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Abstract

Existing methods to enhance the reasoning capability of large language models
predominantly rely on supervised fine-tuning (SFT) followed by reinforcement
learning (RL) on reasoning-specific data. These approaches critically depend on
external supervisions—such as labeled reasoning traces, verified golden answers,
or pre-trained reward models. In this work, we propose Entropy Minimized
Policy Optimization (EMPO), which makes an early attempt at fully unsupervised
LLM reasoning incentivization. By minimizing the semantic entropy of LLMs
on unlabeled questions, EMPQ achieves competitive performance compared to
supervised counterparts. Specifically, without any external supervision, EMPO
boosts the accuracy of Qwen2.5-Math-7B Base from 33.7% to 51.6% on math
benchmarks and improves the accuracy of Qwen2.5-7B Base from 32.1% to 50.1%
on MMLU-Pro. Primary analysis are also provided to interpret the effectiveness of
EMPO. Code is publicly available at https://github.com/QingyangZhang/EMPO.

1 Introduction
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both, applied to reasoning-specific datasets after
pretraining [S]]. Unfortunately, these methods typ-
ically depend on large-scale reasoning datasets

with various forms of supervised information, Figure 1: Improvement of the proposed method on

such as human-labeled reasoning traces, verified Qwen2.5-7B and Qwen2.5-7B-Math model.
golden answers, or an additional pre-trained re-

ward model. As a consequence, endowing LL.Ms with powerful reasoning capability through human
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experts is becoming increasingly time-consuming and costly, which greatly limits the scalability and
broader adoption of reasoning models.

To mitigate this, previous work employs self-consistency to construct pseudo data and deploy
supervised finetuning for better performance [[6]. However, the performance improvement is limited
and under risks of model collapse [7]. Recent advancements, such as the pioneering work PFPO [8]],
frame the labeling of solutions as evaluation against test cases and then leverage self-consistency
to generate pseudo test cases. Despite the promising results, the proposed method still necessitates
supervision from instruction finetuning data and supervision signals from the frontier LLMs to
initialize the RL process. Another more recent work [9] introduces a two-stage framework to
construct self-rewarding reasoning models using self-generated data followed by RL. Despite the
superior performance, the proposed method relies on a ground-truth verifier to obtain self-correction
reasoning traces by rejection sampling. These approaches inspire our exploration of a critical open
question: How can we incentivize LLM reasoning capacities in a fully unsupervised manner?
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Figure 2: Overview of the proposed method. (a) Previous method like PPO [10] or GRPO [[11]]
typically relies on external supervised signals, e.g., a pretrained reward model or golden answers.
(b) The proposed Entropy Minimized Policy Optimization (EMPO) samples a set of responses from
the current policy model, and then builds semantic clusters according to their equivalence. By
continuously minimizing the entropy at a meaning level, our method achieves competitive benchmark
performance without any external supervision, i.e., rule-based reward, pre-defined test cases or an
pre-trained reward model.

Recent advanced DeepSeek-R1-Zero [12]] demonstrates robust reasoning capabilities without depen-
dency on SFT data. By directly initiating RL from the base model, DeepSeek-R1-Zero autonomously
evolves sophisticated reasoning behaviors such as reflection and self-critic by exploring the reward
signals provided by rule-based rewards. i.e., verified golden answers or an additional pre-trained
reward model. Inspired by the success of DeepSeek-R1-Zero, our motivation is to devise a fully unsu-
pervised approach for powerful reasoning capability. Specifically, we propose a novel reinforcement
learning algorithm termed as Entropy Minimized Policy Optimization (EMP0O), which incentivizes the
reasoning capability of LLMs in a fully unsupervised manner by minimizing their predictive entropy
in a latent semantic space. This method optimizes the model to favor reasoning traces yielding
consistent answers, enhancing output reliability. The semantic entropy objective we propose to mini-
mize is a well-established measurement of LLMs’ uncertainty, which extends beyond mathematical
reasoning to free-form question-answering tasks. We further introduce entropy thresholding to filter
unreliable reasoning traces, stabilizing the unsupervised training process. Experiments on various



tasks including mathematical reasoning and free-form natural reasoning are conducted to validate the
proposed method. Our contributions are summarized as follows:

* We propose an effective and principled strategy called Entropy-Minimized Policy Optimiza-
tion (EMPO) for incentivizing the reasoning capabilities of LLMs in a fully unsupervised
manner.

