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ABSTRACT

Generating minute-long videos is a critical step toward developing world mod-
els, providing a foundation for realistic extended scenes and advanced AI simula-
tors. The emerging semi-autoregressive (block diffusion) paradigm integrates the
strengths of diffusion and autoregressive models, enabling arbitrary-length video
generation and improving inference efficiency through KV caching and parallel
sampling. However, it still faces challenges such as error accumulation from
KV caching over long sequences and the absence of suitable evaluation bench-
marks. To overcome these limitations, we propose BlockVid, a novel block dif-
fusion framework equipped with a semantic-aware sparse KV cache, an effective
training strategy called Block Forcing, and dedicated noise scheduling to reduce
error propagation and enhance temporal consistency. Additionally, we introduce
LV-Bench, a fine-grained benchmark for minute-long videos, complete with new
metrics designed to evaluate long-range coherence. Extensive experiments on
VBench and LV-Bench demonstrate that our approach consistently outperforms
existing methods in generating high-quality, coherent minute-long videos. In par-
ticular, it achieves a 22.2% improvement on VDE Subject and a 19.4% improve-
ment on VDE Clarity in LV-Bench over the current state of the art.

1 INTRODUCTION
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Figure 1: Architecture comparison: AR vs. Dif-
fusion vs. Block Diffusion (Semi-AR).

Long video generation is crucial for creating re-
alistic and coherent narratives that unfold over
extended durations, which is essential for ap-
plications such as filmmaking, digital story-
telling, and virtual simulation (Yi et al., 2025;
Wang et al., 2025; Huang et al., 2024a; Liu
et al., 2025). Moreover, the ability to generate
minute-long videos is a key step toward build-
ing world models, which act as foundational
simulators for agentic AI, embodied AI, and
gaming (Che et al.; Shi et al., 2025).

A key breakthrough empowering this is the
semi-autoregressive (block-diffusion) decoding
paradigm, as shown in Figure 1 (3) (Arriola
et al., 2025), which merges the strengths of dif-
fusion and autoregressive methods by generat-
ing video tokens in blocks—applying diffusion
within each block while conditioning on previ-
ous ones, resulting in more coherent and stable
video sequences (Huang et al., 2025; Teng et al., 2025). Notably, it addresses the key limitations of
both diffusion and autoregressive (AR) models. Most current video diffusion models (Wan et al.,
2025) rely on the Diffusion Transformer (DiT) (Peebles & Xie, 2023)—which uses bidirectional
attention without KV caching. While this enables parallelized generation and controllability, de-
coding is inefficient and restricted to fixed lengths. In contrast, AR-based frameworks (Wang et al.,
2024) support variable-length generation and KV Cache management, but their generation quality
lags behind video diffusion, and decoding is not parallelizable. Importantly, block diffusion (Huang
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Prompt summary: A graceful white swan glides across a misty lake, dipping, splashing, and turning with serene elegance, its reflection mirroring 
every movement in the calm water. 

Figure 2: Comparison of visualization results between our method and different baselines in terms
of accumulation error. Details can be found in Appendix A.7.
et al., 2025; Teng et al., 2025) interpolates between AR and diffusion by reintroducing LLM-style
KV Cache management, enabling efficient, variable-length, and high-quality generation.

However, existing block diffusion methods face two fundamental challenges. First, AR models in-
evitably suffer from error accumulation, where small prediction mistakes gradually build up over
time and will be directly stored in the KV cache (Kang et al., 2024). In long video generation,
these accumulated errors typically manifest as quality degradation, color drift, subject and back-
ground inconsistency, and visual distortions (Lu et al., 2024). As the sequence extends, these errors
compound, weakening long-range dependencies and limiting its effectiveness for generating coher-
ent, minute-long videos (see Figure 2). Second, the domain is hindered by the lack of fine-grained
long video datasets and reliable evaluation metrics. Currently, most open-source datasets consist of
only short or fragmented chunks, with few minute-long datasets featuring fine-grained annotations.
Meanwhile, existing benchmarks and metrics like VBench (Huang et al., 2024b) focus on diversity
or object categories but fail to capture error accumulation and coherence over extended durations.

To this end, we propose BlockVid, a semi-autoregressive block diffusion model generating minute-
long videos in a chunk-by-chunk manner, as shown in Figure 3. Three strategies are proposed to
systematically address the accumulation error induced by the KV cache from both training and in-
ference perspectives. 1) We first introduce a semantic sparse KV cache that selectively stores salient
tokens from past chunks and retrieves the most semantically aligned context for the current prompt,
thereby maintaining long-range consistency without propagating redundant errors. 2) Moreover, to
bridge the training–inference gap, we introduce Block Forcing, which combines Velocity Forcing
loss to regularize chunk-wise predictions with Self Forcing loss (Huang et al., 2025). This pre-
vents models from drifting over long horizons, such as losing track of subjects or gradually altering
scene content. 3) We further explore various noise scheduling and shuffling strategies for long video
generation to enhance temporal consistency and reduce error accumulation over extended durations.

To address the lack of long-video datasets and benchmarks, we propose LV-Bench, a collection of
1,000 minute-long videos with fine-grained annotations for every 2–5 second chunk. To better eval-
uate long video generation quality, we further introduce Video Drift Error (VDE) metrics based on
Weighted Mean Absolute Percentage Error (WMAPE) (Kim & Kim, 2016; De Myttenaere et al.,
2016), integrated with original VBench metrics, providing a more comprehensive reflection of tem-
poral consistency and long-range visual fidelity.

Comprehensive experiments are conducted on both LV-Bench and the traditional VBench to demon-
strate the superiority of our method. BlockVid achieves a 22.2% improvement on VDE Subject and a
19.4% improvement on VDE Clarity in LV-Bench compared to the current state-of-the-art method.

2 RELATED WORK

Long video generation. Minute-long video generation can be grouped into three settings: single-
shot video generation, multi-shot video generation, and movie-style video composition.

(1) Single-shot generation aims to produce a minute-long chunk within a consistent scene and se-
mantic context, emphasizing long-range temporal coherence and visual stability. Approaches fall
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into autoregressive (AR) and semi-autoregressive (semi-AR, i.e., block diffusion) families. AR
methods, such as FAR (Gu et al., 2025) and Loong (Wang et al., 2024), formulate long video gen-
eration as next-frame (or next segment) prediction. Semi-AR methods generate videos chunk by
chunk, while performing iterative diffusion-based (Peebles & Xie, 2023) denoising within each
chunk. Their key design choice lies in the chunk-level causal conditioning: MAGI-1 (Teng et al.,
2025), Skyreel-V2 (Chen et al., 2025), and Self Forcing (Huang et al., 2025) proceed strictly sequen-
tially across chunks, whereas FramePack (Zhang & Agrawala, 2025) adopts a symmetric schedule
that treats both ends as guidance and fills the middle autoregressively. In practice, semi-AR methods
typically rely on careful KV cache usage for efficiency and stability over long horizons.

(2) Multi-shot generation typically focuses on handling camera motions and transitions across scenes
or semantics. Recent systems, such as LCT (Guo et al., 2025), RIFLEx (Zhao et al., 2025), and MoC
(Cai et al., 2025), often organize text–video units with interleaved layouts and positional extrapola-
tion to accommodate multiple shots.

(3) Movie-style generation aims to create cinematic content by stitching together multiple chunks,
often with different scenes and styles, while maintaining a coherent global narrative or theme. Meth-
ods such as VideoTTT (Dalal et al., 2025), MovieDreamer (Zhao et al., 2024), MovieBench (Wu
et al., 2025), and Captain Cinema (Xiao et al., 2025) resemble film editing, combining diverse shots
into a single coherent video guided by chunk-level text descriptions.

