
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROCESS-DRIVEN AUTOFORMALIZATION IN LEAN 4

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoformalization, the conversion of natural language mathematics into formal
languages, offers significant potential for advancing mathematical reasoning. How-
ever, existing efforts are limited to formal languages with substantial online corpora
and struggle to keep pace with rapidly evolving languages like Lean 4. To bridge
this gap, we propose a large-scale dataset Formalization for Lean 4 (FORML4) de-
signed to comprehensively evaluate the autoformalization capabilities of large lan-
guage models (LLMs), encompassing both statements and proofs in natural and for-
mal languages. Additionally, we introduce the Process-Driven Autoformalization
(PDA) framework that leverages the precise feedback from Lean 4 compilers to
enhance autoformalization. Extensive experiments demonstrate that PDA improves
autoformalization, enabling higher compiler accuracy and human-evaluation scores
using less filtered training data. Moreover, when fine-tuned with data containing
detailed process information, PDA exhibits enhanced data utilization, resulting in
more substantial improvements in autoformalization for Lean 4.

1 INTRODUCTION

Autoformalization is the automatic conversion of natural language mathematics into formal lan-
guages (Wang et al., 2018; Szegedy, 2020). It reduces the high cost of formalization and bridges
the gap between automated mathematical reasoning research and the vast body of natural language
mathematical knowledge (Wu et al., 2022; Jiang et al., 2023c).

Recent advancements in large language models (LLMs) showed promising capabilities for various
tasks (Achiam et al., 2023; Anthropic, 2024; Meta, 2024), opening up possibilities for LLM-based
autoformalization. While researchers have explored using few-shot prompting (Wu et al., 2022;
Gadgil et al., 2022) or training LLMs on large-scale datasets containing both informal and formal
data (Azerbayev et al., 2023a;b; Jiang et al., 2023a; Ying et al., 2024c;a), existing efforts are limited
to formal languages with a substantial online corpus, e.g., Lean 3 (de Moura et al., 2015).

Recently, due to the improved performance and advanced compilation features, the community
has pivoted towards Lean 4 (de Moura & Ullrich, 2021), a next-generation theorem prover and
programming language. This transition has created a pressing need for comprehensive datasets
and models tailored specifically to Lean 4 (Ullrich & de Moura, 2022b;a; Nawrocki et al., 2023).
Meanwhile, the rapid evolution of Lean 4 poses significant challenges for autoformalization efforts
due to its complex syntax and extensive lemma corpora. This underscores the need for methods that
focus on the semantic aspects of mathematical theorems, an area previously underexplored due to
difficulties in automated assessment (Lu et al., 2024b). Addressing these semantic elements could
enhance autoformalization techniques to better adapt to Lean 4’s ongoing development.

To address key gaps in autoformalization for Lean 4, we introduce Formalization for Lean 4
(FORML4), an extensive dataset for training and evaluating LLMs’ autoformalization capabilities.
FORML4 is derived from Mathlib 4 theorems, automatically informalized, and then rigorously quality-
checked manually. In addition, we propose a Process-Driven Autoformalization (PDA) framework
for iterative performance improvement and automated assessment. As illustrated in Figure 1, PDA
begins with training an autoformalization model on FORML4. The model’s output is then processed
by the Lean 4 Compiler, generating automated feedback. This feedback generates process-level
annotations for the autoformalization output, utilized to train a process-supervised verifier (PSV).
The autoformalization model is then fine-tuned based on the verifier’s feedback. This iterative cycle
enables mutual improvement between autoformalization and verifier models.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Process-Supervised Verifier

Natural Language

[Statement]:
Given two non-negative real numbers, prove that taking the real number
minimum of the two by considering them as both non-negative real numbers is
the same as taking the minimum of the two by only considering them as both
real numbers.

[Proof]:
1. Given two non-negative real numbers, `x` and `y`:

We can consider them as non-negative real numbers;
We can also consider them as regular real numbers.

2. Since the value order is preserved when viewing a non-negative real number
as a real number, the order relationship between `x` and `y` remains the same
whether we view them as non-negative real numbers or real numbers.

3. Because this order is preserved, the minimum of `x` and `y` is the same.

Compiled Feedback

'severity': 'error',
'pos': {'line': 613, 'column': 3},
'endPos': {'line': 613, 'column': 26},
'data': 'type mismatch

Monotone.map_min coe_mono has type
↑(min ?m.78355 ?m.78356) = min ↑?

m.78355 ↑?m.78356 : Prop
but is expected to have type
min (↑x) y = min (↑x) y : Prop'

Lean 4 Compiler

Compiler-Guided
Process Annotation

[Statement & Proof]:
theorem coe_min :

((min (x : ℝ≥0) y : ℝ) : ℝ) = min (x : ℝ)
b :=

NNReal.coe_mono.map_min

Compile errorSuccessful

Process-Driven AutoformalizationInformalization

Formal Language

[Imported Theorem Env]:
(...)

lemma coe_mono : Monotone ((↑) : ℝ≥0 →
ℝ) :=

fun _ _ => NNReal.coe_le_coe.2

[Statement]:
theorem coe_min :

((min (x : ℝ≥0) y : ℝ) : ℝ) = min (x : ℝ)
y :=

[Proof]:
NNReal.coe_mono.map_min

Mathlib4 Library

[Statement]:
theorem coe_min (x y : ℝ≥0) :

((min x y : ℝ≥0) : ℝ) = min (x : ℝ) (y : ℝ) :=

[Proof]:
NNReal.coe_mono.map_min

Verified Formal Language

[Statement]:
theorem coe_min (x y : ℝ≥0) :

((min x y : ℝ≥0) : ℝ) = min (x : ℝ) (y : ℝ) :=

[Proof]:
NNReal.coe_mono.map_min

Figure 1: An overview of PDA trained on FORML4. Note that the goal of PDA is statement
autoformalization, and does not include the translation of proof per se (Jiang et al., 2023a). The
reason for including proof steps throughout our framework is to enable the compiler to better assess
the semantic and logical aspects of autoformalized statements by compiling statements and proof
steps together. As illustrated, while the statement passes the compiler as grammatically correct,
an error is detected in the proof step, indicating an incorrect autoformalization. This process-level
feedback helps PDA refine the autoformalized statement effectively.

The unique strength of FORML4 lies in its inclusion of both statements and their corresponding
proofs in natural and formal languages. This approach enables a comprehensive evaluation of model
autoformalization outputs, contrasting with existing datasets (Jiang et al., 2023a; Ying et al., 2024a),
which focus solely on statements. There are three key reasons for appending proofs to theorem
statements in FORML4, each contributing to improved data quality, evaluation granularity, and
process-driven enhancement. First, including proofs provides valuable context that aids in the
generation of higher-quality statements during the dataset construction phase of FORML4. This
context also serves as a prompt, potentially enhancing the performance of autoformalization models.

More importantly, including proof in FORML4 empowers the PDA framework to use the compiler
feedback of combined statement and proof steps as the proxy for evaluating the quality of statement
autoformalization. Formal languages offer syntactic rigidity that allows for automatic assessment by
compilers, eliminating ambiguity in formal language generation (Yang et al., 2023a). By utilizing
both statements and proofs, FORML4 facilitates comprehensive feedback from the Lean 4 compiler1,
enabling strict assessments of syntax and semantic integrity in reasoning logic. Lastly, we can
leverage the precise feedback provided by Lean 4 compilers to improve autoformalization. Building
on FORML4, our PDA is distinct from existing informal mathematical reasoning methods that rely
heavily on human or machine annotation (Lightman et al., 2024; Wang et al., 2023a).

Extensive experiments demonstrate that PDA significantly enhances autoformalization in Lean 4,
achieving better results with less training data. When fine-tuned with higher-quality data, PDA
utilizes this information effectively, leading to further improvements. Our key contributions are:

• We construct an extensive pioneer dataset FORML4 for evaluating autoformalization in Lean
4, encompassing the complete process from natural language questions to formal proofs.

• We propose a process-driven framework PDA that leverages formal languages to provide
process feedback on reasoning, enhancing the autoformalization capabilities of LLMs.

• We conduct a comprehensive study featuring robust quantitative and qualitative analysis,
along with human evaluation. We fully open-source FORML4 and PDA to facilitate research.

1Details of the Lean 4 compiler are provided in Appendix I.3.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Autoformalization with LLMs Autoformalization is the task of automatically converting informal
theorems and proofs into machine-verifiable formats (Wang et al., 2018; Szegedy, 2020). Early
approaches employed neural machine translation methods to translate texts into the Mizar lan-
guage (Wang et al., 2020). Recent advancements in LLMs have opened up new possibilities for
autoformalization. Researchers have explored using few-shot prompting to enable LLMs to translate
mathematical problems into formal formats, including Isabelle and Lean (Wu et al., 2022; Gadgil
et al., 2022). Other studies have adopted a more structured approach to this task. Notably, the DSP
system (Jiang et al., 2023c) utilizes LLMs to draft informal proofs and map them into formal sketches,
with automated theorem-proving systems employed to fill in the missing details in the proof sketch.
Additionally, a line of research has focused on training LLMs on large-scale datasets containing both
informal and formal mathematical data to evaluate their performance in autoformalization (Azerbayev
et al., 2023a;b; Jiang et al., 2023a; Ying et al., 2024c). Unlike existing efforts that often neglect the
detailed compilation information available in ITPs, our proposed method utilizes process feedback
from the Lean 4 compiler to further improve the autoformalization abilities of LLMs.

Process and Outcome Supervision Recent efforts explore enhancing the reasoning capabilities of
LLMs by using verifiers to select the best answer from multiple candidates. There are two main types
of verifiers: the Outcome-Supervised Verifier (OSV) and the Process-Supervised Verifier (PSV). OSV
is supervised with a signal based on the final answer (Cobbe et al., 2021; Yu et al., 2023a), while PSV
is with detailed feedback which requires evaluating individual reasoning steps (Uesato et al., 2022;
Li et al., 2023; Lightman et al., 2024; Ma et al., 2023). Despite the time-consuming annotation cost,
PSV offers several advantages that make it preferable to OSV. PSV can provide fine-grained feedback
by pinpointing the location of errors, which is valuable for reinforcement learning and automatic
correction (Lightman et al., 2024; Wu et al., 2023). To alleviate the extensive human annotation,
recent efforts (Wang et al., 2023a; 2024) propose a machine annotation framework using Monte Carlo
Tree Search (Coulom, 2006; Silver et al., 2016). This annotation process demands a lot of computing
resources, potentially imposing a limitation on the usage. PDA leverages formal languages that can
naturally provide precise feedback on the reasoning process, enabling automatic process annotation
without substantial human or machine annotation costs.

3 FORML4: DATASET CONSTRUCTION

The rapid development of Lean 4 (de Moura & Ullrich, 2021) necessitates a benchmark to assess
LLMs’ autoformalization capabilities. Existing datasets (Jiang et al., 2023a; Ying et al., 2024a) aims
to create benchmarks by informalizing formal theorems from existing libraries. However, they rely
on zero-shot instructions to collect natural language statements from GPT-4 without quality checks
or rigorous post-processing. Additionally, it focuses solely on translating theorems, overlooking the
benefits of using proofs as context, which could enhance both the dataset quality and the evaluation
of autoformalization performance.

Instead, we implement a deliberate informalization framework to curate a high-quality autoformal-
ization dataset FORML4 for training and evaluation. FORML4 incorporates proof steps alongside
statement translation, leveraging formal proof generation as an auxiliary task. Proof steps could
enhance formalized statement quality by providing additional context for model reasoning (Huang
et al., 2024b). FORML4 encompasses formal-informal pairs of proof steps along with statements,
enabling a comprehensive assessment of an LLM’s autoformalization capabilities. Additionally,
FORML4 is constructed using a fine-grained pipeline and rigorous quality checks to ensure high
translation quality. In this section, we will introduce the data source of FORML4 (Section 3.1), the
informalization approach (Section 3.2), the curation process (Section 3.3), and comparisons with
existing datasets (Section 3.4).

3.1 DATA SOURCE

Statement and Proof Extraction We start by extracting formal statements and proofs from Lean
4 theorems in Mathlib 42, one of the most extensive formal mathematics libraries available. This

2https://github.com/leanprover-community/mathlib4

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Statistics of FORML4. The test sets do not necessarily require Lean 4 ground truth statements
and proofs, since the autoformalized output can be verified by the compiler. The real test set only
contains natural language queries and answers, without any corresponding Lean 4 statements.

Dataset Size
Lean 4 Natural Language

Chars, State. & Proof # Chars, Q & A

Mean Median Min Max Mean Median Min Max

Training 14,250 147 116 39 5507 192 166 30 1485

Random Test 950 152 116 43 3170 188 166 35 836
Basic Test 970 133 96 41 2716 146 135 33 529
Real Test 967 - - - - 1269 1151 134 4909

process is adapted from the implementation of LeanDojo3 (Yang et al., 2023a) to search for and
extract theorems from Mathlib 4. However, unlike LeanDojo focuses on extracting theorem names
and tactics4 for theorem proving, we extract the complete content of both the statement and the proof,
aiming to provide comprehensive content for improved autoformalization.