* We establish semantic entropy as a potent intrinsic reward signal for guiding LLM reasoning.
Our analysis confirms a strong negative correlation between semantic entropy and model
accuracy, validating its efficacy as a robust, unsupervised optimization objective that drives
models towards generating more consistent and reliable outputs.

* Experiments on both math reasoning tasks with deterministic golden answers and free-
form natural reasoning tasks are conducted to validate the efficacy and versatility of EMPO.
Additionally, we provide critical insights into EMPQ’s mechanism, demonstrating that its
effectiveness stems from an enhanced ability to consistently select and prioritize strong, pre-
existing reasoning pathways learned during pre-training, rather than instilling fundamentally
new reasoning skills. This underscores EMPO’s strength in efficiently eliciting and refining
latent capabilities within base models.

2 Related Work

Self-Supervised and Semi-Supervised Reasoning. To address the dependency on labeled data,
several self-supervised and unsupervised methods have emerged. Huang et al. [6] propose a self-
improvement framework where LL.Ms generate high-confidence answers using Chain-of-Thought
(CoT) prompting and self-consistency, subsequently fine-tuning on these pseudo-labels. However,
the performance gains are often limited, and there is a risk of model collapse, as noted in [7]].
Recently, Patel et al. [13] apply self-improvement to web navigation tasks in WebArena, fine-tuning
on synthetic data generated by the model itself. Li et al. [14] enhance long-context reasoning via
Seal.ong, sampling multiple outputs and optimizing with Minimum Bayes Risk. These methods,
while reducing reliance on external labels, still involve supervised fine-tuning steps, contrasting
with EMPO’s fully unsupervised RL approach. A concurrent work, i.e., test-time reinforcement
learning (TTRL) [15] directly obtains pseudo label by major voting and then conducts RL on test
prompts at inference time, whereas our EMPO strictly maintains the separation between training and
testing phases for ensuring that the model remains unexposed to any test prompts during training.
Furthermore, while TTRL is currently limited to mathematical tasks, our approach is applicable to
more general free-form reasoning tasks.

Self-Rewarding and RL-based Reasoning. RL has become a prominent technique for enhancing
LLM reasoning, often leveraging external or self-generated rewards. Yuan et al. [L6] propose
using the LLM itself via LLM-as-a-Judge prompting to provide rewards during training, reducing
reliance on human feedback. Similarly, recent works [9, [17] incorporate the training of model’s self-
verification capability into RLVR process, which improve the reasoning and verification capabilities
at the same time. PFPO [_8] frame solution labeling as evaluation against test cases, yet still rely
on instruction fine-tuning and frontier LLM signals for RL initialization. ETPO [18] augments RL
with an entropy bonus to promote exploration, differing from EMPO’s entropy minimization focus.
DeepSeek-R1[12] demonstrate robust reasoning via RL from a base model, using rule-based rewards.
Seed-GRPO [19]] leverages semantic entropy for reward shaping, which enables dynamic adjustment
of policy update magnitudes based on question uncertainty. These methods highlight a spectrum of
supervision levels, positioning EMPO as unique in its fully unsupervised nature, leveraging semantic
entropy as an internal reward.

Entropy Minimization and Semantic Consistency. Entropy minimization is a well-established
technique in semi-supervised and unsupervised learning, with roots in traditional machine learning.
Many previous work [20, 21} 22] has demonstrated that minimizing entropy on unlabeled data can
improve classification accuracy by encouraging model confidence. Test-time adaptation methods
like Tent adapt models to new domains by minimizing entropy on test data, filling domain gaps
without additional labels. These approaches highlight the potential of entropy minimization as an
unsupervised objective, which EMPO leverages for LLM reasoning by extending it to semantic entropy



[23] in a latent space. More recent work [24] compute the Semantic Entropy to quantify the diversity
of the modelaAZs high-level strategic plans, reinforcing its relevance.

3 Method

We propose an RL-based method to minimize the entropy of LLM generations in a latent semantic
space for incentivizing its reasoning capability. We term our method Entropy-Minimized Policy
Optimization (EMPO), which is devised in a fully unsupervised manner without any forms of external
supervised information.

