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Abstract

Deep learning-based models are widely used for disease classification in chest radiographs.
This exam can be performed in one of two projections (posteroanterior or anteroposterior),
depending on the direction that the X-ray beam travels through the body. Since projection
visibly affects the way anatomical structures appear in the scans, it may introduce bias in
classifiers, especially when spurious correlations between a given disease and a projection
occur. This paper examines the influence of chest radiograph projection on the perfor-
mance of deep learning-based classification models and proposes an approach to mitigate
projection-induced bias. Results show that a DenseNet-121 model is better at classifying
images from the most representative projection in the data set, suggesting that projec-
tion is taken into account by the classifier. Moreover, this model can classify chest X-ray
projection better than any of the fourteen radiological findings considered, without being
explicitly trained for that task, putting it at high risk for projection bias. We propose a
label-conditional gradient reversal framework to make the model insensitive to projection,
by forcing the extracted features to be simultaneously good for disease classification and
bad for projection classification, resulting in a framework with reduced projection-induced
bias.
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1. Introduction

Artificial Intelligence (AI) revolutionized many fields, including medicine. It is crucial
to ensure that AI-based methods are not only accurate but also unbiased and ethically
compliant. Biased diagnoses can have serious consequences, and the potential sources of
bias are countless, ranging from biological attributes (age, gender) to socioeconomic factors
(race, income) and clinical factors (exam conditions, medical institution, presence of medical
devices, among others). When AI models are trained on biased data, they become prone to
shortcut learning: instead of learning meaningful features for the issue at hand, models base
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(a) Posteroanterior scan (b) Anteroposterior scan

Figure 1: Examples of chest radiographs taken in both projections.

their predictions on biases in the data, which are typically easier to learn than meaningful
features. Not only this poses serious ethical concerns but, consequentially, these models will
fail in data where the same types of biases are not present.

In this paper, we focus on the bias that projection can inject in deep learning models
for frontal chest X-ray (CXR) classification. These scans can be performed in one of two
projections. In the posteroanterior (PA) projection (Figure 1a), the X-ray beam transverses
the patient from posterior to anterior, which is the gold standard projection for frontal
CXRs. However, it is not always possible to perform PA CXRs, especially when the patient
is not able to stand. When that is the case, an anteroposterior (AP) projection (Figure 1b)
is used, which does not require the patient to stand up, enabling the use of portable X-ray
units. There are some key differences between both views. In the AP view, the scapulae
are over the lung fields, which can interfere with the reading and interpretation of the scan.
In the PA view, the scapulae are away from the lung fields. The clavicles are over the lung
apex in the PA view, while in the AP they are above it. The heart appears enlarged in the
AP view due to the shorter distance between the patient and the X-ray source. Finally, the
appearance of the ribs also differs among projections, as the anterior ribs are clearer in AP
and the posterior ribs are clearer in PA. Considering that these differences are immediately
clear to a radiologist and possibly even to individuals with no training in radiology, a deep
learning model can also easily learn them if that benefits its performance.

1.1. Related Work

Chest radiography data sets typically contain both PA and AP images (Irvin et al., 2019;
Wang et al., 2017; Johnson et al., 2019), but may include exclusively PA images (Nguyen
et al., 2022). Some authors choose to only include PA CXRs in their studies (Punn and
Agarwal, 2021). This choice, motivated by the higher quality of the PA projection, severely
limits the applicability of AI models in real clinical settings because only patients able to
stand up will benefit from the algorithm to its fullest extent. The CXR projection may be
a source of bias when correlations among projection and radiological findings exist in the
data (Viviano et al., 2020), and especially when the bias patterns are easier to learn than
the disease patterns. Kim et al. (2019) showed that CXR projection can be classified with
very high accuracy, which further motivated our study.

Mehrabi et al. (2021) make an extensive review on bias and fairness in machine learning.
They categorize bias into three types, according to its source: the data, the algorithm, and
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the user. The bias that CXR projection may inject in disease classification models arises
from the user and/ or the data. The user may create representation bias when collecting
the data, generating spurious correlations between radiological findings and projection. The
data itself may contain population bias when certain radiological findings are more common
in a specific projection. For example, AP scans are typically more biased towards disease
because they are only performed when a patient cannot stand.