Block diffusion (also called semi-autoregressive or chunk-by-chunk diffusion) decodes long se-
quences in blocks: within each block the model performs iterative diffusion denoising, while across
blocks it conditions causally on previously generated content via KV caches. This paradigm has
been explored in both text and video. In language modeling, BD3-LM (Arriola et al., 2025) and
SSD-LM (Han et al., 2022) demonstrate that blockwise diffusion can combine bidirectional refine-
ment within a block with efficient, variable-length decoding through cached context across blocks.
In video generation, related formulations adopt chunk-wise diffusion with causal conditioning to
interpolate between pure diffusion (e.g., DiT-style bidirectional attention without KV caching) and
autoregression (variable-length decoding with KV caching but weaker visual fidelity and limited
parallelism). Representative systems include MAGI-1 (Teng et al., 2025), Self Forcing (Huang
et al., 2025), CausVid (Yin et al., 2025), ViD-GPT (Gao et al., 2024), and SkyReels-V2 (Chen et al.,
2025), which condition each new chunk on past chunks to extend temporal horizons while retain-
ing diffusion’s denoising quality within a chunk. Despite progress, block diffusion methods remain
constrained by KV cache–induced errors, limited scalability, and the lack of long video datasets and
coherence-aware metrics. We address these gaps with (1) BlockVid, a framework featuring semantic
sparse KV cache, Block Forcing, and tailored noise scheduling to enhance long-range coherence,
and (2) LV-Bench, a benchmark of 1,000 minute-long videos with metrics for evaluating temporal
consistency.

3 METHOD

3.1 OVERVIEW: BLOCK DIFFUSION ARCHITECTURE

BlockVid introduces a semi-AR block diffusion architecture. During training, we are given a
single-shot long video V = {V1, V2, V3, . . . , Vn}, where each video chunk Vi ∈ R(1+T )×H×W×3,
with T frames, height H , width W , and 3 RGB channels. We also have the correspond-
ing chunk level prompts Y = {yi}ni=1, with yi conditioning Vi. Specifically, the first frame
serves as the image guidance. The 3D causal VAE compresses its spatio-temporal dimensions to
[(1+T/4), H/8, W/8] while expanding the number of channels to 16, resulting in the latent repre-
sentation Z ∈ R(1+T/4)×H/8×W/8×16. The first frame is compressed only spatially to better handle
the image guidance.

During post-training, we introduce Block Forcing, a training strategy that stabilizes long video
generation by jointly integrating Velocity Forcing and Self Forcing objectives. Velocity Forcing
aligns predicted dynamics with semantic history to prevent drift, while Self Forcing closes the train-
ing–inference gap by exposing the model to its own roll-outs and enforcing sequence-level realism.

As shown in Figure 3, in the latent space, the representation Z is first processed by the block dif-
fusion denoiser to produce the denoised latent Z̃. During this procedure, the semantic sparse KV
cache is dynamically constructed and preserved as a compact memory of salient keys and values,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

BlockVid

𝑃𝑟𝑜𝑚𝑝𝑡!"# 𝑃𝑟𝑜𝑚𝑝𝑡!"$ 𝑃𝑟𝑜𝑚𝑝𝑡!"% 𝑃𝑟𝑜𝑚𝑝𝑡!

Global Sparse KV Bank

𝑃𝑟𝑜𝑚𝑝𝑡!&%

Retrieve

① Semantic KV ② Local KV

Sparse Store

Video tokens

Sparse tokens

Prompt Embedding

𝑪𝒉𝒖𝒏𝒌𝒄&𝟏

𝑪𝒉𝒖𝒏𝒌𝒄𝑪𝒉𝒖𝒏𝒌𝒄"𝟏𝑪𝒉𝒖𝒏𝒌𝒄"𝟐𝑪𝒉𝒖𝒏𝒌𝒄"𝟑

Figure 3: Overview of the BlockVid semi-AR framework. The generation of chunk c+1 is condi-
tioned on both a local KV cache and a globally retrieved context. The global context is dynamically
assembled by retrieving top-l semantically similar KV chunks via prompt embedding similarity.
Upon generation, the bank is updated with the new chunk’s most salient KV tokens.

serving as semantic guidance for subsequent chunk generation. Subsequently, the denoised latent Z̃
is projected back into the video space X̃ .

Besides, we design a noise scheduling strategy that operates both during training and inference to
stabilize long video generation. During training, progressive noise scheduling gradually increases
noise levels across chunks. While during inference, noise shuffling introduces local randomness at
chunk boundaries to smooth transitions and maintain coherence.

3.2 BLOCK FORCING

Self Forcing. A major challenge in long video generation is the training-inference gap: during
training the model is conditioned on ground-truth frames (teacher forcing), but at inference it must
rely on its own imperfect outputs, leading to exposure bias and error accumulation. To address this,
we adopt the Self Forcing loss (Huang et al., 2025), where the model generates a full video sequence
x̃1:T semi-autoregressively and is then penalized at the video level by matching its distribution pθ
to the real data distribution pdata. Concretely, a discriminator D evaluates entire videos, and the
generator G is trained to minimize

LSF = min
G

max
D

Ex∼pdata[logD(x)] + Ex̃∼pθ
[log(1−D(x̃))], (1)

where x̃ ∼ pθ is obtained by the predictions of G. This formulation exposes the model to its
own errors during training and enforces sequence-level realism, thereby reducing exposure bias and
improving temporal consistency in long videos.

Velocity Forcing. When generating very long videos, the model trained with Self Forcing alone
can lose track of the subject or scene, leading to drift (e.g., the character slowly changing identity
or the background gradually melting). To address this problem, we introduce a Velocity Forcing
loss, decomposes the learning objective into two complementary parts. From a fidelity perspective,
Velocity Forcing ensures the reconstruction accuracy of the current video chunk. This is determined
by the ground-truth starting frame xstart of the current chunk and the corresponding Gaussian noise
ϵ, which together define the standard diffusion training signal. From a semantic perspective, Ve-
locity Forcing enforces semantic alignment between the current video chunk and its most relevant
historical context. Specifically, the top-l past chunks are resampled to match the temporal length of
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the current chunk and averaged into a semantic reference xcond, which serves as high-level guidance
to maintain long-term coherence.

In the stochastic interpolant formulation of flow matching (Albergo & Vanden-Eijnden, 2022), the
model predicts a velocity field vpred that represents the temporal derivative of the interpolated state
xt between noise and data.

vpred = vt(xt) =
d

dt
xt = fθ(xt, t). (2)

Formally, the Velocity Forcing loss penalizes the deviation of the predicted velocity vpred from both
the noise term ϵ and the semantic reference xcond, weighted by a coefficient γ ∈ [0, 1]:

LVF = E
[
∥vpred − (ϵ− γ · xcond)∥2

]
. (3)

This formulation ensures that the model learns not only to denoise the current chunk correctly but
also to remain semantically anchored to the relevant history, thereby reducing temporal drift and
improving the stability of long video generation. The final training loss is L = LSF + LVF.

3.3 SEMANTIC SPARSE KV CACHE

To efficiently preserve long-range temporal dependencies, we introduce a Semantic Sparse KV
Cache that stores and reuses key-value pairs across video chunks. Inspired by ZipVL (He et al.,
2025), we first dynamically identify salient tokens with a probing mechanism and store the most
informative KV tokens as the KV cache.

Formally, given the current chunk c and its queries Q, keys K, and values V , we compute the
attention score matrix

A = Softmax
(

QK⊤
√
d

+ MASK
)
, (4)

where the MASK denotes a chunk-level causal attention mask.

