured sparsity learning amounts to inducing sparsity onto structured com-
ponents (e.g., channels, filters, or layers) in the neural network during the optimization procedure.
This leads, in practice, to both low latency and lower power consumption, which can not be obtained
by deploying unstructured sparse models on such modern hardware.

In the case of the unstructured sparsity-inducing, the most natural regularizer would be the so-
called ℓ0-pseudo-norm function that counts the number of nonzero elements in the input vector, i.e.,
∥z∥0 ≜ | {i : zi ̸= 0} |. These sparse regularized minimization/ training problems are of the form
minz∈Rn {f(z) + λ∥z∥0}, or, alternatively, one can explicitly constrain the number of parameters
used for regression and solve minz∈Rn {f(z) : ∥z∥0 ≤ k} . Unfortunately, the ℓ0-norm is a difficult
function to handle being non-convex and even non-continuous. Indeed, these types of regression
models are known to be NP-hard problems in general Natarajan (1995). The only known algorithm
guaranteed to output the global optimal solution is essentially a brute-force search over all possi-
ble subsets components of the vector z. In practice, due to this expensive computational cost, the
global optimal solution can not be computed in a reasonable time, even for a very small number of
parameters, precluding its use in large neural networks.

As a remedy for the inherent problem above, Beck & Refael (2022) proposed a highly efficient
tractable tight convex relaxation technique, termed sparse envelope function (SEF), for the sum
of both ℓ0 and ℓ2 norms. Specifically, Beck & Refael (2022) suggested using this relaxation as a
regularizer term for a convex loss objective, particularly for a linear regression model, to achieve
feature selection while explicitly limiting the number of features to be a fixed parameter k. It was
also shown that the performance of the regularization method in both reconstruction of a sparse
noisy signal and recovering its support, surpass the performance of state-of-the-art techniques, such
as, the Elastic-net Zou & Hastie (2005), k-support norm Argyriou et al. (2012), etc. Also, it was
shown that the computational complexity of the SEF approach is linear in the number of parameters,
while all others requires at least quadratic in the number of features, and thus very attractive.

With the goal of enabling structured sparsification learning that can be customized for different NPU
devices, in this papaer we propose a novel generalized notion of the SEF regularizer to handle group
structured sparsification in neural network training. Our new generalized regularization term se-
lects the most essential k ≤ m predefined groups of neurons (which could be convolutional filters,
channels, individual neurons, or any other user-defined/NPU definition) and prunes all others, while
maintaining minimal network accuracy degradation. We define the new regularization term math-
ematically, propose an efficient method to calculate its value and proximal operator, and suggest a
new algorithm to solve the complete optimization problem involving the non-convex term, which is
the composition of the loss function and the neural network output.

Related work. The topic of regularization-based pruning received a lot of attention in recent years.
Generally speaking, these studies can be divided into unstructured and structured pruning. Most
prominent regularizers are the convex ℓ1 and ℓ2 norms Liu et al. (2017); Ye et al. (2018); Han
et al. (2015a;b), as well as the non-convex ℓ0 “norm” Louizos et al. (2017); Han et al. (2015c),
where Bayesian methods and additional regularization terms for practicality, were used to deal with
the non-convexity of the ℓ0 norm. Additional works of Donoho & Elad (2003); com (2021-2023)
suggest methods for norm l0 relaxation by employing l1 minimization in general (nonorthogonal)
dictionaries and leading to an error surface with fewer local minima than the l0 norm. The moti-
vation for these regularizers is their “sparsity-inducing” property which can be harnessed to learn
sparse neural networks. While these fundamental papers significantly reduce the storage needed to
store the networks on hardware, There were no benefits in reducing the inference latency time or
either in cutting down power consumption. That is, the sparse neural networks, learned by the afore-
mentioned methods, were not adapted to the structure of the hardware they aimed to run on. This
observation led researchers to propose regularization-based structured pruning in favor of accelerat-
ing the running time. For example, Lebedev & Lempitsky (2015); Wen et al. (2016a); Yuan & Lin
(2006) proposed the use of the Group Lasso regularization technique to learn sparse structures, and
Scardapane et al. (2017) uses Sparse Group Lasso, summing Group Lasso with the standard Lasso
penalty. Other convex regularizers include the Combined Group and Exclusive Sparsity (CGES)
Yoon & Hwang (2017), which extends Exclusive Lasso (in essence, squared ℓ1 over groups) Zhou
et al. (2010) using Group Lasso. Recently, Bui et al. (2021) suggested a family of nonconvex regu-
larizers that blend Group Lasso with nonconvex terms (ℓ0, ℓ1− ℓ2 Lou et al. (2015), and SCAD Fan
& Li (2001)). Since Bui et al. (2021) introduces non-convexity term into the penalty, it also requires

2

Under review as a conference paper at ICLR 2024

an appropriate optimization scheme, for which the authors propose an Augmented Lagrangian type
method. However, this optimization algorithm has an inner optimization loop with a high computa-
tional cost. Moreover, their extensive experiments do not show an accuracy or sparsity advantages
over convex penalties, suggesting that it might be still desirable to use a convex regularizer. Other
methods, such as Chen et al. (2021); Li et al. (2019), focus on a group structure that captures the
relations between parameters, neurons, and layers, in order to construct groups that can maximize
network compression while minimizing accuracy loss. However, these methods still apply Group
Lasso regularization. Specifically in Chen et al. (2021), the authors introduce the concept of Zero-
Invariant Groups (ZIGs), which includes all input and output connections between layers. In the
context of CNNs, it extends the channel-wise grouping Wen et al. (2016b) to include corresponding
batch normalization parameters. By using this group structure, entire blocks of parameters can be
removed while keeping dimensions aligned between layers, and ultimately allowing network com-
pression. Moreover, their optimization scheme utilizes a two-phase algorithm to include a half-space
projection step, which they name HSPG.

Finally, we mention that there exist other techniques for neural net compression, such as, quantiza-
tion, low-rank decomposition, to name a few. In quantization, Courbariaux et al. (2016); Rastegari
et al. (2016); Gong et al. (2014), the precision of the weights is reduced, by representing weights
using a low number of bits (i.e., 8-bit) instead of higher one (i.e., 32-bit floating point values). The
low-rank decomposition approach Denton et al. (2014); Jaderberg et al. (2014); Lebedev et al. (2014)
is based on the observation that many weight matrices in neural networks are highly correlated and
can be well approximated by matrices with a lower rank. By decomposing a weight matrix into
lower-rank matrices, one can reduce the total number of parameters in the network.

Notation. We denote e for the vector of all ones. For a positive integer m, we denote [m] ≡
{1, 2, . . . ,m}. Let f : Rn → R, be an extended real-valued function. Then, the conjugate
function of f , denoted by f⋆ : Rn → R is defined as f⋆(y) = maxx∈Rn {⟨x, y⟩ − f(x)},
for any y ∈ Rn. The bi-conjugate function is defined as the conjugate of the conjugate func-
tion, i.e., f⋆⋆(x) = maxy∈Rn {⟨x, y⟩ − f⋆(y)}, for any x ∈ Rn. Finally, the proximal opera-
tor of a proper, lower semi-continuous convex function f : Rn → R is defined as proxf (v) =

argminx∈R
{
f(x) + 1

2∥x− v∥22
}

, for any v ∈ Rn.