Multiple approaches to mitigate or reduce bias in deep classification models have been
proposed in the medical imaging domain, such as balancing the data according to the pro-
tected attribute(s) (Puyol-Antón et al., 2022), making protected attribute predictions close
to the uniform distribution (Bevan and Atapour-Abarghouei, 2022) or training separate
classifiers for each sub-group of the protected attribute(s) (Puyol-Antón et al., 2022). Fea-
ture disentanglement can be seen as one of the possible avenues to deal with biased models
(Liu et al., 2022), where the goal is to generate a feature space where specific features can be
associated with well-defined generative factors. For our application, this could be separating
the feature space into disease-encoding and projection-encoding features. Gradient reversal,
introduced by Ganin and Lempitsky (2014), can be seen as a way to achieve feature dis-
entanglement. Initially introduced for adversarial domain adaptation but later adapted for
bias removal (Raff and Sylvester, 2019; Ueda et al., 2021; Rundo et al., 2021), including in
medical imaging applications (Bevan and Atapour-Abarghouei, 2022), this method enforces
the feature spaces of both projections to overlap, resulting projection-agnostic features. It
aims at generating predictive features that cannot be used to distinguish between differ-
ent data domains, thereby allowing for effective data domain adaptation. The framework
combines the optimization of underlying features with two discriminative classifiers: a label
predictor that predicts the class labels and a domain classifier that predicts the source of
the data. The goal of the network is to minimize the loss of the label predictor, while max-
imizing the loss of the domain classifier, such that the learned features are discriminative
for the main task but not for domain classification. In the case of bias removal, instead of
having a source and target domain, two sub-groups of a single domain are separable by a
protected attribute to which models should be insensitive to, and the domain classifier is
framed instead as a protected attribute classifier, whose loss shall be maximized.

1.2. Contributions

Our contributions are three-fold: (1) We show that projection is easier to learn than any
of the radiological findings considered, even when a model is not trained for such a task.
This puts models at high risk for projection bias, especially when projection and disease
information correlate, so models tend to learn projection instead of meaningful disease
features. (2) We also show that models for CXR classification are better at classifying
images in the projection they were presented the most during training, suggesting that
patient projection is a source of bias in the model’s decisions and thus influences predictions,
supporting (1). (3) We propose a debiasing approach that discourages the model from
learning projection-relevant information when learning disease-relevant information, based
on gradient reversal. Moreover, we show that by using the proposed approach, our model
successfully learns to ignore projection, resulting in a less biased model that performs more
equally between AP and PA projections.
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2. Methods

2.1. Data and Preprocessing

We use the ChestX-Ray14 multi-label data set (Wang et al., 2017), which contains 112,120
frontal-view X-ray images of 30,805 patients, labeled for the presence of fourteen radiological
findings and disease labels. The images are first resized such that the smaller edge is 256
pixels, preserving aspect ratio, and then cropped to 224 × 224 pixels. The data is then split
into five stratified folds, without patient overlap, for five-fold cross validation, where four
folds are used for training (89,696 ± 1 scans) and one for validation (22,424 ± 1 scans).
Table 1 details the number of occurrences of each label in each fold and the percentage of
PA images (%AP = 100−%PA). Random horizontal flips (p = 1%) and random rotations
(±20◦ range) were performed to augment the data set.

Table 1: Number of occurrences per fold of each label and percentage of Posteroanterior (PA)
occurrences.
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±1.36
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±2.01

44.05
±3.56

49.48
±1.52

65.11
±0.70

2.2. Experiments

Two models were developed, both based on an ImageNet (Deng et al., 2009) pretrained
DenseNet-121 (Huang et al., 2017) feature extractor, widely used in the literature for this
data set (Rajpurkar et al., 2017; Baltruschat et al., 2019) and other CXR data sets (Irvin
et al., 2019; Alam et al., 2022). Both models contain three modules: a feature extractor
θfe, a disease classifier θd and a projection classifier θp (Figure 2). θd contains 14
output neurons (one per disease label) and is used to predict a probability for each label yd =
[y1, y,2 , ..., y14]. The cross entropy loss between ŷd and corresponding ground-truth yd, Ld,
is used to train θfe and θd. θp and has a single output neuron for predicting the probability
of an image being of the AP projection yap (P (PA) = 1− P (AP )). The cross entropy loss
between ŷap and corresponding ground-truth yap, Lp, is used to update the parameters of
θp. In the baseline model (Figure 2a), the goal of predicting CXR projection is to assess
how good the model is at predicting projection with features that are trained exclusively
for disease classification, and hence, this neuron’s output should not be considered when
calculating the gradients for updating the feature extractor. To achieve this, the gradient
back-propagated from the projection output neuron is not propagated beyond θp, preventing
feature updates based on projection information. The total loss of the baseline model is the
sum of Ld and Lp, each referring to the parameters they update (Equation 1).