Then aggregate scores across heads and probe queries to form an importance vector m. Then the
important tokens are selected using the top-k indexing method, with M be the minimal number of
tokens that cover a fraction τ of the total importance score:

Ikeep = topk index(m,M). (5)

This produces a sparse cache (Ksparse, Vsparse) containing only the most relevant context tokens.

During long video generation, the sparse KV caches from past chunks are stored in a global KV
bank and retrieved based on the semantic similarity of prompt embeddings:

simi = cos
(
Ec, Ei

)
, i ∈ {1, . . . , c−1}, (6)

where Ec is the embedding of the current prompt and Ei are embeddings of past prompts. The top-l
most similar entries are then selected. Finally, we concatenate the top-l semantic KV caches with
the two most recent caches to form the final KV cache:

(K∗, V ∗) = CONCATKV
(
{(Kj , Vj)}j∈seq ctx, {(Ki, Vi)}i∈top-l

)
, (7)

where seq ctx = {c−3, c−2} (if available). The detailed algorithm is provided in Appendix A.2.

Finally, the aggregated KV cache (K∗, V ∗) serves as conditional context, combined with the current
prompt yt to guide the generation of the target chunk:

Vt ∼ pθ( · | K∗, V ∗, yt) .

3.4 NOISE SCHEDULING

Progressive noise scheduling. The core idea here is to assign each chunk a different noise level,
progressively increasing noise levels rather than using a fix one. Specifically, if we split a video V
into n chunks, each chunk is assigned a noise level ϵc increasing with c, where c = 1, . . . , n.
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Table 1: Overview of the datasets used for constructing LV-Bench.
Dataset Video Number Object Classes

DanceTrack 66 Humans (66, 100%)
GOT-10k 272 Humans (177, 65%) Animals (54, 20%) Environment (41, 15%)
HD-VILA-100M 117 Humans (47, 40%) Animals (35, 30%) Environment (35, 30%)
ShareGPT4V 545 Humans (381, 70%) Animals (82, 15%) Environment (82, 15%)

LV-Bench 1000 Humans (671, 67%) Animals (171, 17%) Environment (158, 16%)

We adopt a cosine schedule, which provides smooth acceleration and deceleration:

ϵc = ϵmin + 1
2

(
ϵmax − ϵmin

) (
1− cos

(
π c

n−1

))
, c = 1, 2, . . . , n. (8)

In this setting, the first chunk has ϵ0 = ϵmin (nonzero initial noise), and the last chunk has ϵn−1 =
ϵmax (maximal noise). For more noise schedules, please refer to Appendix A.5.

This progressive schedule helps mitigate error accumulation: the clean early chunks establish the
scene, and noisier later chunks are guided by them. In fact, progressively increasing noise encour-
ages later chunks to follow the patterns of the earlier and more certain frames, facilitating smoother
temporal transition (Xie et al., 2025a). In other words, earlier chunks act as anchors, and the rising
noise in later chunks ensures new frames remain consistent with the established content.

Noise shuffling. Inspired by FreeNoise (Qiu et al., 2023), we adapt local noise shuffling to the
chunk-by-chunk setting. During inference, each chunk c inherits per-frame base noises {ϵ(c)t }Tt=1
from a fixed random seed, where t ∈ {1, . . . , T} indexes frames within a chunk and T is the number
of frames per chunk. To smooth the transition across chunk boundaries, we apply a shuffle unit of
size s to the prefix and suffix regions. Specifically, the last s frames of chunk c and the first s frames
of chunk c+1 are shuffled independently within their local window:

ϵ̃
(c)
T−s+1:T = SHUFFLE

(
ϵ
(c)
T−s+1:T

)
, ϵ̃

(c+1)
1:s = SHUFFLE

(
ϵ
(c+1)
1:s

)
. (9)

This local permutation preserves the global order of chunks while introducing shared stochasticity at
the boundaries, which encourages the model to fuse adjacent chunks more smoothly. In contrast to
re-sampling entirely new noise for each chunk, this strategy maintains long-range coherence while
mitigating abrupt transitions at chunk boundaries.

4 LV-BENCH

Dataset. To tackle the challenge of minute-long video generation, we curate a dataset of 1000 videos
from diverse open-source sources and annotate them in detail. As shown in Table 1, we collect high-
quality video chunks with lengths of at least 50 seconds from DanceTrack (Sun et al., 2022), GOT-
10k (Huang et al., 2019), HD-VILA-100M (Xue et al., 2022), and ShareGPT4V (Chen et al., 2024a).
To obtain high-quality annotations, we employ GPT-4o as a data engine to generate fine-grained
captions for every 2–3 seconds in each video. The detailed prompt can be found in Appendix A.3.
Human-in-the-loop validation consists of manual visual checks at every stage of data production,
including data sourcing, chunk splitting, and captioning, to ensure high-quality annotations. In the
data sourcing stage, human annotators select high-quality videos and determine whether each raw
video is suitable for inclusion. In the chunk splitting stage, human annotators examine samples
to verify that each chunk is free from errors such as incorrect transitions. In the captioning stage,
human annotators review the generated descriptions to ensure semantic accuracy and coherence.
At each stage, at least two human annotators participate to provide inter-rater reliability. We then
randomly divided LV-Bench into an 8:2 split for training and evaluation.

Metrics. Drift penalties have been widely adopted to address information dilution (Li et al., 2025)
and degradation (Lu et al., 2024) in long video generation. For example, IP-FVR (Han et al., 2025)
focuses on preserving identity consistency, while MoCA (Xie et al., 2025b) employs an identity
perceptual loss to penalize frame-to-frame identity drift. Inspired by the Mean Absolute Percent-
age Error (MAPE) and Weighted Mean Absolute Percentage Error (WMAPE) (Kim & Kim, 2016;
De Myttenaere et al., 2016), we propose a new metric called Video Drift Error (VDE) to measure
changes in video quality. We further design 5 long video generation metrics based on VDE. The
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Table 2: Comparison of different methods on LV-Bench. We report LV-Bench results on five
VDE metrics and five complementary metrics from VBench (Huang et al., 2024b). Our method
achieves superior performance on the majority of these metrics.

Method VDE
Subject ↓

VDE
Background ↓

VDE
Motion ↓ VDE

Aesthetic ↓
VDE

Clarity ↓

MAGI-1 0.3090 0.5000 0.0243 3.8286 2.7225
Self Forcing 0.3716 1.6108 0.1549 3.4683 3.0798
PAVDM 1.8292 0.9323 0.0461 2.8957 1.9503
FramePack 4.3984 5.9421 0.0387 1.4751 4.2513
SkyReels-V2-DF-1.3B 0.1085 0.3179 0.0195 1.2083 0.9365

BlockVid-1.3B (Ours) 0.0844 0.2945 0.0119 0.9618 0.7551

Method Subject
Consistency ↑

Background
Consistency ↑

Motion
Smoothness ↑

Aesthetic
Quality ↑

Image
Quality ↑

MAGI-1 0.8992 0.9078 0.9947 0.6508 0.6662
Self Forcing 0.8481 0.8203 0.9947 0.6283 0.6805
PAVDM 0.8640 0.8924 0.9926 0.5267 0.6567
FramePack 0.9001 0.8791 0.9949 0.6043 0.6972
SkyReels-V2-DF-1.3B 0.9418 0.9579 0.9931 0.6035 0.6835

BlockVid-1.3B (Ours) 0.9597 0.9588 0.9956 0.6047 0.6852

core idea involves dividing a long video into multiple smaller segments, each evaluated according to
specific quality metrics (such as clarity, motion smoothness, etc). Specifically, (1) VDE Clarity mea-
sures temporal drift in image sharpness, where creeping blur increases the score, while a low value
indicates stable clarity over time. (2) VDE Motion measures drift in motion smoothness, where a
low score indicates consistent dynamics without jitter or freezing. (3) VDE Aesthetic measures drift
in visual appeal, where a low score indicates sustained and coherent aesthetics over time. (4) VDE
Background measures background stability, where a low score indicates a consistent setting without
drift or flicker over time. (5) VDE Subject tracks identity drift, where a low score indicates the sub-
ject remains consistently recognizable over time. Following previous works (Guo et al., 2025; Cai
et al., 2025), we also include five complementary metrics from VBench (Huang et al., 2024b). The
details are included in Appendix A.4.

