
Understanding and Improving Adversarial
Collaborative Filtering for Robust Recommendation

Kaike Zhang1,2, Qi Cao1∗, Yunfan Wu1,2, Fei Sun1, Huawei Shen1, Xueqi Cheng1
1 CAS Key Laboratory of AI Safety, Institute of Computing Technology,

Chinese Academy of Sciences
2 University of Chinese Academy of Sciences

Beijing, China
{zhangkaike21s, caoqi, wuyunfan19b, sunfei, shenhuawei, cxq}@ict.ac.cn

Abstract

Adversarial Collaborative Filtering (ACF), which typically applies adversarial
perturbations at user and item embeddings through adversarial training, is widely
recognized as an effective strategy for enhancing the robustness of Collaborative
Filtering (CF) recommender systems against poisoning attacks. Besides, numer-
ous studies have empirically shown that ACF can also improve recommendation
performance compared to traditional CF. Despite these empirical successes, the
theoretical understanding of ACF’s effectiveness in terms of both performance and
robustness remains unclear. To bridge this gap, in this paper, we first theoretically
show that ACF can achieve a lower recommendation error compared to traditional
CF with the same training epochs in both clean and poisoned data contexts. Fur-
thermore, by establishing bounds for reductions in recommendation error during
ACF’s optimization process, we find that applying personalized magnitudes of
perturbation for different users based on their embedding scales can further improve
ACF’s effectiveness. Building on these theoretical understandings, we propose
Personalized Magnitude Adversarial Collaborative Filtering (PamaCF). Extensive
experiments demonstrate that PamaCF effectively defends against various types of
poisoning attacks while significantly enhancing recommendation performance.

1 Introduction

Collaborative Filtering (CF) is widely recognized as a powerful tool for providing personalized recom-
mendations [1, 2, 3] across various domains [4, 5]. However, the inherent openness of recommender
systems allows attackers to inject fake users into the training data, aiming to manipulate recommen-
dations, also known as poisoning attacks [6, 7]. Such manipulations can skew the distribution of item
exposure, degrading the overall quality of the recommender system, thus harming the user experience
and hindering the long-term development of the recommender system [8].

Existing methods for defending against poisoning attacks in CF can be categorized into two types [8]:
(1) detecting and mitigating the influence of fake users [9, 10, 11, 12, 13, 14], and (2) developing
robust models via adversarial training, also known as Adversarial Collaborative Filtering (ACF) [15,
16, 17, 18, 19, 20]. The first strategy focuses on detecting and removing fake users from the dataset
before training [9, 10, 11, 14] or mitigating their impact during the training phase [12, 13]. These
methods often rely on predefined assumptions about attacks [9, 12] or require labeled data related
to attacks [10, 11, 12, 13]. Consequently, deviations from predefined attack patterns may lead to
misclassification, failing to resist attacks while potentially harming genuine users’ experience [13].

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

In contrast, ACF provides a more general defense paradigm without prior knowledge [15, 16, 17, 18,
19, 20]. Poisoning attacks in recommender systems mainly affect the learned embeddings of users
and items, i.e., the system’s parameters [6, 7]. Predominant ACF methods, particularly those aligned
with Adversarial Personalized Ranking (APR) framework [15], heuristically incorporate adversarial
perturbations at the parameter level during the training phase to mitigate these attacks [15, 17, 19, 20].
This approach employs a “min-max” paradigm, designed to minimize the recommendation error
while contending with parameter perturbations aimed at maximizing this error within a specified
magnitude [15], thus enhancing the robustness of CF.

It is interesting to note that adversarial training in the Computer Vision (CV) domain [21, 22, 23] has
been observed to degrade model performance on clean samples [24, 25]. Several studies have also
theoretically demonstrated a trade-off between robustness against evasion attacks and the performance
of adversarial training in CV [26]. In contrast, ACF in recommender systems has been shown in
numerous studies not only to enhance the robustness against poisoning attacks [8, 13, 18] but also
to improve recommendation performance [15, 20, 27]. Despite the empirical evidence highlighting
ACF’s advantages, it still lacks a comprehensive theoretical understanding, which limits the ability
to fully exploit the benefits and potential of ACF. To bridge this gap, in this paper, we propose the
following research questions for further investigation:

i. Why does ACF enhance both robustness and performance compared to traditional CF?

ii. How can we further improve ACF?

To answer these questions, we delve into a theoretical analysis of a simplified CF scenario. This
analysis confirms that ACF can achieve a lower recommendation error at the same training epoch
in both clean and poisoned data contexts, showing better performance and robustness compared to
traditional CF. To investigate potential improvements to ACF, we establish upper and lower bounds
for reductions in recommendation error during ACF’s optimization process. Our findings indicate that
(1) Users have varying constraints for perturbation magnitudes, i.e., different maximum perturbation
magnitudes; (2) Within these constraints, applying personalized perturbation magnitudes as much as
possible for each user can increase the error reduction bounds, further improving ACF’s effectiveness.

Extending our theoretical results to practical CF scenarios, we establish a positive correlation between
users’ maximum perturbation magnitudes and their embedding scales. Building on these theoret-
ical understandings, we introduce Personalalized Magnitude Adversarial Collaborative Filtering
(PamaCF). PamaCF dynamically and personally assigns perturbation magnitudes based on users’
embedding scales. Extensive experiments confirm that PamaCF outperforms baselines in both perfor-
mance and robustness. Notably, PamaCF increases the average recommendation performance of the
backbone model by 13.84% and reduces the average success ratio of attacks by 44.92% compared to
the best baseline defense method. The main contributions of our study are summarized as follows:

• We provide theoretical evidence that ACF can achieve better performance and robustness compared
to traditional CF in both clean and poisoned data contexts.

• We further identify upper and lower bounds of reduction in recommendation error for ACF during
its optimization and demonstrate that applying personalized magnitudes of perturbation for each
user can further improve ACF.

• Based on the above theoretical understandings, we propose Personalized Magnitude Adversarial
Collaborative Filtering (PamaCF), with extensive experiments confirming that PamaCF further
improves both performance and robustness compared to state-of-the-art defense methods.

The code of our experiments is available at https://github.com/Kaike-Zhang/PamaCF.

2 Preliminary

Collaborative Filtering (CF) methods are widely employed in recommender systems. Following [1],
we define a set of users U = {u} and a set of items V = {v}. Using data from user-item interactions,
our objective is to learn latent embeddings U = [u ∈ Rd]u∈U for users and V = [v ∈ Rd]v∈V for
items. Then, we employ a preference function f : Rd×Rd → R, which predicts user-item preference
scores, denoted as r̂u,v = f(u,v).

2

https://github.com/Kaike-Zhang/PamaCF

Adversarial Collaborative Filtering (ACF) is acknowledged as an effective approach for enhancing
both the performance and the robustness of CF recommender systems in the face of poisoning attacks.
ACF methods, particularly within the framework of Adversarial Personalized Ranking (APR) [15],
integrate adversarial perturbations at the parameter level (i.e., the latent embeddings U and V)
during the training phase. Let L(Θ) denote the loss function of the CF recommender system, where
Θ = (U ,V) represents the recommender system’s parameters. ACF methods apply perturbations ∆
directly to the parameters as:

LACF(Θ) =L(Θ) + λL(Θ +∆adv),

where ∆adv =arg max
∆, ∥∆∥≤ϵ

L(Θ +∆),
(1)

where ϵ > 0 defines the maximum magnitude of perturbations, and λ is the adversarial training
weight. Due to constraints on space, a detailed discussion of related works is provided in Appendix A.

3 Theoretical Understanding of ACF

In this section, we provide a theoretical analysis of why ACF achieves superior performance and
robustness compared to traditional CF from the perspective of recommendation error. Then, we
explore mechanisms to further improve ACF’s effectiveness based on its error reduction bounds. For
clarity and simplicity, we initially focus on a Gaussian Single-item Recommender System, aligning
with the frameworks presented in [18, 28]. It’s important to note that the insights and analytical
frameworks developed here are also applicable to more practical scenarios, as discussed in Section 4.
Definition 1 (Gaussian Recommender System). Given a rating set R = {r1, r2, . . . , rn} corre-
sponding to n users, where each rating r is randomly selected from {±1}, an average embedding
vector ū ∈ Rd, and σ > 0, the Gaussian Recommender System initializes each user’s embedding u
from the normal distribution N (rū, σ2I). The item embedding v is initialized as the average vector
derived from these users: v = 1

n

∑n
i=1 riui. Then, a preference function f : Rd × Rd → {±1} is

employed to predict user preferences: f(u,v) = sgn(⟨v,u⟩), where sgn(·) denotes the sign function,
returning 1 if ⟨u,v⟩ > 0 and -1 otherwise.

Based on Definition 1, we obtain I = {(u1, r1), . . . , (un, rn)}, where u represents the system-
learned user embedding. With continued training, both each user embedding u and item embedding
v are iteratively updated. Let u(t) and v(t) denote user and item embeddings at the tth epoch,
respectively. For analytical simplicity and without loss of generality, we define the standard loss
function L(Θ) (as traditional CF) used in the Gaussian Recommender System as follows [18]:

L(Θ(t)) = −
∑

(u,r)∈I

[
r · ⟨u(t),v(t)⟩

]
, (2)

where the model parameters Θ(t) =
(
v(t),

[
u1,(t),u2,(t), . . . ,un,(t)

])
. To integrate ACF into the

Gaussian Recommender System, we introduce the adversarial loss [15], Ladv(Θ), defined as:

Ladv(Θ(t)) = L(Θ(t))− λ
∑

(u,r)∈I

[
r · ⟨u(t) +∆u,v(t) +∆v⟩

]
, (3)

where λ is the adversarial training weight. The perturbations ∆u and ∆v are applied to the user and
item embeddings, respectively, as computed based on Equation 1.

3.1 Why Does Adversarial Collaborative Filtering Benefit Recommender Systems?

To analyze the performance and robustness of traditional CF and ACF within the Gaussian Rec-
ommender System, we evaluate them from the perspective of recommendation error during the
training process. For each user, both performance and robustness are reflected by the user’s rec-
ommendation error. Specifically, attacks—whether item promotion attacks [6, 29] or performance
damage attacks [8]—inevitably increase the user’s recommendation error. Meanwhile, a smaller
recommendation error means a higher recommendation performance. For a given user u, the initial
item embedding v(0) in the Gaussian Recommender System can be approximately modeled2 as a
sample from N (ū, σ2

n−1I). Here, we provide the definition of recommendation error for user u.

2The precise form is N (ū, (n−1)σ2

n2 I), but we make this approximation for the sake of clarity and brevity.
The approximation does not impact the subsequent theoretical results.

3

Definition 2 (Recommendation Error). Given a Gaussian Recommender System f(t) that has been
trained for t epochs, the recommendation error for the user u with rating r at the tth epoch is defined
as the probability that the system’s prediction does not align with the user’s actual rating, as:
P
v(0)∼N (ū, σ2

n−1 I)

[
f(t)(u,v) ̸= r | (u, r)

]
:= E

v(0)∼N (ū, σ2

n−1 I)

[
I
(
f(t)(u,v) ̸= r | (u, r),v(0)

)]
,

where I(·) is an indicator function that returns 1 if the condition is true and 0 otherwise.

Based on the framework of ACF [15, 20], which includes t epochs of pre-training with standard loss
before adversarial training, we derive a theorem that identifies the difference in recommendation
error between standard and adversarial loss at the (t+ 1)th epoch. To distinguish between the recom-
mendation error of traditional CF and ACF, we define P

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
as the recommendation error following standard training (Equation 2) at the (t + 1)th epoch, and
P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
as the recommendation error following adversarial train-

ing (Equation 3) at the (t+ 1)th epoch.
Theorem 1. Consider a Gaussian Recommender System f(t), pre-trained for t epochs using the
standard loss function (Equation 2). Given a learning rate η, an adversarial training weight λ, and a
perturbation magnitude ϵ, when ϵ < min(∥u(t)∥,∥ū∥)

ηλ , and ∥ū∥ ≫ σ3, the recommendation error for
a user u with rating r at the (t+ 1)th epoch follows that:

P
v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
> P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
.

For the proof, please refer to Appendix D.1.1. After the same epochs of pre-training, ACF at the
next epoch achieves a lower recommendation error compared to traditional CF, thereby benefiting
recommendation performance.

Next, our analysis extends to contexts where the recommender system is subject to poisoning attacks.
These attacks involve injecting fake users into the system’s training dataset to manipulate item
exposure. We examine a Gaussian Recommender System with I = {(u1, r1), . . . , (un, rn)}, where
each tuple (u, r) ∈ Rd × {±1} represents the learned embedding and the rating of a genuine user. A
poisoning attack on this system injects a poisoning user set, I ′ = {(u′

1, r
′
1), (u

′
2, r

′
2), . . . , (u

′
n′ , r′n′)},

with each tuple (u′, r′) ∈ Rd × {±1} representing a fake user crafted by attackers4. The poisoned
item embedding v′ is reinitialized to include both genuine and malicious contributions:

v′ =
1

n+ n′

 ∑
(u,r)∈I

ru+
∑

(u′,r′)∈I′

r′u′

 ,

where n and n′ represent the number of genuine and fake users, respectively.

To evaluate the impact of these attacks, we introduce a formal definition of recommendation error in
poisoned data.
Definition 3 (α-Poisoned Recommendation Error). Given a boundary α > 0, and a set of fake
users injected by attackers within this boundary, i.e., I ′ ⊆ P(u′, α) = {(u′, r′) | (u′, r′) ∈
Rd×{±1}∧∥u′∥∞ ≤ α}, the α-poisoned recommendation error for the genuine user u with rating
r at the tth epoch is defined as the probability:
P
v(0)∼N (ū, σ2

n−1 I)

[
f(t),α(u,v

′) ̸= r | (u, r)
]
:= E

v(0)∼N (ū, σ2

n−1 I)

[
I
(
f(t),α(u,v

′) ̸= r | (u, r),v(0)

)]
,

where f(t),α represents the Gaussian Recommender System under the α-poisoned condition, and I(·)
is an indicator function that returns 1 if the condition is true and 0 otherwise.

For simplicity, we continue using the distribution of v(0) from the definition. This allows us to
further analyze the α-poisoned recommendation error based on the distribution of v′

(0) =
n

n+n′ v(0) +
1

n+n′

∑
(u′,r′)∈I′ r′u′.

Then we extend Theorem 1 to α-Poisoned Recommendation Error in the following theorem:
3Unless otherwise specified, ∥ · ∥ denotes the L2 norm ∥ · ∥2 in this paper.
4To make poisoning attacks effective in single-item recommendation scenarios, attackers can directly inject

users’ initialized embeddings, which is equivalent to constructing interactions for different items in multi-item
scenarios.