Datasets Split We randomly sample theorems (including their statements and proofs) from the
extracted pool of Mathlib 4, and split them to create a training set and a random test set for
training and evaluating LLMs. An example is provided in Appendix Table 8. In addition, for a more
domain-general comprehensive evaluation of a model’s autoformalization performance, we further
include a basic test set and a real test set whose domains differ from the training set. The basic test
set is extracted from Mathlib 4, but it exclusively focuses on the proof for fundamental concepts in a
mathematical topic5. It assesses the model’s ability to autoformalize basic theorems with minimal
reliance on prior knowledge or established lemmas. The real test set is constructed by collecting
natural language math questions and answers from NuminaMath, a high-quality collection of natural
language mathematics problems ranging from high school exercises to international mathematics
olympiad problems (LI et al., 2024). We transform each question into a natural language statement
by appending the ground-truth answer and a request to prove the answer is true. By not relying solely
on formal mathematical theorems and proof from Mathlib 4, we extend our evaluation domains to
real-world settings. More details of test sets can be found in Appendix O.2.

3.2 INFORMALIZATION

To obtain natural language data for the extracted formal theorems, we employ a two-step process: 1)
We utilize a LLM to translate formal mathematical statements into natural language (i.e., formaliza-
tion) 2) Next, we generate new informalized versions by first explaining the formalized proof and
then providing a step-by-step proof in natural language. This process avoids verbatim mentions of
Lean 4 functions. Our construction pipeline was further augmented with the following techniques, to
elicit high-quality informalization output from LLMs.

Statement and Proof Conversion: We instruct the model to convert all components of the formal
content – both statements and proofs – into natural language. While this is computationally heavier
and more challenging as it requires the model to understand the syntax of Lean 4 and the logical
reasoning steps within each proof, the inclusion of proof steps has several benefits in both dataset
construction and evaluation: (1) during informalization, the provided proof steps could potentially
add informative context to the preceded formal theorem statement in the prompt, hence improving
informalization quality (Liu et al., 2023a); (2) in autoformalization, the existence of proof steps also
enables us to examine autoformalization performance by assessing the validity of the formalized com-
bination of theorem statements and proof using a compiler, increasing the difficulty and granularity
of autoformalization evaluation. This is supported both in our human evaluation results (Table 6) and
in previous research (Huang et al., 2024b).

3https://github.com/lean-dojo/LeanDojo/blob/main/scripts/generate-benchmark-lean4.ipynb
4Tactics are commands or instructions that describe how to construct such a proof.
5For example, such theorems typically appear in files like mathlib4/Mathlib/Geometry/

Euclidean/Basic.lean, which establish core geometrical concepts and prove simple results about real
inner product spaces and Euclidean affine spaces.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

It is important to note that the role of included proof steps is to serve as an auxiliary tool to aid (1)
dataset quality and (2) evaluation in statement autoformalization which is the central goal of the
current work, rather than statement-and-proof autoformalization. Therefore, the quality of FORML4
and our evaluation framework is independent of whether the natural-language proof is perfectly
aligned with the formal proof.

Decomposition Strategy: To address the complexity of informalizing both statements and proofs,
we implement a decompositional prompting strategy inspired by task decomposition approaches in
scalable oversight research (Christiano et al., 2018; Wu et al., 2021). Our strategy breaks down the
informalization process into sequential subtasks: translating the formal statement, explaining each
proof step, and then constructing a natural language proof. This approach effectively differentiates
between explaining Lean 4 terms and creating an independent natural language proof, crucial for
meaningful autoformalization evaluation. The strategy is augmented with few-shot examples to
align the model output with our expectations. Please check Appendix C for the detailed rationale
and Appendix D for the complete prompt template.

3.3 CURATION PROCESS

Preprocessing: Before informalization, we conducted several preprocessing steps on the extracted
theorems to enhance the quality of our formalization output. These steps include retaining spe-
cific commands, filtering certain samples, and removing unsuitable entries. More details on our
preprocessing approach can be found in Appendix O.1.

Model Selection: To ensure high-quality LLM-based informalization, we evaluated two state-of-the-
art LLMs in formal mathematical reasoning: GPT-4 and Gemini-Pro-1.5. Based on a comparative
study involving human annotators, Gemini-Pro-1.5 consistently outperformed GPT-4, achieving
higher scores in informalization success (80% vs. 70%) and being preferred in 80% of samples. Given
its superior performance, we employed Gemini-Pro-1.5 for the informalization process in constructing
FORML4. For detailed evaluation methodology and results, see Appendix K and Appendix E.

Post-processing: Based on the obtained informalized data, we conduct a filtering process to further
guarantee PDA to have high-quality training and testing data for auto-formalization. More details are
listed in Appendix O.3. In FORML4, we further provide a “Theorem Environment” that includes
each theorem’s full dependencies and premises, facilitating easier compilation. Specifically, one only
needs to concatenate the “Theorem Environment” with the autoformalized result to verify the latter,
eliminating the need to delve into the details of Mathlib. This approach simplifies the compilation
process in autoformalization evaluation later.

Human Verification: We first manually verify the informalized dataset where four Lean 4 experts
evaluated 60 samples: 20 from the basic test set and 40 from the random test/train set. The aver-
age success rate was 72%, indicating relatively high-quality informalization performance. Please
check Appendix F for detailed verification results and discussions.

To further validate the dataset quality of FormL4, we additionally verified three comparable datasets
that are constructed using LLM-based methods and in similar magnitude of sizes: FORML4, MMA
(Jiang et al., 2023a), and Lean Workbook (Ying et al., 2024a), extracting 30 samples from each
dataset. FORML4 achieves the highest verification accuracy of 73.33%, consistent with the previous
verification result of 72%. This validates FORML4’s quality and effectiveness of our carefully
implemented informalization pipeline. Full comparison details are in Appendix Q.

Notably, the split stats between the basic test set (0.875) and the random test set (0.575) show a
significant discrepancy in the human-verified informalization success rate (p = 0.0099), suggesting
that informalization difficulty increases with formal theorem complexity.

Dataset Statistics: Table 1 displays the final data statistics of FORML4, including the size of each
subset and the length of statement and proof in characters for both Lean 4 and natural language.

3.4 COMPARING FORML4 WITH EXISTING AUTOFORMALIZATION DATASETS

Table 2 compares FORML4 with existing autoformalization datasets, highlighting its unique features.
As the largest dataset designed for iterative, process-driven autoformalization training, FORML4
includes both statements and proofs, employing an LLM-based informalization method that departs

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Comparison of FORML4 with existing autoformalization datasets.

Characteristic FORML4 MMA Lean Workbook ProofNet Minif2f FIMO
(Jiang et al., 2023a) (Ying et al., 2024a) (Azerbayev et al., 2023a) (Zheng et al., 2022a) (Liu et al., 2023b)

Source Language Formal Formal Natural Natural Natural Natural
Size 17k 332k 57k 371 488 149
Includes Proofs ✓ ✗ ✗ ✓ ✗ ✗
Uses Lean 4 ✓ ✓ ✓ ✗ ✗ ✗

Construction Method
Direction Informalization Informalization Formalization Formalization Formalization Formalization
LLM-based ✓ ✓ ✓ ✗ ✗ ✓
Human-Verified ✓ ✗ ✓ ✓ ✓ ✓

Primary Usage
Training ✓ ✓ ✓ ✗ ✗ ✗
Benchmarking ✓ ✓ ✓ ✓ ✓ ✓
Process-Driven Feedback ✓ ✗ ✗ ✓ ✗ ✗

from traditional formalization approaches. It ensures high-quality data through rigorous inspection
and human verification, while enabling fully automated training using Lean 4 compiler feedback,
unlike datasets requiring human intervention. Moreover, FORML4 covers a broader spectrum of
mathematical complexities, making it suitable for advanced autoformalization tasks. For a detailed
analysis of each characteristic in the comparison, please refer to Appendix L.

4 METHOD: PROCESS-DRIVEN AUTOFORMALIZATION

This section presents our approach to enhancing the autoformalization capabilities of LLMs using
process feedback. We establish a baseline by fine-tuning an LLM on the FORML4 training set. Then
we further introduce a Process-Supervised Verifier (PSV) that incorporates Lean 4 compiler feedback
during training (Section 4.1). Finally, we propose a continuous improvement methodology that
iteratively refines both autoformalization and verification models, guided by the objective evaluation
of the Lean 4 compiler (Section 4.2).

4.1 VERIFICATION MODEL

We propose to train the verifier by leveraging the granular, process-level feedback provided by the
Lean 4 compiler. This method diverges from previous approaches (Wu et al., 2022) that rely solely
on binary compilation outcomes. Instead, we employ a more nuanced strategy that assigns labels
to each step in the training data based on the “first error location” principle introduced by Uesato
et al. (2022). Our labeling strategy is as follows: steps preceding the first compiler-detected error are
labeled as “correct”, while subsequent steps are labeled as “incorrect”. This approach allows us to
incorporate rich, step-wise information throughout the compilation process, in contrast to traditional
result-centered methods that use rejected sampling or apply binary outcomes to train reward or verifier
models. The parameters and variables used in our verifier models are summarized in Table 3. To
evaluate the efficacy of our process-supervised training, we compare two models:

Table 3: Parameters and variables used in verifier models.
Symbol Description

q Question
S = {S1, . . . , Sn} Set of samples

S
(1:t)
i Subsequence of steps up to the tth step of sample Si

Y = {Y1, . . . , Yn} Label set for the samples
yi ∈ {0, 1} Outcome-level label across all steps based on final compilation outcome
yti ∈ {0, 1} Step-level label for the tth solution step within the ith sample Si.

n Total number of samples
mi Number of steps in Si

rti = fθ(q;S
(1:t)
i) Predicted probability of correct class at step t

θ Model parameters

1. Outcome-Supervised Verifier (OSV): This model is trained using step-level loss with a uniform
label based on the final compilation outcome. Following Lightman et al. (2024) and Wang et al.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(2023a), we train the OSV model using cross-entropy loss:

LOSV(q, S, Y, θ) = − 1

n

n∑
i=1

1

mi

mi∑
t=1

[
yi log(r

t
i) + (1− yi) log(1− rti)

]
,

2. Process-Supervised Verifier (PSV): This model is trained using the "first error location" labeling
strategy with step-level loss. The loss function is structurally similar to that of the OSV model, but it
uses step-wise labels yti based on the “first error location” strategy:

LPSV(q, S, Y, θ) = − 1

n

n∑
i=1

1

mi

mi∑
t=1

[
yti log(r

t
i) + (1− yti) log(1− rti)

]
,

To ensure a fair comparison between PSV and OSV, both models are trained within a standard
language modeling framework. We introduce two special tokens to represent the “correct” and
“incorrect” labels during training. By leveraging the process feedback from the Lean 4 compiler, we
hypothesize that our method is more suitable and efficient for the task of autoformalization, as it
captures the nuanced progression of the proof construction process rather than relying solely on the
outcome. The comparative performance analysis of these models is presented in Table 5.

4.2 FURTHER ENHANCEMENT WITH BACK-PROPAGATED PROCESS FEEDBACK

An iterative refinement strategy is designed to leverage feedback from the Lean 4 compiler to
continuously improve both the autoformalizer and verifier. This process comprises three key steps:

Step 1: Autoformalizer Improvement The verifier evaluates the autoformalizer’s outputs, assigning
labels based on their estimated likelihood of successful compilation. This filtering process ensures
that subsequent training phases focus on the most promising solutions. The autoformalizer is then
fine-tuned using the verifier’s labels, effectively leveraging the outputs that PSV evaluates correctly.
This approach enhances the autoformalizer’s learning efficiency and output quality.

Step 2: Lean 4 Process Feedback Integration The enhanced autoformalizer, when applied to the
training dataset, demonstrates an improved rate of successful compilations. These outputs are then
processed by the Lean 4 compiler, which provides detailed process feedback through syntax checking
and reasoning verification.

Step 3: Verifier Enhancement We further fine-tune the verifier using the high-quality data (with
an increased proportion of positive examples) generated by the enhanced autoformalizer. This fine-
tuning incorporates process-level supervision derived from the Lean 4 compiler’s feedback, allowing
the verifier to learn from a more nuanced and accurate representation of the compilation process.

The cyclical nature of this process, with feedback from the Lean 4 compiler at its core, offers
significant advantages. It provides an objective measure of progress, mitigating the potential for bias
arising from isolated interactions between the autoformalizer and verifier.

5 EXPERIMENTS

To systematically validate the enhancement of autoformalization performance, we use a multi-faceted
evaluation approach: Firstly, Lean 4 compiler feedback of combined statement and proof is introduced
as the proxy for automatically evaluating statement autoformalization (Section 5.2). The stricter
requirements for successfully compiling both the statements and proof can potentially encompass both
the semantic and logical validation in the autoformalized statements, represents a significant departure
from prior statement-only compiling approaches which only assess syntactic validity. Secondly,
we conducted extensive human evaluation (Section 5.4) to authentically assess autoformalization
performances, comparing enhanced models with baselines. Our human evaluation showed a strong
correlation with compiler results, validating our automated evaluation approach.

5.1 LLMS AS AUTOFORMALIZERS

We assess the autoformalization capabilities of both open-sourced and proprietary LLMs on FORML4
test sets. The results in Table 4, underscore the challenges that current LLMs, including GPT-4, face

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

in Lean 4 autoformalization tasks. The low-performance results obtained from greedy decoding
underscore the need for method improvements in this domain. Additional details on pass@k, the
querying prompt, and performance analysis are provided in Appendix P.

5.2 AUTOFORMALIZATION ENHANCEMENT

This section presents our process-driven autoformalization framework and its experimental results.
We begin by describing our experimental setup, followed by the performance of our enhanced
autoformalizer, and conclude with the results of our further enhanced verifier model.