5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS

LV-1.1M dataset. To improve post-training data for semi-AR models, we introduce LV-1.1M, a
private curated dataset of 1.1M long-take videos with fine-grained annotations. Each video is seg-
mented into chunks, captioned with GPT-4o, and aligned into coherent storylines, providing reliable
supervision for long video generation. For more details see Appendix A.6.

Multi-stage post-training. We adopt a two-stage post-training strategy. In Stage 1, we post-train
BlockVid on LV-1.1M to enhance its ability to handle long-take videos with coherent semantics,
large-scale motions, and diverse content. This stage focuses on improving temporal reasoning and
narrative consistency under high-quality but heterogeneous video data. In Stage 2, we further post-
train the model on the training split of LV-Bench, a dataset containing longer videos (≥50s) com-
pared to Stage 1, in order to enhance the model’s extrapolation capability and align with the evalua-
tion protocols. The detailed training setup can be found in Appendix A.9.

5.2 MAIN RESULTS

Results on LV-Bench. We first compare our method with several open-source long video gener-
ation baselines on LV-Bench, including MAGI-1 (Teng et al., 2025), Self Forcing (Huang et al.,
2025), PAVDM (Xie et al., 2025a), FramePack (Zhang & Agrawala, 2025), and SkyReels-V2-
DF-1.3B (Chen et al., 2025). As shown in Table 2, our BlockVid-1.3B consistently outperforms
these methods across most VDE metrics and complementary metrics from VBench. In partic-
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Table 3: Comparison of different methods on VBench (Huang et al., 2024b). We report VBench
metrics of different methods following the single-shot long video generation setting (Guo et al.,
2025; Cai et al., 2025). Our method achieves superior performance in the majority of these metrics.

Method Subject
Consistency ↑

Background
Consistency ↑

Motion
Smoothness ↑

Dynamic
Degree ↑

Aesthetic
Quality ↑

Image
Quality ↑

MAGI-1 0.8320 0.8931 0.9740 0.5537 0.5010 0.6120
Self Forcing 0.8211 0.9050 0.9799 0.6015 0.5130 0.6218
PAVDM 0.8415 0.9273 0.9769 0.6537 0.4970 0.6280
FramePack 0.9019 0.9450 0.9805 0.5715 0.5044 0.6381
SkyReels-V2-DF-1.3B 0.9391 0.9580 0.9838 0.6529 0.5320 0.6315
LCT (MMDiT-3B) 0.9380 0.9623 0.9816 0.6875 0.5200 0.6345
MoC 0.9398 0.9670 0.9851 0.7500 0.5547 0.6396

BlockVid-1.3B (Ours) 0.9410 0.9650 0.9870 0.7720 0.5839 0.6527

ular, BlockVid achieves the lowest error scores on all five VDE metrics, reducing subject drift,
background inconsistency, motion degradation, and perceptual losses compared to strong baselines
such as SkyReels-V2-DF-1.3B. On complementary VBench metrics, BlockVid also delivers the
highest subject consistency (0.9597) and background consistency (0.9588), as well as superior mo-
tion smoothness (0.9956). Although SkyReels-V2-DF-1.3B attains slightly better aesthetic quality
(0.6035 vs. 0.6047, lower is better) and FramePack yields marginally higher image quality (0.6972),
BlockVid maintains competitive performance on these aspects while achieving state-of-the-art re-
sults overall. These results demonstrate that our method not only improves long-term coherence but
also balances fidelity and aesthetics in long video generation.

Results on VBench. We further compare our method with state-of-the-art baselines on VBench
(Huang et al., 2024b) under the single-shot long video generation setting (Guo et al., 2025; Cai et al.,
2025). As shown in Table 3, BlockVid-1.3B achieves superior performance across the majority of
metrics, surpassing both open-source and large-scale proprietary baselines. Specifically, BlockVid
obtains the highest scores in subject consistency (0.9410), motion smoothness (0.9870), dynamic
degree (0.7720), aesthetic quality (0.5839), and image quality (0.6527), demonstrating its ability
to generate temporally coherent, visually appealing, and semantically dynamic long videos. While
MoC slightly outperforms BlockVid in background consistency (0.9670 vs. 0.9650), our model
delivers the most balanced overall performance across all six dimensions. These results highlight
the effectiveness of BlockVid in achieving both temporal stability and perceptual quality in long
video generation.

5.3 ABLATION STUDY

We further conduct ablation studies from four perspectives: noise scheduling, KV cache settings,
Block Forcing, and post-training datasets, as detailed below.

Noise scheduling. As shown in Table 4, during post-training, the cosine noise schedule achieves the
best overall performance compared to naive or alternative scheduling strategies. During inference,
noise shuffle with a window size of s = 4 further enhances temporal smoothness across chunk
boundaries, leading to the most stable and coherent long video generation.

Table 4: Ablation on noise schedule.

Method VDE
Subject ↓

VDE
Background ↓

VDE
Motion ↓

VDE
Aesthetic ↓

VDE
Clarity ↓

Naive 0.0936 0.2894 0.2311 0.9643 0.7791
Linear 0.0935 0.3015 0.0167 0.8910 0.7610
Cosine 0.0844 0.2945 0.0119 0.9618 0.7551
Sigmoid 0.0961 0.4027 0.0276 0.9723 0.8247

No Shuffle 0.0902 0.3007 0.0281 0.9635 0.7580
s=2 0.0853 0.2995 0.0138 0.9730 0.7492
s=4 0.0844 0.2945 0.0119 0.9618 0.7551
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KV cache. We further explore rolling KV (Huang et al., 2025), dynamic sparse KV (He et al.,
2025), and our semantic sparse KV under different attention thresholds τ . As shown in Table 5,
our semantic sparse KV cache with τ = 0.98 achieves the best overall performance, consistently
reducing subject, background, motion, aesthetic, and clarity errors compared to other baselines.

Table 5: Ablation on KV cache settings.

Method VDE
Subject ↓

VDE
Background ↓

VDE
Motion ↓

VDE
Aesthetic ↓

VDE
Clarity ↓

Rolling KV 0.0961 0.3519 0.0547 0.9815 0.7913
Dynamic Sparse KV (τ = 0.97) 0.0927 0.3074 0.0253 0.9781 0.7730
Dynamic Sparse KV (τ = 0.98) 0.0910 0.3040 0.0239 0.9716 0.7652
Semantic Sparse KV (τ = 0.97) 0.0869 0.2988 0.0153 0.9684 0.7570
Semantic Sparse KV (τ = 0.98) 0.0844 0.2945 0.0119 0.9618 0.7551

Block Forcing. Table 6 shows that combining Self Forcing (Huang et al., 2025) and Velocity Forc-
ing yields the best results, with our full Block Forcing achieving the lowest errors across all VDE
metrics.

Table 6: Ablation on Block Forcing.