L = Ld(θfe, θd) + Lp(θp) (1)
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(a) Baseline model (b) Proposed model

Figure 2: Forward and backward passes of both architectures, which share three main components:
a feature extractor, a disease classifier and a projection classifier. The dashed arrows illustrate the
parameters affected by each loss component from Eq. 1 and 2, respectively.

We then propose a modified version of the baseline model with the goal of reducing projection-
induced bias (Figure 2b). To this end, we use gradient reversal (Ganin and Lempitsky, 2014)
on the projection task to avoid the encoding of projection-related information in the fea-
tures. There are two modifications to the baseline model. First, a new loss component is
introduced, where the gradients calculated based on Lp are inverted and used to update θfe,
to remove information encoding projection from the feature extractor. The proposed model
plays a min-max game when updating θfe, where it learns to ignore projection information
while simultaneously learns to predict disease labels. The total loss of the proposed model
therefore presented in Equation 2:

L = Ld(θfe, θd) + Lp(θp)− Lp(θfe) (2)

The second modification takes place in θp, where yd is encoded into an embedding that
is concatenated with the feature vector. The concatenated vector is encoded into a joint
embedding and used as an input to predict ŷap (Figure 2b). Therefore, the output neuron
of θp is now generating P (AP |yd) instead of P (AP ). By using P (AP |yd) as ŷap, instead of
P (AP ), we account for the conditional dependence between projection features and disease
labels when computing Lp, ensuring that the alignment between the AP and PA feature
spaces is adapted according to the diseases present in each image. This conditional setting
was inspired by Long et al. (2018), where the main task’s outputs are concatenated with the
feature representation and used as input for the domain classifier. We adapt this concept
to CXR projection bias mitigation by conditioning projection classification to the ground-
truth labels of the disease classification task. During inference, we do not use yd as an input
for predicting ŷap, and the model behaves exactly like the baseline model, in order to assess
how well the model can classify projection independently of the disease, and to compare it
to the baseline model.

We run both models (baseline and proposed) on the five-folded data. We report the Area
Under the Receiver Operating Characteristic Curve (AUC) and for every disease label and
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for the projection label. To measure bias, considering projection as the protected attribute
of interest P , we calculate the True Positive Rate (TPR) Disparity between AP and PA
images (Equation 3) (Raff and Sylvester, 2019; Mehrabi et al., 2021; Ruan et al., 2022;
Rodolfa et al., 2021). This metric is based on the Equal Opportunity definition of fairness,
introduced by (Hardt et al., 2016). This definition states that each group of P should get
a positive outcome at equal rates (P (Y = 1|P = 0, Y = 1) = P (Y = 1|P = 1, Y = 1)).

TPRDisp = |TPRAP − TPRPA| (3)

Even though the goal is to obtain a model with less bias, predictive performance on the main
task cannot be neglected. Motivated by this, and inspired by (Raff and Sylvester, 2019),
we also report δ = AUC − TRPDisp, in order to consider a trade-off between predictive
performance and equality of opportunity.

2.3. Model Training Details

All the models were trained for eight epochs with a batch size of 32 and a learning rate
of 1e−4 for the learning loss components Ld(θfe, θd) and Lp(θp), and 1e−5 for the learning
to ignore loss component −Lp(θfe). The learning rates are reduced twice by a factor of
ten after four and six epochs. Checkpoints are performed every 6,400 images. For the
baseline, we select the weights from the checkpoint with the lowest Ld validation loss, since
Lp does not affect the training of θfe nor θd. For our proposed model, both Ld and Lp affect
θfe. However, their magnitude and decrease speed vary significantly, and finding a way to
combine them into a single monitoring quantity is hard and empirical, a common problem
in adversarial settings like ours (Zhan et al., 2018; Mao et al., 2022). For this reason, we
select the weights from the checkpoint with the highest δ on the validation set. The models
were created using the PyTorch framework and run on an NVIDIA GeForce RTX 3080 10
GB Graphics Processing Unit. Binary predictions are generated by thresholding based on
the best operating point of the per-label Receiver Operating Characteristic curve.