3.1 Preliminaries

Recent advancements in reinforcement learning have demonstrated remarkable breakthroughs in
enhancing the reasoning capabilities of LLMs. Taking the representative RL technique Group
Relative Policy Optimization (GRPO) [[L1] used by DeepSeek-R1-Zero [12] as an example. GRPO
first samples a group of outputs {0y, - , 0} from the policy model 7y and then optimizes it by
maximizing the following objective:
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where (3 is a hyper-parameter which avoids the policy model to diverge too far away from the reference
model 7, ¢. € clips extreme advantages for stability. G is the number of samples in one group. A; is
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the advantage computed by normalizing the rewards within each group as A; =
In math reasoning task, the reward can be computed by predefined rules:

; @

. 1 if verifier(o;, a) = True
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where a verifier is used to determine the correctness of o; by comparing it with the golden answer a.

Unlike the above example, we consider fully unsupervised optimization settings where there are
no golden answers to verify the correctness of model predictions. In this circumstance, we only
have unlabeled reasoning problems P(Q). Such problems were freely raised by users during the
deployment of LLMs. Given a pre-training LLM 7y parameterized by 6, our goal is to enhance its
reasoning ability by only utilizing the unlabeled user problems {¢; }?_,, which requests minimized
cost of data collection.

3.2 Semantic Entropy Minimization Objective

Entropy is a classical unsupervised objective in the traditional semi-supervised and unsupervised
learning fields [20} [25]]. Previous works in computer vision show that by continuously minimizing
the entropy on unlabeled samples after pre-training, the classification accuracy of machine learning
models can be significantly improved to fill the domain gaps [21}, 22]]. The basic intuition behind
entropy minimization is that a robust model should not only fit labeled data well but also make
confident and consistent predictions on unlabeled data. This principle encourages the model to avoid
ambiguity and make decisive predictions, thereby enhances generalization. In this work, we choose
semantic entropy [23] as our unsupervised optimization objective, which is a natural extension of
classical Shannon entropy specified for large language models. Intuitively speaking, minimizing
semantic entropy encourages the LLMs’ outputs to be more consistent in semantic level rather than
format, and thus the final answers are expected to be more reliable.

Specifically, semantic entropy first samples a group of outputs {01, - - - , 0} and then clusters the
output sequences according to their meaning. That is, if two outputs share the same meaning (i.e.,
they are bidirectionally entailed), they should be merged into one same cluster in the semantic space.
This can be done without notable computational cost by predefined rules such as N-gram, regular
expressions or an additional small language model. Once built such a set of meaning clusters {c} in



semantic space, we then approximate the probability over the meanings as the proportion of sampled
answers as

plejlz) ~ ¢/ G, 3)
where ¢; € {c} is the j-th meaning cluster. |c;| denotes the numbers of outputs that belong to c;.
Finally, given question g, the semantic entropy (denoted as ') over the model’s output meanings
distribution can be estimated as follows

H=— " plclg)logp(cilg). @)

cj€{c}
As proven by previous work, semantic entropy has a strong negative relationship with model accuracy,
which can be used as an efficient measurement to detect unreliable LLM generations such as
confabulation and hallucination [23] 26| [27]. Motivated by this, we propose to leverage semantic
entropy as an unsupervised optimization objective for incentivizing the reasoning capability of LLM.

3.3 Entropy-Minimized Policy Optimization

We propose Entropy-Minimized Policy Optimization (EMPO), an RL-based method that optimizes
the pre-trained large language model 7y to favor low semantic entropy responses given unlabeled
user questions {¢; }_,. Given input questions, EMPQ incentivizes the outputs that belong to higher
probability meaning cluster, and thus minimizes the semantic entropy over the meaning distribution.
Specifically, given a question ¢, our EMPO first samples a group of output {01, ...,0q} from the
current model 7y and then merges them into a set of M meaning clusters {c1,...ca}. As we
mentioned before, this can be done without notable computational cost (please refer to the quantitative
results in Appendix [F) by predefined rules such as N-gram, regular expressions or an additional small
language model (SLM)*} Once built such a meaning set, EMPO approximately minimizes the semantic
entropy H by maximizing the following objective
G
r; —mean({ry, -+ ,rg})
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where A; is the advantage of output o; calculated by normahzmg the rewards. Unlike GRPO in which
the rewards is calculated depending on external supervision such as pre-defined rules or an reward
model, in EMPO, the reward assigned for the i-th outputs o; is the likelihood of its meaning cluster,
ie.,

r; = p(cjlq), where l(0;) = ¢;, (6)
where the meaning likelihood p(c;|q) is approximated by Eq. 3| Intuitively, the outputs convey
higher-probability meanings are of higher advantages, and are therefore incentivized through training.