Method VDE
Subject ↓

VDE
Background ↓

VDE
Motion ↓

VDE
Aesthetic ↓

VDE
Clarity ↓

Naive 0.0910 0.3317 0.0259 0.9810 0.7835
Self Forcing 0.0885 0.3155 0.0169 0.9658 0.7630
Velocity Forcing 0.0861 0.3015 0.0137 0.9673 0.7618
Ours 0.0844 0.2945 0.0119 0.9618 0.7551

Post-training datasets. As shown in Table 7, Stage 2 training on LV-Bench provides significantly
greater improvements than Stage 1 training on LV-1.1M, as long videos (≥50s) offer crucial ex-
trapolation benefits for minute-long generation. Furthermore, our multi-stage post-training proves
essential for achieving the best overall performance.

Table 7: Ablation on post-training datasets.

Method VDE
Subject ↓

VDE
Background ↓

VDE
Motion ↓

VDE
Aesthetic ↓

VDE
Clarity ↓

Stage 1 only 0.8891 1.1573 0.0491 1.3742 1.2463
Stage 2 only 0.1752 0.4722 0.0153 0.9946 0.8452
Stage 1 + 2 0.0844 0.2945 0.0119 0.9618 0.7551

6 CONCLUSION

In this work, we have introduced BlockVid, an effective block diffusion framework for minute-long
video generation. Our design integrates three key innovations: a semantic sparse KV cache that se-
lectively retrieves salient context to mitigate error accumulation, a Block Forcing strategy that com-
bines Velocity Forcing and Self Forcing to reduce temporal drift and close the training–inference
gap, and a noise scheduling scheme that stabilizes long-horizon generation. Together, these compo-
nents enable BlockVid to significantly improve long-range temporal coherence while maintaining
high visual fidelity. To address the absence of suitable evaluation resources, we have further pro-
posed LV-Bench, a fine-grained benchmark of 1,000 minute-long videos with detailed chunk-level
annotations. Alongside, we have introduced Video Drift Error (VDE) metrics, which directly quan-
tify coherence degradation over time. Our extensive experiments on LV-Bench and VBench have
demonstrated that BlockVid achieves state-of-the-art performance, outperforming prior open-source
and proprietary baselines across both coherence-aware and perceptual quality metrics.
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A APPENDIX

A.1 LLM USE DECLARATION

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
English writing. They were not involved in research ideation, experimental design, data analysis, or
interpretation. The authors take full responsibility for all content.

A.2 ALGORITHM: SEMANTIC SPARSE KV CACHE

Algorithm 1 Semantic Sparse KV Cache

1: Input: chunks {Xi}Ni=1, prompts {Yi}Ni=1, target t=N , threshold τ , top-K, drop pdrop
2: Output: final KV cache (K∗,V∗) for Xt

3: KV BANK← ∅ ▷ dict: i 7→ (K
(i)
sparse,V

(i)
sparse)

// Stage A: Build and store sparse KV for all prior chunks
4: for c ∈ {1, . . . , N−1} do
5: if c /∈ KV BANK then
6: (K

(c)
sparse,V

(c)
sparse)← BUILDSPARSEKV(Xc,Yc, τ)

7: KV BANK[c]← (K
(c)
sparse,V

(c)
sparse)

8: end if
9: end for

// Stage B: Retrieve Top-K semantic from bank (no recompute)
10: seq ctx← {N−3, N−2} (if available)
11: Et ← MEANEMBED(Yt)
12: S ← {1, . . . , N−1} \ seq ctx
13: for i ∈ S do
14: Ei ← T5-EMBED(Yi); simi ← cos(Et, Ei)
15: end for
16: Top-l-Idx← argsort({simi}i∈S)[−l :]
17: (Kseq,Vseq)← CONCATKV

(
{KV BANK[j] : j ∈ seq ctx}

)
18: (Ksem,Vsem)← CONCATKV

(
{KV BANK[i] : i ∈ TopKIdx}

)
// Stage C: Final merge (seq ctx + Top-l semantic) & token drop

19: (K∗,V∗)← CONCATKV
(
(Kseq,Vseq), (Ksem,Vsem)

)
20: return (K∗,V∗)

Algorithm 2 BuildSparseKV: Dynamic Sparse KV Cache

1: function BUILDSPARSEKV(X,Y, τ )
2: H ← ENCODE(X,Y) ▷ model input states
3: Q,K, V ← PROJECT(H); (Q,K)← ROPE(Q,K)
4: q len← length(Q)
5: if q len > 1 then ▷ prefill stage (identify salient keys)
6: Iprobe ← CONCAT(Recent(64), Random(64, range=[0, q len−64)))
7: Qprobe ← Q[:, Iprobe, :]

8: A← SOFTMAX
(

QprobeK
⊤

√
d

+ CAUSALMASK(Iprobe, q len)
)

9: s←
∑

heads,probe A ▷ aggregate over heads and probe queries
10: m← CUMMEAN(s) ▷ cumulative mean (older tokens discounted)
11: M ← COVERCOUNT(m, τ) ▷ smallest M covering τ ·

∑
m

12: Ikeep ← TOP-K(m,M)

13: return
(
K[:, Ikeep, :], V [:, Ikeep, :]

)
14: else
15: return (K,V ) ▷ decode stage: keep all
16: end if
17: end function
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A.3 PROMPTS FOR LV-BENCH’S DATA ENGINE

Role. Act as a professional video content analyst. Describe a given video frame in English.
Context. The previous frame was described as: ”{previous description}”. Use this as context
to ensure temporal coherence.
Instruction. Write a single, descriptive paragraph that:
• Identifies the main subject, their specific actions, and expressions.

• Describes the environment and background, including setting and lighting.

• Highlights the cinematic quality, such as composition, color palette, and atmosphere (e.g.,
tense, serene, spectacular).

Constraints. Output must be one coherent paragraph, written in natural language prose,
without bullet points or numbered lists.
Return. The paragraph description of the current frame.

A.4 LV-BENCH METRICS

A.4.1 PRELIMINARIES: MEAN ABSOLUTE PERCENTAGE ERROR

Mean Absolute Percentage Error (MAPE) and Weighted Mean Absolute Percentage Error
(WMAPE) are widely adopted evaluation metrics in forecasting (Kim & Kim, 2016), time series
analysis (De Myttenaere et al., 2016), and increasingly in video quality assessment tasks (Huang
et al., 2020). MAPE measures the average relative deviation between predicted values ŷi and
ground-truth values yi, expressed as a percentage:

MAPE =
100

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (10)

Although simple and interpretable, MAPE can be biased when actual values yi are close to zero. To
address this issue, WMAPE normalizes the absolute error by the sum of actual values, making the
metric scale-invariant and more robust in practice:

WMAPE =

∑N
i=1 |yi − ŷi|∑N

i=1 |yi|
. (11)

These metrics provide interpretable percentage-based measures of consistency and prediction accu-
racy, and can be directly applied to quantify deviations across frames or segments in video tasks
(Huang et al., 2020).

A.4.2 VIDEO DRIFT ERROR (VDE)

Inspired by the WMAPE (Kim & Kim, 2016; De Myttenaere et al., 2016), we propose a new metric
called Video Drift Error (VDE) to measure changes in video quality. The core idea involves divid-
ing a long video into multiple smaller segments, each evaluated according to specific quality metrics
(such as clarity, motion smoothness, etc). These scores are then used to calculate the relative change
compared to the first segment. For long video generation, small quality deviations may accumulate
within each short time segment. Over time, these deviations gradually build up (Li et al., 2025; Lu
et al., 2024). This accumulation error can be quantified and detected through VDE. Specifically, a
high VDE value indicates significant fluctuations or degradation in video quality as playback pro-
gresses, while a low VDE value suggests consistent quality levels throughout. Similar drift penalties
have been introduced in works such as IP-FVR (Han et al., 2025), which focuses on preserving
identity consistency, and MoCA (Xie et al., 2025b), which employs an identity perceptual loss to
penalize frame-to-frame identity drift. Therefore, monitoring VDE during long-term video gener-
ation helps identify potential quality degradation trends and allows timely corrective actions to be
taken.