2 PROBLEM FORMULATION

In this section, we formulate the problem and introduce the weighted group sparse envelop function.
Without loss of generality, our method is formulated on weights sparsity, but it can be directly
extended to neuron sparsity (i.e., both weights and bias). Let D be a dataset consisting of N i.i.d.
input output pairs {(x1, y1) , . . . , (xN , yN)}. The neural network training problem is formalized
as the following empirical risk minimization procedure on the parameters θ ∈ Θ of a hypothesis
f(·; θ),

argmin
θ∈Θ

1

N

N∑
i=1

L (f (xi, θ) , yi) , (1)

where L(·) corresponds to a loss function, e.g., cross-entropy loss for classification, mean-squared
error for regression, etc. Below, n ≜ |θ| denotes the number of parameters. The training of neural
networks is prone to overfitting, therefore, regularization is typically employed. Consider a regular-
ized empirical risk minimization procedure with a regularizer Ω(·) : Θ→ R on the parameters θ of
a hypothesis f(·; θ),

argmin
θ∈Θ

1

N

N∑
i=1

L (f (xi, θ) , yi) + λ · Ω(θ), (2)

where λ ∈ R. Weight-decay, known as the ℓ2-norm regularization, is the most common technique
for deep network training regularization (in this case, Ω(θ) = 1

2∥θ∥
2
2). It prevents overfitting and

improves generalization as it enforces the weights to decrease proportionally to their magnitudes.

The most natural way to force a predefined k-level sparsity would be to constraint the number of
non-zeros parameters (e.g., the model weights), which can be done by adding the constraint that

3

Under review as a conference paper at ICLR 2024

∥θ∥0 ≤ k, where k ≤ n is the required predefined level of sparsity. In this case, the training
problem is formalized as follows,

argmin
θ∈Θ

1

N

N∑
i=1

L (f (xi, θ) , yi) +
λ

2
∥θ∥22 s.t. ∥θ∥0 ≤ k. (3)

We refer to the above training problem as unstructured sparsity. In the case of structured sparsity,
the parameters θ are divided into predefined disjoint sub-groups. These subgroups could define
building blocks architecture of DNN’s, i.e., filters, channels, filter shapes, and layer depth. Consider
the following definition.
Definition 1 (Projection). Let s be a subset of indexes s ⊆ {1, 2, . . . , n} of size |s| ≤ n. Then, given
some vector θ ∈ Rn, the projection Ms : Rn → Rn preserves only the entries of θ that belong to
the set s. Furthermore, let As be an n × n diagonal matrix, where [As]ii = 1 if i ∈ s, and zero,
otherwise. Note that Ms(θ) = Asθ.
Example 1. Let n = 3, θ = (3, 6, 9)⊤, s = {1, 3} ⊆ [n], and accordingly |s| = 2, then Ms(θ) =
Ms

(
(3, 6, 9)⊤

)
= (3, 0, 9)⊤, with [As]11 = [As]33 = 1, and zero otherwise.

Following the above definition, let m ≤ n subsets s1, s2, . . . , sm be a given partition of [n], namely,
si ∩ sj = ∅, for all i ̸= j, and

⋃m
i=1 si = [n]. Without loss of generality, we assume that n%m = 0;

otherwise, the groups would have different coordinates. Every group is associated with some weight
dj ∈ R++, where j ∈ [m], e.g., dj = 1

|sj | , namely, we normalize by the group size. For simplicity
of notation, let θsi = Msi(θ), for i = 1, 2, . . . ,m. Then, our structured training problem is,

argmin
θ∈Θ

1

N

N∑
i=1

L (f (xi, θ) , yi) +
λ

2

m∑
j=1

dj∥θsj∥22 (4)

s.t.
∥∥∥θs1∥22, ∥θs2∥22, . . . , ∥θsm∥22∥∥0 ≤ k.

To wit, we constrain the number of groups which has at least one non-zero coordinate, to be at most
k. Let Ck denote the set of all k sparse groups, i.e.,

Ck ≜
{
θ :
∥∥∥θs1∥2, ∥θs2∥2 . . . , ∥θsm∥2∥∥0 ≤ k

}
, (5)

and define δCk
as the following extended real-valued function,

δCk
(Θ) ≜

{
0,

∥∥∥Θs1∥2, ∥Θs2∥2 . . . , ∥Θsm∥2
∥∥
0
≤ k,

∞, else.
(6)

Then, the optimization problem in equation 4 can be reformulated as,

argmin
θ∈Θ

1

N

N∑
i=1

L (f (xi, θ) , yi) + λ · gsk(θ), (7)

where gsk(θ) ≜ 1
2

∑m
j=1 dj∥θsj∥22 + δCk

(Θ). Equivalently, gsk(θ) can be rewritten as gsk(θ) ≜
1
2

∑n
i=1 di · θ2i + δCk

(Θ), where di = dj for every i ∈ sj .

The ℓ0-norm that appears in 7, is a difficult function to handle being nonconvex and even non-
continuous, making the problem an untraceable combinatorial NP hard problem Natarajan (1995).
Following Beck & Refael (2022), one approach to deal with this inherent difficulty is to consider
the best convex estimator of gsk(·). The later is its biconjgate function, namely, GSk(θ) = gs⋆⋆k (θ),
which we refer to as the weighted group sparse envelope function (WGSEF).
Remark 1. Consider the case m = n, namely, every subset si, i ∈ [m] is a singleton and ∀j ∈
[m], dj = 1. Here, gsk(θ) = sk(θ), where sk(θ) =

1
2∥θ∥

2
2 if ∥θ∥0 ≤ k and sk(θ) = ∞, otherwise.

Accordingly, in this case, GSk(θ) = Sk(θ) = s⋆⋆k (θ), and s⋆⋆k (θ) is exactly the classical SEF,
namely, Sk(·). Therefore, gsk(·) is indeed a new generalization of SEF to handle group sparsity.

Thus, the path taken in this paper is to consider the following relaxation training/learning problem,

argmin
θ∈Θ

1

N

N∑
i=1

L (f (xi, θ) , yi) + GSk(θ). (8)

In the following section, we develop an efficient algorithm to calculate the value and the prox-
operator Beck (2017) of WGSEF; these will play an essential ingredient when solving (8).

4

Under review as a conference paper at ICLR 2024

3 TIGHT CONVEX RELAXATION

Let us start by introducing some notation. For any θ ∈ Rn and m subgroups of indexes
s1, s2, . . . , sm ∈ [n], we denote by M⟨si⟩(θ) the corresponding subgroup of coordinates in θ with
the ith largest ℓ2-norm, i.e.,∥∥M⟨s1⟩(θ)

∥∥
2
≥
∥∥M⟨s2⟩(θ)

∥∥
2
≥ . . . ≥

∥∥M⟨sm⟩(θ)
∥∥
2
, ∀i ̸= j ∈ [m].