How to Mitigate Potential Reward Hacking? Note that different from verifiable rule-based reward,
which inherently resists reward hacking risks, optimizing unsupervised entropy objectives may permit
trivial solutions. For instance, models could exploit the reward signal by overfitting to high-confident
but wrong predictions for the most frequent semantic clusters without carefully reasoning process. To
address this, we implement a straightforward entropy thresholding strategy, restricting optimization
to prompts exhibiting moderate uncertainty via dual threshold criteria. Specifically, two entropy
thresholdings are deployed to filter out user queries ¢ that result in overly high or low entropy
unreliable answers. Extremely high entropy indicates that the model is highly uncertain, and thus its
predictions are prone to be unreliable. In addition, continuously optimizing on responses with already
low entropy is redundant and at the risk of overconfidence [28]]. The final optimization objective of
EMPO is

Jenweo = E(1g1~P(Q). {0115, ~m6(0lq)]
|G|
|G|me Apyclip(1,1— e, 1+ €)A,) |, ™

s.t. 6low < H< 5high,

“Such a SLM does not provide explicit or direct supervision signals regarding the correctness or quality of
reasoning for a given query. The “unsupervised” nature of EMPO refers to its independence from labeled (query,
correct-answer) pairs or (query, valid-reasoning-trajectory) pairs for learning the reasoning task itself. More
discussions are in Appendix



where H is the semantic entropy defined in Eq. d] The questions results in highly unreliable answers
with entropy greater than dj;4, are filtered out. Besides, we also filter out low-entropy answers
to maintain the diversity of model outputs and further avoid potential reward hacking. Following
previous work [29]], we remove the KL constraint for better performance. € clips extremely high or
low advantages for stability similar to common practice.

4 Experiments

4.1 Experimental Settings

We conduct experiments on multiple datasets including both closed-form math reasoning tasks and
free-form natural reasoning tasks. Our EMPO shows competitive performance by purely RL in a fully
unsupervised manner compared to supervised finetuning and RL methods.

Prompt Collection and Data Engineering. For mathematical reasoning, following the common
practice [30, 8, 31]], we adopt 20,000 prompts randomly selected from NuminaMath-CoT dataset [32]
for trainini] without additional data engineering. For free-form natural reasoning tasks, we adopt the
prompts from Natural Reasoningﬂ, a large-scale dataset consisting of diverse reasoning questions
from multiple domains (e.g., Physics, Computer Science, Economics, Social Sciences and more). For
training efficiency, we filter out the questions with over-long prompt or reference answer. Besides,
taking inspiration from [33} 34, [35]], we use the response length of Llama3.3-70B-Instruct as a
difficulty estimation metric, and filter out samples with response lengths exceeding 4096 tokens.
The remaining samples are simpler for stabilizing the training process. The final training subset is
consisted of 18,000 questions. More details can be found in Appendix [G|

Evaluation. o For mathematical reasoning, the performance is evaluated on a diverse suite of
benchmarks including Minerva Math, MATH, AMC23, OlympaidBench and AIME?24. o For free-
form natural reasoning, we evaluate on MMLU-Pro [36] and GPQA [37] benchmarks, which consist
of challenging reasoning-focused problems across various subjects, e.g., biology, business, chemistry,
computer science and so on. We prompt the model to reason step by step and output the final answer
within "\boxed{}" and report the multi-choice accuracy. Without specific clarification, all evaluations
are conducted using zero-shot prompting and greedy-decoding.

Model training. o For mathematical reasoning tasks, we train Qwen2.5-Math-1.5B and 7B Base
models with our EMPO. The baselines we consider include supervised finetuning (SFT), online direct
preference optimization (ODPO) [31] and the representative GRPO. We also compared with Qwen?2.5-
Math Instruction models for a more comprehensive comparison, where the instruction model is trained
by iteratively supervised finetuning and RL on private data. o For free-form natural reasoning tasks,
we initialize from Qwen2.5-3B, 7B and 14B Base models. Different from mathematical reasoning, it
is difficult to adopt rule-based reward for free-form question-answering tasks without deterministic
golden answers. We consider the corresponding Instruct model, the Base model with or without
few-shot CoT prompt as baselines. Besides, we also compare with SFT where the Base model is
tuned to fit the response of Llama3.3-70B-Instruct. For more results on other model families beyond
the Qwen2.5 series (e.g., Llama3), please refer to the Appendix D}

* SFT: We train models by supervised finetuning via Open-Instruct [38]] with a fixed learning
rate of 1 x 107%, a global batch size of 128 and train for 1 epoch with a max length of 2048.