Specifically, the method first divides the video into N smaller segments of equal duration: V =
{S1, S2, . . . , SN}, where V is the full video, and Si represents the i-th segment.
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Then the method evaluate each segment by applying a quality evaluation function (e.g.,
metric function) to compute a score Qi for each segment Si:

Qi = metric function(Si), ∀i ∈ {1, 2, . . . , N}. (12)

Furthermore, the method compute rate of change which calculates the relative change ∆i in quality
scores from the first segment (Q1) for all subsequent segments (i ≥ 2):

∆i =
Qi −Q1

Q1
. (13)

The final VDE value is derived as a weighted sum of absolute rate changes, using linear or logarith-
mic weights wi:

VDE =

N∑
i=2

wi · |∆i|. (14)

A.4.3 VDE METRICS

Metric-specific VDEs. Given the VDE shell defined in the preliminaries (reference chunk S1,
per-chunk scores mi, and weights wi), each metric instantiates mi as follows; the VDE value is then

VDE(·) =

N∑
i=2

wi
|mi −m1|

m1
, wi ∈

{
N − i+ 1, log(N − i+ 1)

}
. (15)

VDE Clarity (↓). It evaluates temporal drift in image sharpness (defocus/blur). For long videos,
creeping blur or inconsistent deblurring raises VDEclar, while a low value indicates stable perceived
clarity over time.

Let ft ∈ Si be frames and Yt their luminance. Define per-frame sharpness by Laplacian variance
and average within the chunk:

mclar
i =

1

|Si|
∑
t∈Si

Var
(
∇2Yt

)
, VDEclar =

N∑
i=2

wi
|mclar

i −mclar
1 |

mclar
1

. (16)

VDE Motion (↓). It tracks drift in motion magnitude/smoothness (pace and jitter). Long-sequence
generators often change kinetic behavior over time; a low VDEmot signals consistent dynamics
without late-stage jitter or freezing.

Let ut denote the optical flow between consecutive frames, and define the per-frame motion energy
as E(ut) = ∥ut∥2. Alternatively, one may compute a motion-smoothness score st based on inter-
frame differences. The chunk-level score is then

mmot
i =

1

|Si| − 1

∑
t∈Si

E(ut) or mmot
i =

1

|Si|
∑
t∈Si

st, (17)

and the final penalty is

VDEmot =

N∑
i=2

wi
|mmot

i −mmot
1 |

mmot
1

. (18)

VDE Aesthetic (↓). It measures drift in global visual appeal (composition, color harmony, light-
ing). In long videos, style can drift or collapse; low VDEaes indicates sustained, coherent aesthetics
along the timeline.

Let A(ft) be a learned aesthetic predictor applied per frame; average within each chunk:

maes
i =

1

|Si|
∑
t∈Si

A(ft), VDEaes =

N∑
i=2

wi
|maes

i −maes
1 |

maes
1

. (19)
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VDE Background (↓). It evaluates stability/consistency of the background (camera drift, flicker,
texture boil). Long videos often accumulate spurious background motion; low VDEbg reflects a
stable setting that does not “melt” over time.

Let Bt be a background mask and ut(x) the flow at pixel x. Define per-frame background staticness
ϕt =

1
|Bt|

∑
x∈Bt

1
(
∥ut(x)∥ ≤ τ

)
and average per chunk:

mbg
i =

1

|Si|
∑
t∈Si

ϕt, VDEbg =

N∑
i=2

wi
|mbg

i −mbg
1 |

mbg
1

. (20)

VDE Subject (↓). It captures drift in subject identity/attributes (face morphing, color/outfit
changes). For long generations, identity can subtly shift; low VDEsubj indicates the protagonist
remains recognizably consistent throughout.

Let E(·) be a subject-identity encoder and ē1 the mean embedding over subject crops in S1. Define
per-frame identity similarity st = cos

(
E(cropt), ē1

)
and average within the chunk:

msubj
i =

1

|Si|
∑
t∈Si

st, VDEsubj =
N∑
i=2

wi
|msubj

i −msubj
1 |

msubj
1

. (21)

A.4.4 COMPLEMENTARY METRICS

Following previous minute-long generation works (Guo et al., 2025; Cai et al., 2025), we addition-
ally include five complementary metrics from VBench (Huang et al., 2024b) that are essential for
evaluating long video generation, including: (1) Imaging Quality, which measures the technical
fidelity of each video frame by quantifying distortions (e.g., over-exposure, noise, blur), thus re-
flecting the clarity and integrity of the generated imagery. (2) Motion Smoothness, which assesses
the fluidity and realism of movements in the video, ensuring that frame-to-frame transitions are con-
tinuous and physically plausible to achieve natural motion. (3) Aesthetic Quality, which evaluates
the visual appeal of the video frames, capturing artistic factors like composition, color harmony,
photorealism, and overall beauty as perceived in each frame. (4) Background Consistency, which
measures the stability of the scene’s background across the video, determining whether the backdrop
remains visually consistent throughout all frames. (5) Subject Consistency, which evaluates whether
a subject’s appearance remains consistent across every frame of the video, capturing the temporal
coherence of that subject’s visual identity over the entire sequence.

A.5 OTHER NOISE SCHEDULES

For example, a simple linear schedule with a nonzero initial noise level is

ϵc = ϵmin +
c

n− 1

(
ϵmax − ϵmin

)
, c = 1, 2, . . . , n, ϵmin > 0, (22)

so that the first chunk has ϵ0 = ϵmin (nonzero initial noise) and the last has ϵn−1 = ϵmax (maximal
noise).

Similarly, a sigmoid (logistic) schedule grows slowly at the beginning and end, with faster change
in the middle:

ϵc = ϵmin +
(
ϵmax − ϵmin

) 1

1 + exp
(
− α

(
c

n−1 − 0.5
)) , c = 1, 2, . . . , n, (23)

where α > 0 controls the steepness of the curve transition (larger α → sharper transition).
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A.6 LV-1.1M DATASET

To improve post-training data for semi-AR models, we introduce a private dataset named LV-
1.1M, which contains fine-grained annotations for each video. We first collect videos from publicly
datasets: Panda 70M (Chen et al., 2024b) and HD-VILA-100M (Xue et al., 2022), and private data
(about 1M). These raw data often contain substantial amounts of noisy and low-quality material,
lacking in careful curation for content quality and caption coherence. Thus, we devise several fil-
tering criteria to select high-quality, large-motion , and long-take videos. We leverage PySceneDe-
tect (Contributors.) to detect scene transitions and employ Q-Align (Wu et al., 2023) to remove
videos with low aesthetics scores. We also use optical flow as a clue to filter out static videos with
little motion dynamics. The optical flow is calculated between each pair of neighboring frames sam-
pled at 2 fps and discard the videos with a low average optical flow score. Finally, we collect 1.1M
high-quality long-take videos.

To caption them, we segment each long-take video into multiple chunks. The number of frames in
each chunk is determined by the maximum input capacity of the corresponding foundational model
(for example, Wan2.1 (Wan et al., 2025) allows up to 81 frames). Keyframes are extracted from
each chunk and processed through GPT-4o, utilizing prompt engineering to generate captions for
each individual chunk. Subsequently, GPT-4o is employed again to align all chunk-level captions,
ensuring a coherent storyline throughout the entire video.