We next show that the conjugate of the k group sparse envelopes is the k weighted group hard
thresholding function. In the sequel, we let D be the n × n diagonal positive-definite weights
matrix, such that Di,i =

√
di,∀i ∈ sj , and j ∈ [m].

Lemma 3.1 (The k weighted group sparse envelop conjugate). Let subsets s1, s2, . . . , sm be a set
of m ≤ n disjoint indexes that partition [n]. Then, for any θ̃ ∈ Rn,

gs⋆k(θ̃) =
1

2

k∑
j=1

1

dj

∥∥∥M⟨sj⟩(θ̃)
∥∥∥2
2
. (9)

Next, we obtain the bi-conjugate function of the k weighted group sparse envelope.
Lemma 3.2 (The variational bi-conjugate k weighted group sparse envelop). Let s1, s2, . . . , sm be
a set of m ≤ n disjoint subsets that partition [n]. Then, for any θ ∈ Rn, the bi-conjugate of the k
group sparse envelop is given by

GSk(θ) =
1

2
min
u∈Bk

m∑
j=1

djϕ
(
Asjθ, uj

) , (10)

where

ϕ
(
Asjθ, uj

)
≜

θ⊤Asj

θ

uj
, uj > 0,

0, uj = 0 ∩Asjθ = 0,

∞ else.

(11)

The following is a straightforward corollary of Lemma 3.2.
Corollary 3.2.1. The following holds:

GSk(θ) = S((
√
d1∥As1θ∥2,

√
d2∥As2θ∥2, . . . ,

√
dm∥Asmθ∥2)⊤), (12)

where S(θ) ≜ s⋆⋆k (θ) is the standard SEF.

The implication of the above corollary is that in order to calculate GSk(θ) we only need to apply an
algorithm that calculates the SEF at (

√
d1∥As1θ∥2,

√
d2∥As2θ∥2, . . . ,

√
dm∥Asmθ∥2)⊤.

Remark 2. Noting ∥
√

djAsjθ∥22 =
∑

i∈sj
djθ

2
i we observe that since sj is given, the number of op-

erations required to calculate ∥
√
djAsjθ∥22 is linear w.r.t. |sj |. Thus, the computational complexity

of calculating the vector (
√
d1∥As1θ∥2,

√
d2∥As2θ∥2, . . . ,

√
dm∥Asmθ∥2)⊤ is linear in n.

4 PROXIMAL MAPPING OF THE WGSEF

In this section, we will show how to efficiently compute the proximal operator of positive scalar
multiples of GSk. The ability to perform such an operation implies that it is possible to employ fast
proximal gradient methods to solve equation 8. We begin with the following lemma that shows that
the proximal operator can be determined in terms of the optimal solution of a convex problem that
resembles the optimization problem defined in Lemma equation 10 for computing GSk.
Lemma 4.1. Let λ > 0, t ∈ Rn, and s1, s2, . . . , sm be a set of m ≤ n disjoint subsets that partition
[n]. Then, v = proxλGSk

(t) is given by

j ∈ [m], Asjv =
ujAsj t

λdj + uj
, (13)

5

Under review as a conference paper at ICLR 2024

where (u1, u2, . . . , un)
T is the minimizer of

min
u∈Dk

m∑
j=1

ϕ
(√

djAsj t, λdj + uj

)
. (14)

Next, we show that the proximal operator of GSk reduces to an efficient one-dimensional search.
Corollary 4.1.1 (The proximal operator of GSk). The solution uj = uj(µ

∗) of equation 14 with
uj(·) defined as1

u(µ∗) =

1,

√
µ∗ ≤ |bj |

αj+1 ,
|bj |√
µ∗ − αj ,

|bj |
αj+1 <

√
µ∗ <

|bj |
αj

,

0,
√
µ∗ ≥ |bj |

αj
.

(15)

for bj =
∥∥√djAsj t

∥∥
2

and αj = λdj(> 0), and η̃ = 1√
µ∗ is a root of the function

gt(η) ≡
m∑
i=j

uj(η)− k, (16)

which is nondecreasing and satisfies

gt

(
λ ·minj∈[m]{dj}∥∥√d1 ∥As1t∥2 ,
√
d2 ∥As2t∥2 , . . . ,

√
dm ∥Asmt∥2

∥∥
∞

)
=

m∑
i=1

0− k < 0, (17)

and,

gt

(
λ ∥d1, d2, . . . , dm∥∞ + 1∥∥M⟨sm⟩

(√
djt
)∥∥

2

)
=

m∑
i=1

1− k > 0. (18)

In addition, gt can be reformulated as the sum of pairs of the functions

vi(η) ≡ |η|bj | − αj |, wi(η) ≡ 1− |η|bj | − (αj + 1)|, j ∈ [m], (19)

such that,

gt(η) =
1

2

m∑
j=1

vj(η) +
1

2

m∑
j=1

wj(η)− k. (20)

The following important remarks are in order.
Remark 3 (Root search application for function 16). Employing the randomized root search method
in (Beck & Refael, 2022, Algorithm 1) with the 2m one break point piece-wise linear functions
vj , wj , as an input to the algorithm, the root of gt can be found in O(m) time.
Remark 4 (Computational complexity of proxλGSk

). The computation of proxλGSk
boils down

to a root search problem (see, Remark 3), which requires O(m) operations. In addition, before
employing the root search, the assembly of vj , wj , requires the calculations of the m values of bj
defined in corollary 16. Note that for any j ∈ [m] calculating bj is equivalent to t⊤Asj t =

∑
i∈sj

t2i .
Since sj’s are given, the computational complexity of calculating all m of bj is linear in n, which is
the dimension of t. Thus, the total computational operations of calculating proxλGSk

summarizes
to n with is the dimension of all groups parameters together.

5 OPTIMIZATION PROCEDURE

The general problem we are solving is of the form

min
x∈Rn

f(x) + h(x), (21)

1If Asj t = 0, then equation 15 implies that ui(µ) = 0 for all µ ≥ 0.

6

Under review as a conference paper at ICLR 2024

Algorithm 1: General Stochastic Proximal Gradient Method
Input: Stepsize αt, {ρt}t=T

t=1 ∈ [0, 1), regularization parameter λ.
Initialization: θ1 ∈ Rn and m0 = 0 ∈ Rn.
for iteration t = 1, . . . , T :

Draw a minibatch sample ξt
gt ←− ∇f(θt; ξt)
mt ←− ρtmt−1 + (1− ρt)gt

θt+1 ←− proxαtλh (θt − αtmt)
return θ

Algorithm 2: Learning structured k-level sparse neural-network by Prox SGD with
WGSEF regularization
Input: Stepsize αt, {ρt}t=T

t=1 ∈ [0, 1), regularization parameters {λl}l=L
l=1 ∈ [0,∞).