4

Theorem 2. Consider a poisoned Gaussian Recommender System f(t),α, pre-trained for t epochs
using the standard loss function (Equation 2). Given a learning rate η, an adversarial training
weight λ, and a perturbation magnitude ϵ, when ϵ < min(∥u(t)∥,∥ū∥)

ηλ , and ∥ū∥ ≫ σ, the α-poisoned
recommendation error for a genuine user u with rating r at the (t+ 1)th epoch follows that:

P
v(0)∼N (ū, σ2

n−1 I)

[
f(t+1),α(u,v

′) ̸= r | (u, r)
]
> P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1),α(u,v

′) ̸= r | (u, r)
]
.

For the proof, please refer to Appendix D.1.2. Combining Theorem 1 and Theorem 2, we find that
adversarial training, i.e., ACF, lowers recommendation errors compared to traditional CF in both
clean and poisoned data contexts. Accordingly, ACF achieves better performance and robustness.

3.2 How to Further Enhance Adversarial Collaborative Filtering

To explore mechanisms to further improve the effectiveness of ACF, we subsequently derive upper
and lower bounds on the reduction of recommendation error between any two consecutive epochs
after t epochs of pre-training.

Theorem 3. Consider a Gaussian Recommender System f(t) which has been pre-trained for t epochs
using standard loss (Equation 2) and subsequently trained on adversarial loss (Equation 3). For the
(t+ k + 1)th epoch, let the reduction in recommendation error of user u with rating r relative to the
(t+ k)th epoch from adversarial loss be denoted by:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[f(u,v) ̸= r | (u, r)] =

P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+k)(u,v) ̸= r | (u, r)

]
− P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+k+1)(u,v) ̸= r | (u, r)

]
.

Given a learning rate η, an adversarial training weight λ, and a perturbation magnitude ϵ, when
ϵ <

min(∥u(t+k)∥,∥ū∥)
ηλ , and ∥ū∥ ≫ σ, it follows that:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[f(u,v) ̸= r | (u, r)] ≥

Φ

(√
n− 1

σ

(
∥ū∥+ η(∥ū∥2 + dσ2

n− 1
)Ψ(u, t+ k)

))
− Φ

(√
n− 1

σ
∥ū∥

)
,

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[f(u,v) ̸= r | (u, r)] ≤ 2Φ

(√
n− 1η

2σ
(∥ū∥2 + dσ2

n− 1
)Ψ(u, t+ k)

)
− 1,

where d is the embedding dimension, and Φ(·) denotes the cumulative distribution function (CDF) of
the standard Gaussian distribution, and Ψ(u, t+ k) is defined as:

Ψ(u, t+ k) = (1 + λ)γu(t+k)

Ct+k

∥u(t+k)∥
, where γu(t+k) =

(
1− ηλϵ

∥u(t+k)∥

)−1

, (4)

where Ct+k is a constant at the (t+ k)th epoch.

For the proof, please refer to Appendix D.2.1. In light of Theorem 3, given a learning rate η and
an adversarial training weight λ, we can establish the following: (1) When the conditions, i.e.,
ϵ <

min(∥u(t+k)∥,∥ū∥)
ηλ and ∥ū∥ ≫ σ, are satisfied, the error reduction for ACF can be both upper and

lower bounded. (2) Increasing the perturbation magnitude ϵ under the above conditions can further
improve these bounds, thus benefiting ACF’s effectiveness.

Then, similarly, we extend Theorem 3 to the α-poisoned context.

Theorem 4. Consider a poisoned Gaussian Recommender System f(t),α which has been pre-trained
for t epochs using standard loss (Equation 2) and subsequently trained on adversarial loss (Equa-
tion 3). For the (t + k + 1)th epoch, let the reduction in α-poisoned recommendation error of a
genuine user u with rating r relative to the (t + k)th epoch from adversarial loss be denoted by
∆adv

(t+k+1)P
adv

v(0)∼N (ū, σ2

n−1 I)
[fα(u,v

′) ̸= r | (u, r)]. Let β = n′

n

√
dα + ∥ū∥ and τ = 2nn′α∥ū∥0,

where d is the embedding dimension, and given a learning rate η, an adversarial training weight λ,

5

and a perturbation magnitude ϵ, when ϵ < min(∥u(t+k)∥,∥ū∥)
ηλ , and ∥ū∥ ≫ σ, it follows that:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[fα(u,v

′) ̸= r | (u, r)] >

Φ

(√
n− 1

σ

(
β + η

(
n2∥ū∥2 − τ

n(n+ n′)
+

ndσ2

(n− 1)(n+ n′)

)
Ψ(u, t+ k)

))
− Φ

(√
n− 1

σ
β

)
,

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[fα(u,v

′) ̸= r | (u, r)] ≤

2Φ

(√
n− 1η

2σ

(
n2∥ū∥2 + (n′)2dα2 + τ

n(n+ n′)
+

ndσ2

(n− 1)(n+ n′)

)
Ψ(u, t+ k)

)
− 1,

where Φ() denotes the cumulative distribution function (CDF) of the standard Gaussian distribution,
n′ is the number of fake users, and Ψ(·) is defined in Equation 4.

For the proof, please refer to Appendix D.2.2. From Theorem 4, we understand that increasing
Ψ(u, t+k) can further improve both the upper and lower bounds of error reduction, thereby mitigating
the negative impact of poisons. Specifically, this involves the same mechanism as in the clean data
context: increasing the perturbation magnitude ϵ within ϵ < min(∥u(t+k)∥,∥ū∥)

ηλ .

In conclusion, the theorems in this section indicate that for each user u, when the user’s perturbation
magnitude meets ϵ < min(∥u(t+k)∥,∥ū∥)

ηλ , we have the following: (1) ACF is theoretically shown to
be more effective than traditional CF, and (2) Increasing the user’s perturbation magnitude during
training as much as possible can further improve both the performance and robustness of ACF. These
theoretical understandings can further benefit exploring and fully unleashing the potential of ACF.

4 Methodology

Norm: 3.7333

Norm: 2.0926

Norm: 6.7923

Norm: 6.8239

Norm: 11.895

Figure 1: NDCG@20 across various perturba-
tion magnitudes for five users (subject to Ran-
dom Attacks [30]).

To extend theoretical understandings from the sim-
ple CF scenario to more practical scenarios, such
as multi-item recommendations with Bayesian Per-
sonalized Ranking (BPR) [31], which is a main-
stream loss function used in CF recommendations,
we first conduct a preliminary experiment shown
in Figure 1. Using Matrix Factorization [2] on the
Gowalla dataset [32], we observe results similar to
those in Theorem 3 and Theorem 4: NDCG@20
for users improves within their maximum magni-
tudes, i.e., constraints, but significantly declines
once these constraints are surpassed. Based on the
theoretical understandings provided in Section 3,
we derive the following corollary to identify the
maximum perturbation magnitude for each user in
practical CF scenarios.
Corollary 1. Given any dot-product-based loss function L(Θ), within the framework of Adversarial
Collaborative Filtering as defined in Equation 1, the maximum perturbation magnitude ϵ(u)

(t),max for
user u at the tth epoch is positively related to ∥u(t)∥.

For the proof of Corollary 1, please refer to Appendix D.3. According to Corollary 1, we observe
that for a user u, the larger ∥u∥, the greater the maximum perturbation magnitude. Considering that
maximum perturbation magnitudes will be affected by other factors in the actual training process, to
ensure training stability, we decompose ϵ(u)

(t),max for a user u at epoch t into two components: the
uniform perturbation magnitude ρ, applicable to all users, and a user-specific perturbation coefficient
c(u, t), expressed as:

ϵ
(u)
(t),max = ρ · c(u, t). (5)

According to Corollary 1, c(u, t) provides coefficients positively related to users’ embedding scales.
To avoid training instability caused by extreme scale values, we map c(u, t) into the interval (0, 1),

6

defined by:

c(u, t) = sig

(
∥u(t)∥ − ∥u(t)∥

∥u(t)∥

)
,

where ∥u(t)∥ represents the average norm of all user embeddings at epoch t, and sig(·) denotes
the sigmoid function. Consequently, the loss function for our method, Personalized Magnitude
Adversarial Collaborative Filtering (PamaCF), is defined as:

LPamaCF(Θ) =L(Θ) + λL(Θ +∆PamaCF),

where ∆PamaCF =arg max
∆, ∥∆u∥≤ρ·c(u,t)

L(Θ +∆),
(6)

where λ is the weight of adversarial training, ρ represents the uniform perturbation magnitude for all
users, and ∆u is the perturbation relative to user u. To maximize the perturbation magnitude for each
user within ρc(u, t), we use the perturbation along the gradient direction of the user’s adversarial
loss with a step length of ρc(u, t) as ∆u. The specific algorithm process is detailed in Appendix B.

5 Experiments

In this section, we conduct extensive experiments to address the following research questions (RQs):

• RQ1: Can PamaCF further improve the performance and robustness of traditional ACF?
• RQ2: Why does PamaCF perform better than traditional ACF?
• RQ3: How do hyper-parameters affect PamaCF?

5.1 Experimental Setup

In this section, we briefly introduce the experimental settings. For detailed information, including
dataset preprocessing, comprehensive baseline descriptions, and implementation details, please refer
to Appendix C.1.

Datasets. We employ three common benchmarks: the Gowalla check-in dataset [32], the Yelp2018
business dataset, and the MIND news recommendation dataset [33].

Attack Methods. We employ both heuristic (Random Attack [30], Bandwagon Attack [34]) and
optimization-based (Rev Attack [7], DP Attack [6]) attack methods within a black-box context, where
the attacker does not have access to the internal architecture or parameters of the target model.

Defense Baselines. We incorporate a variety of defense methods, including detection-based ap-
proaches (GraphRfi [12] and LLM4Dec [13]), adversarial collaborative filtering methods (APR [15]
and SharpCF [20]), and a denoise-based strategy (StDenoise [35, 19]). In our study, we employ
three common backbone recommendation models, Matrix Factorization (MF) [2], LightGCN [3], and
NeurMF [36].

Evaluation Metrics. The primary metrics for assessing recommendation performance are the top-k
metrics: Recall@k and NDCG@k, as documented in [3, 8, 37]. To quantify the success ratio of
attacks, we utilize T-HR@k and T-NDCG@k to measure the performance of target items within the
top-k recommendations [7, 6, 13], as:

T-HR@k =
1

|T |
∑

tar∈T

∑
u∈U\Utar

I (tar ∈ Lu,1:k)

|U \ Utar |
, (7)

where T is the set of target items, Utar denotes the set of genuine users who have interacted with
target items tar , Lu,1:k represents the top-k list of recommendations for user u, and I(·) is the
indicator function that returns 1 if the condition is true. The T-NDCG@k mirrors T-HR@k, serving
as the target item-specific version of NDCG@k.

5.2 Performance Comparison (RQ1)

In this section, we answer RQ1. We focus on two key aspects: the recommendation performance and
the robustness against poisoning attacks.

7

Table 1: Recommendation Performance
Model Clean (%) Random Attack (%) Bandwagon Attack (%) DP Attack (%) Rev Attack (%)

(Dataset) Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
MF (Gowalla) 11.35 ± 0.09 7.16 ± 0.03 11.31 ± 0.08 7.20 ± 0.06 11.24 ± 0.08 7.11 ± 0.04 10.72 ± 0.11 8.17 ± 0.08 10.70 ± 0.09 8.19 ± 0.04
+StDenoise 10.48 ± 0.10 8.07 ± 0.10 10.46 ± 0.09 8.07 ± 0.07 10.41 ± 0.06 8.04 ± 0.02 10.53 ± 0.13 8.12 ± 0.09 10.57 ± 0.05 8.19 ± 0.04
+GraphRfi 10.43 ± 0.07 7.97 ± 0.03 10.34 ± 0.08 7.89 ± 0.06 10.30 ± 0.06 7.85 ± 0.06 10.40 ± 0.11 7.94 ± 0.08 10.50 ± 0.09 8.01 ± 0.07
+APR 13.06 ± 0.06 10.65 ± 0.06 12.93 ± 0.04 10.52 ± 0.01 12.90 ± 0.07 10.50 ± 0.03 12.95 ± 0.06 10.59 ± 0.06 13.13 ± 0.05 10.72 ± 0.06
+SharpCF 13.20 ± 0.07 10.02 ± 0.09 13.19 ± 0.08 10.03 ± 0.07 13.03 ± 0.06 9.89 ± 0.05 13.27 ± 0.14 10.08 ± 0.10 13.22 ± 0.09 10.10 ± 0.04

+PamaCF 13.48 ± 0.02 10.94 ± 0.05 13.37 ± 0.07 10.84 ± 0.03 13.35 ± 0.03 10.82 ± 0.02 13.44 ± 0.08 10.93 ± 0.04 13.61 ± 0.05 11.06 ± 0.08
Gain +2.10% ↑ +2.76% ↑ +1.40% ↑ +3.04% ↑ +2.53% ↑ +3.07% ↑ +1.31% ↑ +3.23% ↑ +2.96% ↑ +3.15% ↑

Gain w.r.t. MF +18.75% ↑ +52.84% ↑ +18.27% ↑ +50.64% ↑ +18.83% ↑ +52.29% ↑ +25.39% ↑ +33.76% ↑ +27.18% ↑ +35.05% ↑
MF (Yelp2018) 3.76 ± 0.03 2.97 ± 0.04 3.73 ± 0.02 2.93 ± 0.01 3.74 ± 0.04 2.95 ± 0.03 3.87 ± 0.04 3.03 ± 0.03 3.81 ± 0.04 3.03 ± 0.04
+StDenoise 3.41 ± 0.08 2.61 ± 0.09 3.29 ± 0.04 2.50 ± 0.03 3.32 ± 0.06 2.52 ± 0.05 3.38 ± 0.06 2.58 ± 0.06 3.38 ± 0.10 2.59 ± 0.10
+GraphRfi 3.73 ± 0.05 2.94 ± 0.03 3.66 ± 0.04 2.90 ± 0.03 3.64 ± 0.05 2.88 ± 0.03 3.76 ± 0.06 2.93 ± 0.05 3.72 ± 0.05 2.95 ± 0.04
+APR 4.09 ± 0.02 3.20 ± 0.02 4.04 ± 0.02 3.16 ± 0.02 4.08 ± 0.03 3.19 ± 0.03 4.01 ± 0.06 3.15 ± 0.04 4.06 ± 0.03 3.20 ± 0.02
+SharpCF 3.93 ± 0.04 3.11 ± 0.05 3.88 ± 0.01 3.06 ± 0.02 3.91 ± 0.05 3.08 ± 0.03 4.03 ± 0.03 3.16 ± 0.04 3.97 ± 0.05 3.16 ± 0.05