5.2.1 EXPERIMENTAL SETUP

We establish three key components for our own experiments:

1) Finetuned Baseline Autoformalizer (BA): We train Mistral-v0.3-7B (Jiang et al., 2023b) on
FORML4 as a baseline. To improve its performance in real-world scenarios, we further fine-tune it
on successfully compiled outputs from GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021).

2) Verifier Models: We develop two types of verifiers: Process-Supervised Verifier (PSV) i.e.,
fine-tuned using step-level feedback from the Lean 4 compiler, and Outcome-Supervised Verifier
(OSV) i.e., fine-tuned based on single final compilation signal.

3) Evaluation Metrics: i) Multiple Choice (MP1): Ability to select a successfully compiling
candidate from multiple candidates. ii) Precision (Prec.): Fraction of selected samples that compile
successfully. iii) Recall: Fraction of successfully compiled samples selected by the verifier.

5.2.2 ENHANCED AUTOFORMALIZER PERFORMANCE

We compare four autoformalizer models: 1) Baseline Autoformalizer (Baseline) 2) Rejective Sam-
pling Fine-tuned (RFT) Autoformalizer (Yuan et al., 2023; Wu et al., 2022) 3) Verifier-Enhanced
Autoformalizer (VEA) 4) Combined RFT and Verifier-Enhanced Autoformalizer (RFT+VEA).
Results are presented in Table 4, and our analysis reveals three key findings:

Effectiveness of Finetuning on FORML4: Even our baseline model, which is finetuned on the
FORML4 training data, significantly outperforms both open-source and closed-source LLMs across
all test sets. This dramatic improvement indicates the effectiveness of our dataset and training
approach in enhancing autoformalization performance.

Complementary Strengths of RFT and VEA: RFT significantly improves autoformalization across
all test sets but is time-consuming due to its reliance on the Lean 4 compiler. In contrast, VEA offers
a more time-efficient approach by using predictive labels from our trained verifier, though it may not
match RFT’s data quality. This trade-off between performance and efficiency suggests that these
methods could be valuable in different scenarios, depending on the specific requirements of the task.

Synergistic Benefits of Combined Approach: The RFT+VEA model, which combines the strengths
of both methods, shows the best performance across all test sets. This finding is particularly
noteworthy, as it demonstrates that the verifier, despite being trained using feedback from the Lean 4
compiler, can contribute additional value when combined with direct compiler feedback for filtering
training data. We propose this is due to the limitations of compilation alone in ensuring semantic
alignment between formal and informal statements Lu et al. (2024b). The Lean 4 compiler can
only validate the formal proof’s correctness, not its semantic correspondence to the original natural
language. In contrast, our verifier can take both the formal statement and the informal statement
with proof as input, and the superior performance of RFT+VEA suggests a potential solution to the
long-standing challenge of ensuring semantic alignment between formal and informal statements
in autoformalization. The success of the combined RFT+VEA approach further underscores the
potential for iterative improvements in autoformalization techniques.

5.3 FURTHER ENHANCED VERIFIER PERFORMANCE

We further enhance our verifier models using high-quality training data generated by the RFT+VEA
autoformalizer. We compare outcome-supervision and process-supervision training methods as

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Performance of various LLMs on FORML4 in terms of greedy scores. We include both open-
source and closed-source LLMs, as well as models finetuned on FORML4 training data. Reported
results indicate the percentage of successfully compiled outputs over all the generated ones (%).

Model Test Sets

Random Test Basic Test Real Test

Closed-Source LLMs

GPT-3.5-Turbo (Achiam et al., 2023) 0.43 0.31 5.23
GPT-4-Turbo (OpenAI, 2023) 0.52 1.51 5.35
GPT-4o (OpenAI, 2023) 1.38 1.53 5.85

Open-Source LLMs

DeepSeek-Math-Base-7B (Shao et al., 2024) 0.21 0.38 0.03
DeepSeek-Math-Instruct-7B (Shao et al., 2024) 0.59 1.21 0.35
LLEMMA-7B (Azerbayev et al., 2023b) 0.03 0.20 0.02
LLEMMA-34B (Azerbayev et al., 2023b) 0.02 0.03 0.02
InternLM-Math-7B (Ying et al., 2024b) 0.03 0.22 1.13
InternLM-Math-20B (Ying et al., 2024b) 0.02 0.03 0.24
Mistral-Instruct-v0.3-7B (Jiang et al., 2023b) 0.30 0.48 0.33

Finetuned with FORML4

Baseline 21.89 28.76 23.72
RFT 26.21 34.12 26.14
VEA (Ours) 25.87 33.95 25.91
RFT + VEA (Ours) 27.43 35.67 26.87

discussed in Section 4.1. “PSV+” indicates further fine-tuning under process-supervision, building
upon “PSV,” while “OSV+” signifies additional refinement from “OSV” with outcome-supervision.

Results for the verifier models comparison are presented in Table 5. It is important to note that
autoformalized outputs are generated by the RFT+VEA model described in Section 5.2.2. A more
detailed evaluation of the RFT+VEA model and further information on how we enhance verifier
models are presented in Appendix J.

Table 5: Comparative performance of the enhanced verifier models.

Dataset OSV OSV + PSV PSV +

MP1 Prec. Recall MP1 Prec. Recall MP1 Prec. Recall MP1 Prec. Recall

Basic 34.13 75.22 80.19 39.08 81.17 85.24 36.11 76.25 81.18 41.09 82.21 87.26
Random 27.32 79.05 81.73 31.33 80.31 83.72 30.34 81.06 84.71 33.31 81.32 85.74
Real 28.14 75.23 78.33 35.12 81.22 80.31 30.13 76.21 79.32 37.11 83.22 81.33

Improved Performance with High-Quality Data: As demonstrated in Table 5, both the OSV+
and PSV+ models show improvements across all three evaluation metrics (MP1, precision, and
recall) compared to their predecessors—OSV and PSV. This improvement is consistent across all
datasets, substantiating the premise that fine-tuning with higher-quality data enhances both outcome-
supervision and process-supervision training methods.

Superior Efficacy of Process-Supervised Fine-tuning: The results reveal that PSV+ consistently
outperforms OSV+ across all metrics and datasets. In the Basic dataset, the PSV+ MP1 score is 41.09
compared to OSV+’s 39.08. Similarly, for the Real dataset, PSV+ achieves an MP1 score of 37.11,
higher than OSV+’s 35.12. Additionally, PSV+ shows slightly superior precision and recall rates
across all datasets, such as the 83.22% precision in the Real dataset, compared to 81.22% for OSV+.
This suggests that process-based supervision leverages the training data more effectively, leading to
better overall performance enhancements.

Table 5 demonstrates the potential for iterative training interaction among the autoformalizer, verifier,
and Lean 4 compiler. The iterative improvement over the autoformalizer and verifier, supervised by
the Lean 4 compiler, can be a promising direction for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.4 HUMAN EVALUATION ON AUTOFORMALIZER PERFORMANCES

Table 6: An overview of the human evaluation results of an autoformalization model. Significance
tests are conducted using ANOVA and indicated by ‘*’ in the table (*: p<0.05; **: p<0.01; ***:
p<0.001).

Variable Overall Proof Validity** Model Dataset Split***

Avg Fleiss’ K True False Baseline Enhanced Basic Test Random Test Real Test

Evaluation Score 0.62 0.48 0.75 0.50 0.78 0.80 0.85 0.73 0.30

To accurately investigate the autoformalization performances of our PDA model in different settings,
we conduct an extensive post-hoc human evaluation on the autoformalizers’ output about whether the
natural-language statements are successfully translated into formal statements.

Goal Human experts provide the most accurate evaluations of the semantic alignment between natu-
ral and formal languages, a task that the automated compiler struggles with, even when supplemented
with additional proof steps, as observed in Lu et al. (2024b).

Factorial Design In particular, we investigate in detail whether the following variable changes will
impact model autoformalization performances:

Proof Validity: whether the autoformalized sample can pass the Lean 4 compiler with both statement
and proof. If false, it means that the statement along with the proof cannot pass the Lean 4 compiler,
indicating that there is a logical fallacy either inside the statement itself or within proof steps. We
group the sampled output so that half (30 samples) are labeled false in proof validity, and the other true.
PDA Enhancement: whether the autoformalized sample is outputted by a baseline autoformalizer or
a RFT + VEA enhanced autoformalizer in Table 12. Test Set Categories: Since the test sets vary in
difficulty level and question types, we include the dataset split factor by extracting test sets in the
closely identical proportional distribution as the full-size PDA test sets: random (20 samples): basic
(20 samples): real (20 samples) ≈ 1 : 1 : 1.

Based on the assigned factors in the evaluation samples, we investigate the following hypotheses to
analytically support the validity of PDA method:

(i) Those whose proof validity is true achieve significantly better autoformalization performances.
This will support our argument about PDA in using process-level compiler feedback from state-
ment+proof to better indicate the semantic and logical validity of autoformalized statements. (ii)
The enhanced autoformalizer achieves significantly better autoformalization performances. This can
further support the validity of our enhancement approach to improve not only compiling successes
but also human-evaluated semantic alignment. (iii) The autoformalization performance is higher on
the basic and real test sets due to their lower difficulty and complexity.

Results As suggested in 5.4, our factor grouping statistics generally support the three hypotheses.
Specifically, Proof Validity (p = 0.002992) and Dataset Split (p = 0.000002) show high significance
in ANOVA results, supporting our first and third hypotheses. Regarding the comparison between the
baseline and enhanced autoformalizer model, though the statistical significance is not obtained, we
still find the higher evaluation score in the enhanced model consistent with our expectations.

6 CONCLUSION

In the current study, we introduce a new benchmark FORML4 specifically designed to assess the
autoformalization capabilities of LLMs in Lean 4, and propose a processs-driven autoformalization
(PDA) training pipeline with iterative process-level feedback. Unlike existing datasets, which focus
on translating questions into statements, FORML4 focuses on extracting each statement’s proof
steps, enabling a more comprehensive, fine-grained, and effective evaluation of autoformalized
statements. Importantly, PDA leverages the precise feedback naturally provided by the Lean 4
compiler to improve autoformalization, significantly enhancing performance and enabling more
effective utilization of high-quality training data. For future work, we plan to extend our benchmark
and apply our method to more formal languages such as Isabelle, HOL Light, Agda, and Coq.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.
com/news/claude-3-family.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev, and
Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics.
CoRR, abs/2302.12433, 2023a. doi: 10.48550/ARXIV.2302.12433. URL https://doi.org/
10.48550/arXiv.2302.12433.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. CoRR, abs/2310.10631, 2023b. doi: 10.48550/ARXIV.2310.10631. URL https:
//doi.org/10.48550/arXiv.2310.10631.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosiute, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemí Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional AI: harmlessness
from AI feedback. CoRR, abs/2212.08073, 2022. doi: 10.48550/ARXIV.2212.08073. URL
https://doi.org/10.48550/arXiv.2212.08073.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliâtre, Eduardo
Giménez, Hugo Herbelin, Gérard P. Huet, César A. Muñoz, Chetan R. Murthy, Catherine Parent,
Christine Paulin-Mohring, Amokrane Saïbi, and Benjamin Werner. The coq proof assistant
: reference manual, version 6.1. 1997. URL https://api.semanticscholar.org/
CorpusID:54117279.

Andrej Bauer, Matej Petkovic, and Ljupco Todorovski. MLFMF: data sets for machine learning for
mathematical formalization. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/
2023/hash/9efe8db7fab57e19eed25718abedbbd2-Abstract-Datasets_
and_Benchmarks.html.

Jiaqi Chen, Tong Li, Jinghui Qin, Pan Lu, Liang Lin, Chongyu Chen, and Xiaodan Liang. Unigeo:
Unifying geometry logical reasoning via reformulating mathematical expression. In Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, pp. 3313–3323. Association for Computational Linguistics, 2022. doi:
10.18653/V1/2022.EMNLP-MAIN.218. URL https://doi.org/10.18653/v1/2022.
emnlp-main.218.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob

11

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.48550/arXiv.2302.12433
https://doi.org/10.48550/arXiv.2302.12433
https://doi.org/10.48550/arXiv.2310.10631
https://doi.org/10.48550/arXiv.2310.10631
https://doi.org/10.48550/arXiv.2212.08073
https://api.semanticscholar.org/CorpusID:54117279
https://api.semanticscholar.org/CorpusID:54117279
http://papers.nips.cc/paper_files/paper/2023/hash/9efe8db7fab57e19eed25718abedbbd2-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/9efe8db7fab57e19eed25718abedbbd2-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/9efe8db7fab57e19eed25718abedbbd2-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.18653/v1/2022.emnlp-main.218
https://doi.org/10.18653/v1/2022.emnlp-main.218

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

Paul Christiano, Buck Shlegeris, and Dario Amodei. Supervising strong learners by amplifying weak
experts. arXiv preprint arXiv:1810.08575, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In H. Jaap van den
Herik, Paolo Ciancarini, and H. H. L. M. Donkers (eds.), Computers and Games, 5th International
Conference, CG 2006, Turin, Italy, May 29-31, 2006. Revised Papers, volume 4630 of Lecture
Notes in Computer Science, pp. 72–83. Springer, 2006. doi: 10.1007/978-3-540-75538-8_7. URL
https://doi.org/10.1007/978-3-540-75538-8_7.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In André Platzer and Geoff Sutcliffe (eds.), Automated Deduction - CADE 28 - 28th International
Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings, volume
12699 of Lecture Notes in Computer Science, pp. 625–635. Springer, 2021. doi: 10.1007/
978-3-030-79876-5_37. URL https://doi.org/10.1007/978-3-030-79876-5_
37.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp
(eds.), Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer
Science, pp. 378–388. Springer, 2015. doi: 10.1007/978-3-319-21401-6_26. URL https:
//doi.org/10.1007/978-3-319-21401-6_26.