Initialization: Randomly initialize the weights θt=0 ∈ Rn, m0 = 0 ∈ Rn.
for iteration t = 1, . . . , T :

Draw a minibatch sample ξt
gt ←− ∇L(θt; ξt)
mt ←− ρtmt−1 + (1− ρt)gt

θt+1 ←− proxαtλGSk
(θt − αtmt)

Prune (Optional): all #(m− k) smallest ℓ2 group norm values of θ.
return θ

where f = 1
N

∑N
i=1 fi : X → R is continuously differentiable, but possibly nonconvex, and

h is a convex function, but possibly nonsmooth. For practical reasons, we cannot store the full
gradient∇f(x). Hence, we would like to use a stochastic gradient type algorithm. However, such a
structure posses several difficulties from an optimization perspective, as most research of stochastic
first-order algorithms does not account for both nonconvex smooth term and a nonsmooth convex
regularizer. In Ghadimi et al. (2016) the authors provide an analysis of a simple stochastic proximal
gradient algorithm, where at each iteration a minibatch of weights is updated using a gradient step
followed by a proximal step. This algorithm is proved to converge, however, the rate of convergence
depends heavily on the minibatch size, and, in fact, for reasonably sized minibatches it will not
converge. J Reddi et al. (2016) proposes variance-reduction type algorithms, but since these extend
SAGA Defazio et al. (2014) and SVRG Johnson & Zhang (2013) to the nonconvex and nonsmooth
setting, they require storing the gradient for each sample (SAGA) which requires O(Nn) storage,
or recomputing the full gradient every s ≥ N iterations (SVRG), which is undesirable for training
neural networks. ProxSVGR+ Li & Li (2018) tackles this issue by calculating the gradient for a
batch of |B| samples. ProxSVGR+ also has a proven convergence rate, however, this rate is strongly
dominated by the magnitude of |B|, hence, impractical for training neural networks.

The ProxSGD algorithm Yang et al. (2020) appears appealing to our problem as it allows for mo-
mentum. While the algorithm has a convergence guarantee, the authors do not provide the rate,
making it less appealing, given the known issue with the minibatch size. We have found the most
suitable optimization algorithm to be ProxGen Yun et al. (2021), as it can accommodate momentum,
and also has a proven convergence rate with a fixed and reasonable minibatch size of order Θ(

√
N).

Next, we provide a convergence guarantee for Algorithm 1, as given in Yang et al. (2020). This
result holds under several regularity assumptions which can be found in Appendix A.3.1.
Corollary 5.0.1. Under Assumptions (C-1)–(C-3) in Appendix A.3.1, Algorithm 1 with constant
minibatch size bt = b = Θ(T) is guaranteed to yield E

[
dist

(
0, ∂̂F (θ)

)2] ≤ O
(
T−1

)
, where ∂̂F

is the Fréchet sub-differential function of F (see, Definition 2 in Appendix A.3.1).

Next, we propose Algorithm 2, as an implementation of Algorithm 1 to solve equation 8, where
f ≜ L and h ≜ GSk. Calculating ∇L(θt; ξt), commonly approached using a propagation algo-
rithm, is at least linear in the number of parameters and is obviously getting more complex as the
number of layers increases. Therefore, the calculation of the prox of the GSFE is not a bottleneck
of the update step complexity (since it is linear in the number of parameters). Notice that the reg-

7

Under review as a conference paper at ICLR 2024

ularization in our setting is layer-separable as can be seen from the definition of the regularization
function h(x) =

∑L
l=1 hl(xl). Therefore prox is applied to each layer separately (Beck, 2017,

Theorem 6.6). Moreover, we allow different λl, kl parameters per layer. Accordingly, regularization
can be applied differently, namely, not in a per-layer fashion. For example, all convolutional layers
can be regularized at once, and groups will be defined so that they create cross-layer sparsity. The
only condition is that groups are not overlapping. We note that since Assumptions (C-1)–(C-3) are
met, Algorithm 2 converges to an ϵ-stationary point.

Another technique for solving equation 21 is using the HSPG family of algorithms in Chen et al.
(2021; 2020); Dai et al. (2023). These algorithms utilize a two-step procedure in which optimization
is carried by standard first-order methods (i.e., subgradient or proximal) to find an approximation
that is “sufficiently close” to a solution. This step is followed by a half-space step that freezes the
sparse groups and applies a tentative gradient step on the dense groups. Over these dense groups,
parameters are zeroed-out if a sufficient decrease condition is met, otherwise, a standard gradient
step is executed. Notice that the half-space step, as a variant of a gradient method, requires the
regularizer term h to have a Lipschitz continuous gradient, which is not satisfied in our setting.
However, this property is required only for the dense groups as there is no use of the gradient in
groups that are already sparse. Since the continuity is violated only for sparse groups, the condition
is satisfied in the required region. Finally, while the “sufficiently close” condition mentioned above
cannot be verified in practice, simple heuristics to switch between steps still work well. We can
either run the first-order step for a fixed number of iterations before switching to the half-space step,
or, alternatively, run the first-order step until the sparsity level stabilizes, and then switch to the half-
space step. The dense groups are defined as I0(x) := {γ | γ ∈ G, ∥xγ∥ = 0}, and sparse groups
are defined as I ̸=0 := {γ | γ ∈ G, ∥xγ∥ ≠ 0. The HSPG pseudo-code (proximal-gradient variant)
is given in Algorithm 3 in the appendix. We mention the enhanced variant of the standard HSPG
algorithm named AdaHSPG+ Dai et al. (2023) improves upon that implementing adaptive strategies
that optimize performance, focusing on better handling of complex or dynamic problem scenarios
where standard HSPG may be less efficient.

6 EXPERIMENTS

We provide only a summary of our experimental results here, deferring full details to Appendix A.5.
To demonstrate the performance of prox-SGD with WSEG (Algorithm 2), in terms of both compres-
sion and accuracy, we utilized widely-recognized benchmark DNN architectures: VGG16 Simonyan
& Zisserman (2014), ResNet18 He et al. (2016a), and MobileNetV1 Howard et al. (2017). These
architectures were tested on the datasets CIFAR10 Krizhevsky et al. (2009) and Fashion-MNIST
Xiao et al. (2017). All experiments were conducted over 300 epochs. For the first 150 epochs, we
employed Algorithm 2, and for the subsequent epochs, we used the HSPG with the WGSEF as a
regularize (Algorithm 3). Experiments were conducted using a mini-batch size of b = 128 on an
A100 GPU. The coefficient for the WGSE regularizer was set to λ = 10−2. In Table 1, we com-
pare our results with those reported in Dai et al. (2023). The primary metrics of interest are the
neural network group sparsity ratio and prediction accuracy (Top-1). Notably, the WGSE achieves
a markedly higher group sparsity compared to all other methods except AdaHSPG+, for which we
obtained slightly higher results. It should be mentioned that all techniques achieved comparable
generalization error rates on the validation datasets. We mention here that all the optimization meth-
ods in Table 1 used the well-known Group Lasso as a regularizer, because as observed in Bui et al.
(2021), it gave the best results, in terms of compression and performance, in comparison to many
other convex and nonconvex regularizers.