+PamaCF 4.18 ± 0.02 3.29 ± 0.02 4.13 ± 0.01 3.25 ± 0.01 4.19 ± 0.04 3.29 ± 0.03 4.25 ± 0.04 3.33 ± 0.04 4.27 ± 0.03 3.37 ± 0.03
Gain +2.20% ↑ +2.75% ↑ +2.33% ↑ +2.91% ↑ +2.70% ↑ +3.01% ↑ +5.30% ↑ +5.24% ↑ +5.04% ↑ +5.22% ↑

Gain w.r.t. MF +11.22% ↑ +10.63% ↑ +10.72% ↑ +10.84% ↑ +11.91% ↑ +11.60% ↑ +9.88% ↑ +9.84% ↑ +11.91% ↑ +11.36% ↑
MF (MIND) 1.20 ± 0.01 0.68 ± 0.00 1.19 ± 0.01 0.67 ± 0.01 1.19 ± 0.02 0.68 ± 0.00 1.20 ± 0.00 0.69 ± 0.01 OOM OOM
+StDenoise 1.13 ± 0.01 0.63 ± 0.01 1.12 ± 0.01 0.63 ± 0.00 1.12 ± 0.01 0.63 ± 0.00 1.13 ± 0.01 0.64 ± 0.01 OOM OOM
+GraphRfi 1.20 ± 0.01 0.67 ± 0.00 1.19 ± 0.01 0.67 ± 0.00 1.19 ± 0.01 0.67 ± 0.01 1.20 ± 0.02 0.67 ± 0.01 OOM OOM
+LLM4Dec 1.20 ± 0.01 0.68 ± 0.00 1.19 ± 0.01 0.67 ± 0.01 1.19 ± 0.01 0.68 ± 0.00 1.19 ± 0.00 0.68 ± 0.00 OOM OOM
+APR 1.22 ± 0.01 0.68 ± 0.01 1.26 ± 0.02 0.71 ± 0.01 1.21 ± 0.01 0.69 ± 0.00 1.21 ± 0.01 0.70 ± 0.01 OOM OOM

+PamaCF 1.30 ± 0.01 0.73 ± 0.00 1.27 ± 0.01 0.72 ± 0.00 1.27 ± 0.01 0.72 ± 0.00 1.30 ± 0.01 0.74 ± 0.01 OOM OOM
Gain +7.06% ↑ +7.53% ↑ +0.71% ↑ +0.69% ↑ +5.02% ↑ +5.12% ↑ +6.90% ↑ +6.26% ↑ - -

Gain w.r.t. MF +8.30% ↑ +8.49% ↑ +6.81% ↑ +7.00% ↑ +6.80% ↑ +6.66% ↑ +7.79% ↑ +7.49% ↑ - -
1 The Rev attack method could not be executed on the dataset due to memory constraints, resulting in an out-of-memory error.

Table 2: Robustness against target items promotion
Dataset Model Random Attack(%) Bandwagon Attack(%) DP Attack(%) Rev Attack(%)

T-HR@501 T-NDCG@50 T-HR@50 T-NDCG@50 T-HR@50 T-NDCG@50 T-HR@50 T-NDCG@50

Gowalla

MF 0.148 ± 0.030 0.036 ± 0.008 0.120 ± 0.027 0.029 ± 0.007 0.201 ± 0.020 0.051 ± 0.005 0.246 ± 0.097 0.061 ± 0.027
+StDenoise 0.200 ± 0.049 0.050 ± 0.012 0.165 ± 0.034 0.038 ± 0.008 0.292 ± 0.034 0.074 ± 0.010 0.355 ± 0.126 0.084 ± 0.030
+GraphRfi 0.159 ± 0.061 0.042 ± 0.015 0.154 ± 0.038 0.036 ± 0.009 0.174 ± 0.038 0.043 ± 0.009 0.206 ± 0.042 0.050 ± 0.010
+APR 0.201 ± 0.091 0.054 ± 0.026 0.184 ± 0.067 0.047 ± 0.015 0.034 ± 0.021 0.006 ± 0.004 0.261 ± 0.063 0.067 ± 0.018
+SharpCF 0.204 ± 0.037 0.049 ± 0.010 0.169 ± 0.031 0.041 ± 0.008 0.303 ± 0.024 0.077 ± 0.006 0.350 ± 0.111 0.087 ± 0.031

+PamaCF 0.070 ± 0.028 0.017 ± 0.007 0.064 ± 0.026 0.015 ± 0.006 0.021 ± 0.011 0.004 ± 0.002 0.079 ± 0.039 0.019 ± 0.009
Gain2 +52.72% ↑ +51.95% ↑ +46.19% ↑ +47.01% ↑ +36.33% ↑ +33.02% ↑ +61.41% ↑ +62.51% ↑

Yelp2018

MF 0.035 ± 0.007 0.010 ± 0.002 0.073 ± 0.032 0.020 ± 0.009 0.223 ± 0.040 0.049 ± 0.009 0.153 ± 0.025 0.040 ± 0.006
+StDenoise 0.108 ± 0.038 0.027 ± 0.010 0.181 ± 0.046 0.043 ± 0.011 0.376 ± 0.198 0.077 ± 0.039 0.331 ± 0.145 0.075 ± 0.031
+GraphRfi 0.032 ± 0.009 0.009 ± 0.003 0.058 ± 0.014 0.015 ± 0.003 0.200 ± 0.041 0.043 ± 0.010 0.129 ± 0.027 0.031 ± 0.007
+APR 0.012 ± 0.007 0.004 ± 0.002 0.057 ± 0.047 0.013 ± 0.011 0.185 ± 0.038 0.040 ± 0.009 0.098 ± 0.048 0.022 ± 0.011
+SharpCF 0.034 ± 0.007 0.010 ± 0.002 0.072 ± 0.029 0.019 ± 0.008 0.226 ± 0.041 0.050 ± 0.010 0.152 ± 0.025 0.040 ± 0.006

+PamaCF 0.010 ± 0.006 0.004 ± 0.002 0.028 ± 0.022 0.007 ± 0.005 0.135 ± 0.033 0.027 ± 0.007 0.045 ± 0.021 0.010 ± 0.004
Gain +14.29% ↑ +18.22% ↑ +50.33% ↑ +45.73% ↑ +27.41% ↑ +30.62% ↑ +54.24% ↑ +53.25% ↑

MIND

MF 0.032 ± 0.007 0.010 ± 0.002 0.169 ± 0.017 0.055 ± 0.005 0.023 ± 0.013 0.005 ± 0.003 OOM OOM
+StDenoise 0.036 ± 0.006 0.013 ± 0.004 0.040 ± 0.006 0.020 ± 0.004 0.010 ± 0.003 0.002 ± 0.001 OOM OOM
+GraphRfi 0.031 ± 0.006 0.010 ± 0.002 0.189 ± 0.015 0.059 ± 0.005 0.020 ± 0.009 0.004 ± 0.002 OOM OOM
+LLM4Dec 0.020 ± 0.001 0.004 ± 0.000 0.083 ± 0.009 0.025 ± 0.003 0.019 ± 0.010 0.004 ± 0.002 OOM OOM
+APR 0.083 ± 0.013 0.035 ± 0.006 0.068 ± 0.005 0.023 ± 0.002 0.008 ± 0.007 0.002 ± 0.001 OOM OOM

+PamaCF 0.012 ± 0.002 0.005 ± 0.001 0.016 ± 0.002 0.006 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 OOM OOM
Gain +39.80% ↑ - +60.15% ↑ +72.10% ↑ +95.02% ↑ +94.32% ↑ - -

1 Target Item Hit Ratio (Equation 7); T-HR@50 and T-NDCG@50 of all target items on clean datasets are 0.000.
2 The relative percentage increase of PamaCF’s metrics to the best value of other baselines’ metrics, i.e., (min (T-HRBeslines)− T-HRPamaCF) /min(T-HRBeslines).

Notably, only three decimal places are presented due to space limitations, though the actual ranking and calculations utilize the full precision of the data.

Recommendation Performance. We assess the efficacy of PamaCF in both clean and poisoning
data contexts, focusing on the performance of recommender systems, as presented in Table 1. The
denoise-based defense method, which does not directly defend against poisoning attacks but rather
purifies noisy interactions, fails to improve recommendation performance in most cases. Detection-
based methods, such as GraphRfi and LLM4Dec, exhibit some misclassifications of fake and genuine
users, leading to a decline in recommendation performance.

In contrast, we observe a notable enhancement in recommendation quality when ACF methods
(APR, SharpCF, and PamaCF) are utilized. This finding is consistent with results from previous
studies [15, 20] and aligns with our prior theoretical analysis. Among the defense methods, PamaCF
stands out, achieving the most significant improvements in recommendation performance compared
to the backbone model and other baseline approaches. Specifically, PamaCF increases Recall@20
and NDCG@20 by 13.84% and 22.04% in average, respectively, compared to the backbone model.

Robustness Against Poisoning Attacks. We evaluate the capability of PamaCF in defending against
poisoning attacks by examining the attack success ratio. Our experiments specifically target items with
notably low popularity, as indicated by T-HR@50 and T-NDCG@50 scores of 0.0 when no attacks
are present. Lower scores for T-HR@50 and T-NDCG@50 indicate stronger defense capabilities.

Table 2 presents the results, indicating that the purely denoise-based defense method is generally
ineffective against most attacks and may even increase the attack’s success ratio in some instances.

8

Distance: 0.736
Distance: 0.365

(a) Embedding Visualization

Distance: 0.736
Distance: 0.365

(b) Perturbation Magnitude Comparison

Figure 2: (a) PamaCF brings real preference items closer; (b) PamaCF achieves larger magnitudes.

Figure 3: Left: Analysis of Hyper-Parameters ρ; Right: Analysis of Hyper-Parameters λ.

Detection-based methods, such as GraphRfi and LLM4Dec, show robust defense against attacks
similar to their training data, i.e., random attacks. However, the effectiveness of GraphRfi declines
against other attack types. In contrast, ACF methods demonstrate stable defense capabilities across
various attacks. Specifically, PamaCF significantly reduces the success ratio of attacks, decreasing
T-HR@50 and T-NDCG@50 by 49.92% and 43.73% in average, respectively, compared to the best
baseline. These results highlight PamaCF’s advanced defense capabilities against various attacks.

Additionally, PamaCF’s defense effectiveness against attacks targeting popular items is further evalu-
ated. The corresponding results for LightGCN [3] and NeuMF [36], along with the recommendation
performance at top-10, are also presented. All supplementary results are in Appendix C.2.

5.3 Augmentation Analysis (RQ2)

In this section, we address RQ2 by exploring why PamaCF can outperform traditional ACF (especially
APR [15]) through embedding visualization and perturbation magnitude comparison.

Embedding Visualization. We randomly select a user and project the normalized embeddings of
the user, real preference items, the target item given by attacks, and other items in the user’s top-10
recommendation list into a two-dimensional space using T-SNE [38], as shown in Figure 2(a). We
observe that PamaCF can bring real preference items closer, reducing the distance from the farthest
real preference item from 0.736 to 0.365, while leading the target item farther away from all the real
preference items. PamaCF’s personalized perturbation magnitude lowers the ranking of both the
target item and other items, thus improving robustness and performance.

Perturbation Magnitude Comparison. We compare the maximum perturbation magnitudes of APR
and PamaCF, i.e., ϵ in Equation 1 for APR and ρ in Equation 6 for PamaCF. Both ϵ and ρ are selected
through hyper-parameter tuning from {0.1, 0.2, . . . , 1.0}. In the left part of Figure 2(b), we observe
that PamaCF finds a higher perturbation magnitude. Additionally, the right portion of Figure 2(b)
illustrates the distribution of personalized perturbation magnitudes across all users. These varying
magnitudes for different users contribute to the improved effectiveness of PamaCF.

5.4 Hyper-Parameters Analysis (RQ3)

In this section, we answer RQ3 by exploring the effects of the hyperparameters, magnitude ρ and
adversarial training weight λ, as defined in Equation 6. The results are illustrated in Figure 3.

Analysis of Hyper-Parameters ρ. With λ fixed at 1.0, we vary ρ from 0.1 to 1.0 in increments
of 0.1. Our findings demonstrate a significant improvement in both robustness and performance
as ρ increases. Notably, even when ρ exceeds 0.1, there is an enhancement in recommendation

9

performance compared to that of the backbone model, i.e., MF, with the range between 0.7 and 0.9
yielding the most significant enhancements.

Analysis of Hyper-Parameters λ. With ρ set at 0.9, we adjust λ from 0.2 to 2.0 in increments of 0.2.
The analysis indicates that the defensive ability becomes stable once λ surpasses 1.0 in most attacks.
However, setting λ too high gradually diminishes the recommendation performance of PamaCF.
Despite this, the performance of PamaCF remains considerably improved compared to MF.

6 Conclusion

In this work, we theoretically analyze why Adversarial Collaborative Filtering (ACF) enhances
both the performance and robustness of Collaborative Filtering (CF) systems against poisoning
attacks. Additionally, by establishing bounds for reductions in recommendation error during ACF’s
optimization process, we discover that applying personalized perturbation magnitudes for users based
on their embedding scales can significantly improve ACF’s effectiveness. Leveraging these theoretical
understandings, we introduce Personalized Magnitude Adversarial Collaborative Filtering (PamaCF).
Comprehensive experiments confirm that PamaCF effectively defends against various attacks and
significantly enhances the quality of recommendations.

Limitations. Our study identifies several limitations that require further investigation. Firstly, our
theoretical analysis is based on certain assumptions, specifically with the Gaussian Recommender
System. We intend to relax these assumptions in future work. Secondly, this study only examines
adversarial training within CF recommendations. In future research, we plan to extend our analysis
to include more recommendation scenarios, such as sequential recommendations.

Broader Impacts. Our work focuses on enhancing both the performance and robustness of recom-
mender systems against poisoning attacks, thereby benefiting the overall development of recommender
systems. We do not foresee any negative impacts resulting from our work.

Acknowledgements

This work is funded by the National Key R&D Program of China (2022YFB3103700,
2022YFB3103701), the Strategic Priority Research Program of the Chinese Academy of Sciences
under Grant No. XDB0680101, and the National Natural Science Foundation of China under Grant
Nos. 62102402, 62272125, U21B2046. Huawei Shen is also supported by Beijing Academy of
Artificial Intelligence (BAAI).

References
[1] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering techniques. Ad-

vances in Artificial Intelligence, 2009, 2009.

[2] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[3] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng Wang. Lightgcn
- Simplifying and Powering Graph Convolution Network for Recommendation. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 639–648. ACM, 2020.