Siddhartha Gadgil, Anand Rao Tadipatri, Ayush Agrawal, Ashvni Narayanan, and Navin Goyal.
Towards automating formalisation of theorem statements using large language models. In 36th
Conference on Neural Information Processing Systems (NeurIPS 2022) Workshop on MATH-AI,
2022.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan,
Vincent Y. Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and Kelvin Guu. RARR: researching
and revising what language models say, using language models. In Anna Rogers, Jordan L. Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pp. 16477–16508. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
ACL-LONG.910. URL https://doi.org/10.18653/v1/2023.acl-long.910.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu
Chen. CRITIC: large language models can self-correct with tool-interactive critiquing. CoRR,
abs/2305.11738, 2023. doi: 10.48550/ARXIV.2305.11738. URL https://doi.org/10.
48550/arXiv.2305.11738.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. CoRR, abs/2306.11644, 2023. doi: 10.
48550/ARXIV.2306.11644. URL https://doi.org/10.48550/arXiv.2306.11644.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
URL https://openreview.net/forum?id=rpxJc9j04U.

12

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.48550/arXiv.2305.11738
https://doi.org/10.48550/arXiv.2305.11738
https://doi.org/10.48550/arXiv.2306.11644
https://openreview.net/forum?id=rpxJc9j04U

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

John Harrison. HOL Light: A tutorial introduction. In Mandayam K. Srivas and Albert John Camilleri
(eds.), Formal Methods in Computer-Aided Design, First International Conference, FMCAD ’96,
Palo Alto, California, USA, November 6-8, 1996, Proceedings, volume 1166 of Lecture Notes in
Computer Science, pp. 265–269. Springer, 1996.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A learning environment
for theorem proving. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=r1xwKoR9Y7.

Dong Huang, Jianbo Dai, Han Weng, Puzhen Wu, Yuhao Qing, Jie M Zhang, Heming Cui, and
Zhijiang Guo. Soap: Enhancing efficiency of generated code via self-optimization. arXiv preprint
arXiv:2405.15189, 2024a.

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo
Li, Linqi Song, and Xiaodan Liang. MUSTARD: mastering uniform synthesis of theorem and
proof data. CoRR, abs/2402.08957, 2024b. doi: 10.48550/ARXIV.2402.08957. URL https:
//doi.org/10.48550/arXiv.2402.08957.

Albert Q. Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization. CoRR,
abs/2311.03755, 2023a. doi: 10.48550/ARXIV.2311.03755. URL https://doi.org/10.
48550/arXiv.2311.03755.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023b.
doi: 10.48550/ARXIV.2310.06825. URL https://doi.org/10.48550/arXiv.2310.
06825.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothée Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023c. URL
https://openreview.net/pdf?id=SMa9EAovKMC.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras, and
Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pp. 1266–1279. Association for Computational Linguistics,
2022. doi: 10.18653/V1/2022.EMNLP-MAIN.82. URL https://doi.org/10.18653/
v1/2022.emnlp-main.82.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model

13

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://openreview.net/forum?id=r1xwKoR9Y7
https://openreview.net/forum?id=r1xwKoR9Y7
https://doi.org/10.48550/arXiv.2402.08957
https://doi.org/10.48550/arXiv.2402.08957
https://doi.org/10.48550/arXiv.2311.03755
https://doi.org/10.48550/arXiv.2311.03755
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://openreview.net/pdf?id=SMa9EAovKMC
https://doi.org/10.18653/v1/2022.emnlp-main.82
https://doi.org/10.18653/v1/2022.emnlp-main.82
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

serving with pagedattention. In Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine Kaufmann,
and Jonathan Mace (eds.), Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023, pp. 611–626. ACM, 2023. doi: 10.1145/
3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,
Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Isarstep: a benchmark for high-level
mathematical reasoning. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.
net/forum?id=Pzj6fzU6wkj.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Anna Rogers, Jordan L. Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pp. 5315–5333. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
ACL-LONG.291. URL https://doi.org/10.18653/v1/2023.acl-long.291.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
Chuanyang Zheng, Yichun Yin, Lin Li, Ming Zhang, and Qun Liu. FIMO: A challenge formal
dataset for automated theorem proving. CoRR, abs/2309.04295, 2023a. doi: 10.48550/ARXIV.
2309.04295. URL https://doi.org/10.48550/arXiv.2309.04295.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
Chuanyang Zheng, Yichun Yin, Lin Li, et al. Fimo: A challenge formal dataset for automated
theorem proving. arXiv preprint arXiv:2309.04295, 2023b.

Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei Wang, Fei Mi, Baojun Wang, Weichao Wang,
Lifeng Shang, and Qun Liu. SELF: language-driven self-evolution for large language model.
CoRR, abs/2310.00533, 2023. doi: 10.48550/ARXIV.2310.00533. URL https://doi.org/
10.48550/arXiv.2310.00533.

Jianqiao Lu, Zhiyang Dou, Hongru Wang, Zeyu Cao, Jianbo Dai, Yingjia Wan, Yinya Huang, and
Zhijiang Guo. Autocv: Empowering reasoning with automated process labeling via confidence
variation, 2024a.

Jianqiao Lu, Yingjia Wan, Yinya Huang, Jing Xiong, Zhengying Liu, and Zhijiang Guo. Formalalign:
Automated alignment evaluation for autoformalization. 2024b.

Jianqiao Lu, Wanjun Zhong, Yufei Wang, Zhijiang Guo, Qi Zhu, Wenyong Huang, Yanlin Wang, Fei
Mi, Baojun Wang, Yasheng Wang, et al. Yoda: Teacher-student progressive learning for language
models. arXiv preprint arXiv:2401.15670, 2024c.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. CoRR,
abs/2310.10080, 2023. doi: 10.48550/ARXIV.2310.10080. URL https://doi.org/10.
48550/arXiv.2310.10080.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In Alice Oh, Tristan

14

https://doi.org/10.1145/3600006.3613165
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://openreview.net/forum?id=Pzj6fzU6wkj
https://openreview.net/forum?id=Pzj6fzU6wkj
https://doi.org/10.18653/v1/2023.acl-long.291
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.48550/arXiv.2309.04295
https://doi.org/10.48550/arXiv.2310.00533
https://doi.org/10.48550/arXiv.2310.00533
https://doi.org/10.48550/arXiv.2310.10080
https://doi.org/10.48550/arXiv.2310.10080

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html.

Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
https://ai.meta.com/blog/meta-llama-3/.

Maciej Mikula, Szymon Antoniak, Szymon Tworkowski, Albert Qiaochu Jiang, Jin Peng Zhou,
Christian Szegedy, Lukasz Kucinski, Piotr Milos, and Yuhuai Wu. Magnushammer: A transformer-
based approach to premise selection. CoRR, abs/2303.04488, 2023. doi: 10.48550/ARXIV.2303.
04488. URL https://doi.org/10.48550/arXiv.2303.04488.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. Orca: Progressive learning from complex explanation traces of GPT-4. CoRR,
abs/2306.02707, 2023. doi: 10.48550/ARXIV.2306.02707. URL https://doi.org/10.
48550/arXiv.2306.02707.

Wojciech Nawrocki, Edward W. Ayers, and Gabriel Ebner. An extensible user interface for lean 4.
In Adam Naumowicz and René Thiemann (eds.), 14th International Conference on Interactive
Theorem Proving, ITP 2023, July 31 to August 4, 2023, Białystok, Poland, volume 268 of LIPIcs,
pp. 24:1–24:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi: 10.4230/LIPICS.
ITP.2023.24. URL https://doi.org/10.4230/LIPIcs.ITP.2023.24.

OpenAI. GPT-3.5 Turbo, 2023. URL https://platform.openai.com/docs/models/
gpt-3-5.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Tom Reichel, R. Wesley Henderson, Andrew Touchet, Andrew Gardner, and Talia Ringer. Proof repair
infrastructure for supervised models: Building a large proof repair dataset. In Adam Naumowicz
and René Thiemann (eds.), 14th International Conference on Interactive Theorem Proving, ITP
2023, July 31 to August 4, 2023, Białystok, Poland, volume 268 of LIPIcs, pp. 26:1–26:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi: 10.4230/LIPICS.ITP.2023.26. URL
https://doi.org/10.4230/LIPIcs.ITP.2023.26.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
https://doi.org/10.48550/arXiv.2402.03300.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the

15

http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.48550/arXiv.2303.04488
https://doi.org/10.48550/arXiv.2306.02707
https://doi.org/10.48550/arXiv.2306.02707
https://doi.org/10.4230/LIPIcs.ITP.2023.24
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.4230/LIPIcs.ITP.2023.26
https://doi.org/10.48550/arXiv.2402.03300
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016. doi:
10.1038/NATURE16961. URL https://doi.org/10.1038/nature16961.

Christian Szegedy. A promising path towards autoformalization and general artificial intelligence. In
Christoph Benzmüller and Bruce R. Miller (eds.), Intelligent Computer Mathematics - 13th Interna-
tional Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings, volume 12236 of
Lecture Notes in Computer Science, pp. 3–20. Springer, 2020. doi: 10.1007/978-3-030-53518-6_1.
URL https://doi.org/10.1007/978-3-030-53518-6_1.

Jonathan Uesato, Nate Kushman, Ramana Kumar, H. Francis Song, Noah Y. Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-
and outcome-based feedback. CoRR, abs/2211.14275, 2022. doi: 10.48550/ARXIV.2211.14275.
URL https://doi.org/10.48550/arXiv.2211.14275.

Sebastian Ullrich and Leonardo de Moura. Counting immutable beans: Reference counting optimized
for purely functional programming. CoRR, abs/1908.05647, 2019. URL http://arxiv.org/
abs/1908.05647.

Sebastian Ullrich and Leonardo de Moura. ’do’ unchained: embracing local imperativity in a purely
functional language (functional pearl). Proc. ACM Program. Lang., 6(ICFP):512–539, 2022a. doi:
10.1145/3547640. URL https://doi.org/10.1145/3547640.

Sebastian Ullrich and Leonardo de Moura. Beyond notations: Hygienic macro expansion for theorem
proving languages. Logical Methods in Computer Science, 18, 2022b.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. CoRR,
abs/2312.08935, 2023a. doi: 10.48550/ARXIV.2312.08935. URL https://doi.org/10.
48550/arXiv.2312.08935.

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation of
informal to formal mathematics. In Florian Rabe, William M. Farmer, Grant O. Passmore, and
Abdou Youssef (eds.), Intelligent Computer Mathematics - 11th International Conference, CICM
2018, Hagenberg, Austria, August 13-17, 2018, Proceedings, volume 11006 of Lecture Notes in
Computer Science, pp. 255–270. Springer, 2018. doi: 10.1007/978-3-319-96812-4_22. URL
https://doi.org/10.1007/978-3-319-96812-4_22.

Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural machine
translation in autoformalization of mathematics in mizar. In Jasmin Blanchette and Catalin Hritcu
(eds.), Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pp. 85–98. ACM, 2020. doi:
10.1145/3372885.3373827. URL https://doi.org/10.1145/3372885.3373827.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023b. URL https://openreview.net/
pdf?id=1PL1NIMMrw.

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang.
Multi-step problem solving through a verifier: An empirical analysis on model-induced process
supervision. CoRR, abs/2402.02658, 2024. doi: 10.48550/ARXIV.2402.02658. URL https:
//doi.org/10.48550/arXiv.2402.02658.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

16

https://doi.org/10.1038/nature16961
https://doi.org/10.1007/978-3-030-53518-6_1
https://doi.org/10.48550/arXiv.2211.14275
http://arxiv.org/abs/1908.05647
http://arxiv.org/abs/1908.05647
https://doi.org/10.1145/3547640
https://doi.org/10.48550/arXiv.2312.08935
https://doi.org/10.48550/arXiv.2312.08935
https://doi.org/10.1007/978-3-319-96812-4_22
https://doi.org/10.1145/3372885.3373827
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://doi.org/10.48550/arXiv.2402.02658
https://doi.org/10.48550/arXiv.2402.02658
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=hH36JeQZDaO.

Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The isabelle framework. In Otmane Aït
Mohamed, César A. Muñoz, and Sofiène Tahar (eds.), Theorem Proving in Higher Order Logics,
21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceed-
ings, volume 5170 of Lecture Notes in Computer Science, pp. 33–38. Springer, 2008. doi: 10.1007/
978-3-540-71067-7_7. URL https://doi.org/10.1007/978-3-540-71067-7_7.

Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and Paul
Christiano. Recursively summarizing books with human feedback, 2021. URL https://
arxiv.org/abs/2109.10862.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jam-
nik, and Christian Szegedy. Autoformalization with large language models. In Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu,
Noah A. Smith, Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feed-
back gives better rewards for language model training. In Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
b8c90b65739ae8417e61eadb521f63d5-Abstract-Conference.html.

Jing Xiong, Zixuan Li, Chuanyang Zheng, Zhijiang Guo, Yichun Yin, Enze Xie, Zhicheng Yang,
Qingxing Cao, Haiming Wang, Xiongwei Han, et al. Dq-lore: Dual queries with low rank
approximation re-ranking for in-context learning. arXiv preprint arXiv:2310.02954, 2023a.