Next, we examine the effectiveness of the WGSEF in the LeNet-5 convolutional neural network
LeCun et al. (1998), on the MNIST dataset LeCun & Cortes (2010). The networks were trained
without any data augmentation. We apply the WGSEF regularization on filters in convolutional
layers using a predefined value for the sparsity level k. Table 2 summarizes the number of remain-
ing filters at convergence, floating-point operations (FLOP), and the speedups. We evaluate these
metrics both for a LeNet-5 baseline (i.e., without sparsity learning), and our WGSEF sparsification
technique. To be accurate and fair in comparison, the baseline model was trained using SGD. It can
be seen that WGSEF reduces the number of filters in the convolution layers by a factor of the half, as
dictated by k = 8, while the accuracy level did not decrease. Furthermore, since the sparsification
is structural, there is a significant improvement in flops, as well as in the latency time of inference.

8

Under review as a conference paper at ICLR 2024

Table 1: Comparison of state-of-the-art techniques to our WGSEF technique, in terms of group
sparsity ratio/validation accuracy in percentage, for various models and datasets.

Model Dataset Prox-SG Prox-SVRG HSPG AdaHSPG+ WGSEF

VGG16 CIFAR10 54.0 / 90.6 14.7 / 89.4 74.6 / 91.1 76.1 / 91.0 76.8 / 91.5
F-MNIST 19.1 / 93.0 0.5 / 92.7 39.7 / 93.0 51.2 / 92.9 51.9 / 92.8

ResNet18 CIFAR10 26.5 / 94.1 2.8 / 94.2 41.6 / 94.4 42.1 / 94.5 42.6 / 94.5
F-MNIST 0.0 / 94.8 0.0 / 94.6 10.4 / 94.9 43.9 / 94.9 44.2 / 94.9

MobileNetV1 CIFAR10 58.1 / 91.7 29.2 / 90.7 65.4 / 92.0 71.5 / 91.8 71.8 / 91.9,
F-MNIST 62.6 / 94.2 42.0 / 94.2 74.3 / 94.5 78.9 / 94.6 79.1 / 94.5

Repeating the same experiment, but now constraining the number of non-pruned filters in the second
convolutional layer to be at most 4 (i.e., at most quarter of the baseline), the accuracy slightly dete-
riorates; however, significant improvements can be observed in both the flops number and the speed
up, as expected. The networks were trained with a learning rate of 0.001, regularization magnitude
λ = 10−5, and a batch size of 32 for 150 epochs across 5 runs.

Table 2: Results of running algorithm 2, onto redundant filters in LeNet (in the order of conv1-
conv2).

LeNet (MNIST) Error Filter (sparsity-level) FLOP Speedup
Baseline (SGD) 0.84 % 6-16 100 %-100 % 1.00 ×-1.00 ×

WGSEF 0.78 % 3-8 48.7 %-21.6 % 2.06×-4.53 ×
WGSEF 0.89 % 3-4 48.7 %-14.7 % 2.06×-7.31 ×

LeNet (MNIST) Error Parameters FLOP Speedup
Unstructured WGSEF 0.76 % 75(/150)-1200(/2400) 68.7 %-59.2 % 1×-1×

We also implemented deep residual networks (ResNet50) He et al. (2016b) and trained it on CIFAR-
10 Krizhevsky et al. (2009), applying WGSEF regularization with a predefined sparsity level that is
at most equal to half the number of filters at each of the convolutional layers. Again, to be accurate
in comparison, the baseline model was trained using SGD, both with an initial learning rate of
α0 = 0.01, regularization magnitude λ = 0.3, a batch size of 128, and Cosine Annealing learning
rate scheduler. The results are similar in nature to those of the MNIST experiment in Table 3.

Table 3: Average results running algorithm 2 on ResNet50 for CIFAR-10 over 5 trials, after com-
pleting 110 epochs, using parameters α0 = 0.01 and λ = 0.3.

Resnet50 (CIFAR-10) Error FLOP Speedup
Baseline (SGD) 7.62 % 100 % 1.00 ×

WGSEF 7.4 % 48.7 % 2.06 ×

Finally, table 6 presents the results of training both VGG16 and DenseNet40 Huang et al. (2017)
on CIFAR100 Krizhevsky et al. (2009), while applying WGSEF regularization with a predefined
sparsity level of half the number of channels for VGG16, and 60% of those of the DenseNet40.
The baseline model was trained using SGD, both with an initial learning rate of α = 0.01 and
regularization magnitude λ = 0.01.

Table 4: Results of running algorithm 2, onto redundant Channels on CIFAR100, over 250 epochs.
DCNN Model Error (%) Pruned Channels Overall Density

VGG16 Baseline-unpruned 26.28 - -
WGSEF 26.46 50% 41.3%

DenseNet40 Baseline-unpruned 25.36 - -
WGSEF 25.6 60% 42.8%

9

Under review as a conference paper at ICLR 2024

REFERENCES

On the complementarity of sparse l0 and cel0 regularized loss. MDPI, 2021-2023. URL https:
//www.mdpi.com.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019.

Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction with the k-support norm.
Advances in Neural Information Processing Systems, 25, 2012.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Amir Beck and Yehonathan Refael. Sparse regularization via bidualization. Journal of Global
Optimization, 82(3):463–482, 2022.

Kevin Bui, Fredrick Park, Shuai Zhang, Yingyong Qi, and Jack Xin. Structured sparsity of convo-
lutional neural networks via nonconvex sparse group regularization. Frontiers in applied mathe-
matics and statistics, pp. 62, 2021.

Tianyi Chen, Guanyi Wang, Tianyu Ding, Bo Ji, Sheng Yi, and Zhihui Zhu. Half-space
proximal stochastic gradient method for group-sparsity regularized problem. arXiv preprint
arXiv:2009.12078, 2020.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. Advances in Neural Information Processing Systems, 34:19637–19651, 2021.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Yutong Dai, Tianyi Chen, Guanyi Wang, and Daniel Robinson. An adaptive half-space projection
method for stochastic optimization problems with group sparse regularization. Transactions on
Machine Learning Research, 2023.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in neural information pro-
cessing systems, 27, 2014.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):
485–532, 2020.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. Advances in neural information
processing systems, 27, 2014.

David L Donoho and Michael Elad. Optimally sparse representation in general (nonorthogonal)
dictionaries via l1 minimization. Proceedings of the National Academy of Sciences, 100(5):2197–
2202, 2003.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.

Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation meth-
ods for nonconvex stochastic composite optimization. Mathematical Programming, 155(1):267–
305, 2016.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

10

https://www.mdpi.com
https://www.mdpi.com

Under review as a conference paper at ICLR 2024

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015b.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. CoRR, abs/1506.02626, 2015c. URL http://arxiv.org/abs/
1506.02626.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778. IEEE, 2016b.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. arXiv preprint arXiv:1608.06993, 2017.

Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal stochastic methods
for nonsmooth nonconvex finite-sum optimization. Advances in neural information processing
systems, 29, 2016.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise brain damage, 2015. URL
https://arxiv.org/abs/1506.02515.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Yann LeCun and Corinna Cortes. Mnist handwritten digit database, 2010. URL http://yann.
lecun.com/exdb/mnist/.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.
726791.

Jiashi Li, Qi Qi, Jingyu Wang, Ce Ge, Yujian Li, Zhangzhang Yue, and Haifeng Sun. Oicsr:
Out-in-channel sparsity regularization for compact deep neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7046–7055, 2019.

Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. Advances in neural information processing systems, 31, 2018.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Yifei Lou, Penghang Yin, Qi He, and Jack Xin. Computing sparse representation in a highly coherent
dictionary based on difference of l 1 l 1 and l 2 l 2. Journal of Scientific Computing, 64:178–196,
2015.

11

http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02515
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2024

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. arXiv preprint arXiv:1712.01312, 2017.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine Learning, pp. 2498–2507. PMLR, 2017.

Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM journal on comput-
ing, 24(2):227–234, 1995.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV,
pp. 525–542. Springer, 2016.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse regu-
larization for deep neural networks. Neurocomputing, 241:81–89, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compres-
sion. arXiv preprint arXiv:1702.04008, 2017.

J v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320, 1928.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks, 2016a. URL https://arxiv.org/abs/1608.03665.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in neural information processing systems, 29, 2016b.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yang Yang, Yaxiong Yuan, Avraam Chatzimichailidis, Ruud JG van Sloun, Lei Lei, and Symeon
Chatzinotas. Proxsgd: Training structured neural networks under regularization and constraints.
In International Conference on Learning Representations (ICLR) 2020, 2020.

Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. arXiv preprint arXiv:1802.00124, 2018.

Jaehong Yoon and Sung Ju Hwang. Combined group and exclusive sparsity for deep neural net-
works. In International Conference on Machine Learning, pp. 3958–3966. PMLR, 2017.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

Jihun Yun, Aurélie C Lozano, and Eunho Yang. Adaptive proximal gradient methods for structured
neural networks. Advances in Neural Information Processing Systems, 34:24365–24378, 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Yang Zhou, Rong Jin, and Steven Chu-Hong Hoi. Exclusive lasso for multi-task feature selection.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pp. 988–995. JMLR Workshop and Conference Proceedings, 2010.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the
royal statistical society: series B (statistical methodology), 67(2):301–320, 2005.

12

https://arxiv.org/abs/1608.03665

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOFS FOR SECTION 3

A.1.1 PROOF FOR LEMMA 3.1

Proof. Let us define the axillary diagonal positive definite matrix Dn×n, where the Di,i entry holds
Di,i =

√
di,∀i ∈ sj , di = dj . Now, consider the following chain of equalities:

gs⋆k(θ̃) = max
θ∈Rn
{⟨θ̃, θ⟩ − gsk(θ)}

= max
θ∈Rn

θ̃⊤θ − 1

2

m∑
j=1

dj∥θsj∥22 − δCk
(θ)

= max

θ∈Ck
∀i∈sj ,di=dj

θ̃⊤θ −
m∑
j=1

dj · ∥θsj∥22

= max

θ∈Ck
∀i∈sj ,di=dj

{
θ̃⊤θ − 1

2
θ⊤D⊤Dθ

}
(a)
= max

t∈C̃k
∀i∈sj ,di=dj

{
θ̃⊤D−1t− 1

2
t⊤t

}

= max
t∈C̃k

∀i∈sj ,di=dj

{
−1

2
∥t−D−1θ̃∥22 +

1

2
∥D−1θ̃∥22

}

=
1

2
∥D−1θ̃∥22 + max

t∈C̃k
∀i∈sj ,di=dj

{
−1

2
∥t−D−1θ̃∥22

}

=
1

2
∥D−1θ̃∥22 + max

t∈C̃k
∀i∈sj ,di=dj

{
−1

2

n∑
i=1

(ti −
(
D−1

)
ii
θ̃i)

2

}

(b)
=

1

2
∥D−1θ̃∥22 + max

t∈C̃k
∀i∈sj ,di=dj

−1

2

m∑
j=1

∥∥∥Msj (t−D−1θ̃)
∥∥∥2
2

=

1

2
∥D−1θ̃∥22 −

1

2

m∑
j=m−k

∥∥∥M⟨sj⟩(D
−1θ̃)

∥∥∥2
2

(c)
=

1

2

k∑
j=1

∥∥∥M⟨sj⟩(D
−1θ̃)

∥∥∥2
2

=
1

2

k∑
j=1

1

dj

∥∥∥M⟨sj⟩(θ̃)
∥∥∥2
2

where, (a) the set C̃k is given by

C̃k =
{
θ :
∥∥∥ (Dθ) s1∥2, ∥ (Dθ) s2∥2 . . . , ∥ (Dθ) sm∥2

∥∥
0
≤ k

}
,

(b) follows by the fact that the sum of the squares of the coordinates of the input vector in the
support of the disjoint subset s1, s2, . . . , sm that completes the index space

⋃m
i=1 si = [n] is equal

to the sum of squares of the coordinates of the original vector, and (c) follows by the fact that∑m
j=m−k

∥∥∥M⟨sj⟩(D
−1θ̃)

∥∥∥2
2

is the sum of square ℓ2-norm of the m − k disjoint subsets of D−1θ̃

with the smallest ℓ2-norm, while is the sum of squared ℓ2-norm of all disjoint subsets of D−1θ̃. □

13

Under review as a conference paper at ICLR 2024

A.1.2 PROOF FOR LEMMA 3.2

Proof. We first note that
k∑

i=1

∥∥∥M⟨si⟩(D
−1θ̃)

∥∥∥
2
= max

u∈Bk

m∑
i=1

ui

∥∥∥Msi(D
−1θ̃)

∥∥∥2
2
, (22)

where

Bk ≜
{
u ∈ Rm | 0 ⩽ u ⩽ e, e⊤u ≤ k

}
. (23)

Now, Consider the following chain of inequalities:

GSk(θ) = max
θ̃∈Rn

{
⟨θ, θ̃⟩ − gs⋆(θ̃)

}
= max

θ̃∈Rn

{
θ⊤θ̃ − 1

2

k∑
i=1

∥∥∥M⟨si⟩(D
−1θ̃)

∥∥∥2
2

}

= max
θ̃∈Rn

t=D−1θ̃

{
θ⊤Dt− 1

2

k∑
i=1

∥∥M⟨si⟩(t)
∥∥2
2

}

= max
t∈Rn

{
θ⊤Dt− 1

2
max
u∈Dk

m∑
i=1

ui ∥Msi(t)∥
2
2

}

= max
t∈Rn

θ⊤Dt− 1

2
max
u∈Dk

m∑
j=1

uj

(
t⊤A⊤

sjAsj t
)