[4] Brent Smith and Greg Linden. Two decades of recommender systems at amazon.com. IEEE
Internet Computing, 21(3):12–18, 2017.

[5] Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business
value, and innovation. ACM Transactions on Management Information Systems, 6(4):1–19,
2015.

[6] Hai Huang, Jiaming Mu, Neil Zhenqiang Gong, Qi Li, Bin Liu, and Mingwei Xu. Data
Poisoning Attacks to Deep Learning Based Recommender Systems. In Proceedings 2021
Network and Distributed System Security Symposium, 2021.

10

[7] Jiaxi Tang, Hongyi Wen, and Ke Wang. Revisiting adversarially learned injection attacks against
recommender systems. In Proceedings of the 14th ACM Conference on Recommender Systems,
pages 318–327, 2020.

[8] Kaike Zhang, Qi Cao, Fei Sun, Yunfan Wu, Shuchang Tao, Huawei Shen, and Xueqi Cheng.
Robust recommender system: A survey and future directions. arXiv preprint arXiv:2309.02057,
2023.

[9] Chen-Yao Chung, Ping-Yu Hsu, and Shih-Hsiang Huang. βp: A novel approach to filter out
malicious rating rrofiles from recommender systems. Decision Support Systems, 55(1):314–325,
2013.

[10] Fuzhi Zhang and Quanqiang Zhou. Hht–SVM: An online method for detecting profile injection
attacks in collaborative recommender systems. Knowledge-Based Systems, 65:96–105, 2014.

[11] Zhihai Yang, Lin Xu, Zhongmin Cai, and Zongben Xu. Re-scale AdaBoost for attack detection
in collaborative filtering recommender systems. Knowledge-Based Systems, 100:74–88, 2016.

[12] Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang, and Lizhen Cui.
Gcn-Based User Representation Learning for Unifying Robust Recommendation and Fraudster
Detection. In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 689–698, 2020.

[13] Kaike Zhang, Qi Cao, Yunfan Wu, Fei Sun, Huawei Shen, and Xueqi Cheng. Lorec: Combating
poisons with large language model for robust sequential recommendation. In Proceedings of
the 47th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 1733–1742, 2024.

[14] Yuli Liu. Recommending Inferior Results: A General and Feature-Free Model for Spam
Detection. In Proceedings of the 29th ACM International Conference on Information and
Knowledge Management, pages 955–974, 2020.

[15] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. Adversarial Personalized Ranking
for Recommendation. In The 41st International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 355–364, 2018.

[16] Huiyuan Chen and Jing Li. Adversarial tensor factorization for context-aware recommendation.
In Proceedings of the 13th ACM Conference on Recommender Systems, pages 363–367, 2019.

[17] Ruirui Li, Xian Wu, and Wei Wang. Adversarial learning to compare: Self-attentive prospective
customer recommendation in location based social networks. In Proceedings of the 13th
International Conference on Web Search and Data Mining, pages 349–357, 2020.

[18] Chenwang Wu, Defu Lian, Yong Ge, Zhihao Zhu, Enhong Chen, and Senchao Yuan. Fight
Fire with Fire: Towards Robust Recommender Systems via Adversarial Poisoning Training. In
Proceedings of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1074–1083, 2021.

[19] Haibo Ye, Xinjie Li, Yuan Yao, and Hanghang Tong. Towards robust neural graph collaborative
filtering via structure denoising and embedding perturbation. ACM Transactions on Information
Systems, 41(3):1–28, 2023.

[20] Huiyuan Chen, Xiaoting Li, Vivian Lai, Chin-Chia Michael Yeh, Yujie Fan, Yan Zheng,
Mahashweta Das, and Hao Yang. Adversarial Collaborative Filtering for Free. In Proceedings
of the 17th ACM Conference on Recommender Systems, pages 245–255. ACM, 2023.

[21] Naman Deep Singh, Francesco Croce, and Matthias Hein. Revisiting adversarial training for
imagenet: Architectures, training and generalization across threat models. In Advances in
Neural Information Processing Systems, volume 36, pages 13931–13955, 2024.

[22] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

11

[23] Yian Deng and Tingting Mu. Understanding and improving ensemble adversarial defense. In
Advances in Neural Information Processing Systems, volume 36, pages 58075–58087, 2023.

[24] Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple perturbations.
In Advances in Neural Information Processing Systems, volume 32, 2019.

[25] Cheng-Hsin Weng, Yan-Ting Lee, and Shan-Hung Brandon Wu. On the trade-off between
adversarial and backdoor robustness. In Advances in Neural Information Processing Systems,
volume 33, pages 11973–11983, 2020.

[26] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, pages 7472–7482. PMLR, 2019.

[27] Kaike Zhang, Qi Cao, Yunfan Wu, Fei Sun, Huawei Shen, and Xueqi Cheng. Improving the
shortest plank: Vulnerability-aware adversarial training for robust recommender system. In
Proceedings of the 18th ACM Conference on Recommender Systems, pages 680–689, 2024.

[28] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry.
Adversarially robust generalization requires more data. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 31, 2018.

[29] Haoyang LI, Shimin DI, and Lei Chen. Revisiting Injective Attacks on Recommender Systems.
In Conference on Neural Information Processing Systems (NeurIPS), volume 35, pages 29989–
30002, 2022.

[30] Shyong K Lam and John Riedl. Shilling recommender systems for fun and profit. In Proceedings
of the 13th International Conference on World Wide Web, pages 393–402, 2004.

[31] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pages 452–461, 2009.

[32] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. Modeling user exposure
in recommendation. In Proceedings of the 25th International Conference on World Wide Web,
pages 951–961, 2016.

[33] Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian, Danyang Liu,
Xing Xie, Jianfeng Gao, Winnie Wu, et al. Mind: A large-scale dataset for news recommendation.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 3597–3606, 2020.

[34] Robin Burke, Bamshad Mobasher, and Runa Bhaumik. Limited knowledge shilling attacks
in collaborative filtering systems. In Proceedings of 3rd International Workshop on Intelli-
gent Techniques for Web Personalization, 19th International Joint Conference on Artificial
Intelligence, pages 17–24, 2005.

[35] Changxin Tian, Yuexiang Xie, Yaliang Li, Nan Yang, and Wayne Xin Zhao. Learning to
Denoise Unreliable Interactions for Graph Collaborative Filtering. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 122–132, 2022.

[36] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web,
pages 173–182, 2017.

[37] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collabo-
rative filtering. In Proceedings of the 42nd international ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 165–174, 2019.

[38] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(11), 2008.

12

[39] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommenda-
tions. In Proceedings of the 10th ACM Conference on Recommender Systems, pages 191–198,
2016.

[40] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 974–983, 2018.

[41] Yehuda Koren, Steffen Rendle, and Robert Bell. Advances in collaborative filtering. Recom-
mender Systems Handbook, pages 91–142, 2021.

[42] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender
systems. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1235–1244, 2015.

[43] Bamshad Mobasher, Robin Burke, Runa Bhaumik, and Chad Williams. Toward trustworthy rec-
ommender systems: An analysis of attack models and algorithm robustness. ACM Transactions
on Internet Technology, 7(4):23–es, 2007.

[44] Carlos E Seminario and David C Wilson. Attacking item-based recommender systems with
power items. In Proceedings of the 8th ACM Conference on Recommender Systems, pages
57–64, 2014.

[45] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data poisoning attacks on
factorization-based collaborative filtering. In Advances in Neural Information Processing
Systems, volume 29, 2016.

[46] Chenwang Wu, Defu Lian, Yong Ge, Zhihao Zhu, and Enhong Chen. Triple adversarial learning
for influence-based poisoning attack in recommender systems. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1830–1840, 2021.

[47] Jingfan Chen, Wenqi Fan, Guanghui Zhu, Xiangyu Zhao, Chunfeng Yuan, Qing Li, and Yihua
Huang. Knowledge-enhanced black-box attacks for recommendations. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 108–117,
2022.

[48] Fulan Qian, Bei Yuan, Hai Chen, Jie Chen, Defu Lian, and Shu Zhao. Enhancing the trans-
ferability of adversarial examples based on nesterov momentum for recommendation systems.
IEEE Transactions on Big Data, 2023.

[49] Yanling Wang, Yuchen Liu, Qian Wang, Cong Wang, and Chenliang Li. Poisoning self-
supervised learning based sequential recommendations. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 300–310,
2023.

[50] Ziheng Chen, Fabrizio Silvestri, Jia Wang, Yongfeng Zhang, and Gabriele Tolomei. The dark
side of explanations: Poisoning recommender systems with counterfactual examples. arXiv
preprint arXiv:2305.00574, 2023.

[51] Chengzhi Huang and Hui Li. Single-user injection for invisible shilling attack against recom-
mender systems. In Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management, pages 864–873, 2023.

[52] Yunfan Wu, Qi Cao, Shuchang Tao, Kaike Zhang, Fei Sun, and Huawei Shen. Accelerating the
surrogate retraining for poisoning attacks against recommender systems. In Proceedings of the
18th ACM Conference on Recommender Systems, pages 701–711, 2024.

[53] Paul-Alexandru Chirita, Wolfgang Nejdl, and Cristian Zamfir. Preventing shilling attacks in
online recommender systems. In Proceedings of the 7th Annual ACM International Workshop
on Web Information and Data Management, pages 67–74, 2005.

13

A Related Work

A.1 Collaborative Filtering

Collaborative Filtering (CF) has become a cornerstone of modern recommender systems, evidenced
by its widespread application in various studies [3, 39, 40]. The fundamental premise of CF is that
users with similar preferences are likely to exhibit similar behaviors, which can be leveraged to
predict future recommendations [41]. A principal approach within CF is Matrix Factorization, which
learns latent embeddings of users and items by decomposing the observed interaction matrix [2].

With the advent of deep learning, neural CF models have emerged, designed to capture more complex
patterns in user preferences. For example, CDL [42] merges auxiliary item information through
neural networks into CF, addressing challenges associated with data sparsity. Additionally, NCF [36]
replaces the traditional dot product with a neural network, enhancing the modeling of user-item
interactions. More recently, Graph Neural Networks have prompted the development of graph-
based CF models, such as NGCF [37] and LightGCN [3], which have shown remarkable efficacy in
recommender systems. However, despite these technological advances, susceptibility to poisoning
attacks remains a significant challenge, compromising the robustness of these systems [8].

A.2 Poisoning Attacks against Recommender Systems

Poisoning attacks within recommender systems involve injecting fake users into the training data
to manipulate the exposure of certain items. Initial research predominantly focused on rule-based
heuristic attacks, where profiles for these fake users were constructed using predetermined heuristic
rules [30, 34, 43, 44]. For example, the Random Attack [30] generated fake users interacting with
targeted items alongside a random selection of other items. In contrast, the Bandwagon Attack [34]
generated fake user interactions to include targeted items and others selected for their high popularity.

As the technique of attacks has evolved, recent studies have shifted towards optimization-based
methods for generating fake users [7, 6, 29, 45, 46, 47, 48, 49, 50, 51, 52]. For instance, the Rev
Attack [7] formalizes the attack as a bi-level optimization problem, addressed using gradient-based
techniques. Similarly, the DP Attack [6] specifically targets deep learning-based recommender
systems.

A.3 Robust Recommender Systems

Mainstream strategies for enhancing the robustness of CF systems against poisoning attacks broadly
categorize into two main approaches [8]: (1) detecting and removing fake users [9, 10, 11, 12, 13,
14, 53], and (2) developing robust models via adversarial training, i.e., Adversarial Collaborative
Filtering (ACF) [15, 16, 17, 18, 19, 20, 27].

Detection-based strategies focus either on pre-identifying and removing potential fake users from
the dataset [9, 10, 11, 14] or on mitigating their influence during the training phase [12, 13]. These
methods often rely on specific assumptions about the attacks [9, 12] or require supervised data
regarding attacks [10, 11, 12, 13]. Among these, LoRec [13] utilizes large language models to
enhance sequential recommendations, overcoming the limitations associated with specific knowledge
in detection-based strategies. However, its scope is limited to sequential recommender systems and
may not generalize well across different CF scenarios.

Conversely, ACF methodologies, particularly those aligned with the Adversarial Personalized Ranking
(APR) framework [15], integrate adversarial perturbations at the parameter level (i.e., user and item
embeddings) during the model training process [15, 17, 19, 20]. This approach follows a “min-
max” optimization paradigm, designed to minimize the error in recommendations under parameter
perturbations which aim to maximize the error [13]. Besides, numerous studies have demonstrated that
ACF not only enhances the model’s robustness but also improves its recommendation performance [15,
20, 27]. Nonetheless, despite its benefits in specific contexts through empirical validation, the intrinsic
mechanisms of ACF’s effectiveness and its universal applicability remain areas for further theoretical
exploration.

14

Algorithm 1 The Training Procedure of PamaCF-BPR
Input: Training set D, uniform perturbation magnitude ρ, adversarial training weight λ, pre-training

epochs Tpre, batch size B
Output: Model parameters Θ = [U ,V].
1: Pre-train Θ = [U ,V] for Tpre epochs using Equation 8.
2: while stopping criteria not met do
3: Draw batch of B pairs (u, i, j) from D.
4: for each (u, i, j) in the batch do
5: Calculate ∆PamaCF

u , ∆PamaCF
i , and ∆PamaCF

j using Equation 10.
6: Compute LPamaCF((u, i, j)|Θ) using Equation 9.
7: end for
8: Update Θ using the aggregated gradients from LPamaCF(Θ) in the batch.
9: end while

10: return Θ = [U ,V]

B Methodology

For clarity, we present the PamaCF version of the widely used Bayesian Personalized Ranking
(BPR) [31] loss function, which optimizes recommender models towards personalized ranking. Given
the user set U = {u}, the item set V = {v}, and the training set D = {(u, i, j) | u ∈ U ∧ i ∈
Vu ∧ j ∈ V \ Vu}, where Vu denotes the set of items with which user u has interacted. The objective
function (to be minimized) of BPR is formally given by:

LBPR(Θ = [U ,V]) = −
∑

(u,i,j)∈D

lnσ (⟨Uu,Vi⟩ − ⟨Uu,Vj⟩), (8)

where U and V represent the learned user and item embeddings, respectively.

The PamaCF version of the BPR loss function is defined as:
LPamaCF(Θ) =LBPR(Θ) + λLBPR(Θ +∆PamaCF),

where ∆PamaCF =arg max
∆, ∥∆u/i/j∥≤ρ·c(u,t),(u,i,j)∈D

LBPR(Θ +∆),

where λ is the weight of adversarial training, ρ represents the uniform perturbation magnitude for all
users, and

c(u, t) = sig

(
∥u(t)∥ − ∥u(t)∥

∥u(t)∥

)
.