Jing Xiong, Jianhao Shen, Ye Yuan, Haiming Wang, Yichun Yin, Zhengying Liu, Lin Li, Zhi-
jiang Guo, Qingxing Cao, Yinya Huang, Chuanyang Zheng, Xiaodan Liang, Ming Zhang, and
Qun Liu. TRIGO: benchmarking formal mathematical proof reduction for generative language
models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, De-
cember 6-10, 2023, pp. 11594–11632. Association for Computational Linguistics, 2023b. doi:
10.18653/V1/2023.EMNLP-MAIN.711. URL https://doi.org/10.18653/v1/2023.
emnlp-main.711.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 6984–6994. PMLR, 2019. URL
http://proceedings.mlr.press/v97/yang19a.html.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J. Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-
augmented language models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023a. URL http://papers.nips.cc/paper_files/paper/
2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_
and_Benchmarks.html.

17

https://openreview.net/pdf?id=hH36JeQZDaO
https://doi.org/10.1007/978-3-540-71067-7_7
https://arxiv.org/abs/2109.10862
https://arxiv.org/abs/2109.10862
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b8c90b65739ae8417e61eadb521f63d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b8c90b65739ae8417e61eadb521f63d5-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.emnlp-main.711
https://doi.org/10.18653/v1/2023.emnlp-main.711
http://proceedings.mlr.press/v97/yang19a.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J. Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-
augmented language models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023b. URL http://papers.nips.cc/paper_files/paper/
2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_
and_Benchmarks.html.

Yuxuan Yao, Han Wu, Zhijiang Guo, Biyan Zhou, Jiahui Gao, Sichun Luo, Hanxu Hou, Xiaojin Fu,
and Linqi Song. Learning from correctness without prompting makes llm efficient reasoner. arXiv
preprint arXiv:2403.19094, 2024.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang, Ed H.
Chi, and Denny Zhou. Large language models as analogical reasoners. CoRR, abs/2310.01714,
2023. doi: 10.48550/ARXIV.2310.01714. URL https://doi.org/10.48550/arXiv.
2310.01714.

Xi Ye and Greg Durrett. The unreliability of explanations in few-shot prompting for textual reasoning.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
c402501846f9fe03e2cac015b3f0e6b1-Abstract-Conference.html.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean work-
book: A large-scale lean problem set formalized from natural language math problems. CoRR,
abs/2406.03847, 2024a. doi: 10.48550/ARXIV.2406.03847. URL https://doi.org/10.
48550/arXiv.2406.03847.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning.
CoRR, abs/2402.06332, 2024b. doi: 10.48550/ARXIV.2402.06332. URL https://doi.org/
10.48550/arXiv.2402.06332.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning.
CoRR, abs/2402.06332, 2024c. doi: 10.48550/ARXIV.2402.06332. URL https://doi.org/
10.48550/arXiv.2402.06332.

Fei Yu, Anningzhe Gao, and Benyou Wang. Outcome-supervised verifiers for planning in thematical
reasoning. CoRR, abs/2311.09724, 2023a. doi: 10.48550/ARXIV.2311.09724. URL https:
//doi.org/10.48550/arXiv.2311.09724.

Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng Jiang, and Ashish Sabharwal. Improving language
models via plug-and-play retrieval feedback. CoRR, abs/2305.14002, 2023b. doi: 10.48550/
ARXIV.2305.14002. URL https://doi.org/10.48550/arXiv.2305.14002.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. Scaling re-
lationship on learning mathematical reasoning with large language models. CoRR, abs/2308.01825,
2023. doi: 10.48550/ARXIV.2308.01825. URL https://doi.org/10.48550/arXiv.
2308.01825.

Xiaokai Zhang, Na Zhu, Yiming He, Jia Zou, Qike Huang, Xiaoxiao Jin, Yanjun Guo, Chenyang
Mao, Zhe Zhu, Dengfeng Yue, Fangzhen Zhu, Yang Li, Yifan Wang, Yiwen Huang, Runan Wang,
Cheng Qin, Zhen Zeng, Shaorong Xie, Xiangfeng Luo, and Tuo Leng. Formalgeo: The first step
toward human-like imo-level geometric automated reasoning. ArXiv, abs/2310.18021, 2023. URL
https://api.semanticscholar.org/CorpusID:264555630.

18

http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/arXiv.2310.01714
https://doi.org/10.48550/arXiv.2310.01714
http://papers.nips.cc/paper_files/paper/2022/hash/c402501846f9fe03e2cac015b3f0e6b1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c402501846f9fe03e2cac015b3f0e6b1-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2406.03847
https://doi.org/10.48550/arXiv.2406.03847
https://doi.org/10.48550/arXiv.2402.06332
https://doi.org/10.48550/arXiv.2402.06332
https://doi.org/10.48550/arXiv.2402.06332
https://doi.org/10.48550/arXiv.2402.06332
https://doi.org/10.48550/arXiv.2311.09724
https://doi.org/10.48550/arXiv.2311.09724
https://doi.org/10.48550/arXiv.2305.14002
https://doi.org/10.48550/arXiv.2308.01825
https://doi.org/10.48550/arXiv.2308.01825
https://api.semanticscholar.org/CorpusID:264555630

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark
for formal olympiad-level mathematics. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022a. URL
https://openreview.net/forum?id=9ZPegFuFTFv.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark
for formal olympiad-level mathematics. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022b. URL
https://openreview.net/forum?id=9ZPegFuFTFv.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=92gvk82DE-.

A FUTURE DIRECTIONS

Our experiments demonstrate the effectiveness of our process-driven autoformalization framework:

1) The combined RFT+VEA approach leverages the strengths of both rejective sampling and verifier-
based filtering, leading to superior autoformalization outcomes.

2) Process-supervised fine-tuning (PSV and PSV+) consistently outperforms outcome-supervised
methods, indicating its ability to more effectively leverage training data.

3) The iterative improvement cycle between the autoformalizer, verifier, and Lean 4 compiler shows
promise for further advancements in autoformalization.

Future work can focus on refining the process-supervision techniques and exploring more sophisti-
cated ways to combine different enhancement methods. Additionally, investigating ways to reduce
the time complexity of RFT while maintaining its data quality could lead to even more efficient
autoformalization systems.

B MORE RELATED WORKS

Formal Mathematics Formal languages, such as Isabelle (Wenzel et al., 2008), Lean (de Moura
et al., 2015), HOL Light (Harrison, 1996), and Coq (Barras et al., 1997), have become integral tools
in modern mathematics verification systems. These interactive theorem provers (ITPs) function as
programming languages, allowing users to input statements and proofs in a formal language for
automatic correctness verification. Among these ITPs, Lean 4 (de Moura & Ullrich, 2021) stands out
for its recent advancements, offering full extensibility and addressing previous limitations (Ullrich
& de Moura, 2019; 2022b;a; Nawrocki et al., 2023). However, keeping up with Lean 4’s rapid
development, including its evolving syntax, semantics, library, and other aspects, remains a challenge,
even for human experts and powerful LLMs like GPT-4 (Achiam et al., 2023). To bridge this gap, we
introduce FORML4 for training and testing autoformalization of LLM for Lean 4. Unlike the existing
Lean 4 dataset MMA (Jiang et al., 2023a), which focuses on translating questions to statements,
FORML4 provides a “complete” autoformalization from natural language questions and answers to
statements and proofs in Lean 4. This more challenging task requires understanding Lean 4’s syntax
and the reasoning steps in each proof, enabling valuable feedback from the Lean 4 compiler on both
syntax and reasoning verification.

Formal Datasets The field of formal datasets has seen significant progress in extracting and
cleaning theorems and proofs from established formal libraries and verification projects. Several
datasets have been developed for popular proof assistants, focusing on extracting information from
existing formalizations. For Coq, notable datasets include Gamepad (Huang et al., 2019), CoqGym
(Yang & Deng, 2019), and PRISM (Reichel et al., 2023). For Isabelle, datasets like IsarStep (Li
et al., 2021) and Magnushammer (Mikula et al., 2023) leverage the Archive of Formal Proofs and
Isabelle Standard Library. Similarly, LeanStep (Han et al., 2022), LeanDojo (Yang et al., 2023b), and
MLFMF (Bauer et al., 2023) utilize the mathlib library in Lean. LeanDojo, in particular, extracts

19

https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/pdf?id=92gvk82DE-

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

over 98,000 theorems and proofs with 130,000 premises from Mathlib. Beyond extracting data
from existing projects, several works have focused on manually annotating or formalizing problems
expressed in natural language. miniF2F (Zheng et al., 2022b) stands out by manually formalizing 488
Olympiad-level problems across four proof systems, equally splitting them into validation and test
sets. FIMO (Liu et al., 2023a) and ProofNet (Azerbayev et al., 2023a) formalize theorem statements
from IMO and undergraduate-level problems in Lean. For domain-specific problems, TRIGO (Xiong
et al., 2023b) focuses on formalizing trigonometric reduction problems. UniGeo (Chen et al., 2022)
and FormalGeo (Zhang et al., 2023) annotate proof steps for geometry proving problems. These
datasets provide valuable resources for researchers working on automated theorem proving, proof
verification, and natural language processing in the context of formal mathematics.

Improving Reasoning Abilities of LLMs To enhance the reasoning capabilities of LLMs, prior
research primarily focuses on specific prompting techniques. Existing efforts include few-shot
prompting with intermediate steps augmented demonstrations (Wei et al., 2022; Wang et al., 2023b;
Xiong et al., 2023a) or zero-shot prompting with specific instructions (Kojima et al., 2022; Yasunaga
et al., 2023). Although these methods have shown promising results, their effectiveness is often
constrained by their task-specific nature and the labour-intensive process of designing prompts,
leading to inconsistent outcomes across different tasks (Ye & Durrett, 2022; Zhou et al., 2023).
Another strategy to facilitate reasoning involves instruction tuning or knowledge distillation, which
elicits reasoning paths from LLMs without explicit prompting (Mukherjee et al., 2023; Gunasekar
et al., 2023; Lu et al., 2023; 2024c). These approaches typically involve resource-intensive fine-
tuning over LLMs and require a large set of examples annotated with chain-of-thoughts (CoT). To
address these challenges, verification techniques have emerged as a promising solution (Uesato et al.,
2022; Lightman et al., 2024). Verification models are trained to evaluate and potentially correct the
reasoning process generated by LLMs. This approach aims to mitigate the risk of relying solely on
the top-1 result, which may not always be reliable (Wang et al., 2023a; Lu et al., 2024a).

Learning From Feedback Improving LLMs through learning from feedback has become a preva-
lent strategy, notably through reinforcement learning from human feedback, which seeks to align
LLMs with human values by refining their outputs based on feedback (Ouyang et al., 2022; Bai et al.,
2022). However, this method faces challenges such as high costs due to manual labor and a lack of
real-time feedback capabilities. An alternative strategy involves using self-correcting LLMs, which
rely on automated feedback to iteratively adapt and understand the consequences of their actions
without heavy reliance on human intervention. This feedback can be derived from inside sources such
as the model itself (Madaan et al., 2023; Shinn et al., 2023) or generation logits (Yao et al., 2024),
and outside sources such as tools (Gou et al., 2023; Huang et al., 2024a), knowledge bases (Gao et al.,
2023; Yu et al., 2023b), or evaluation metrics (Jung et al., 2022; Welleck et al., 2023). Our method
leverages formal languages that can naturally provide precise feedback on the reasoning process,
enabling automatic process annotation without substantial human or machine annotation costs.

C DETAILED DECOMPOSITION STRATEGY

Our decomposition strategy for informalization involves instructing the model to perform the follow-
ing subtasks sequentially:

1. Translate the formal statement into a natural-language problem.
2. Explain the meaning of each step of the formal proof in natural language, based on the

definition of the employed lemma or tactics.
3. Write a step-by-step proof of the problem in natural language without verbatim mention of

any Lean 4 function.

For FORML4 construction, we extract only the translated natural-language problem and the step-by-
step proof from the model output to form the natural-language data.

The strategy of explaining each tactic step before writing the natural-language proof serves two
crucial purposes: 1. It creates a reasoning buffer for the model. 2. It effectively differentiates between
“listing and explaining each Lean 4 term from the formal proof in natural language” and “proving the
problem statement step by step in natural language”, with the latter being our intended goal.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Our empirical observations indicate that a naive instruction prompt without decomposition often
leads to ambiguity. Models tend to write natural-language proof steps by explaining each term in the
formal proof steps (and even in the formal statement), regardless of verbal emphasis on the distinction.
This approach would render autoformalization evaluation meaningless, as the formal content would
already exist in the input.

In contrast, decomposing our complex goal into separate subtasks effectively addresses this issue,
as verified by human expert evaluators. The decomposition strategy ensures that the resulting
natural language proof is genuinely independent of the formal proof structure, making it suitable for
autoformalization tasks.

We further enhance the strategy by adding few-shot examples to better align the model with our
expected format and goal. The complete prompt template, including these examples, can be found in
Appendix D.

D PROMPT FOR INFORMALIZATION

Below is the few-shot prompt template for querying an LLM to perform formalization. The few-shot
examples are carefully curated to ensure the semantical equivalence, logical validity, and readability
of natural language translations.