* GRPO: We implement GRPO via verl [39]. We sample 16 and 12 responses for each
prompt for mathematical and natural reasoning tasks respectively. For Qwen2.5-Math
model series, we train the model for 300 steps with a maximum generation length of
3096. For OctoThinker model series, we train the model for 100 steps with a maximum
generation length of 16K. We adopt a train prompt batch size of 256 and mini-batch size
of 32. Specifically, we adopt clipping by importance ratio based on sequence likelihood
proposed by GSPO [40] for stable off-policy RL training. Following [41], we only use
the rule-based accuracy reward and do not adopt format-reward. The accuracy reward is
implemented as follows: If the response contains the correct final answer within “\boxed{}”,
it receives a reward of 1.0. If the model prediction is wrong, it receives a reward of 0.0.

Shttps://huggingface.co/datasets/RLHFlow/numia_prompt_dpo1l
Shttps://huggingface.co/datasets/facebook/natural_reasoning



* Online-DPO: Recent advanced Online-DPO first samples a set of responses and then verifies
and selects the responses with highest reward and lowest reward as a preference pair. We
directly copy the results from [31]], where the model is trained for 7 iterations. Each iteration
involves 2 training epochs and 20K training samples, i.e., 140K training samples in total.

* EMPO: Most hyper-parameters of our method, e.g., number of generations, max generation
length, batch size, learning rate are the same with GRPO. In mathematical reasoning
tasks, we use a set of regular expressions to merge the outputs into meaning clusters. For
more general free-form natural reasoning, we leverage General-VeriﬁerE] (a compact small
language model with 1.5B parameters) to determine whether two outputs are of the same
meaning or not following [23, 26]]. A concrete example can be found in Appendix [C]
Specifically, if the final predictions (i.e., the contents within “\boxed{}”) of two model
outputs are bidirectionally implicating, then we merge them into one semantic cluster
ignoring their reasoning traces. More details are in Appendix

4.2 Main Results

4.2.1 Performance on Mathematical Reasoning Tasks.

We conduct experiments on mathematical tasks to evaluate our method. The main results are shown in
Table (I} EMPO has successfully incentivized the Qwen2.5-Math Base model with reasoning capability
without dependency on any external supervision. We observe a substantial improvement in the
average performance on commonly used mathematical reasoning benchmarks from 33.0% to 42.6%
and 33.7% to 51.6% on Qwen2.5-Math-1.5B and 7B models, respectively. Notably, through fully
unsupervised RL training, the 1.5B and 7B model has both achieved competitive performance (42.6%
and 51.6%) near to Qwen2.5-Math-Instruct (42.8% and 51.7%), where the latter depends on private
dataset and multi-stage iteratively supervised fine-tuning and reinforcement learning.

Table 1: Accuracy on mathematical reasoning benchmarks. We report the pass@1 accuracy tested
with greedy decoding. The results of ODPO are directly copied from [31]. Here ¢, r, a denote the
dependency on questions, human-verified reasoning traces and golden answers respectively.

Minerva Olympiad

Supervision MATH AIME24  AMC23 Avg.

Math Bench
frontier model
Llama-3.1-70B-Instruct {q,r,a} 64.6 35.3 31.9 16.7 30.1 35.7
Eurus-2-7B-PRIME {q,r,a} 79.2 38.6 42.1 26.7 57.8 48.9
1.5B model
Qwen2.5-Math None 66.4 19.1 33.8 33 425 33.0
Qwen2.5-Math-Instruct {q,r,a} 75.2 33.8 42.8 6.7 52.5 42.2
Qwen2.5-Math w/SFT {g,7,a} 61.8 26.1 27.1 3.3 37.5 31.2
Qwen2.5-Math w/Rand {q,r,a} 65.0 26.1 30.7 10.0 55.0 374
Qwen2.5-Math w/GRPO {q,a} 78.0 37.1 39.1 10.0 50.0 42.8
Qwen2.5-Math w/EMPO {q} 77.6 36.0 39.5 10.0 50.0 42.6
7B model
Qwen2.5-Math None 70.2 12.5 30.8 10.0 45.0 33.7
Qwen2.5-Math Instruct {g,7,a} 80.8 419 49.2 133 67.5 50.5
Qwen2.5-Math w/SFT {q,r,a} 72.2 34.6 332 10.0 45.0 39.0
Qwen2.5-Math w/Rand {g,7,a} 73.0 26.5 37.0 26.7 52.5 43.1
Qwen2.5-Math w/ODPO {q,a} 76.8 30.9 379 26.7 62.5 47.0
Qwen2.5-Math w/GRPO {g,a} 82.4 452 47.6 23.3 60.0 51.7
Qwen2.5-Math w/EMPO {q} 81.4 42.3 46.1 23.3 65.0 51.6