The specific handling of a pair (u, i, j) ∈ D is expressed by:

LPamaCF((u, i, j)|Θ) = − lnσ (⟨Uu,Vi⟩ − ⟨Uu,Vj⟩)
−λ lnσ

(
⟨Uu +∆PamaCF

u ,Vi +∆PamaCF
i ⟩ − ⟨Uu +∆PamaCF

u ,Vj +∆PamaCF
j ⟩

)
,

(9)

where

∆PamaCF
u =ρc(u, t)

Γu

∥Γu∥
, where Γu =

∂LBPR((u, i, j)|Θ+∆PamaCF)

∂∆u
,

∆PamaCF
i =ρc(u, t)

Γi

∥Γi∥
, where Γi =

∂LBPR((u, i, j)|Θ+∆PamaCF)

∂∆i
,

∆PamaCF
j =ρc(u, t)

Γi

∥Γj∥
, where Γj =

∂LBPR((u, i, j)|Θ+∆PamaCF)

∂∆j
.

(10)

The procedure of training with PamaCF is illustrated in Algorithm 1.

C Experiments

C.1 Supplements to Experimental Settings

Datasets. We employ three common benchmarks: the Gowalla check-in dataset [32], the Yelp2018
business dataset, and the MIND news recommendation dataset [33]. The Gowalla and Yelp2018

15

Table 3: Dataset statistics

DATASET #Users #Items #Ratings Avg.Inter. Sparsity
Gowalla 29,858 40,981 1,027,370 34.4 99.92%
Yelp2018 31,668 38,048 1,561,406 49.3 99.88%
MIND 141,920 36,214 20,693,122 145.8 99.60%

datasets include interactions from all users. For the MIND dataset, we sample a subset of users
following [13]. Following [3, 37], users and items with fewer than 10 interactions are excluded
from our analysis. We allocate 80% of each user’s historical interactions to the training set and
the remainder for testing. Additionally, 10% of the interactions from the training set are randomly
selected to form a validation set for hyperparameter tuning. Detailed statistics of the datasets are
summarized in Table 3.

Attack Methods. We explore both heuristic (Random Attack [30], Bandwagon Attack [34]) and
optimization-based (Rev Attack [7], DP Attack [6]) attack methods within a black-box context, where
the attacker does not have access to the internal architecture or parameters of the target model.

• Random Attack (Heuristic Method) [30]: This method entails fake users including interactions
with both the targeted items and a set of randomly chosen items.

• Bandwagon Attack (Heuristic Method) [34]: Fake users’ interactions encompass the targeted
items and those selected for their high popularity.

• DP Attack (Optimization-based Method) [6]: This approach is specifically designed to compromise
deep learning-based recommender systems.

• Rev Attack (Optimization-based Method) [7]: The attack is conceptualized as a bi-level optimiza-
tion problem, addressed through gradient-based methods.

Defense Baselines. We incorporate a variety of defense methods, including detection-based ap-
proaches (GraphRfi [12] and LLM4Dec [13]), adversarial collaborative filtering methods (APR [15]
and SharpCF [20]), and a denoise-based strategy (StDenoise [35, 19]). In our study, we employ three
common backbone recommendation models, MF [2], LightGCN [3], and NeurMF [36].

• GraphRfi [12]: Employs a combination of Graph Convolutional Networks and Neural Random
Forests for identifying fake users.

• LLM4Dec [13]: Utilizes an LLM-based framework for fake users detection.

• APR [15]: Generates parameter perturbations and integrates these perturbations into training.

• SharpCF [20]: Adopts a sharpness-aware minimization approach to refine the adversarial training
process proposed by APR.

• StDenoise [35, 19]: Applies a structural denoising technique that leverages the similarity between
Uu and Vi for each (u, i) pair, aiding in the removal of noise, as described in [35, 19].

Note that: With the need of item-side information, LLM4Dec is exclusively evaluated on the MIND
dataset. Moreover, we observe that SharpCF, initially proposed for the MF model, exhibits unstable
training performance when applied to the LightGCN model or the MIND dataset. Consequently, we
present SharpCF results solely for the MF model on the Gowalla and Yelp2018 datasets.

Implementation Details. In our study, we employ three common backbone recommendation models,
Matrix Factorization (MF) [2], LightGCN [3], and NeurMF [36]. To quantify the success ratio
of attacks, we select k = 50 as the evaluation metric following [6, 7, 18], while for assessing
recommendation performance, we utilize k = 10, 20 following [3, 37]. For each attack setting, we
conduct experiments five times, taking the average value as the result and the standard deviation
as the error bar. The configuration of both the defense methods and the recommendation models
involves selecting a learning rate from {0.1, 0.01, . . . , 1× 10−5}, and a weight decay from {0, 0.1,
. . . , 1× 10−5}. The implementation of GraphRfi follows its paper. For the detection-based methods,
we employ the Random Attack to generate supervised attack data. The magnitude parameter of
adversarial perturbations in both APR and PamaCF is determined from a range of {0.1, 0.2, . . . ,
1.0}. In terms of attack methods, we set the attack budget to 1% and target five specific items. The
hyperparameters align with those detailed in their original publications.

16

Figure 4: Robustness against popular items promotion.

Table 4: Robustness against target items promotion on Gowalla
Dataset Model Random Attack(%) Bandwagon Attack(%) DP Attack(%) Rev Attack(%)

T-HR@501 T-NDCG@50 T-HR@50 T-NDCG@50 T-HR@50 T-NDCG@50 T-HR@50 T-NDCG@50

Gowalla

LightGCN 0.234 ± 0.116 0.056 ± 0.031 0.639 ± 0.090 0.153 ± 0.024 0.231 ± 0.048 0.048 ± 0.010 0.718 ± 0.134 0.149 ± 0.026
+StDenoise 0.118 ± 0.068 0.029 ± 0.019 0.334 ± 0.092 0.079 ± 0.020 0.585 ± 0.092 0.120 ± 0.019 1.304 ± 0.184 0.259 ± 0.037
+GraphRfi 0.099 ± 0.023 0.023 ± 0.006 0.710 ± 0.250 0.161 ± 0.052 0.228 ± 0.048 0.046 ± 0.010 0.564 ± 0.067 0.115 ± 0.013
+APR 0.089 ± 0.053 0.021 ± 0.015 0.332 ± 0.050 0.079 ± 0.012 0.190 ± 0.037 0.039 ± 0.008 0.655 ± 0.141 0.132 ± 0.027

+PamaCF 0.053 ± 0.041 0.013 ± 0.011 0.194 ± 0.037 0.046 ± 0.009 0.116 ± 0.030 0.023 ± 0.006 0.336 ± 0.061 0.070 ± 0.012
Gain2 +40.48% ↑ +40.46% ↑ +41.64% ↑ +41.62% ↑ +38.92% ↑ +40.13% ↑ +40.40% ↑ +39.15% ↑

NeurMF 0.404 ± 0.196 0.089 ± 0.043 0.887 ± 0.260 0.189 ± 0.054 0.047 ± 0.017 0.010 ± 0.004 0.210 ± 0.077 0.044 ± 0.017
+StDenoise 0.468 ± 0.296 0.103 ± 0.064 0.898 ± 0.356 0.192 ± 0.077 0.060 ± 0.024 0.013 ± 0.006 0.194 ± 0.044 0.041 ± 0.010
+GraphRfi 0.241 ± 0.049 0.052 ± 0.010 0.485 ± 0.081 0.103 ± 0.017 0.041 ± 0.013 0.009 ± 0.003 0.248 ± 0.061 0.053 ± 0.013
+APR 0.094 ± 0.028 0.021 ± 0.006 0.477 ± 0.217 0.106 ± 0.048 0.046 ± 0.022 0.010 ± 0.005 0.426 ± 0.064 0.092 ± 0.039

+PamaCF 0.074 ± 0.022 0.017 ± 0.006 0.168 ± 0.096 0.038 ± 0.021 0.032 ± 0.021 0.007 ± 0.005 0.186 ± 0.032 0.041 ± 0.011
Gain1 +20.98% ↑ +17.65% ↑ +64.81% ↑ +62.57% ↑ +22.99% ↑ +19.87% ↑ +3.99% ↑ +0.11% ↑

1 Target Item Hit Ratio (Equation 7); T-HR@50 and T-NDCG@50 of all target items on clean datasets are 0.000.
2 The relative percentage increase of PamaCF’s metrics to the best value of other baselines’ metrics, i.e., (min (T-HRBeslines)− T-HRVAT) /min(T-HRBeslines).

Notably, only three decimal places are presented due to space limitations, though the actual ranking and calculations utilize the full precision of the data.
3 The Rev attack method could not be executed on the dataset due to memory constraints, resulting in an out-of-memory error.

Compute Resources. The experiments are conducted using two primary GPU: the RTX 4090
with 24GB of VRAM and the A800 with 80GB of VRAM. For most baseline defense methods
applied across all datasets, a single RTX 4090 GPU suffices, requiring several hours per experiment.
However, the LLM4Dec method [13] demands an A800 GPU due to its higher resource requirements
for processing Large Language Models. In terms of attack generation, heuristic poisoning attacks
such as the Random Attack [30] and Bandwagon Attack [34] are generated within seconds and do
not require specific GPU resources. Conversely, the time required to generate optimization-based
poisoning attacks, such as the DP Attack [6] and Rev Attack [7], depends on the dataset. For the
Gowalla and Yelp datasets, these attacks take hours to execute on an A800 GPU. The DP Attack on
the MIND dataset extends to several days, also utilizing an A800 GPU. However, the Rev Attack
cannot be completed on a single A800 GPU due to its even greater computational demands.

C.2 Supplements to Performance Comparison

We assess PamaCF’s defense capabilities against attacks targeting popular items on Gowalla. Accord-
ing to Figure 4, PamaCF exhibits strong defensibility, outperforming the best baseline even when
attacks specifically promote popular items.

We also evaluate PamaCF’s defense capabilities and recommendation performance when applied to
LightGCN [3] and NeurMF [36], as shown in Table 4 and Table 5, which produces consistent results
with MF [2].

Additionally, we report PamaCF’s recommendation performance on MF for the Gowalla dataset,
specifically for k = 10, using Recall@10 and NDCG@10. PamaCF demonstrates significantly
greater improvement at k = 10, achieving a 29.59% increase in Recall and a 56.41% increase in
NDCG, relative to the baseline model, as shown in Table 6.

17

Table 5: Recommendation Performance on Gowalla
Model Clean (%) Random Attack (%) Bandwagon Attack (%) DP Attack (%) Rev Attack (%)

(Dataset) Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
LightGCN 12.54 ± 0.03 8.27 ± 0.02 12.46 ± 0.05 8.26 ± 0.03 12.50 ± 0.05 8.28 ± 0.02 12.83 ± 0.02 10.10 ± 0.02 12.99 ± 0.04 10.25 ± 0.01

+StDenoise 12.52 ± 0.03 9.92 ± 0.02 12.40 ± 0.04 9.81 ± 0.04 12.38 ± 0.04 9.77 ± 0.03 12.46 ± 0.03 9.84 ± 0.02 12.56 ± 0.04 9.93 ± 0.02
+GraphRfi 12.79 ± 0.04 10.04 ± 0.00 12.65 ± 0.04 9.91 ± 0.02 12.65 ± 0.04 9.91 ± 0.02 12.71 ± 0.04 9.95 ± 0.01 12.86 ± 0.03 10.08 ± 0.02
+APR 12.71 ± 0.03 9.50 ± 0.03 12.84 ± 0.02 9.82 ± 0.03 12.18 ± 0.01 9.31 ± 0.03 12.89 ± 0.03 9.87 ± 0.03 12.78 ± 0.05 9.53 ± 0.03

+PamaCF 13.18 ± 0.02 10.28 ± 0.02 13.02 ± 0.03 10.15 ± 0.02 13.00 ± 0.02 10.12 ± 0.02 13.09 ± 0.02 10.20 ± 0.02 13.24 ± 0.04 10.34 ± 0.02
Gain +3.09% ↑ +2.38% ↑ +1.45% ↑ +2.42% ↑ +2.78% ↑ +2.10% ↑ +1.57% ↑ +0.99% ↑ +1.93% ↑ +0.81% ↑

Gain w.r.t. MF +5.15% ↑ +24.23% ↑ +4.56% ↑ +22.91% ↑ +4.06% ↑ +22.29% ↑ +1.99% ↑ +0.99% ↑ +1.93% ↑ +0.81% ↑
NeurMF 9.93 ± 0.28 6.74 ± 0.30 9.65 ± 0.16 6.59 ± 0.16 9.76 ± 0.19 6.77 ± 0.27 9.68 ± 0.57 6.52 ± 0.58 9.58 ± 0.31 6.50 ± 0.36

+StDenoise 10.21 ± 0.31 6.92 ± 0.33 9.87 ± 0.23 6.71 ± 0.24 10.12 ± 0.22 6.98 ± 0.21 9.82 ± 0.53 6.53 ± 0.55 9.75 ± 0.50 6.56 ± 0.56
+GraphRfi 9.82 ± 0.32 6.68 ± 0.41 9.84 ± 0.35 6.78 ± 0.44 9.65 ± 0.31 6.50 ± 0.36 9.92 ± 0.18 6.78 ± 0.22 9.77 ± 0.39 6.63 ± 0.48
+APR 10.02 ± 0.24 6.92 ± 0.24 9.99 ± 0.22 6.90 ± 0.23 9.90 ± 0.29 6.91 ± 0.35 9.86 ± 0.34 6.74 ± 0.42 9.74 ± 0.35 6.67 ± 0.41

+PamaCF 10.26 ± 0.17 7.06 ± 0.18 10.27 ± 0.21 7.13 ± 0.27 10.28 ± 0.27 7.23 ± 0.35 10.14 ± 0.40 6.87 ± 0.44 10.02 ± 0.36 6.85 ± 0.38
Gain +0.53% ↑ +1.97% ↑ +2.85% ↑ +3.32% ↑ +1.56% ↑ +3.55% ↑ +2.18% ↑ +1.24% ↑ +2.54% ↑ +2.67% ↑

Gain w.r.t. MF +3.41% ↑ +4.74% ↑ +6.46% ↑ +8.26% ↑ +5.32% ↑ +6.68% ↑ +4.71% ↑ +5.32% ↑ +4.65% ↑ +5.33% ↑
1 The relative percentage increase of PamaCF’s metrics to the best value of other baselines’ metrics. Notably, only three decimal places are presented due to space limitations,

though the actual ranking and calculations utilize the full precision of the data.