Given a statement and its proof written in Lean 4’s syntax, please translate them into the
semantically equivalent natural language that a human reader can independently understand
without knowing any concepts in Lean 4. The translation should accurately convey the same
logical structure and content as the original statement and proof.
You need to explain the theorem and proof in the most intuitive terms possible, but also
maintain the fidelity of the original mathematical reasoning. To do so, first translate the
theorem statement into a natural language problem so that it does not contain any function in
lean 4 (write after "# Problem:"). Then for the proof, you can explain each step of the proof
in natural language based on the meaning of the lemma or tactic that is used (write after "#
Explanation:"). Lastly and most importantly, write the step-by-step proof for the problem in
natural language without mentioning verbatim any function in Lean 4 (write after "# Proof:").
—
Follow the format below.
Theorem: (theorem and proof in lean 4, to be translated)
Problem: (theorem in natural language)
Explanation: (proof in natural language, explaining the functions in lean 4)
Proof: (proof in natural language, understandable by any human reader without the
knowledge of lean 4 functions)
—

Here are some examples:
Theorem: theorem eq_zero_iff_even {n : N} : (n : ZMod 2) = 0 ⇐⇒ Even n :=
(CharP.cast_eq_zero_iff (ZMod 2) 2 n).trans even_iff_two_dvd.symm
Problem: Prove that for any natural number n, n is even if and only if n is congruent to 0
modulo 2.
Explanation: The proof uses the following chain of reasoning:
1. CharP.cast_eq_zero_iff (ZMod 2) 2 n: This lemma states that for any
natural number n, n is congruent to 0 modulo 2 if and only if the remainder when n is
divided by 2 is 0.
2. even_iff_two_dvd.symm: This lemma states that a number is even if and only if it
is divisible by 2.
3. .trans: This tactic combines the two lemmas by showing that if n is congruent to 0
modulo 2, then the remainder when n is divided by 2 is 0, and therefore n is divisible by 2,
which means n is even.
Proof: We need to prove both directions of the "if and only if" statement.
Direction 1: If n is even, then n is congruent to 0 modulo 2.
If n is even, then by definition, n is divisible by 2. This means that the remainder when n is

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

divided by 2 is 0. Therefore, n is congruent to 0 modulo 2.
Direction 2: If n is congruent to 0 modulo 2, then n is even.
If n is congruent to 0 modulo 2, then the remainder when n is divided by 2 is 0. This implies
that n is divisible by 2. Hence, n is even.
Since we have proven both directions, we have shown that a natural number n is even if and
only if n is congruent to 0 modulo 2.

Theorem: theorem forall_mem_comm {α β} [Membership α β] {s : β} {p : α →
α → Prop} :
(∀ a (_ : a ∈ s) b (_ : b ∈ s), p a b) ⇐⇒ ∀ a b, a ∈ s → b ∈ s → p a b :=
forall_cond_comm
Problem: Prove that for any set s, a property p holds for all elements a and b in s if and
only if, for every pair of elements a and b in the set s, the property p holds between them.
Explanation:
1. The original statement involves checking whether a property p holds for elements a and b
in a set s.
2. The left-hand side of the equivalence states that for every a in s, for every b in s, the
property p(a, b) holds.
3. The right-hand side of the equivalence restates this, but in a more traditional way, using
implications. It says that for every a and b, if a ∈ s and b ∈ s, then p(a, b) holds.
4. The tactic forall_cond_comm helps translate between these two forms, essentially
commuting the logical structure of the quantifiers and conditions.
Proof:
We need to show that these two forms are logically equivalent.
First direction (left to right):
Suppose we are given that for all elements a ∈ s, for all b ∈ s, the property p(a, b) holds.
This directly means that, for any a and b, if both a and b are in the set s, then p(a, b) is true.
Therefore, if a ∈ s and b ∈ s, we know that p(a, b) holds by the original assumption.
Second direction (right to left):
Now assume that for every pair of elements a and b, if a ∈ s and b ∈ s, then p(a, b) holds.
This means that for any a ∈ s, we can take any b ∈ s, and the property p(a, b) must hold.
Thus, the condition on p is satisfied for all such pairs within s.
Since both directions of the equivalence are proven, the two forms of the statement are
logically equivalent. Therefore, the property p holds for all pairs of elements in the set s if
and only if, for each a ∈ s and b ∈ s, the property p(a, b) holds.

Theorem: theorem asq_pos : 0 < a ∗ a :=
le_trans (le_of_lt a1)
(by have := @Nat.mul_le_mul_left 1 a a (le_of_lt a1); rwa [mul_one] at this)
Problem: Prove that the square of any natural number is greater than 0.
Explanation: The proof uses the following steps:
1. a1: This refers to the fact that a is greater than 0, which is a premise of the theorem.
2. le_of_lt a1: This lemma states that if a is greater than 0, then 0 is less than or equal
to a.
3. Nat.mul_le_mul_left 1 a a (le_of_lt a1): This lemma states that if 1 is
less than or equal to a (which is true because a is a natural number and greater than 0), and
0 is less than or equal to a (from step 2), then 1 multiplied by a is less than or equal to a
multiplied by a.
4. rwa [mul_one] at this: This tactic rewrites the goal using the lemma mul_one,
which states that 1 multiplied by any number is equal to that number. This simplifies the goal
from 1 ∗ a ≤ a ∗ a to a ≤ a ∗ a.
5. le_trans: This tactic combines the inequality 0 ≤ a (from step 2) with the inequality
a ≤ a ∗ a (from step 4) to conclude that 0 < a ∗ a.
Proof:
1. We know that a is a natural number greater than 0.
2. Since a is greater than 0, we can say that 0 ≤ a.
3. We can also say that 1 is less than or equal to a because a is a natural number and greater

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

than 0.
4. Multiplying both sides of the inequality 0 ≤ a by a, we get 0 ∗ a ≤ a ∗ a.
5. Since multiplying any number by 0 results in 0, the inequality becomes 0 ≤ a ∗ a.
6. We also know that multiplying any number by 1 doesn’t change its value, so 1 ∗ a is the
same as a.
7. Combining this with the fact that 1 ≤ a, we get a ≤ a ∗ a.
8. Since 0 ≤ a and a ≤ a ∗ a, we can conclude that 0 < a ∗ a.
9. Therefore, the square of any natural number is greater than 0.

Theorem: {Theorem}
Problem:

E HUMAN EVALUATION: COMPARATIVE MODEL SELECTION

E.1 ANNOTATION PROTOCOL FOR INFORMALIZATION MODEL COMPARISON

E.1.1 INTRODUCTION

The protocol provides guidance for evaluating the quality of informalization of two sampled models
(gpt4-o and gemini-pro-1.5). Two models are tasked to translate theorem statements and their proof
written in Lean 4 syntax to natural language (i.e., informalization), so that the natural language
problem statement and proof can be understood by readers without any Lean 4 knowledge.

Given a theorem and proof, the models are prompted to respond following the format below:

• Theorem: (the given theorem and proof in Lean 4, to be translated)

• Problem: (translated theorem statement in natural language)

• Explanation: (proof in natural language, explaining the functions in Lean 4)

• Proof: (proof in natural language, understandable by any human reader without the knowl-
edge of Lean 4 functions)

E.1.2 FILE STRUCTURE

You are given two model output .json files (sample size = 10). In the file, each sample contains five
items:

• "nl": (past informalized output. Ignore)

• "formal": formal statement and proof in Lean 4 (i.e., Theorem)

• "gemini_output" / gpt4o_output: complete model output

• "nl_problem": extracted from model output (i.e., Problem)

• "nl_explanation": extracted from model output (i.e., Explanation)

• "nl_proof": extracted from model output (i.e., Proof)

Among them, your annotations focus on the quality of "nl_problem" and "nl_proof" per sample.

E.1.3 TASK

For both model output .json files, you need to annotate three items:

1. Informalization Success (T/F): whether the translation from "formal" statement to
"nl_problem" is semantically equivalent. The natural-language translation should ac-
curately convey the same logical structure and content as the original statement in Lean
4.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

2. Informal Proof Correctness (T/F): whether the informalized proof "nl_proof" success-
fully proves the problem statement "nl_problem", and can be independently understood
without prior knowledge of Lean 4.

3. Model Preference (T/F): Compare the informalization output (i.e., "nl_problem" +
"nl_proof") between gemini and gpt4o, choose which one is preferable based on the
criteria described below. Label T if preferred, F if not.

E.1.4 QUALITY CRITERIA

The ideal informalized output should meet the following criteria:

1. Semantically Equivalent to the Lean 4 Theorem and Proof: (informalization success =
T)

2. Intuitive Terms without Lean 4 Functions: Both problem statement and proof use intuitive
terms without Lean 4 functions mentioned, proves the intended theorem successfully, and
can be independently understood without prior knowledge of Lean 4. (informal proof
correctness = T)

Check the instruction and demo examples in the fewshot prompt for reference of an ideal informaliza-
tion case. You can use tools like https://jsoneditoronline.org/ to compare two model
output files more easily.

E.2 ANNOTATION RESULTS FOR INFORMALIZATION MODEL COMPARISON

Table 7: Comparison of Model Evaluation in Three Metrics

Model Metric Average True Rate Inter-Rater Agreement

Gemini
Informalization Success 80.0% 80.0%

Informal Proof Correctness 85.0% 70.0%
Model Preference 60.0% 60.0%

GPT4o
Informalization Success 72.5% 45.0%

Informal Proof Correctness 62.5% 45.0%
Model Preference 22.5% 55.0%

F HUMAN EVALUATION: PDA DATASET QUALITY

After obtaining the final dataset, we perform a more extensive manual verification on the informalized
dataset, compared to the preliminary one in the model selection stage. Because the core goal of
FORML4 is to train and evaluate statement autoformalization, the human verification task only
includes annotating the informalization success specific to statement translation. We recruited a
different group of four human experts in Lean 4 than in the model selection stage to perform manual
quality checks on 60 samples. Among them, 20 samples come from the basic test set, and 40 from
the random test/train set.

The average success rate evaluated by human experts is 0.72, indicating a relatively high-quality
informalization performance. The intra-rater standard deviation of 0.44 suggests moderate variability
in individual assessments while inter-rater Fleiss’ Kappa is 0.3730, showing fair agreement among
four raters, highlighting a reasonable level of consensus in evaluations.

The split stats between the basic test set (0.875) and the random test set (0.575) show a signifi-
cant discrepancy in the human-verified informalization success rate (p = 0.0099), suggesting that
informalization difficulty increases with formal theorem complexity.

Notably, all four human evaluators comment on the same two challenges during the annotation task:

1. The incompatibility of certain theorem statements for informalization due to their topics or
settings. In practice, our Lean 4 experts observe that it is sometimes infeasible to perfectly

24

https://jsoneditoronline.org/

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

translate a set of formal proofs to a natural language. This is because formal proofs are often
expressed in pre-defined lemmas or environments that are exclusively constructed in the
Lean 4 language, and there are no existing corresponding concepts in natural language that
a non-expert in Lean 4 could easily understand.

2. Individual subjectivity in determining the condition constraints that need to be specified in
natural language (Azerbayev et al., 2023a; Ying et al., 2024a).

As emphasized in past autoformalization research, such challenges are due to the highly parallel gap
between formal and natural language, with the former requiring precision and syntactic rigidity while
the latter suffering from ambiguity and reliance on contexts (Liu et al., 2023a; Jiang et al., 2023a).
As the formal theorem complexity rises, it likely widens such a gap that the informalization difficulty
also increases. This is reflected in the split stats between the basic test set (0.875) and the random test
set (0.575) show a significant discrepancy in the human-verified informalization success rate (p =
0.0099).

G CASE VISUALIZATION IN COMPARISION WITH EXISTING DATASETS

In addition to the summarized comparison of dataset features in 2, below we also provide a visualiza-
tion comparison through a data example with the same statement in both our FORML4 training set
and existing training sets (Jiang et al., 2023a; Ying et al., 2024a). As shown in Table 8, our FORML4
incorporates both the informal statement and its proof as input for our autoformalization process,
making it a complete autoformalization task. In contrast, the MMA, one of the existing datasets,
requires the model to output only the statement, without the proof.

Our task requires the model to not only understand the basic Lean 4 syntax rules but also comprehend
the logical relationships present in the proof process, such as dependencies illustrated in the example.
When compiling our output examples using the Lean 4 compiler, we require a complete theorem
output. Therefore, the feedback from the Lean 4 compiler is more comprehensive, providing syntax
checking for both statements and proofs, coupled with reasoning checking to validate the proofs.

This comprehensive feedback is crucial for guiding the enhancement of autoformalization within our
framework, as described in Section 5.2. The ’tactic’ feedback indicates that our example successfully
verifies the goal of proving that the cosine of the angle π (pi), when measured in radians, is equal to
-1. In the MMA case, due to the absence of a proof, the Lean 4 compiler can only return a warning
that the theorem is incomplete.

In summary, the feedback from the Lean 4 compiler provides syntax checking and reasoning veri-
fication for both statements and proofs, which is essential for improving autoformalization in our
framework. In contrast, the feedback from the existing dataset is limited to syntax checking of
statements, lacking the depth of reasoning verification.

H HUMAN EVALUATION: AUTOFORMALIZATION PERFORMANCE
EVALUATION

The same four annotators for the FORML4 informalization verification task are asked to cross-evaluate
60 autoformalized samples. Each sample is annotated twice. It takes each annotator approximately 5
minutes to complete evaluating a sample.

I EXPERIMENTAL DETAILS

I.1 TRAINING SETTINGS

Our experiments were conducted in a computing environment equipped with 8 NVIDIA A100 GPUs,
each having 40GB of memory. All models underwent fine-tuning in a full-parameter setting. We
employed the AdamW optimizer for model training over 2 epochs, with a batch size of 128. The
learning rate was set at 5 × 10−6, incorporating a 3% learning rate warmup period. Below, we
present a comprehensive overview of the training hyperparameters utilized. These parameters were
consistently applied across training autoformalizer models in our experiments in Table 9.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 8: Comparison of one data example from FORML4 and existing datasets.