A.7 VISUALIZATION COMPARISON

The full prompts of the Figure 2 are as follows:

”captions”: [
”A serene white swan glides across a misty lake, its reflection shimmering in the calm water
(00s - 03s).”,
”The swan dips its head gracefully into the water,
creating gentle ripples around it (04s - 07s).”,
”Lifting its head, the swan shakes off droplets, sending small splashes into the air (08s - 11s).”,
”It spreads its wings slightly, flapping them to create a splash and adjust its position (12s -
15s).”,
”The swan turns slightly, continuing to glide smoothly as mist hovers over the water (16s -
19s).”,
”With elegant movements, the swan swims forward, its long neck curved gracefully (20s -
23s).”,
”The swan pauses briefly, surveying its surroundings with a poised demeanor (24s - 27s).”,
”It resumes swimming, its feathers catching the soft light filtering through the mist (28s - 31s).”,
”Dipping its beak again, the swan appears to forage or drink from the tranquil waters (32s -
35s).”,
”The swan lifts its head once more, shaking off water with a delicate motion (36s - 39s).”,
”Turning its body, the swan reveals its full profile against the backdrop of foggy greenery (40s
- 43s).”,
”It continues its graceful journey, leaving a trail of ripples behind (44s - 47s).”,
”The swan’s reflection mirrors its every move, enhancing the peaceful ambiance (48s - 51s).”,
”As it drifts further away, the swan becomes part of the misty landscape (52s - 55s).”,
”The swan slows down, almost still, embodying tranquility on the quiet lake (56s - 59s).”]

As shown in Figure 2, all five baselines exhibit varying degrees of severe accumulation errors when
generating minute-long videos. MAGI-I (Teng et al., 2025), Self-Forcing (Huang et al., 2025), and
PAVDM (Xie et al., 2025a) suffer from significant image quality degradation and color distortion af-
ter around 12 seconds, with the video gradually deteriorating and eventually collapsing. FramePack
(Zhang & Agrawala, 2025), on the other hand, avoids severe image distortion but produces poor
dynamics and limited content diversity due to its symmetric progression design. SkyReel-V2 (Chen
et al., 2025) is the closest baseline in comparison, yet it still experiences noticeable color drift after
12 seconds, which continues to accumulate until the final chunk. In contrast, our method outper-
forms all of these approaches, maintaining subject and background consistency, preserving image
quality, and preventing color degradation.
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A.8 VISUALIZATION RESULTS

Figure 4: More visualization results #1.

”captions”: [
”A DJ in vibrant Nigerian attire stands behind a mixing console, adjusting knobs with focused
precision (00s - 03s).”,
”He glances at the audio waveforms on his monitor, syncing his movements to the rhythm of
the track (04s - 07s).”,
”With smooth hand gestures, he manipulates the turntables, blending beats seamlessly in the
studio (08s - 11s).”,
”The DJ nods along to the music, fully immersed as he fine-tunes levels and effects (12s - 15s).”,
”His reflection is visible in the glass window as he dances subtly while mixing (16s - 19s).”,
”He lifts one hand in the air, hyping the unseen audience as the bass drops (20s - 23s).”,
”Smiling broadly, he spins the jog wheel with flair, showcasing his technical skill (24s - 27s).”,
”He raises both arms triumphantly, feeding off the energy of the music he’s creating (28s -
31s).”,
”Leaning into the mic, he speaks or chants rhythmically, engaging listeners through the airwaves
(32s - 35s).”,
”He throws his hands up again, eyes closed, lost in the groove he’s crafted (36s - 39s).”,
”Adjusting headphones around his neck, he continues to tweak controls with rhythmic precision
(40s - 43s).”,
”He gestures toward the camera with a confident smile, radiating charisma and passion (44s -
47s).”,
”Moving fluidly between decks, he layers sounds with expert timing and flair (48s - 51s).”,
”He laughs joyfully, clearly enjoying every moment as he commands the radio station’s sound
(52s - 55s).”,
”Finishing his set with a final flourish, he waves to the crowd, leaving the studio buzzing with
energy (56s - 59s).”]
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Figure 5: More visualization results #2.

”captions”: [
”The camera glides through a dimly lit Victorian hallway, revealing wood paneling, arched
ceilings, and warm ambient lighting (00s - 03s).”,
”Classical statues and sconces line the corridor as the view advances through carved archways
(04s - 07s).”,
”Past gilded wall art and columns, the camera approaches a grand entryway lit by a chandelier
(08s - 11s).”,
”Inside a lavish sitting room, antique furniture and portraits glow under lighting (12s - 15s).”,
”The camera pans across dark paneled walls with vintage posters and sculptures, highlighting
the curated elegance (16s - 19s).”,
”A solitary armchair beneath a chandelier, flanked by side tables and art pieces, evokes Victorian
comfort (20s - 23s).”,
”Rotating slowly, the camera reveals symmetrical decor — matching lamps, portraits, and ceil-
ing beams (24s - 27s).”,
”Pulling back, the view widens to a two-story foyer with a sweeping balcony and dramatic
lighting (28s - 31s).”,
”Double doors open to adjacent rooms, while rugs and polished floors reflect the glow (32s -
35s).”,
”The camera ascends to capture the foyer’s verticality with balconies, lanterns, and sculptural
accents (36s - 39s).”,
”Blue accent lighting outlines pillars and doors, contrasting with the warm tones (40s - 43s).”,
”Through the grand archway, the viewer is drawn toward a luminous sitting area framed by
columns (44s - 47s).”,
”From mid-hall, the layered depth and symmetry of the mansion interior are revealed (48s -
51s).”,
”Pulling back further, soaring ceilings and ornate woodwork are shown in interplay of shadow
and glow (52s - 55s).”,
”The final shot retreats outdoors, framing the mansion’s facade at twilight, glowing windows
welcoming the viewer (56s - 59s).” ]
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Figure 6: More visualization results #3.

”captions”: [
”Three friends sit around a makeshift table in a dimly lit auto shop, clinking beer bottles in a
cheerful toast (00s - 03s).”,
”They laugh as they settle back into their tire seats, enjoying the camaraderie and casual atmo-
sphere (04s - 07s).”,
”The man on the left raises his bottle in a playful gesture, sharing a joke that sends everyone
into laughter (08s - 11s).”,
”He animatedly tells a story, gesturing with his bottle while his friends react with amusement
(12s - 15s).”,
”Leaning forward with a grin, he holds up his bottle triumphantly as if making a point or cele-
brating (16s - 19s).”,
”He lowers his bottle, chuckling, clearly enjoying the moment and the company of his friends
(20s - 23s).”,
”Still smiling, he glances at his buddies, who are equally entertained as the vibe fills the garage
(24s - 27s).”,
”One friend takes a sip while the other leans back, laughing at the ongoing banter (28s - 31s).”,
”The group’s laughter grows louder as the man in the middle throws his head back in delight
(32s - 35s).”,
”The man on the left leans in again, speaking animatedly as his friends listen with attention (36s
- 39s).”,
”He gestures with his bottle, emphasizing his point, while the others nod and smile (40s - 43s).”,
”He extends his arm to offer a bottle to his friend, sparking more laughter (44s - 47s).”,
”The friends continue to enjoy each other’s company, carefree amid the cluttered garage (48s -
51s).”,
”A fourth friend enters, joining the laughter as the camera pans to capture the group dynamic
(52s - 55s).”,
”All four men share in the joyous moment, seated among tools and car parts, embodying friend-
ship (56s - 59s).”]
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Figure 7: More visualization results #4.