Table 6: Recommendation Performance@10 on Gowalla
Model Clean (%) Random Attack (%) Bandwagon Attack (%) DP Attack (%) Rev Attack (%)

(Dataset) Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10
MF 7.49 ± 0.08 5.85 ± 0.03 7.47 ± 0.03 5.89 ± 0.05 7.41 ± 0.06 5.81 ± 0.04 7.24 ± 0.11 7.23 ± 0.08 7.24 ± 0.04 7.26 ± 0.02

+StDenoise 7.03 ± 0.08 7.17 ± 0.10 6.99 ± 0.08 7.16 ± 0.06 6.95 ± 0.09 7.13 ± 0.03 7.09 ± 0.11 7.22 ± 0.09 7.14 ± 0.04 7.29 ± 0.03
+GraphRfi 6.98 ± 0.03 7.03 ± 0.06 6.92 ± 0.06 6.96 ± 0.06 6.86 ± 0.04 6.91 ± 0.06 6.97 ± 0.07 7.02 ± 0.09 7.06 ± 0.09 7.08 ± 0.06
+APR 9.29 ± 0.06 9.69 ± 0.06 9.21 ± 0.04 9.58 ± 0.01 9.20 ± 0.05 9.56 ± 0.03 9.24 ± 0.04 9.64 ± 0.05 9.41 ± 0.07 9.78 ± 0.09
+SharpCF 8.81 ± 0.09 8.83 ± 0.10 8.80 ± 0.09 8.84 ± 0.07 8.71 ± 0.08 8.72 ± 0.06 8.93 ± 0.11 8.91 ± 0.09 8.92 ± 0.05 8.93 ± 0.03

+PamaCF 9.56 ± 0.02 9.94 ± 0.05 9.46 ± 0.03 9.84 ± 0.01 9.49 ± 0.02 9.84 ± 0.01 9.54 ± 0.05 9.93 ± 0.04 9.68 ± 0.05 10.05 ± 0.10
Gain +2.91% ↑ +2.56% ↑ +2.69% ↑ +2.74% ↑ +3.13% ↑ +2.86% ↑ +3.25% ↑ +2.97% ↑ +2.87% ↑ +2.78% ↑

Gain w.r.t. MF +27.62% ↑ +70.00% ↑ +26.65% ↑ +66.97% ↑ +28.10% ↑ +69.27% ↑ +31.78% ↑ +37.34% ↑ +33.80% ↑ +38.48% ↑
1 The relative percentage increase of PamaCF’s metrics to the best value of other baselines’ metrics. Notably, only three decimal places are presented due to space

limitations, though the actual ranking and calculations utilize the full precision of the data.

D Proofs

D.1 Proofs for Section 3.1

D.1.1 Proof of Theorem 1

To investigate the recommendation error of each user during the training period, we first analyze
how the item embeddings change. We discover a transformation function that accurately measures
the change in the item embedding from its initial state to its state after a certain number of training
epochs. This insight is formally expressed in the following proposition.

Proposition 1. Consider a Gaussian Recommender System f(t), undergoing training for t epochs
using the standard loss function specified in Equation 2. Given a learning rate η, there exists a
function M(t, η) : N+ × R+ → R+ that quantify the transformation of the item embedding due to
training. Specifically, we have:

v(t) =M(t, η)v(0),

where v(0) denotes the initial item embedding and v(t) represents the item embedding after t epochs
of training.

Proof of Proposition 1. Consider the training process of the Gaussian Recommender System f(t)
over t epochs, with each update through the standard loss outlined in Equation 2. The update
mechanism for user and item embeddings at the tth epoch can be described as follows:

u(t) =u(t−1) + η · rv(t−1),

v(t) =v(t−1) + η ·
∑

(u,r)∈I

ru(t−1). (11)

18

Considering the sum
∑

(u,r) ru(t−1), we have:∑
(u,r)

ru(t−1) =
∑
(u,r)

(
ru(t−2) + ηr2v(t−2)

)
=
∑
(u,r)

(
ru(t−3) + η

(
v(t−2) + v(t−3)

))
· · ·

=
∑
(u,r)

ru(0) + η

t−2∑
j=0

v(j)


=nv(0) + nη

t−2∑
j=0

v(j),

where n is the number of users. This leads to the recursive update for v(t):

v(t) =v(t−1) + nηv(0) + nη2
t−2∑
j=0

v(j)

=(1 + nη2)v(t−2) + 2nηv(0) + 2nη2
t−3∑
j=0

v(j)

=(1 + nη2 + 2nη2)v(t−3) +
(
nη · (1 + nη2) + 2nη

)
v(0) +

(
nη2 · (1 + nη2) + 2nη2

) t−4∑
j=0

v(j).

To simplify, we introduce a(k), b(k) and c(k) to represent the cumulative scaling factors as:

a(k) =

{
1 k = 1

a(k − 1) + c(k − 1) k ≥ 2
,

b(k) =

{
nη k = 1

nη · a(k − 1) + b(k − 1) k ≥ 2
,

c(k) =

{
nη2 k = 1

nη2 · a(k − 1) + c(k − 1) k ≥ 2
,

(12)

yielding a general form for v(t):

v(t) =a(k)v(t−k) + b(k)v(0) + c(k)

t−k−1∑
j=0

v(j)

=a(t− 1)v(1) + b(t− 1)v(0) + c(t− 1)v(0).

Based on
v(1) = v(0) + η

∑
(u,r)∈I

ru(0) = (1 + nη)v(0),

letM(t, η) : N+×R+ → R+ be the transformation function related to training epochs t and learning
rate η, which is defined as:

M(t, η) =

{
1 + nη t = 1

(1 + nη)a(t− 1) + b(t− 1) + c(t− 1) t > 1
.

Then we can get:
v(t) =M(t, η)v(0).

This proves that the item embedding v(t) after t epochs of training is a scaled version of the initial
embedding v(0), with the scaling factor M(t, η) being a function of the number of epochs t and the
learning rate η.

19

Fact 1. Let ε ∈ Rd be drawn from N (0, σ2I), with σ > 0. Let w ∈ Rd represent any unit vector.
Then, ⟨ε,w⟩ follows a normal distribution N (0, σ2).

Proof of Fact 1. Consider ε = [ε1, . . . , εd], with each εi following N (0, σ2). Let w = [w1, . . . , wd],
satisfying w2

1 + · · ·+ w2
d = 1. Then ⟨ε,w⟩ is distributed as N (E[⟨ε,w⟩],D[⟨ε,w⟩]), where:

E[⟨ε,w⟩] = E[ε1w1 + · · ·+ εdwd] = 0,

D[⟨ε,w⟩] = D[ε1w1 + · · ·+ εdwd]

= D[ε1w1] + · · ·+ D[εdwd]

= (w2
1 + · · ·+ w2

d)σ
2

= σ2.

Hence, Fact 1 is proved.

Proof of Theorem 1. By invoking Proposition 1, we establish the basis for evaluating the impact of
training on the recommendation error at the (t+ 1)th epoch. Proposition 1 specifies the scaling rela-
tionship between the initial and trained item embeddings, leading to the following update expressions
for user and item embeddings. For the standard loss though Equation 2, we have:

u(t+1) = u(t) + ηrM(t, η)v(0),

v(t+1) =M(t+ 1, η)v(0).

Considering the above update rules, the recommendation error at the (t+ 1)th epoch is given by:

P
v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨u(t+1),v(t+1)⟩ ≤ 0

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨

(
u(t) + ηrM(t, η)v(0)

)
,M(t+ 1, η)v(0)⟩ ≤ 0

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨

(
u(t) + ηrM(t, η)v(0)

)
,v(0)⟩ ≤ 0

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨u(t),v(0)⟩ ≤ −ηM(t, η)∥v(0)∥2

]
.

(13)

For adversarial loss as detailed by Equation 1, we have:

∆adv = arg max
∆,∥∆∥≤ϵ

L(Θ +∆).

According to the first-order Taylor expansion, we have:

∆adv ≈ arg max
∆,∥∆∥≤ϵ

L(Θ) + ⟨∆,∇ΘL(Θ)⟩

=arg max
∆,∥∆∥≤ϵ

⟨∆,∇ΘL(Θ)⟩

=ϵ
∇ΘL(Θ)

∥∇ΘL(Θ)∥
,

leading to specific perturbations ∆u and ∆v in Equation 3:

∆u = ϵ
Γv

∥Γu∥
, where Γu =

∂L(u,v|Θ)

∂u
= −rv,

∆v = ϵ
Γv

∥Γv∥
, where Γv =

∂L(v,u|Θ)

∂v
= −ru.

(14)

20

Subsequently, the updated embeddings through adversarial loss are expressed as:

u adv
(t+1) = u(t) + η ·

(
rv(t) + λr

(
v(t) − ϵ

ru(t)

∥u(t)∥

))
= u(t) + η(1 + λ)rv(t) − ηλϵ

u(t)

∥u(t)∥

=

(
1− ηλϵ

∥u(t)∥

)
u(t) + η(1 + λ)r ·M(t, η)v(0)

v adv
(t+1) = v(t) + η ·

(∑
ru(t) + λ

∑
r

(
u(t) − ϵ

rv(t)

∥v(t)∥

))
= v(t) + η(1 + λ)

∑
ru(t) −

nηλϵ

∥v(t)∥
v(t)

=

M(t, η) + nη(1 + λ)

1 + η + η

t−1∑
j=1

M(j, η)

− nηλϵ

∥v(0)∥

v(0).

(15)

Given ∥ū∥ ≫ σ, we can approximate ∥v(0)∥ with E[∥v(0)∥]. Given ϵ <
min(∥u(t)∥,∥ū∥)

ηλ , according to the expansion of M(t, η) in Proposition 1, it follows that(
M(t, η) + nη(1 + λ)

(
1 + η + η

∑t−1
j=1M(j, η)

)
− nηλϵ

∥v(0)∥

)
> 0. Considering these update rules,

the recommendation error at the (t+ 1)th epoch is determined by:

P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨u adv

(t+1),v
adv
(t+1)⟩ ≤ 0

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨

((
1− ηλϵ

∥u(t)∥

)
u(t) + η(1 + λ)r ·M(t, η)v(0)

)
,v(0)⟩ ≤ 0

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨

(
1− ηλϵ

∥u(t)∥

)
u(t),v(0)⟩+ η(1 + λ)M(t, η)⟨v(0),v(0)⟩ ≤ 0

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨

(
1− ηλϵ

∥u(t)∥

)
u(t),v(0)⟩ ≤ −η(1 + λ)M(t, η)∥v(0)∥2

]
.

(16)

Let γ(u)
(t) =

(
1− ηλϵ

∥u(t)∥

)−1

. Given the condition ϵ < min(∥u(t)∥,∥ū∥)
ηλ , it follows γ(u)

(t) > 1. The final

form of the recommendation error at the (t+ 1)th epoch under adversarial training is:

P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨u(t),v(0)⟩ ≤ −η(1 + λ)γ

(u)
(t) M(t, η)∥v(0)∥2

]

This leads us to:

P
v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
− P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
−η(1 + λ)γu(t)M(t, η)∥v(0)∥2 < r⟨u(t),v(0)⟩ ≤ −ηM(t, η)∥v(0)∥2

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
−η(1 + λ)γu(t)M(t, η)

∥v(0)∥2

∥u(t)∥
< ⟨

ru(t)

∥u(t)∥
,v(0)⟩ ≤ −ηM(t, η)

∥v(0)∥2

∥u(t)∥

]
.

21

Given that ∥ū∥ ≫ σ, we can approximate the ∥v(0)∥2 by using E
v(0)∼N (ū, σ2

n−1 I)

[
∥v(0)∥2

]
as an

estimate. Therefore, we have:

P
v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
− P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
≈ P

v(0)∼N (ū, σ2

n−1 I)

[
−η(1 + λ)γu(t)M(t, η)

∥ū∥2 + dσ2

n−1

∥u(t)∥
< ⟨

ru(t)

∥u(t)∥
,v(0)⟩ ≤ −ηM(t, η)

∥ū∥2 + dσ2

n−1

∥u(t)∥

]
,

where d is the dimension of v(0).

Let ε ∼ N
(
0, σ2

n−1I
)

, we have v(0) = ū+ ε. Thus:

P
v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
− P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
= P

ε∼N
(
0, σ2

n−1 I
)
[
−η(1 + λ)γu(t)M(t, η)

∥ū∥2 + dσ2

n−1

∥u(t)∥
< ⟨

ru(t)

∥u(t)∥
, ū+ ε⟩ ≤ −ηM(t, η)

∥ū∥2 + dσ2

n−1

∥u(t)∥

]

= P
ε∼N

(
0, σ2

n−1 I
)
[
−η(1 + λ)γu(t)M(t, η)

∥ū∥2 + dσ2

n−1

∥u(t)∥
− ⟨

ru(t)

∥u(t)∥
, ū⟩

< ⟨
ru(t)

∥u(t)∥
, ε⟩ ≤ −ηM(t, η)

∥ū∥2 + dσ2

n−1

∥u(t)∥
− ⟨

ru(t)

∥u(t)∥
, ū⟩

]
.

(17)
According to Fact 1, ⟨ ru(t)

∥u(t)∥
, ε⟩ ∼ N

(
0, σ2

n−1

)
, then:

P
v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
− P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
=Φ

(√
n− 1

σ

(
η(1 + λ)γu(t)M(t, η)

∥ū∥2 + dσ2

n−1

∥u(t)∥
+ ⟨

ru(t)

∥u(t)∥
, ū⟩

))

− Φ

(√
n− 1

σ

(
ηM(t, η)

∥ū∥2 + dσ2

n−1

∥u(t)∥
+ ⟨

ru(t)

∥u(t)∥
, ū⟩

))
,

where Φ() is the CDF of standard Gaussian distribution. Given ϵ < min(∥u(t)∥,∥ū∥)
ηλ , it follows that

(1 + λ)γ
(u)
(t) > 1 + λ > 1. This condition implies a lower recommendation error at the (t + 1)th

epoch under adversarial training compared to standard training:

P
v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
− P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1)(u,v) ̸= r | (u, r)

]
> 0.

Therefore, Theorem 1 is proved.

D.1.2 Proof of Theorem 2

Proof of Theorem 2. In light of Theorem 1 and the impact of poisoning attacks, our objective is
to measure the alteration in the recommendation error within a poisoning attack, i.e., α-poisoned
recommendation error.