Aspect PDA MMA

Input

Statement and proof in natural lan-
guage:

Statement in natural language:

Statement: The statement we’re
examining asserts that the cosine of
the angle π (pi), when measured in
radians, is equal to -1. This is a fun-
damental result in trigonometry, cap-
turing a key property of the cosine
function on the unit circle.

Statement: The cosine of pi, when
pi is considered as an angle, equals
-1.

Proof: The proof provided in the
Lean 4 syntax is brief and relies
on two key elements: the ‘cos_coe‘
lemma and the ‘Real.cos_pi‘ fact.

Translate the statement and proof in
natural language to Lean:

Translate the statement in natural
language to Lean:

Output
theorem cos_coe_pi : cos

(π : Angle) = -1 :=
by rw [cos_coe,
Real.cos_pi]

theorem cos_coe_pi : cos
(π : Angle) = -1 :=

Feedback
"tactic": "rw [cos_coe,

Real.cos_pi]",
"proofState": 99,
"goals": "⊢ cos ↑π= -1"

"severity": "warning",
"proofState": 0,
"data": "declaration uses

’sorry’"}],

Table 9: Autoformalizer training hyperparameters.

Hyperparameter Global Batch Size LR Epo. Max Length Weight Decay Warmup Ratio

Value 128 5× 10−6 2 2048 0 0.03

For training verifier, the setting is as shown in Table 10.

Table 10: Verifier training hyperparameters.
Hyperparameter Global Batch Size LR Epo. Max Length Weight Decay Warmup Ratio

Value 512 2× 10−6 1 2048 0 0.03

I.2 GENERATION SETTINGS

In this section, we specify the settings used for model generation to ensure reproducibility across all
experiments, including baseline models and variations enhanced with verifiers.

For the generation of results using the "greedy" strategy, we set the temperature parameter to 0.0 and
0.7 for the "pass@k" strategy. To present unbiased results for "pass@k", we follow the calculation

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

method outlined in (Chen et al., 2021). Specifically, we generate n = 20 samples for each instance,
evaluate the number of correct samples passing unit tests, and then calculate the unbiased estimator
for pass@k.

It’s important to note that all generation scripts are based on the vLLM framework (Kwon et al.,
2023) for efficient inference of LLMs.

I.3 LEAN 4 COMPILATION

In this section, we outline the specific versions of libraries utilized and the details about the compila-
tion process in Lean 4 in our experiments.

Lean 4 Compiler: The Lean 4 Compiler is a critical component of the Lean 4 programming
language. This tool enables users to craft effective proof automation tactics within the Lean envi-
ronment and transform them into optimized C code. The Lean 4 Compiler in our scope is referred
to as the tool available at https://github.com/leanprover-community/repl. This
particular resource provides a read-eval-print loop (REPL) designed for Lean 4, which supports
user interaction through JSON formatted input and output streams (stdin and stdout, respectively).
Our compilation projection is therefore founded on REPL. We also developed a multiprocessing
framework to streamline the compilation of Lean 4, which is attached in the supplementary material.

Standard library: We acknowledge that Lean 4 is still in active development, as are its associated
libraries such as mathlib and others. To maintain consistency and reproducibility, we fixed our Lean 4
version from the official website. We specify the versions and sources of required libraries as shown
in Table 11.

Table 11: Library versions and sources of Lean 4.

Name URL Revision Input Revision

mathlib https://github.com/leanprover-community/mathlib4 3cecb82 3cecb82
std https://github.com/leanprover/std4 e5306c3b main
Qq https://github.com/leanprover-community/quote4 fd76083 master

aesop https://github.com/leanprover-community/aesop 8be30c2 master
proofwidgets https://github.com/leanprover-community/ProofWidgets4 fb65c47 v0.0.30

Cli https://github.com/leanprover/lean4-cli be8fa79 main
importGraph https://github.com/leanprover-community/import-graph.git 61a7918 main

Running Time: Lean 4’s compilation times are a bottleneck. The compilation duration varies
depending on factors such as theorem complexity, dependencies on relevant lemmas or theorems,
etc. Compiling 1k examples requires around 10 minutes. This duration is notably longer than the
generation time for a large language model, which typically takes only 1-2 minutes to generate output
on 1k samples.

J COMPREHENSIVE EVALUATION OF THE ENHANCED AUTOFORMALIZER

We leverage our enhanced autoformalizer to generate high-quality training data, supervised by the
Lean 4 compiler, to further refine the verifier model. This process involves the following steps:

1. Data Generation: We employ the RFT+Verifier enhanced autoformalizer to produce
samples from the FORML4, MATH, and GSM8K training sets.

2. Compilation Testing: Each generated sample undergoes testing via the Lean 4 compiler to
ascertain compilation success and extract detailed compilation information.

3. Verifier Fine-tuning: We further refine the Process-Supervised Verifier (PSV) model
using this high-quality data, incorporating step-level process supervision derived from the
compiler’s feedback.

27

https://github.com/leanprover-community/repl

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

To assess the efficacy of our refined verifier, we first evaluate the comprehensive performance of the
RFT+Verifier enhanced Autoformalizer (RFT + VEA) model. This evaluation employs both greedy
decoding and pass@k sampling methods, as detailed in Appendix P.2. Table 12 presents these results.

Table 12: Comprehensive performance of the enhanced autoformalizer.

Model Dataset Greedy Pass@1 Pass@5
Basic 35.67 33.14 43.11

RFT + VEA Random 27.43 26.47 36.19
Real 23.72 22.29 40.33

K MODEL SELECTION PROCESS

Model Selection Process: Our model selection process involved a rigorous comparative evaluation of
GPT-4 and Gemini-Pro-1.5. We sampled 10 inputs from the extracted formal theorems and recruited
four human annotators to cross-evaluate the informalization outputs of both models. The evaluation
was based on three key metrics:

1. Success of statement informalization: Assessing whether the translated natural-language statement
is logically accurate and semantically equivalent to the formal statement.

2. Informalized proof correctness: Evaluating whether the translated natural-language proof is
logically valid to prove the statement.

3. Model preference: Determining whether the translation output of one model is preferred over the
other, with only one ’True’ value allowed per sample.

Both models demonstrated satisfactory performance in informalization success (Gemini-Pro-1.5:
80%; GPT-4: 70%) and informalized proof correctness (both at 80%). However, Gemini-Pro-1.5
consistently achieved higher scores with a high interrater agreement rate of 0.77. Moreover, when
tasked to cross-compare the model outputs based on their statement and proof generation, annotators
preferred Gemini-Pro-1.5 in 80% of the samples.

The detailed annotation protocol and comprehensive results of this evaluation process are provided in
Appendix E.

L DETAILED DATASET COMPARISON ANALYSIS

Table 2 compares FORML4 with existing autoformalization datasets. Here, we provide a detailed
explanation and analysis for each characteristic:

Source Language: FORML4 and MMA use formal language as their source, while others use
natural language. This approach aligns with empirical findings by Jiang et al. (2023a) suggesting that
informalization is generally easier than formalization, potentially leading to higher-quality datasets.

Size: With more than 17k entries, FORML4 is significantly larger than most datasets except MMA
and Lean Workbook. This size allows for more comprehensive training and evaluation of autoformal-
ization models.

Includes Proofs: FORML4 and ProofNet are the only datasets that include proofs along with
statements. This feature is crucial for training process-driven autoformalizers and enables a more
holistic approach to mathematical reasoning.

Uses Lean 4: FORML4, MMA, and Lean Workbook use Lean 4, a modern theorem prover. This
choice ensures compatibility with current formal verification tools and practices.

Construction Method (1) Direction: FORML4 and MMA use informalization, while others use
formalization. The informalization approach may lead to more natural-sounding informal statements
and potentially easier dataset creation. (2) LLM-based: FORML4, MMA, Lean Workbook, and
FIMO use LLMs in their construction, leveraging recent advances in AI to create large-scale datasets

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

efficiently. (3) Human-Verified: All datasets except MMA incorporate human verification, ensuring
higher data quality. FORML4’s rigorous verification process, including task decomposition and data
inspection, sets it apart.

Primary Usage (1) Training: FORML4, MMA, and Lean Workbook are suitable for training, unlike
smaller datasets like ProofNet, miniF2F, and FIMO, which are primarily for benchmarking. (2)
Benchmarking: All datasets can be used for benchmarking, allowing for comprehensive evaluation
of autoformalization models across different dataset characteristics. (3) Process-Driven Feedback:
FORML4 and ProofNet uniquely offer process-driven feedback, crucial for training iterative autofor-
malizers. FORML4’s approach is fully automated, using the formal language compiler to process
proof steps and provide annotated feedback.

M ANALYSIS FOR TRAINING AND TEST DATA IN FORML4

To showcase the connection between the training data provided by FORML4 and the test sets,
we conduct standard supervised fine-tuning on the Mistral-7B (Jiang et al., 2023b) model using
the training data provided by FORML4, with training hyperparameters detailed in Appendix I.1.
We compare it with a model trained on 5k sampled training data provided by FORML4. Their
autoformalization performance on our three test sets is listed in Table 13.

Table 13: Comparison of models trained on different data sizes.

Model Basic Random Real
Mistral 0.12 0.00 0.21
Mistral (5K) 20.12 16.19 2.82
Mistral (Full) 28.87 21.47 5.34

We demonstrate the following insights:

Training Data Always Matters: Our study reveals a strong correlation between the test and training
data provided in our FORML4. By enlarging the training dataset from 5k to full 14.51k samples,
we observe a notable improvement in the compilation rate on three test sets. This indicates that
increasing the training data size positively impacts the model’s performance on the test sets, as shown
in Table 13.

Real Test is Still Challenging: Despite the improvements observed in all test sets, there remains
substantial room for enhancement in the real test set, i.e., the natural language-based benchmark as
shown in Table 13. This discrepancy can be attributed to two primary factors: i. Out-of-Distribution
Test Domains: The real test set represents OOD test domains compared to the two Mathlib Lean
4 test sets, i.e., Random and Basic. Consequently, models fine-tuned solely on the Mathlib Lean 4
training set may struggle to generalize effectively to these benchmarks. ii. Lack of Dependency on
Pre-Defined Lemmas or Basic Terms: Unlike Mathlib Lean 4 test sets, the real test set often lacks
dependencies on pre-defined lemmas or basic terms.

Additionally, we evaluate the autoformalization efficiency on two Math Reasoning benchmarks, i.e.,
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) in Table 14 in Appendix N. We
note that the SFT model exhibits different performance on the real test sets compared to the baseline
model listed in Table 4. This is because this section aims to explore the connection between the
training and test sets provided by FORML4. Therefore, the two SFT models in this section do not
undergo further rejective sampling fine-tuned on the MATH and GSM8K datasets, as described in
the Section 5.2.1.

N AUTOFORMALIZATION ON REAL-WORLD MATHEMATICAL REASONINGS

In this section, We list the results of using the SFT model trained in Appendix M, to perform
autoformalization based on questions and answers in GSM8K and MATH training sets. The results
are presented in the following Table 14.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 14: Comparison of the SFT model’s autoformalization performance, measured by compilation
rate (%), on the GSM8K and MATH training sets.

Model MATH GSM8K
Mistral 0.0 % 0.0 %
Mistral (5K) 0.55 % 3.28 %
Mistral (Full) 0.65 % 8.16 %

The results in Table 14 demonstrate that despite fine-tuning with training sets provided by FORML4,
the model’s performance on autoformalization tasks for GSM8K and MATH was still not satisfactory.
To address this weakness, we employed Mistral (Full) to conduct the autoformalization task on training
sets from GSM8K and MATH. For each example, we generated 10 samples with a temperature of
0.7. The outputs that were successfully compiled by the Lean 4 compiler were then used to further
fine-tune a final baseline model utilized in Section 5.2.2.

O DATA CONSTRUCTION DETAILS

O.1 DATA PREPROCESSING

Firstly, we retain the “#align” command within the proof, which is used by Mathport6 to connect
Lean 3 names to Lean 4 names. This inclusion is intended to facilitate the informalization process
for GPT-4 during data construction, as we hypothesize that GPT-4 will better understand the Lean 4
language if there is a connection to the more familiar Lean 3 language.

Secondly, all samples with custom Mathlib 4 lemma (as indicated by the ’.mk’ suffix) in the theorem
statement are removed. This is because such lemmas are custom-defined under the same file of the
theorem inside the Mathlib 4 library, hence the model will have no access to its definition, causing
inevitable ambiguity or uncertainty in informalization7. Altogether 262 samples are filtered, with 236
from the train set, 6 from the basic test set, and 20 from the random test set.

Lastly, 35 samples in the real test set specified to be solved in Python are removed for being unsuitable
for autoformalization evaluation.

O.2 DATASET SPLIT

The basic test and the real test set are the two added test set data in FORML4 for a more domain-
inclusive evaluation of autoformalization. They are collected from distinctive sources compared to
the random test set or training data and aimed at assessing nuanced domains of autofomalization
capability. Below are detailed descriptions of their features, content, and data creation processes.

Basic Test It assesses the model’s ability to autoformalize basic theorems with minimal reliance on
prior knowledge or established lemmas. These theorems typically appear in files like Mathlib/
Geometry/Euclidean/Basic.lean, which establish fundamental geometrical concepts and
prove simple results about real inner product spaces and Euclidean affine spaces. Conversely,
theorems with more intricate proofs or richer geometrical content are usually found in separate files,
like Mathlib/Geometry/Euclidean/Triangle.lean, and are excluded from the Basic
Test.