4.2.2 Performance on Natural Free-form Reasoning Tasks.

We present the results on free-form natural reasoning tasks in Table[2] On the MMLU-Pro benchmark,
our EMPO improves the accuracy from 32.1% to 50.1% and 32.7% to 58.8% on Qwen2.5-7B and 14B
Base model respectively. Besides, on more challenging GPQA benchmark, EMPO results in increasing
accuracy from 15.9% to 28.8% on 7B model, 30.6% to 35.3% on 14B model. Notably, we observe
that the SFT baseline fails to consistently improve model performance. We hypothesize that this is

https://huggingface.co/TIGER-Lab/general-verifier



due to the noise in the reference responses within the Natural Reasoning training data (as mentioned
by [33]]). This phenomenon further underscores the practical potential of our proposed method.

Table 2: Accurascy results on free-form natural reasoning benchmarks. We report pass@ 1 accuracy
tested with greedy decoding. Here {q¢,r,a} denote the dependency on questions, human-verfied
reasoning traces and verifiable golden answers respectively.

Supervision MMLU Pro GPQA
STEM  Humanities Social Other Avg.

3B model

Qwen2.5-Base - 8.32 5.35 7.42 4.15 6.83 11.2
Qwen2.5-Base 5-shot {g,7,a} 34.7 26.2 479 359 353 13.8
Qwen2.5-Instruct {q,r,a} 44.8 30.7 56.0 47.1 445 28.2
Qwen2.5-Base w/SFT {g,7,a} 19.8 104 28.0 184 19.1 11.5
Qwen2.5-Base w/Rand {q,a} 17.0 29.8 49.6 284  26.0 18.5
Qwen2.5-Base w/GRPO {q,a} 32.2 27.7 49.8 387 352 17.1
Qwen2.5-Base w/EMPO {q} 31.7 26.2 48.1 36.7  34.1 20.6
7B model

Qwen2.5-Base - 30.1 23.8 459 343 32.1 15.9
Qwen2.5-Base 5-shot {g,r,a} 45.7 36.3 59.1 494 468 23.5
Qwen2.5-Instruct {q,r,a} 56.9 38.1 64.1 58.6 552 353
Qwen2.5-Base w/SFT {q,r,a} 32.6 7.1 15.8 30.1  25.6 22.4
Qwen2.5-Base w/Rand {q,r,a} 45.8 30.7 60.4 509 464 25.3
Qwen2.5-Base w/GRPO {q,a} 57.1 36.2 64.4 56.6  54.5 33.8
Qwen2.5-Base w/EMPO {q} 52.4 34.6 59.0 509 50.1 28.8
14B model

Qwen2.5-Base - 30.8 28.0 444 33.0 327 30.6
Qwen2.5-Base 5-shot {q,r,a} 51.9 35.8 63.4 544 514 332
Qwen2.5-Instruct {¢,7,a} 63.6 47.1 73.8 66.7 629 429
Qwen2.5-Base w/SFT {q,r,a} 37.0 27.8 40.2 38.0 36.1 28.5
Qwen2.5-Base w/GRPO {q,a} 62.9 42.1 63.6 59.8  59.6 35.6
Qwen2.5-Base w/EMPO {q¢} 61.4 41.6 63.3 60.0 58.8 353

4.2.3 Training Dynamics

We further conduct experiments to investigate the reliability of our unsupervised reward signals. As
shown in Figure 3] the unsupervised reward signals of EMPO have a strongly negative correlation with
the true rewards based on golden answers. Thus, by continuously minimizing the semantic entropy
objective, the model can boost its accuracy in a fully unsupervised manner. Furthermore, in our
experiments, we observed that during the training process, the response length of Qwen2.5-Math
gradually shortened before stabilizing within a certain range. In contrast, the inference length of
Qwen2.5 continuously increased. However, this variation in length did not show a clear correlation
with performance improvement.