A poisoning attack on Gaussian Recommender System injects a poisoning user set I ′ =
{(u′

1, r
′
1), (u

′
2, r

′
2), . . . , (u

′
n′ , r′n′)}, with each tuple (u′, r′) ∈ Rd × {±1} representing data mali-

ciously crafted by attackers. Considering the initialized poisoned item embedding v
′
:

v
′

(0) =
1

n+ n′

 ∑
(u,r)∈I

ru(0) +
∑

(u′,r′)∈I′

r′u
′

(0)

 , (18)

22

by employing Theorem 1 as a basis (similar to Equations 13 and 16), we derive:

P
v(0)∼N (ū, σ2

n−1 I)

[
f(t+1),α(u,v

′) ̸= r | (u, r)
]
− P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1),α(u,v

′) ̸= r | (u, r)
]

=P
v(0)∼N (ū, σ2

n−1 I)

[
−η(1 + λ)γu(t)M(t, η)

∥v′
(0)∥

2

∥u(t)∥
< ⟨

ru(t)

∥u(t)∥
,v′

(0)⟩ ≤ −ηM(t, η)
∥v′

(0)∥
2

∥u(t)∥

]

=P
v(0)∼N (ū, σ2

n−1 I)

[
−η(1 + λ)γu(t)M(t, η)

∥v′
(0)∥

2

∥u(t)∥

< ⟨
ru(t)

∥u(t)∥
,

1

n+ n′

nv(0) +
∑

(u′ ,r′)∈I′

r′u
′

(0)

⟩ ≤ −ηM(t, η)
∥v′

(0)∥
2

∥u(t)∥


=P

v(0)∼N (ū, σ2

n−1 I)

[
−ηn+ n′

n
(1 + λ)γu(t)M(t, η)

∥v′
(0)∥

2

∥u(t)∥

< ⟨
ru(t)

∥u(t)∥
,v(0)⟩+

1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t)

∥u(t)∥
,u

′

(0)⟩ ≤ −ηn+ n′

n
M(t, η)

∥v′
(0)∥

2

∥u(t)∥


=P

v(0)∼N (ū, σ2

n−1 I)

−η(1 + λ)
n+ n′

n
γu(t)M(t, η)

∥v′
(0)∥

2

∥u(t)∥
− 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t)

∥u(t)∥
,u

′

(0)⟩

< ⟨
ru(t)

∥u(t)∥
,v(0)⟩ ≤ −ηn+ n′

n
M(t, η)

∥v′
(0)∥

2

∥u(t)∥
− 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t)

∥u(t)∥
,u

′

(0)⟩

 ,
where γ(u)

(t) =
(
1− ηλϵ

∥u(t)∥

)−1

.

Given ∥ū∥ ≫ σ, we can use E
v(0)∼N (ū, σ2

n−1 I)

[
∥v′

(0)∥
2
]

to approximate the ∥v′
(0)∥

2 in the above.
Similar to the proof of Theorem 1, specifically Equation 17, and under the precondition ϵ <
min(∥u(t)∥,∥ū∥)

ηλ , we have:

P
v(0)∼N (ū, σ2

n−1 I)

[
f(t+1),α(u,v

′) ̸= r | (u, r)
]
− P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+1),α(u,v

′) ̸= r | (u, r)
]
> 0.

Hence, Theorem 2 is proved.

D.2 Proofs for Section 3.2

D.2.1 Proof of Theorem 3

Extending Proposition 1 to ACF yields the following proposition, which captures the transformation
of item embedding due to adversarial loss as defined in Equation 3.

Proposition 2. Consider a Gaussian Recommender System f(t), per-trained on standard loss over t
epochs, then trained by the adversarial loss specified in Equation 3 over k epochs. Given learning
rate η, adversarial training weight λ, and perturbation magnitude ϵ, when ϵ < ∥ū∥

ηλ , and ∥ū∥ ≫ σ,
there exists a transformation function Madv(t, η, λ, ϵ) : N+ × R+ × R+ × R+ → R+, such that the
item embedding at (t+ k)th epoch, v(t+k), is related to the initial embedding v(0) by:

v(t+k) =
Madv(t+ k, η, λ, ϵ)

Madv(t, η, λ, ϵ)
M(t, η)v(0),

where M(t, η) is the transformation function given by standard loss in Proposition 1.

The proof of Proposition 2 follows a reasoning analogous to that of Proposition 1. Due to the
similarity, the detailed proof is omitted for brevity.

23

Proof of Theorem 3. Given ϵ < ∥ū∥
ηλ , drawing from Proposition 2 and Theorem 1 (specifically

Equation 15), the update rules for user and item embeddings in the ACF at the (t+ k + 1)th epoch
are presented as:

u(t+k+1) =

(
1− ηλϵ

∥u(t+k)∥

)
u(t+k) + η(1 + λ)r · Madv(t+ k, η, λ, ϵ)

Madv(t, η, λ, ϵ)
M(t, η)v(0),

v(t+k+1) =
Madv(t+ k + 1, η, λ, ϵ)

Madv(t, η, λ, ϵ)
M(t, η)v(0).

(19)

Considering the above update rules, the recommendation error at the (t+ k + 1)th epoch is given by:

P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+k+1)(u,v) ̸= r | (u, r)

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨u(t+k+1),v(t+k+1)⟩ ≤ 0

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨

(
1− ηλϵ

∥u(t+k)∥

)
u(t+k),v(0)⟩ ≤ −η(1 + λ)Ct+k∥v(0)∥2

]
,

(20)

where Ct+k = Madv(t+k,η,λ,ϵ)
Madv(t,η,λ,ϵ)

M(t, η). Let γ(u)
(t+k) =

(
1− ηλϵ

∥u(t+k)∥

)−1

. Given the condition

ϵ <
min(∥u(t+k)∥,∥ū∥)

ηλ , it follows γ(u)
(t+k) > 1. The recommendation error at (t+ 1)th epoch through

adversarial loss can be expressed as:

P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+k+1)(u,v) ̸= r | (u, r)

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨u(t+k),v(0)⟩ ≤ −η(1 + λ)γ

(u)
(t+k)Ct+k∥v(0)∥2

]
.

With

P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+k)(u,v) ̸= r | (u, r)

]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨u(t+k),v(0)⟩ ≤ 0

]
,

the change in recommendation error can be written as:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[f(u,v) ̸= r | (u, r)]

=P
v(0)∼N (ū, σ2

n−1 I)

[
−η(1 + λ)γ

(u)
(t+k)Ct+k∥v(0)∥2 < r · ⟨u(t+k),v(0)⟩ ≤ 0

]
=P

v(0)∼N (ū, σ2

n−1 I)

[
−η(1 + λ)γ

(u)
(t+k)

Ct+k

∥u(t+k)∥
∥v(0)∥2 < r · ⟨

u(t+k)

∥u(t+k)∥
,v(0)⟩ ≤ 0

]

Considering v(0) ∼ N
(
ū, σ2

n−1I
)

, let ε ∼ N
(
0, σ2

n−1I
)

, we have v(0) = ū+ ε. Then we obtain:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[f(u,v) ̸= r | (u, r)]

=P
ε∼N

(
0, σ2

n−1 I
)
[
− η(1 + λ)γ

(u)
(t+k)

Ct+k

∥u(t+k)∥
∥v(0)∥2 < ⟨

ru(t+k)

∥u(t+k)∥
, ū+ ε⟩ ≤ 0

]

=P
ε∼N

(
0, σ2

n−1 I
)
[
− η(1 + λ)γ

(u)
(t+k)

Ct+k

∥u(t+k)∥
∥v(0)∥2 − ⟨

ru(t+k)

∥u(t+k)∥
, ū⟩ < ⟨

ru(t+k)

∥u(t+k)∥
, ε⟩ ≤ −⟨

ru(t+k)

∥u(t+k)∥
, ū⟩

]
.

Given that ∥ū∥ ≫ σ, we can approximate the ∥v(0)∥2 by using E
v(0)∼N (ū, σ2

n−1 I)

[
∥v(0)∥2

]
as an

estimate. Thus, we have:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[f(u,v) ̸= r | (u, r)]

≈P
ε∼N

(
0, σ2

n−1 I
)
[
− η(1 + λ)γ

(u)
(t+k)Ct+k

∥ū∥2 + dσ2

n−1

∥u(t+k)∥
− ⟨

ru(t+k)

∥u(t+k)∥
, ū⟩ < ⟨

ru(t+k)

∥u(t+k)∥
, ε⟩ ≤ −⟨

ru(t+k)

∥u(t+k)∥
, ū⟩

]
.

24

By Fact 1, we have ⟨ ru(t)

∥u(t)∥
, ε⟩ ∼ N

(
0, σ2

n−1

)
, then:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[f(u,v) ̸= r | (u, r)]

=Φ

(√
n− 1

σ

(
−⟨

ru(t+k)

∥u(t+k)∥
, ū⟩
))

− Φ

(√
n− 1

σ

(
−η(1 + λ)γ

(u)
(t+k)Ct+k

∥ū∥2 + dσ2

n−1

∥u(t+k)∥
− ⟨

ru(t+k)

∥u(t+k)∥
, ū⟩

))
,

where Φ() is the CDF of standard Gaussian distribution.

Obviously,

⟨
ru(t+k)

∥u(t+k)∥
, ū⟩ ∈ [−∥ū∥, ∥ū∥] .

Let

Ψ(u, t+ k) = (1 + λ)γu(t+k)

Ct+k

∥u(t+k)∥
.

Using the CDF properties of the standard normal distribution, we can conclude:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[f(u,v) ̸= r | (u, r)] ≥

Φ

(√
n− 1

σ

(
∥ū∥+ η(∥ū∥2 + dσ2

n− 1
)Ψ(u, t+ k)

))
− Φ

(√
n− 1

σ
(∥ū∥)

)
,

equality holds when

⟨
ru(t+k)

∥u(t+k)∥
, ū⟩ = ∥ū∥.

Furthermore,

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[f(u,v) ̸= r | (u, r)] ≤ 2Φ

(√
n− 1η

2σ
(∥ū∥2 + dσ2

n− 1
)Ψ(u, t+ k)

)
− 1.

Equality is achieved when

⟨
ru(t+k)

∥u(t+k)∥
, ū⟩ = −1

2
η(∥ū∥2 + dσ2

n− 1
)Ψ(u, t+ k).

Therefore, Theorem 3 is proved.

D.2.2 Proof of Theorem 4

Proof of Theorem 4. Given ϵ < ∥ū∥
ηλ , according to Proposition 2 and Theorem 1 (specifically

Equation 15), we have:

u(t+k+1) =

(
1− ηλϵ

∥u(t+k)∥

)
u(t+k) + η(1 + λ)r · Madv(t+ k, η, λ, ϵ)

Madv(t, η, λ, ϵ)
M(t, η)v

′

(0),

v
′

(t+k+1) =
Madv(t+ k + 1, η, λ, ϵ)

Madv(t, η, λ, ϵ)
M(t, η)v

′

(0),

(21)

where v
′

(0) is the poisoned item embedding as given by Equation 18.

Considering the above update rules, the α-poisoned recommendation error at the (t+ k+ 1)th epoch
is given by:

P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+k+1),α(u,v

′) ̸= r | (u, r)
]

= P
v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨u(t+k+1),v

′

(t+k+1)⟩ ≤ 0
]

= P
v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨

(
1− ηλϵ

∥u(t+k)∥

)
u(t+k),v

′

(0)⟩ ≤ −η(1 + λ)Ct+k∥v
′

(0)∥
2

]
,

25

where Ct+k = Madv(t+k+1,η,λ,ϵ)
Madv(t,η,λ,ϵ)

M(t, η). Let γ(u)
(t+k) =

(
1− ηλϵ

∥u(t+k)∥

)−1

. Given the condition

ϵ <
min(∥u(t+k)∥,∥ū∥)

ηλ , it follows γ(u)
(t+k) > 1. The recommendation error at the (t+1)th epoch under

adversarial loss can be expressed as:

P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+k+1),α(u,v

′) ̸= r | (u, r)
]

= P
v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨u(t+k),v

′

(0)⟩ ≤ −η(1 + λ)γ
(u)
(t+k)Ct+k∥v

′

(0)∥
2
]
.

With

P adv

v(0)∼N (ū, σ2

n−1 I)

[
f(t+k),α(u,v

′) ̸= r | (u, r)
]
= P

v(0)∼N (ū, σ2

n−1 I)

[
r · ⟨u(t+k),v

′
(0)⟩ ≤ 0

]
,

the change in α-poisoned recommendation error can be written as:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[fα(u,v

′) ̸= r | (u, r)]

=P
v(0)∼N (ū, σ2

n−1 I)

[
−η(1 + λ)γ

(u)
(t+k)Ct+k∥v

′

(0)∥
2 < r · ⟨u(t+k),v

′

(0)⟩ ≤ 0
]

=P
v(0)∼N (ū, σ2

n−1 I)

[
−η(1 + λ)γ

(u)
(t+k)

Ct+k

∥u(t+k)∥
∥v

′

(0)∥
2 < r · ⟨

u(t+k)

∥u(t+k)∥
,v

′

(0)⟩ ≤ 0

]

=P
v(0)∼N (ū, σ2

n−1 I)

−η(1 + λ)γ
(u)
(t+k)

Ct+k

∥u(t+k)∥
∥v

′

(0)∥
2 < ⟨

ru(t+k)

∥u(t+k)∥
,

1

n+ n′

nv(0) +
∑

(u′ ,r′)∈I′

(r′u
′

(0))

⟩ ≤ 0


=P

v(0)∼N (ū, σ2

n−1 I)

[
− η

n+ n′

n
(1 + λ)γ

(u)
(t+k)

Ct+k

∥u(t+k)∥
∥v

′

(0)∥
2 − 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩

< ⟨
ru(t+k)

∥u(t+k)∥
,v(0)⟩ ≤ − 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩

]

Considering v(0) ∼ N
(
ū, σ2

n−1I
)

, let ε ∼ N
(
0, σ2

n−1I
)

, we have v(0) = ū+ ε. Then we obtain:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[fα(u,v

′) ̸= r | (u, r)]

=P
ε∼N

(
0, σ2

n−1 I
)
[
− η

n+ n′

n
(1 + λ)γ

(u)
(t+k)

Ct+k

∥u(t+k)∥
∥v

′

(0)∥
2 − 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩

< ⟨
ru(t+k)

∥u(t+k)∥
, ū+ ε⟩ ≤ − 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩

]

=P
ε∼N

(
0, σ2

n−1 I
)
[
− η

n+ n′

n
(1 + λ)γ

(u)
(t+k)

Ct+k

∥u(t+k)∥
∥v

′

(0)∥
2 − 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩ − ⟨
ru(t+k)

∥u(t+k)∥
, ū⟩

< ⟨
ru(t+k)

∥u(t+k)∥
, ε⟩ ≤ − 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩ − ⟨
ru(t+k)

∥u(t+k)∥
, ū⟩

]
.