From all the Basic.lean files across various mathematical subjects (like geometry and algebra),
we extract roughly 10,000 theorems. After removing the sampled training and random test sets from
this pool, we randomly select theorems to create the Basic Test. This ensures that the Basic Test
remains entirely exclusive from the training and random test sets.

6https://github.com/leanprover-community/mathport
7We tried tracking and appending the definitions of custom lemmas to the model input as contexts. This did

not significantly improve the models’ informalization outcomes.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Real Test To evaluate our models’ ability to handle real-world scenarios, we constructed a real test
set by collecting natural language math questions and answers from LI et al. (2024). This real test set
assesses how well our models can automatically formalize natural language expressions, providing a
more comprehensive evaluation metric.

Since this set is derived from real math questions, we do not preprocess them using GPT-4 for infor-
malization. It’s important to note that this real test set lacks any inherent dependencies on predefined
lemmas or basic Lean 4 terms, unlike the environment we typically use for Lean 4 programming. We
follow the setting of the Lean 4 version of LeanDojo (Yang et al., 2023a) and employ its predefined
theorem environment as shown in https://github.com/yangky11/miniF2F-lean4/
blob/main/MiniF2F/Minif2fImport.lean for all real test examples.

O.3 DATA POSTPROCESSING

We apply a post-filtering process to both the training and test sets to uphold the quality of data
examples. The exclusion criteria were as follows:

• Instances where the API failed or produced empty content during the informalization stage.
• Cases where the length of the natural-language question or answer did not exceed 400 char-

acters, or the length of the formalized theorem and proof did not exceed 200 characters. This
step ensures that each datapoint retains complexity and richness for the autoformalization
task.

• Situations where the informalization was evidently incorrect were manually reviewed and
removed. It is important to note that this manual check was not applied to the entire dataset.

P DETAILS OF AUTOMATED AUTOFORMALIZATION EVALUATION

P.1 PROMPT

We used a specific instruction prompt for autoformalization with all existing LLMs. The prompt is as
follows:

Statement and proof in natural language:

Statement:

Statement

Proof:

proof

Translate the statement and proof in natural language to Lean 4:

For the instruction-finetuning model, we used the prompt template and inserted our autoformalization
prompt into their template to ensure consistent performance.

P.2 PREPROCESSING AND EVALUATION

The model’s response may contain raw text mixed with Lean 4 language, We applied different
handling functions to extract the exact Lean 4 language for subsequent compilation. For model
responses without any Lean 4 output, we marked them as negative outputs. We employ the metric
pass@k to evaluate model performance, defined as the condition where at least one autoformalized
instance, comprising both the statement and proof, successfully passes the Lean 4 compiler within
the model’s first k attempts. Additionally, we use the term greedy to assess model performance based
on whether the output with the highest confidence from the model can pass the Lean 4 compiler.

31

https://github.com/yangky11/miniF2F-lean4/blob/main/MiniF2F/Minif2fImport.lean
https://github.com/yangky11/miniF2F-lean4/blob/main/MiniF2F/Minif2fImport.lean

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 15: Performance of LLMs on FORML4 in terms of greedy and pass@k scores. We include open-
source LLMs that claim integration of formal languages into their pretraining/finetuning. Reported
results indicate the percentage of successfully compiled outputs over all the generated ones (%).

Model Random Test Basic Test Real Test
Greedy Pass@1 Pass@5 Greedy Pass@1 Pass@5 Greedy Pass@1 Pass@5

Closed-Source LLMs

GPT-3.5-Turbo (Achiam et al., 2023) 0.43 0.34 0.75 0.31 0.02 0.68 5.23 3.92 10.21
GPT-4-Turbo (OpenAI, 2023) 0.52 0.44 3.48 1.51 1.18 4.45 5.35 4.83 12.32
GPT-4o (OpenAI, 2023) 1.38 1.14 3.51 1.53 1.20 5.47 5.85 5.38 13.31

Open-Source LLMs

DeepSeek-Math-Base-7B (Shao et al., 2024) 0.21 0.25 0.96 0.38 0.22 0.86 0.03 0.02 0.04
DeepSeek-Math-Instruct-7B (Shao et al., 2024) 0.59 0.26 1.73 1.21 0.48 3.08 0.35 1.63 5.39
LLEMMA-7B (Azerbayev et al., 2023b) 0.03 0.02 0.79 0.20 0.13 0.45 0.02 0.03 0.04
LLEMMA-34B (Azerbayev et al., 2023b) 0.02 0.03 0.19 0.03 0.02 0.03 0.02 0.03 0.04
InternLM-Math-7B (Ying et al., 2024b) 0.03 0.02 0.21 0.22 0.15 0.29 1.13 1.06 3.76
InternLM-Math-20B (Ying et al., 2024b) 0.02 0.03 0.03 0.03 0.02 0.03 0.24 0.72 2.39
Mistral-Instruct-v0.3-7B (Jiang et al., 2023b) 0.30 0.23 1.90 0.48 0.80 1.86 0.33 0.53 1.96

For the generation of results using the "greedy" strategy, we set the temperature parameter to 0.0 and
0.7 for the "pass@k" strategy. To present unbiased results for "pass@k", we follow the calculation
method outlined in (Chen et al., 2021). Specifically, we generate n = 20 samples for each instance,
evaluate the number of correct samples passing unit tests, and then calculate the unbiased estimator
for pass@k. We repeat the experiments 5 times and report the 95% confidence intervals with a
precision of ±0.1 to account for variability in the results.

P.3 DETAILED ANALYSES OF EXISTING LLMS ON FORML4

The emergence of LLMs has fostered advancements in autoformalization tasks, where natural
language descriptions are converted into formal, programmable constructs. In this analysis, we
examine how various LLMs, benchmarking them across three different tests: Random, Basic, and
Real proposed by FORML4.

As shown in Table 15, there is a distinguishing performance divide between closed-source and
open-source LLMs. Closed-source models like GPT-4 and GPT-3.5 display substantially higher
Greedy and Pass@k scores across all tests compared to open-source LLMs. For instance, GPT-4
achieves a Greedy score of 10.20% in the Real Test, whereas the highest corresponding score for an
open-source model (InternLM-Math-7B) is only 1.10%. Focusing on open-source LLMs, DeepSeek-
Math-Instruct-7B stands out, particularly in the Random Test with a Greedy score of 0.58% and
a Pass@5 score of 1.71%. This model’s performance suggests a basic understanding of Lean 4
formalizations, even though it falls behind the scores of closed-source LLMs.

On the other end of the spectrum, LLEMMA-7B and LLEMMA-34B models display negligible
results in the Real Test. Their zero scores across all three metrics suggest that these models may not
have effectively integrated Lean 4 formalization capabilities into their architectures or training data.

Finally, size seems to play a less significant role in autoformalization tasks, as evidenced by consis-
tently low scores across models of varying sizes, from 7B to 34B parameters. This indicates that
simply increasing the model size doesn’t necessarily lead to better performance in specialized tasks
such as autoformalization in Lean 4.

Despite the progress made by both open-source and closed-source LLMs in the area of autoformal-
ization, our analysis identifies a consistent need for enhancement across the board. While certain
closed-source models demonstrate superior performance, the opportunity for improvement remains
vast, particularly within the open-source domain. We, therefore, propose FORML4 encompassing
both training and testing sets tailored for evaluating and improving autoformalization capabilities.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Q DATASET QUALITY AND HUMAN VERIFICATION

The human verification process for FormL4 achieved an average success rate of 0.72, situating it
within the context of existing LLM-constructed autoformalization datasets. Table 16 presents a
comprehensive comparison of relevant datasets, highlighting key characteristics across different
formalization efforts.

Table 16: Comparison of Autoformalization Datasets

Dataset Source Lang. Size Human Verif. Accuracy Verif. Rate (%)

ProofNet Lean 3 371 ✓ 1.00 100.00
MiniF2F Multi 488 ✓ 1.00 100.00
FIMO Lean 3 149 ✓ 0.61 100.00
Lean Workbook Lean 4 57k ✓ 0.94 0.10
MMA Lean 4 332K × – 0.00
FormL4 Lean 4 17k ✓ 0.72 0.30

To systematically evaluate our dataset quality, we conducted a comparative verification study across
FormL4, MMA, and Lean Workbook. We randomly sampled 90 pairs of natural language and formal
language statements (30 samples each from FormL4, MMA, and Lean Workbook), shuffled them
together, and assigned them to five Lean 4 experts. The assignments were split so that (1) each
sample was verified by two different human experts for robust evaluation; (2) each expert verified an
even distribution of samples from the three datasets in order to rule out the factor of individual bias.
The experts follow the original verification task to evaluate whether the natural language and formal
statement are perfectly aligned. Since each sample is dual-annotated, disagreements are resolved
with annotator discussion for a final verdict.

In addition, we observe a large discrepancy in statement complexity between Lean Workbook and
FormL4/MMA, as demonstrated in the examples inTable 17. Therefore, our experts also evaluated a
new item called autoformalization difficulty from the natural language statement into its corresponding
formal statement. The difficulty levels were categorized according to the criteria shown in Table 18.

Table 17: Statement Examples from Lean Workbook, MMA, and FormL4

Source Natural Language Statement Formal Statement

Lean Workbook For a, b, c ∈ R such that a+b+c =
1, prove that ab(3a− 1) + ac(3b−
1) + bc(3c− 1) ≥ 0.

theorem
lean_workbook_plus_14251 :
∀ a b c : R , a + b + c
= 1 → a * b * (3 * a - 1)
+ a * c * (3 * b - 1) + b
* c * (3 * c - 1) ≥ 0 :=

MMA For a summable function f and a
constant a from a topological space
M that is also a T2 space (Haus-
dorff), the infinite sum of f(z) · a
equals the product of

∑
f(z) and a.

theorem tsum_smul_const
[T2Space M] (hf :
Summable f) (a : M) :
(

∑
’ z, f z • a) = (

∑
’ z,

f z) • a :=
FormL4 Prove that in category theory, if

there exists a kernel pair for a
monomorphism f with a as its do-
main, then a is an isomorphism.

theorem isIso_of_mono (h :
IsKernelPair f a b) [Mono
f] : IsIso a :=

Table 19 summarizes the verification study findings, including the distribution of difficulty levels
across datasets.

Our verification study reveals several significant findings:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 18: Autoformalization Difficulty Level Criteria

Level Description

Simple (S) The statement is primarily numeric or equation-based, requiring minimal
knowledge of Lean 4 syntax or semantics to translate.

Medium (M) The statement involves mathematical concepts or relations written in natural
language, and its autoformalization requires an understanding of common
Lean 4 constructs.

Advanced (A) The statement incorporates advanced mathematical concepts (college level
or above), and the Lean 4 syntax or lemma required for translation is also
advanced.

Table 19: Cross-Dataset Verification Results

Dataset Aligned Ratio Disagreement Difficulty Distribution

FormL4 73.33% 26.67% S:21.67%, M:61.67%, A:16.67%
MMA 66.67% 33.33% S:13.33%, M:66.67%, A:20.00%
Lean Workbook 63.33% 36.67% S:95.00%, M:5.00%, A:0.00%

• Among LLM-constructed datasets, FormL4 demonstrates superior verification accuracy
(73.33%), aligning with our initial verification result of 72%.

• The difficulty distribution analysis shows that FormL4 and MMA encompass more so-
phisticated statements (predominantly medium-level complexity), while Lean Workbook
predominantly contains elementary statements.

• The observed verification disagreement rates underscore the inherent complexity in evaluat-
ing natural language to formal statement alignment, a recognized challenge in the field.

The notable disparity between our verification results and previous studies (e.g., Lean Workbook’s
reported 93.5% versus our observed 63.3%) can be attributed to two primary factors:

1. Implementation of more stringent verification criteria, mandating precise preservation of
mathematical constraints and logical relationships

2. Systematic identification and handling of non-statement instances within source datasets

This comprehensive evaluation substantiates FormL4’s quality while acknowledging the broader
challenges in autoformalization assessment. The results validate both the effectiveness of our
construction pipeline and underscore the necessity of rigorous verification protocols in dataset
development.

34

	Introduction
	Related Work
	FormL4: Dataset Construction
	Data Source
	Informalization
	Curation Process
	Comparing FormL4 with Existing Autoformalization Datasets

	Method: Process-Driven Autoformalization
	Verification Model
	Further Enhancement with Back-Propagated Process Feedback

	Experiments
	LLMs as Autoformalizers
	Autoformalization Enhancement
	Experimental Setup
	Enhanced Autoformalizer Performance

	Further Enhanced Verifier Performance
	Human Evaluation on Autoformalizer Performances

	Conclusion
	Future Directions
	More Related Works
	Detailed Decomposition Strategy
	Prompt for Informalization
	Human Evaluation: Comparative Model Selection
	Annotation Protocol for Informalization Model Comparison
	Introduction
	File Structure
	Task
	Quality Criteria

	Annotation Results for Informalization Model Comparison

	Human Evaluation: PDA Dataset Quality
	Case Visualization in Comparision with existing datasets
	Human Evaluation: Autoformalization Performance Evaluation
	Experimental Details
	Training Settings
	Generation Settings
	Lean 4 Compilation

	Comprehensive Evaluation of the Enhanced Autoformalizer
	Model Selection Process
	Detailed Dataset Comparison Analysis
	Analysis for Training and Test Data in FormL4
	Autoformalization on Real-World Mathematical Reasonings
	Data Construction Details
	Data Preprocessing
	Dataset Split
	Data Postprocessing

	Details of Automated Autoformalization Evaluation
	Prompt
	Preprocessing and Evaluation
	Detailed Analyses of Existing LLMs on FormL4

	Dataset Quality and Human Verification