4.2.4 Additional Results on Broader Model Family beyond Qwen2.5

To further validate the effectiveness of EMPO on broader model family beyond Qwen2.5-Math, we
conduct additional experiments on OctoThinker-3B-Long-Base [42], which built upon mid-training
starting from the Llama-3 model family. The results are shown in table[3] We sample 16 responses
for each prompt and train the model for 100 steps with batch size of 256 and mini-batch size of 32.
The maximum generation length is 16K. EMPO successfully improve the average accuracy from
7.7% to 27.6%, which demonstrates its effectiveness on various model family.

S Discussion and Conclusion: The Role of Unsupervised Learning in Eliciting
Pre-Trained Reasoning Capabilities

The strong empirical performance of EMPO, particularly its ability as a fully unsupervised method
to match or even slightly outperform supervised counterparts like GRPO (as observed with the 7B
model), prompts a deeper examination of how such reasoning incentivization mechanisms work. This
is especially pertinent given the counterintuitive observation that these substantial improvements on
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Figure 3: We visualize the training dynamics when tuning Qwen2.5-Math-7B Base model with EMPO
on 20K prompts randomly sampled from NuminaMath-CoT. The left illustrates the running average
of semantic entropy (Eq.[d). The middle shows the trend of our unsupervised reward as defined by
Eq.[6} The right shows the model accuracy on training data at each RL steps. Along the unsupervised
RL-based training trajectory, EMPO establishes a stable learning process with consistently decreased
semantic entropy and improved accuracy.

Table 3: Additional results on broader model family beyond Qwen, i.e., OctoThinker-Long-3B.

Minerva Olympiad

Supervision MATH AIME24 AMC23  Avg.

Math Bench
3B model
OctoThinker Base None 15.8 2.9 7.5 0.0 12.5 7.7
OctoThinker-Zero {q,a} 69.6 27.6 32.0 13.3 425 37.0
OctoThinker w/GRPO {q,a} 65.0 23.5 27.3 6.7 325 31.0
OctoThinker w/EMPO {q} 60.6 17.3 23.6 6.7 30.0 27.6
09 Minerva Math AMC23
08 _ L0 B, =
® 07 A= | $09 e
2 0.6 =7 g 0.8 7
& ® S '+ v—\
o 0.5 o o (.7 A//
& 04 = A &
15} B =@- Base o 0.6 =@- Basc
3 03 /’ EMPO 3 / EMPO
Y02 |e ——cGreo || © 05 |g —i— GRPO
0.1 0.4
O A N I /‘)(P \3)\6 9w P D G /\)& \J%
Number of Samples k Number of Samples k

Figure 4: Pass@k curves of Qwen2.5-Math-7B Base model and its counterparts trained with GRPO
and our EMPO on Minerva Math and OMNI reasoning benchmarks. Pass@k measures the probability
that at least 1 of the top k generated solutions is correct. Pass@1 is equivalent to accuracy, as it
checks if the single solution is correct. When £ is small, RL-trained models outperform the original
base model. However, as k increases (e.g., into the tens or hundreds), the performance of the base
models often converges with, or even exceeds, that of the RL-trained models.

benchmarks are achieved without a consistent increase in response length or clear evidence of an
“Aha moment” — a hypothesized sudden emergence of enhanced reasoning capabilities.

To dissect the nature of the improvements conferred by reinforcement learning (RL) post-training,
we investigated its influence on pass@k accuracy. This metric is crucial as recent studies [43} |44]]
suggest that RL may not fundamentally expand the inherent reasoning capacities of LLMs beyond
those already embedded in their pre-trained base. As depicted in Figure d} our findings align with
this perspective. Both GRPO and EMPO significantly enhance pass @k scores for small to moderate
values of k (e.g., k=16 or 32) compared to the base model. This demonstrates an improved efficiency
in surfacing correct reasoning paths with fewer attempts. However, as k becomes substantially large,



the performance of these RL-trained models tends to converge with, and is sometimes surpassed by,
that of the base model.