”captions”: [
”A young woman with long hair sits at a glowing bar, bathed in neon light, holding a glass of
beer thoughtfully (00s - 03s).”,
”She lifts her gaze, then brings the glass to her lips for a slow sip, the vibrant lighting highlight-
ing her contemplative mood (04s - 07s).”,
”After sipping, she lowers the glass and glances around, her reflection visible in the mirror
behind the bar (08s - 11s).”,
”She takes another drink while watching her reflection, neon hues shifting across her face and
surroundings (12s - 15s).”,
”Lowering her glass again, she looks off to the side with a pensive expression as the glow ripples
over the scene (16s - 19s).”,
”The camera pans slightly left, revealing glowing bottles, mirrored surfaces, and flickering
colored lights (20s - 23s).”,
”She takes one more sip as the background comes alive with movement — another woman
dances subtly, silhouetted against the bar (24s - 27s).”,
”The camera sweeps further left, showing the bustling bar environment filled with patrons under
dynamic neon strips (28s - 31s).”,
”A man approaches from the side, leaning in to speak as they exchange words under the pulsat-
ing lights (32s - 35s).”,
”He turns away, gesturing toward the bar as other guests laugh and chat nearby (36s - 39s).”,
”The camera shifts to a bartender engaging with customers while visuals flash on a screen
behind him (40s - 43s).”,
”He gestures animatedly, his movements synced with the rhythm of the music and lights (44s -
47s).”,
“Customers smile and clink glasses as the neon-lit bar pulses with energy (48s - 51s).”,
”The bartender continues his lively interaction, surrounded by the buzz of conversation and
glowing lights (52s - 55s).”,
”The scene ends with a wide view of the bar — people mingling, laughing, drinking — all in a
neon-drenched party atmosphere (56s - 59s).”]
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Figure 8: More visualization results #5.

”captions”: [
”A sleek black BMW M4 with ’SCHUBERT’ decals idles under streetlights on a wet European
night, its headlights piercing the darkness (00s - 03s).”,
”The camera glides closer, revealing the car’s aggressive front grille and glowing LED head-
lights reflecting off the rain-slicked cobblestones (04s - 07s).”,
”The license plate ’EM EP99RT’ comes into focus as the car remains stationary, exuding power
and elegance against the backdrop of historic buildings (08s - 11s).”,
”The camera pulls back slightly, capturing the full front view of the BMW as it sits poised in
the center of the glistening street (12s - 15s).”,
”The scene widens to show the car framed by grand architecture, with ambient lighting enhanc-
ing its glossy finish and sharp lines (16s - 19s).”,
”A low-angle shot emphasizes the car’s stance, with reflections dancing across the wet pavement
(20s - 23s).”,
”The camera moves to the side, showcasing the BMW’s muscular profile and intricate alloy
wheels (24s - 27s).”,
”As the camera sweeps along the flank, the wet street mirrors the car’s silhouette and nearby
street lamps (28s - 31s).”,
”The shot lingers on the rear three-quarter view, capturing the interplay of light and reflection
on its polished surface (32s - 35s).”,
”The camera drifts lower, focusing on a shimmering puddle that reflects the car and ornate
building behind it (36s - 39s).”,
”The reflection becomes the focal point, blending the car’s image with the glowing façade of
the architecture (40s - 43s).”,
”The camera glides over the reflective surface, emphasizing the serene yet powerful atmosphere
of the rainy night (44s - 47s).”,
”The final frames capture rippling reflections, evoking calm and sophistication as the BMW
remains motionless in its urban sanctuary (48s - 52s).”]
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Figure 9: More visualization results #6.

”captions”: [
”A close-up reveals a sleek white water bottle mounted on a black stationary bike handlebar,
with blurred gym equipment in the background (00s - 03s).”,
“The camera tilts down, showing the bottle and the MagSafe tablet mount (04s–07s).”,
”Pulling back, the frame shows more of the bike’s modern white-and-black console and han-
dlebars against a backdrop of rows of similar bikes (08s - 11s).”,
”The digital display on the bike flickers to life, showing workout metrics as the camera pans
left, revealing more bikes in soft focus (12s - 15s).”,
”Continuing the pan, the camera captures the rhythmic alignment of bikes and their illuminated
screens, emphasizing symmetry and technology (16s - 19s).”,
”The shot shifts right, focusing on the ergonomic design of the handlebars and seats, while
natural light floods through large windows behind (20s - 23s).”,
”Moving forward, the camera glides past multiple bikes, showcasing their clean lines and min-
imalist aesthetic in a spacious, polished wooden-floored gym (24s - 27s).”,
”Zooming out slightly, the row of bikes extends into the distance, reinforcing the quiet, orderly,
and high-tech environment (28s - 31s).”, ”The camera continues its slow sweep, capturing re-
flections on the glossy floor and the uniformity of each station’s digital display (32s - 35s).”,
”Pan across the gym reveals more exercise machines in the background, including recumbent
bikes, all aligned under bright window-lit walls (36s - 39s).”,
”Shifting focus, the camera moves toward the rear of the room, showing additional rows of
black and white cardio equipment bathed in natural light (40s - 43s).”,
”The perspective changes to highlight the depth of the space, with machines stretching toward
distant windows, creating a sense of openness and calm (44s - 47s).”,
”Gliding along the side of a recumbent bike, the camera emphasizes its sleek design and digital
monitor, framed by sunlit glass panels (48s - 51s).”,
”Continuing the smooth motion, the camera reveals more of the gym’s layout — neat rows,
reflective floors, and ambient daylight enhancing the serene atmosphere (52s - 55s).”,
”Final pan showcases the full expanse of the modern fitness studio, devoid of people, radiating
tranquility and technological precision (56s - 59s).” ]
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A.9 TRAINING SETUP

We first initialized our model with SkyReels-V2-DF-1.3B (Chen et al., 2025), which is a customized
version of Wan2.1-T2V-1.3B (Wan et al., 2025). The video resolution used for training and infer-
ence follows the standard 480p (854×480). Experiments are conducted on a distributed computing
cluster equipped with high-performance GPU nodes, each containing 192 CPU cores, 960 GB of
system memory, and 8 × NVIDIA H20 GPUs (96 GB each). InfiniBand interconnects provide high-
bandwidth communication across nodes for distributed training. In Stage 1, we train the model on 32
GPUs, requiring approximately 7 days per configuration to complete one epoch over the entire LV-
1.1M dataset. In Stage 2, we further train the model on 32 GPUs, requiring approximately 50 hours
per configuration to complete two epochs over the entire LV-Bench training set. We employ AdamW
and stepwise decay schedule for all stages of post-training. The initial learning rate is 1 × 10−4,
then reduced to 5 × 10−5, with the weight decay set to 1 × 10−4. The noise level at the last time
step corresponds to ϵmax, where the SNR is 0.003, which is the default setting in Wan2.1. “In noise
shuffling, we set the window size to s = 4, meaning that shuffling occurs among 4 frames. For
the semantic sparse KV cache, due to the limitation of single-GPU memory, we use Top-l semantic
retrieval with l = 2.

A.10 LIMITATION AND FUTURE WORK

Although our framework demonstrates strong performance in single-shot long video generation, it
has not yet been thoroughly evaluated under other settings. In particular, multi-shot long video
generation, where the model must handle complex transitions between multiple shots or scenes,
remains unexplored. This setting introduces new challenges such as maintaining cross-shot consis-
tency, preserving global narrative flow, and preventing semantic drift across diverse visual contexts.
Addressing these challenges is critical to further extend the applicability of our foundation model.

In future work, we plan to investigate multi-shot scenarios and develop mechanisms for coherent
storytelling across extended sequences. More importantly, we aim to expand LV-Bench to a larger
scale and incorporate 3D-aware techniques into BlockVid to advance its capabilities as a world
model. We believe expanding into these directions will further showcase the generality of our ap-
proach and contribute to building a more versatile long video foundation model.
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