3. Results and Discussion

We start by analyzing the results obtained with the baseline model, followed by the results
obtained with the proposed model. Table 2 shows the results obtained with the baseline
model for each label, as well as the macro-averaged results across disease labels and also the
AUC for projection classification. For each label, predictive performance is worse in images
from the projection that is less prevalent in the data (Table 1). For example, most of the
“Hernia” cases are PA, and therefore its TPR is much higher in PA scans. The opposite
happens for “Edema”, which contains many more AP instances. For labels in which the
proportion of AP and PA scans is balanced, the TPR Disparity is smaller (“Cardiomegaly”,
for example). Note that the AUC for projection classification is very high, although the
feature extractor was not explicitly trained for this task. This indicates that predicting
projection from disease-related features is extremely easy, putting the model at high risk
for shortcut learning. Considering that the key differences between AP and PA scans
(Figure 1) are easier to grasp to the inexperienced human eye than those of most disease
labels, it is not surprising that deep learning models can easily distinguish between the two
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Table 2: Mean and standard deviation 5-fold cross validation results of the baseline model (B) and the
proposed model (P). The up/down arrow indicates that the higher/lower the metric, the better, respectively.
Best results shown in bold. AUC: Area Under the Receiver Operating Characteristic Curve; TPR AP: True
Positive Rate in Anteroposterior scans; TPR PA: True Positive Rate in Posteroanterior scans; TPR Disp:
True Positive Rate disparity.