(a)
= max

t∈Rn

θ⊤Dt+
1

2
min
u∈Dk

m∑
j=1

(−uj)
(
t⊤Asj t

)

=
1

2
max
t∈Rn

min
u∈Dk

2θ⊤Dt−
m∑
j=1

ujt
⊤Asj t

(b)
=

1

2
min
u∈Dk

max
t∈Rn

2θ⊤Dt−
m∑
j=1

ujt
⊤Asj t

=
1

2
min
u∈Dk

m∑
j=1

max
t∈Rn

2θ⊤AsjDt− ujtASj
t

=

1

2
min
u∈Dk

m∑
j=1

max
t∈Rn

2
√
djθ

⊤Asj t− ujtASj t

=

1

2
min
u∈Dk

m∑
j=1

ϕ
(√

djAsjθ, uj

) (24)

=
1

2
min
u∈Dk

m∑
j=1

djϕ
(
Asjθ, uj

) ,

where (a) follows by the fact that Asj is a self-adjoint matrix, and (b) follows from the fact that
the objective function is concave w.r.t. ỹ and convex w.r.t u, and the MinMax Theorem v. Neumann
(1928). □

A.1.3 PROOF FOR COROLLARY 3.2.1

Proof. Directly by expression (34). □

14

Under review as a conference paper at ICLR 2024

A.2 PROOFS FOR SECTION 4

A.2.1 PROOF OF LEMMA 4.1

Proof. Recall that

v = proxλGSk
(t) = argmin

θ∈Rn

{
λGSk(θ) +

1

2
∥θ − t∥22

}
.

Using Lemma 3.2, the above minimization problem can be written as

min
u∈Dk

min
θ∈Rn

Φ(θ, u, t) ≡ λ

2

m∑
j=1

djϕ
(
Asjθ, uj

)
+

1

2
∥θ − t∥22

= min

u∈Dk

min
θ∈Rn

Φ(θ, u, t) ≡ λ

2

m∑
j=1

djϕ
(
Asjθ, uj

)
+

1

2
Msj (θ − t)22

= min

u∈Dk

min
θ∈Rn

Φ(θ, u, t) ≡ λ

2

m∑
j=1

djϕ
(
Asjθ, uj

)
+

1

2
(θ − t)⊤Asj (θ − t)

 . (25)

Solving for θ, we get that for any j ∈ [m], if djAsjθ ≥ 0 then,

djλAsj θ̂

uj
+Asj (θ̂ − t) = 0

Asj θ̂

(
djλ

uj
+ 1

)
−Asj t = 0

ASj

(
θ̂

(
djλ

uj
+ 1

)
− t

)
= 0,

meaning that,

vi =
tiuj

λdj + uj
, j ∈ [m], i ∈ sj , (26)

or, equivalently,

Asjv =
ujAsj t

λdj + uj
, j ∈ [m]. (27)

Next, we show that u is the minimizer of the problem minu∈Dk
Φ(θ, u, t). Equation equation 27

also holds when uj = 0, since in that case, vi = θ̂i = 0, for all i ∈ sj . Plugging equation 27 in Φ,
yields,

Φ(θ̂, u, t) =
1

2

m∑
j=1

dj

(
λ
θ̂⊤Asj θ̂

ui

)
+

1

2
∥θ̂ − t∥22 (28)

=
1

2

m∑
j=1

(
λdj

θ̂⊤Asj θ̂

uj
+ ∥Asj

(
θ̂ − t

)
∥22

)

=
1

2

m∑
j=1

(
λdj

u2
j t

⊤Asj t

uj (λdj + uj)
2 +

∥∥∥∥ λdjAsj t

λdj + uj

∥∥∥∥2
2

)

=
1

2

m∑
j=1

(
λdj

ujt
⊤Asj t

(λdj + uj)
2 +

(λdj)
2t⊤Asj t

(λdj + uj)
2

)

=
λ

2

m∑
j=1

dj
t⊤Asj t

λdj + uj

=
λ

2

m∑
j=1

ϕ
(√

djAsj t, λdj + uj

)
, (29)

which concludes the proof. □

15

Under review as a conference paper at ICLR 2024

A.2.2 PROOF OF COROLLARY 4.1.1

Proof. Assigning a Lagrange multiplier for the inequality constraint eTu ≤ k in problem (25), we
obtain the Lagrangian function

L(u, µ) =

m∑
j=1

(
ϕ
(√

djAsj t, λdj + uj

)
+ µuj

)
− kµ.

Therefore, the dual objective function is given by

q(µ) ≡ min
u:0≤u≤e

L(u, µ) =

m∑
j=1

φbj ,αj
(µ)− kµ, for, bj =

∥∥∥√djAsj t
∥∥∥
2

and αj = λdj(> 0).

(30)
where for any b ∈ R and α ≥ 0, the function φb,α is defined in Beck & Refael (2022) by

φb,α(µ) ≡ min
0≤u≤1

{ϕ(b, α+ u) + µu}, µ ≥ 0. (31)

Thus, the dual of problem (14) is the maximization problem
max{q(µ) : µ ≥ 0} (32)

A direct projection of Lemma (Beck & Refael, 2022, lemma 2.4) is that if µ̃ > 0, the function
u 7→ L(u, µ̃) has a unique minimizer over {u ∈ Rm : 0 ≤ u ≤ e} given by uj = φ′

bj ,αj
(µ̃), where

it was shown that

φbj ,αj
(µ) =

b2j

αj+1 + µ,
√
µ ≤ |bj |

αj+1

2|bj |
√
µ− αjµ,

|bj |
αj+1 <

√
µ <

|bj |
αj

,
b2

αj
,

√
µ ≥ |bj |

αj
,

for b > 0, otherwise 0, and the minimizer is given by

u(µ∗) =

1,

√
µ ≤ |bj |

αj+1 ,
|bj |√
µ − αj ,

|bj |
αj+1 <

√
µ <

|bj |
αj

,

0,
√
µ ≥ |bj |

αj
.

Problem (32), is concave differentiable and thus the minimizer µ̃ holds q′(µ̃) = 0, meaning

q′(µ̃) =

m∑
j=1

uj(µ)− k = 0.

We observe that for any j ∈ [m] the functions uj(µ) are monotonically continuous nonincresing,
and therefore utilizing Lemma (Beck & Refael, 2022, lemma 3.1) µ∗ = 1

η2 is the a root of the
nondecreasing function,

gt(η) ≡
m∑
j=1

uj(η)− k.

Note that for

gt

(
λ ·minj∈[m]{dj}∥∥√d1 ∥As1t∥2 ,
√
d2 ∥As2t∥2 , . . . ,

√
dm ∥Asmt∥2

∥∥
∞

)
=

m∑
i=1

0− k < 0,

while

gt

(
λ ∥d1, d2, . . . , dm∥∞ + 1∥∥M⟨sm⟩

(√
djt
)∥∥

2

)
=

m∑
i=1

1− k > 0.