Given that ∥ū∥ ≫ σ, we can approximate ∥v′
(0)∥

2 by using:

E
v(0)∼N (ū, σ2

n−1 I)

[
∥v′

(0)∥
2
]
= E

v(0)∼N (ū, σ2

n−1 I)

∥ n

n+ n′
v(0) +

1

n+ n′

∑
(u′,r)∈I

r′u′∥2
 ,

as an estimate. For simplicity, we use E
[
∥v′

(0)∥
2
]

to represent E
v(0)∼N (ū, σ2

n−1 I)

[
∥v′

(0)∥
2
]
. Thus,

we have:

26

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[fα(u,v

′) ̸= r | (u, r)]

≈P
ε∼N

(
0, σ2

n−1 I
)
[
− η

n+ n′

n
(1 + λ)γ

(u)
(t+k)

Ct+k

∥u(t+k)∥
E
[
∥v′

(0)∥
2
]
− 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩ − ⟨
ru(t+k)

∥u(t+k)∥
, ū⟩

< ⟨
ru(t+k)

∥u(t+k)∥
, ε⟩ ≤ − 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩ − ⟨
ru(t+k)

∥u(t+k)∥
, ū⟩

]
.

By Fact 1, we have ⟨ ru(t+k)

∥u(t+k)∥
, ε⟩ ∼ N

(
0, σ2

n−1

)
, then:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[fα(u,v

′) ̸= r | (u, r)]

=Φ

√
n− 1

σ

− 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩ − ⟨
ru(t+k)

∥u(t+k)∥
, ū⟩


− Φ

√
n− 1

σ

−ηn+ n′

n
(1 + λ)γ

(u)
(t+k)

Ct+k

∥u(t+k)∥
E
[
∥v′

(0)∥
2
]
− 1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩ − ⟨
ru(t+k)

∥u(t+k)∥
, ū⟩

 ,

where Φ() is the CDF of standard Gaussian distribution.

Obviously, ∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩ ∈
[
−n′

√
dα, n′

√
dα
]
,

⟨
ru(t+k)

∥u(t+k)∥
, ū⟩ ∈ [−∥ū∥, ∥ū∥] ,

E
[
∥v′

(0)∥
2
]
∈
(
n2∥ū∥2 − 2nn′α∥ū∥0

(n+ n′)2
+

n2dσ2

(n− 1)(n+ n′)2
,
n2∥ū∥2 + (n′)2dα2 + 2nn′α∥ū∥0

(n+ n′)2
+

n2dσ2

(n− 1)(n+ n′)2

]
where n′ is the number of fake users, d is the dimension of u′, and α = max(u′,r′)∈I′ ∥u′∥∞.

Let
Ψ(u, t+ k) =(1 + λ)γu(t+k)

Ct+k

∥u(t+k)∥
,

β =
n′

n

√
dα+ ∥ū∥.

According to the CDF properties of the standard normal distribution, we can conclude that:

∆adv
(t+k+1)P

adv

v(0)∼N (ū, σ2

n−1 I)
[fα(u,v

′) ̸= r | (u, r)] >

Φ

(√
n− 1

σ

(
β + η

(
n2∥ū∥2 − 2nn′α∥ū∥0

n(n+ n′)
+

ndσ2

(n− 1)(n+ n′)

)
Ψ(u, t+ k)

))
− Φ

(√
n− 1

σ
(β)

)
,

reaches the minimum value when∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩ = n′
√
dα,

⟨
ru(t+k)

∥u(t+k)∥
, ū⟩ = ∥ū∥,

and E
[
∥v′

(0)∥
2
]

reaches the minimum value n2∥ū∥2−2nn′α∥ū∥0

(n+n′)2 + n2dσ2

(n−1)(n+n′)2 .

Moreover,
∆adv

(t+k+1)P
adv

v(0)∼N (ū, σ2

n−1 I)
[fα(u,v

′) ̸= r | (u, r)] ≤

2Φ

(√
n− 1η

2σ

(
n2∥ū∥2 + (n′)2α+ 2nn′α∥ū∥0

n(n+ n′)
+

ndσ2

(n− 1)(n+ n′)

)
Ψ(u, t+ k)

)
− 1,

27

equality holds when

E
[
∥v′

(0)∥
2
]
=
n2∥ū∥2 + (n′)2α+ 2nn′α∥ū∥0

(n+ n′)2
+

n2dσ2

(n− 1)(n+ n′)2
,

1

n

∑
(u′ ,r′)∈I′

rr′⟨
u(t+k)

∥u(t+k)∥
,u

′

(0)⟩+ ⟨
ru(t+k)

∥u(t+k)∥
, ū⟩ = −1

2
η
n+ n′

n
E
[
∥v′

(0)∥
2
]
Ψ(u, t+ k).

Hence, Theorem 4 is proved.

D.3 Proofs for Section 4

Given any dot-product-based loss function L(Θ), characterized by its dependency on the product
of user and item embeddings, the gradients of user and item embeddings at the tth epoch can be
expressed as follows:

∇u(t)
L(u,v|Θ(t)) = ϕ(r,u(t),v(t))v(t),

∇v(t)
L(u,v|Θ(t)) = ψ(r,u(t),v(t))u(t),

(22)

where ϕ(·) and ψ(·) denote coefficient functions derived from L(Θ), mapping from the embeddings’
space to the scalar values.

Considering the proofs of Theorem 3 and Theorem 4, there is a coefficient γ(u)
(t) for the user u. When

γ
(u)
(t) > 1 is satisfied, the effectiveness of ACF can be guaranteed. Here, we derive the coefficient

γ
(u)
(t) in multi-item recommendation scenarios with dot-product-based loss through the following

corollary.

Corollary 2. Assuming the incorporation of adversarial training as defined in Equation 1 with
dot-product-based loss function L(Θ), and given the learning rate η, the adversarial training weight
λ, and the perturbation scale ϵ, the γ(u)

(t) for user u is given by:

γ
(u)
(t) =

(
1− ηλϵ

∥ut∥
∑

v∈Nu

|ψ(r,u(t),v(t))|

)−1

, (23)

where Nu is the item set that user u interacts with.

Proof of Corollary 2. Recall Equation 1. Given a dot-product-based loss function L(Θ) within the
framework of adversarial training:

LACF(Θ) =L(Θ) + λL(Θ +∆adv),

where ∆adv =arg max
∆, ∥∆∥≤ϵ

L(Θ +∆),

where ϵ > 0 defines the magnitude of perturbation, and λ is the adversarial training weight. Consid-
ering any pair (u,v), the perturbations can be computed as (similar to Equation 14):

∆u(t)
= ϵ

∇u(t)
L(u,v|Θ(t))

∥∇u(t)
L(u,v|Θ(t))∥

,

∆v(t)
= ϵ

∇v(t)
L(u,v|Θ(t))

∥∇v(t)
L(u,v|Θ(t))∥

.

The update equations for the embedding of user u at the tth epoch under adversarial perturbations
can be expressed as follows:

u(t+1) = u(t) −
∑

v∈Nu

(
η · ∇u(t)

L(u,v | Θ(t)) + ηλ∇u(t)
L(u,v | Θ(t) +∆adv)

)
,

where Nu is the set of items that user u interacts with.

28

By employing the first-order Taylor expansion on (u(t) +∆u(t)
) and (v(t) +∆v(t)

) , we have:

∇u(t)
L(u,v|Θ(t) +∆adv)

≈∇u(t)

[
L(u,v|Θ(t)) + ⟨∆v(t)

,∇v(t)
L(u,v|Θ(t))⟩+ ⟨∆u(t)

,∇u(t)
L(u,v|Θ(t))⟩

+⟨∆v(t)
,
(
∇u(t)

∇v(t)
L(u,v|Θ(t))

)⊤
∆u(t)

⟩
]

≈∇u(t)
L(u,v|Θ(t)) +

(
∇u(t)

∇v(t)
L(u,v|Θ(t))

)⊤
∆v(t)

+
(
∇2

u(t)
L(u,v|Θ(t))

)⊤
∆u(t)

.

Subsequently, the update mechanism for the user embedding, incorporating both direct and adversarial
gradients, is computed as:

u(t+1) =u(t) −
∑

v∈Nu

(
η · (1 + λ)∇u(t)

L(u,v|Θ(t)) + ηλϵ
(
∇u(t)

∇v(t)
L(u,v|Θ(t))

)⊤(∇v(t)
L(u,v|Θ(t))

∥∇v(t)
L(u,v|Θ(t))∥

)

+ηλϵ
(
∇2

u(t)
L(u,v|Θ(t))

)⊤(∇u(t)
L(u,v|Θ(t))

∥∇u(t)
L(u,v|Θ(t))∥

))
=u(t) −

∑
v∈Nu

η(1 + λ)ϕ(r,u(t),v(t))v(t)

−
∑

v∈Nu

ηλϵ
ψ(r,u(t),v(t)) ·

(
u(t)

(
∇u(t)

ψ(r,u(t),v(t))
)⊤

+ ψ(r,u(t),v(t)) · I
)⊤

u(t)

∥∇v(t)
L(u,v|Θ(t))∥

−
∑

v∈Nu

ηλϵ
ϕ(r,u(t),v(t)) ·

(
v(t)

(
∇u(t)

ϕ(r,u(t),v(t))
)⊤)⊤

v(t)

∥∇u(t)
L(u,v|Θ(t))∥

=u(t) −
∑

v∈Nu

η(1 + λ)ϕ(r,u(t),v(t))v(t)

−
∑

v∈Nu

ηλϵ
ψ2(r,u(t),v(t))

∥∇v(t)
L(u,v|Θ(t))∥

u(t)

−
∑

v∈Nu

ηλϵ
ψ(r,u(t),v(t))∥u(t)∥2

∥∇v(t)
L(u,v|Θ(t))∥

∇u(t)
ψ(r,u(t),v(t))

−
∑

v∈Nu

ηλϵ
ϕ(r,u(t),v(t))∥v(t)∥2

∥∇u(t)
L(u,v|Θ(t))∥

∇u(t)
ϕ(r,u(t),v(t)).

Considering Equation 22, for a loss function L(Θ) based on dot-products, the coefficients of gradients
for user embedding u and item embedding v, denoted as ψ(·) and ϕ(·) respectively, are still functions
based on the dot-product of user embedding u and item embedding v. Consequently, the gradients
of ψ(·) and ϕ(·) with respect to user embedding u depend on item embedding v. Specifically,
∇u(t)

ψ(r,u(t),v(t)) = ξ(r,u(t),v(t))v(t) and ∇u(t)
ϕ(r,u(t),v(t)) = ξ

′
(r,u(t),v(t))v(t). Thus,

the updated expression for the user embedding u(t+1) under adversarial training conditions is
delineated as follows:

u(t+1) =

(
1−

∑
v∈Nu

ηλϵ
ψ2(r,u(t),v(t))

∥∇v(t)
L(u,v|Θ(t))∥

)
u(t)

− η
∑

v∈Nu

(
(1 + λ)ϕ(r,u(t),v(t)) + λϵ

ψ(r,u(t),v(t))ξ(r,u(t),v(t))∥u(t)∥2

∥∇v(t)
L(u,v|Θ(t))∥

+λϵ
ϕ(r,u(t),v(t))ξ

′
(r,u(t),v(t))∥v(t)∥2

∥∇u(t)
L(u,v|Θ(t))∥

)
v(t)

29

Following the aforementioned Equation 16 and Equation 20, the γ(u) for the user u in the context of
multi-item ACF with a dot-product loss function is given by:

γ
(u)
(t) =

(
1−

∑
v∈Nu

ηλϵ
ψ2(r,u(t),v(t))

∥∇v(t)
L(u,v|Θ(t))∥

)−1

=

(
1−

∑
v∈Nu

ηλϵ
|ψ(r,u(t),v(t))||ψ(r,u(t),v(t))|

∥∇v(t)
L(u,v|Θ(t))∥

)−1

=

(
1− ηλϵ

∥ut∥
∑

v∈Nu

|ψ(r,u(t),v(t))|

)−1

.

(24)

Therefore, Corollary 2 is proved.

Proof of Corollary 1. For any dot-product-based loss function L(u,v|Θ), the coefficient functions
in Equation 22 can be given by:

∇u(t)
L(u(t),v(t)|Θ) = ϕ(r,u(t),v(t))v(t),

∇v(t)
L(u(t),v(t)|Θ) = ψ(r,u(t),v(t))u(t).

Building upon Corollary 2, we can express γ(u)
(t) as:

γ
(u)
(t) =

(
1− ηλϵ

∥ut∥
∑

v∈Nu

|ψ(r,u(t),v(t))|

)−1

.

Considering the proofs of Theorem 3 and Theorem 4, under 0 < (γ
(u)
(t))

−1 < 1, we can guarantee the
effectiveness of ACF. Therefore, it implies:

0 < ϵ
(u)
(t) < ∥u(t)∥ ·

1∑
v∈Nu

ηλ|ψ(r,u(t),v(t))|
.

In actual training, the maximum perturbation magnitudes will also be affected by other factors. From
the perspective of Corollary 2, we can only conclude that the maximum perturbation magnitude
ϵ
(u)
(t),max for user u at epoch t is positively related to ∥u(t)∥.

Therefore, Corollary 1 is proved.

30

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly articulate the primary contributions and
scope of the paper. They accurately summarize the theoretical and experimental findings,
explicitly matching the claims made throughout the document.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

31

Answer: [Yes]
Justification: The assumptions are presented in Section 3, and the related proofs are found
in Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental information, including datasets, baselines, and evaluation metrics,
is provided in Section 5.1, while implementation details are found in Appendix C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

32

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The experimental code and data are provided through an anonymous link in
Section 1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings are outlined in Section 5.1. Additional details can be
found in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results presented in Section 5 include error bars. The method for calculat-
ing these error bars is explained in the implementation details provided in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The robust recommendation algorithm has a positive impact on the field of
recommender systems. The impact is discussed in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

34

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers that produced the code package or dataset are cited in both
Section 5 and Appendix C.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

35

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code via both an anonymized URL (in Section 1) and an
anonymized zip file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

36

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

37

	Introduction
	Preliminary
	Theoretical Understanding of ACF
	Why Does Adversarial Collaborative Filtering Benefit Recommender Systems?
	How to Further Enhance Adversarial Collaborative Filtering

	Methodology
	Experiments
	Experimental Setup
	Performance Comparison (RQ1)
	Augmentation Analysis (RQ2)
	Hyper-Parameters Analysis (RQ3)

	Conclusion
	Related Work
	Collaborative Filtering
	Poisoning Attacks against Recommender Systems
	Robust Recommender Systems

	Methodology
	Experiments
	Supplements to Experimental Settings
	Supplements to Performance Comparison

	Proofs
	Proofs for Section 3.1
	Proof of Theorem 1
	Proof of Theorem 2

	Proofs for Section 3.2
	Proof of Theorem 3
	Proof of Theorem 4

	Proofs for Section 4