AUC ↑ (%) TPR AP ↑ (%) TPR PA ↑ (%) TPR Disp ↓ δ ↑

B P B P B P B P B P

Hernia 90.32
±2.46

90.63
±2.94

55.0
±16.24

80.56
±7.08

81.89
±6.84

83.1
±7.58

27.56
±21.34

3.21
±4.23

62.77
±19.96

87.42
±4.61

Cardiomegaly 91.63
±0.53

91.14
±0.82

81.97
±4.31

81.45
±5.58

89.95
±3.0

88.28
±3.08

7.97
±3.75

6.83
±4.17

83.65
±4.22

84.31
±4.9

Edema 90.49
±0.37

87.58
±1.52

89.75
±2.43

81.96
±3.81

52.22
±10.49

68.8
±9.95

37.53
±9.21

13.17
±7.8

52.96
±9.22

74.42
±8.18

Pneumothorax 88.85
±0.96

88.12
±0.95

71.01
±4.84

74.72
±2.07

83.07
±2.99

83.98
±1.22

12.06
±4.21

9.26
±1.81

76.78
±5.03

78.86
±2.43

Nodule 78.31
±0.31

77.45
±0.39

65.97
±5.16

66.46
±6.58

68.58
±1.86

64.39
±2.39

3.39
±3.13

4.61
±2.24

74.92
±3.36

72.84
±2.37

Emphysema 92.63
±0.97

92.23
±0.59

85.43
±4.46

86.88
±5.0

82.69
±1.15

83.17
±3.8

3.01
±4.66

3.71
±4.86

89.63
±3.75

88.52
±4.55

Infiltration 72.47
±0.32

71.8
±0.81

81.9
±2.73

78.0
±0.74

42.72
±4.79

46.75
±4.74

39.18
±2.84

31.25
±4.33

33.29
±3.08

40.55
±4.77

Atelectasis 82.56
±0.21

81.87
±0.33

82.12
±2.16

78.6
±1.32

73.91
±2.73

74.59
±2.47

8.21
±2.26

4.01
±2.32

74.34
±2.46

77.86
±2.48

Fibrosis 82.32
±0.83

79.92
±1.57

45.23
±15.2

70.39
±7.71

77.19
±2.14

72.55
±5.64

31.96
±14.94

6.33
±5.02

50.35
±15.32

73.59
±4.6

Consolidation 81.24
±0.84

79.67
±0.78

87.7
±1.62

84.13
±1.41

53.33
±5.0

66.64
±3.92

34.36
±4.8

17.49
±3.4

46.88
±5.08

62.18
±3.11

Mass 86.14
±0.09

85.81
±0.44

71.93
±3.74

69.63
±6.06

80.45
±3.11

76.22
±3.6

8.52
±4.03

6.92
±6.55

77.61
±3.94

78.89
±6.23

Pleural
Thickening

81.35
±0.67

79.97
±1.52

65.75
±6.65

71.01
±2.07

80.0
±4.13

72.29
±2.36

14.25
±4.67

2.82
±2.36

67.1
±4.43

77.15
±2.23

Pneumonia 76.89
±1.11

76.57
±0.95

78.78
±3.2

79.24
±5.91

54.51
±4.25

55.05
±6.47

24.27
±3.6

24.2
±4.46

52.62
±4.27

52.37
±4.17

Effusion 88.81
±0.43

88.52
±0.47

84.2
±2.03

81.93
±1.93

82.74
±1.33

81.05
±2.44

2.32
±1.46

1.89
±0.47

86.49
±1.39

86.63
±0.69

Macro
average

84.57
±0.2

83.66
±0.66

74.77
±1.5

77.5
±1.24

71.66
±1.26

72.63
±1.18

18.19
±2.05

9.69
±1.08

66.39
±1.97

73.97
±1.4

Projection
AUC ↓

99.28
±0.21

61.18
±3.16

types of scans. These results highlight the need to take CXR projection into account when
creating or choosing a data set for training a machine learning model. For example, a model
trained on a data set containing mostly AP scans may perform well in an intensive care
unit setting, where most patients will be in a critical state and won’t be able to stand up,
which means most scans will be taken using the AP projection. However, the same model
will most likely perform poorly in a triage setting, where most patients are able to stand,
and thus a PA projection will be preferred. Even though a model that learns statistical
priors derived from these types of correlations may be correct most of the time, especially
in the case of population biases (Section 1.1), such a model would not be making decisions
based on disease features, but rather based on features of other confounding factors. If this
correlation is removed, the model will most likely fail because it never actually learned what
diseases look like.

The proposed framework aims at learning features that do not encode projection infor-
mation, and thus it is expected that the projection AUC decreases when compared to the
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baseline model. Results show that is the case, with projection AUC dropping from 99%
to 61% (Table 2). To investigate if the features from the proposed model are more well
aligned between the two groups of scans (AP and PA), t-distributed Stochastic Neighbor
Embedding (t-SNE) plots (van der Maaten and Hinton, 2008) of the features of the baseline
and proposed model for one fold were generated and can be found in Figure 3. There is a
clear separability among the features of AP and PA instances for most data points in the
baseline features (Figure 3a), indicating that projection is being encoded into the disease
features. However, in features of the proposed model (Figure 3b), the AP and PA feature
spaces are overlapped. These results suggest that the proposed technique can be used to
regularize the features of models trained in data sets with high projection imbalance, but
that are meant to be used in a scenario where both AP and PA settings are present.

(a) Baseline model (b) Proposed model

Figure 3: t-distributed Stochastic Neighbor Embedding plots showing the 2-D projected features.

The proposed model shows a decrease in the TRP disparity (Table 2), especially in labels
with the highest projection imbalance, indicating that the equality of opportunity among AP
and PA scans increased. Overall, there is a trade-off between predictive performance (AUC)
and disparity. This is expected especially for labels with high projection imbalance because
forcing the model to perform equally among both projections will make it perform better
in scans from the underrepresented projection and worse in those from the overrepresented
projection, leading to a decrease in the global label AUC and an increase in TPR parity.

4. Conclusions

Bias in medical AI can have devastating consequences. Projection is a potential bias source
for CXR classification models. We showed that not only is projection very easy to learn, but
also that models have higher TPR in scans from the most representative projection in the
data set, and that projection is being encoded in the features. Finally, a strategy to address
this problem was presented and discussed. We conclude that the projection of CXRs in
a given data set needs to be taken into account by machine learning practitioners, as it
may significantly affect model performance. Further work will focus on exploring the use
of this methodology in other data sets and on jointly debiasing models for other attributes,
whether they are clinical (pose, hospital department), acquisition-related (scanner model,
image markers), biological attributes (age, gender) or socio-economical (race, insurance
policy).
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Appendix A. Limitations

ChestXRay-14’s ground-truth labels are known to suffer from label inaccuracies due to the
fact that these were automatically extracted using natural language processing. Moreover,
the small resolution used (224×224) may hinder the detection of some smaller abnormalities.
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Although there is no reason to perform an AP scan when an orthostatic position is
possible, due to their subpar quality when compared to PA scans, the data set does not
detail if the AP scans are in fact supine (i.e., laying down) or semi-erect. In the case of
semi-erect AP scans, some key differences among the projections described in Section 1 may
not be present.
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