Now, applying lemma (Beck & Refael, 2022, lemma 3.2), we deduce that uj(µ), can be divided into
the sum of the two following functions,

vj(η) ≡ |η|bj | − αj |, wj(η) ≡ 1− |η|bj | − (αj + 1)|, j ∈ [m],

and thus gt can be reformulated as follows

gt(η) =
1

2

m∑
j=1

vj(η) +
1

2

m∑
j=1

wj(η)− k.

□

16

Under review as a conference paper at ICLR 2024

A.3 PROOFS FOR SECTION 5

A.3.1 ASSUMPTIONS

Consider the following definition needed to present our convergence result.
Definition 2 (Fréchet Subdifferential). Let φ be a real-valued function. The Fréchet subdifferential
of φ at θ̄ with |φ(θ̄)| <∞ is defined by

∂̂φ(x̄) ≜
{
θ∗ ∈ Ω

∣∣∣ lim inf
θ→θ̄

φ(θ)− φ(θ̄)− ⟨θ∗, θ − θ̄⟩
∥θ − θ̄∥

≥ 0
}
. (33)

The following are the assumptions under which Corollary 5.0.1 holds.

(C-1) (L-smoothness) The loss function f is differentiable, L-smooth, and lower-bounded,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ and f(x∗) > −∞.

(C-2) (Bounded variance) The stochastic gradient gt = ∇f(θt; ξ) is unbiased and,

Eξ

[
∇f(θt; ξ)

]
= ∇f(θt), Eξ

[
∥gt −∇f(θt)∥2

]
≤ σ2.

(C-3) (i) Final step-vector is finite, (ii) the stochastic gradient is bounded, and (iii) the momentum
parameter is exponentially decaying, namely,

(i) ∥θt+1 − θt∥ ≤ D, (ii) ∥gt∥ ≤ G, (iii) ρt = ρ0µ
t−1,

with D,G > 0 and ρ0, µ ∈ [0, 1).

A.3.2 PROOF OF COROLLARY 5.0.1

Proof. The proof follows from (Yun et al., 2021, Corollary 1), by taking Ct = 0 and δ = 1. □

A.4 ADDITIONAL ALGORITHM

Algorithm 3: General Stochastic Proximal Gradient Method
Input: Stepsize αt, {ρt}t=T

t=1 ∈ [0, 1), regularization parameter λ, switch condition S, projection
threshold ϵ.

Initialization: θ1 ∈ Rn and m0 = 0 ∈ Rn.
for iteration t = 1, . . . , T :

if condition S is not satisfied:
Apply Algorithm 2

else:
Draw a minibatch sample ξt

gt ←− ∇f(θI ̸=0

t ; ξt) +∇h(θI ̸=0

t ; ξt)

θ̃I ̸=0

t ←− θt−1 − αtgt, θ̃
I0

t ←− 0
for each group γ ∈ I ̸=0:

if ⟨θ̃γ
t ,θ

γ
t−1⟩ < ϵ∥θγ

t−1∥2:
θ̃γ
t ←− 0

θt+1 ←− θ̃γ
t

return θ

A.5 ADDITIONAL EXPERIMENTS

We examine the effectiveness of the WGSEF in the LeNet convolutional neural network LeCun et al.
(1998) (the architecture is given in the appendices), on the FasionMNIST dataset. The networks
were trained without any data augmentation. We apply the WGSEF regularization on filters in con-
volutional layers using a predefined value for the sparsity level k. Table 5 summarizes the number of
remaining filters at convergence, floating-point operations (FLOP), and the speedups. We evaluate
these metrics both for a LeNet baseline (i.e., without sparsity learning), and our WGSEF sparsifica-
tion technique. To be accurate and fair in comparison, the baseline model was trained using SGD.
We use a learning rate equal to 1e− 4, with a batch size of 32, a momentum 0.95, and 15 epochs.

17

Under review as a conference paper at ICLR 2024

Table 5: Results of training while applying WGSEF sparsification (with λ = 0.05), onto redundant
filters in LeNet (in the order of conv1-conv2), and neurons in Linear layers.

LeNet (FasionMNIST) Error Filter (non-sparse) Linear layers sparsity Speedup (conv1-conv2)
Baseline (SGD) 11.1 % 6-16 0 % 1.00 ×-1.00×

WGSEF 11 % 3-8 0% 2×-4.5×
WGSEF 14 % 4-6 62% 1.7×-6.1×
WGSEF 12.3 % 2-3 0% 2×-7.12×

The second row of Table 5 shows that the method resulted in a significant decrease in the number of
non-zero filters, in this case, half of the filters (groups of parameters) were zeroed while still improv-
ing the model performance. The rest of the experiments show that there was a higher sparsification
in the number of non-zero filters (groups of parameters), with only a negligible degradation in the
model’s accuracy.

Following, in figure 1, the two graphs refer to the training procedure of the model corresponding with
the last row of Table 5. These graphs illustrate the sparsity of the model parameters (in percentages)
and the corresponding accuracy as a function of the epoch number. Notably, the desired sparsity level
was rapidly attained within the first three epochs. Subsequently, the model enhanced its accuracy
throughout the remaining epochs without compromising the achieved sparsity.

Figure 1: The graph on the left shows the level of sparseness (in percentages) as a function of epoch
number, while the graph on the right shows the model’s accuracy as a function of epoch number.

This shows that Algorithm 2 results in the actual zeroing of the (groups of) parameters intended for
pruning, and not just pushing them close to zero, hence practically the last line in Algorithm 2 which
proposed as optional, is actually barely needed.

Figure 2: Ratio of the sparse filters in the convolutional layers, according to the order of the layers
in the resnet18 model, as obtained by Algorithm 2, and corresponds to the experiment in row 3 of
table 2.

18

Under review as a conference paper at ICLR 2024

A.6 LENET CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE

Layer # filters I
neurons Filter size Stride Size of

feature map
Activation
function

Input − − − 32× 32× 1
Conv 1 6 5× 5 1 28× 28× 6 Relu

MaxPool2d 2× 2 2 14× 14× 6
Conv 2 16 5× 5 1 10× 10× 16 Relu

MaxPool2d 2× 2 2 5× 5× 16
Fully Connected 1 − − − 120 Relu
Fully Connected 2 − − − 84 Relu
Fully Connected 3 − − − 10 Softmax

19

	Introduction
	Problem Formulation
	Tight Convex Relaxation
	Proximal Mapping of the WGSEF
	Optimization Procedure
	Experiments
	Appendix
	Proofs for section 3
	Proof for lemma 3.1
	Proof for lemma 3.2
	Proof for corollary 3.2.1

	Proofs for section 4
	Proof of lemma 4.1
	Proof of corollary 4.1.1

	Proofs for Section 5
	Assumptions
	Proof of Corollary 5.0.1

	Additional Algorithm
	Additional Experiments
	LeNet convolutional neural network Architecture