This convergence at high k values, coupled with our qualitative observations that the base mod-
els themselves already exhibit sophisticated reasoning behaviors such as pausing, self-correction,
and backtracking (see Appendix for examples), strongly indicates that the foundational reasoning
pathways are largely pre-existing. Consequently, RL post-training, whether supervised or unsuper-
vised like EMPO, appears to primarily refine the model’s ability to efficiently access, prioritize, and
consistently select these latent reasoning patterns, rather than instilling fundamentally novel ones.
The observed improvements in pass@1 (accuracy) are thus likely a consequence of this enhanced
sampling efficiency.

These empirical insights from the pass@k analysis lend considerable support to the emerging
consensus that pre-training shoulders the primary burden of endowing LLMs with their core abilities.
We align our interpretation with prior insights from [45]]: “Pretraining does all the hard work. One
big bet is that the pretraining phase grants all the abilities to the base LM, and finetuning is simply
like a style transfer which positions the model to the right output space.” Under this conjecture (or
more precisely, an emerging, but not yet unanimously accepted consensus [43]]), we attribute the
efficacy of our method to the robust pretraining process of the Qwen2.5 Base model: If a base model
possesses strong inherent reasoning capabilities, the subsequent challenge is not necessarily to teach
it new reasoning skills from scratch, but rather to effectively elicit and guide these existing skills.

EMPO’s success highlights that intrinsic reward signals, derived purely from the model’s objective to
minimize semantic entropy and thus achieve greater consistency in its outputs, can be surprisingly
potent for this elicitation process. In a well-pre-trained model, outputs that are semantically consistent
are more likely to align with correct and coherent reasoning. EMPQ leverages this by incentivizing the
model to favor such consistent outputs, effectively guiding it to refine its selection from its collection
of existing reasoning strategies without requiring external validation of correctness.

In conclusion, while RL techniques, including EMP0O, may not be forging entirely new fundamental
reasoning capabilities beyond what pre-training provides, their role in significantly enhancing the
sampling efficiency and reliability of accessing these pre-trained abilities is of paramount practical
importance. Optimizing models for such efficiency is crucial for real-world applications. EMPO, by
achieving this through a fully unsupervised framework, offers a particularly scalable, cost-effective,
and practical approach to unlocking and refining the vast reasoning potential embedded within
pre-trained LLMs, especially in domains where curated supervisory data is scarce or prohibitively
expensive to obtain.

6 Limitations

This manuscript presents a new training algorithm that improves the reasoning capability by min-
imizing semantic entropy. By encouraging semantically coherent outputs, the model’s reasoning
capability can be boosted without any external supervision. There exists several noteworthy limitation
of EMPO. The unsupervised nature of EMPO removes the dependency of external supervision at
the cost of potential reward hacking risks. The model may be highly overconfident on its prediction
regardless correctness. Besides, similar to other RL for reasoning methods, EMPO may exhibit
undesirable behaviors that stem from pretraining corpus of the Base model, e.g., hallucination, bias
and so on. Entropy minimization may not only increase accuracy by encouraging consistency, but
also make the bias more severe. Thus, more studies are necessitated to mitigate such issues for large
reasoning models.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: In the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: There is no result that need to be mathematically proved.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: In the supplementary meterials.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so AAIJN0AAI is an acceptable answer. Papers cannot be rejected simply for
not including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: In the appendix we run multiple times and report the mean accuracy.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research is with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The LLM is used only for writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Prompt Templates

We provide the prompt templates used for training and evaluation.

For mathematical reasoning tasks, we adopt the following reasoning prompt template similar to
Online-DPO-R1 project [31] for both training and testing. During testing, we found that by adding
system prompt, the accuracy of Qwen2.5-Math Base model can be better on mathematical benchmarks.
However, system prompt would not help in natural reasoning tasks. Thus we use the same test prompt
(start with system prompt) for both Base model and finetuned models in mathematical tasks. In
natural reasoning tasks, we do not add system prompt for Base models.

<lim_startl> system

Please reason step by step, and output your final answer within \boxed{ }.
<lim_endI>

<lim_start|>user

{Question} Let’s think step by step and output the final answer within \boxed{ }.
<lim_endI>

<lim_start/>assistant

To train models with our EMPO for free-form natural reasoning tasks, we adopt the following reasoning
prompt template similar to that we used in mathematical tasks for training.

<lim_start/>system

Reason step by step, and output your final answer within \boxed{ }.
<lim_endI>

<lim_start/>user

{Question} Reason step by step and output the final answer within \boxed{ }.
<lim_endI>

<lim_start/>assistant
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Since the MMLU-Pro and GPQA are both close-formed multi-choice benchmark. To evaluate the
natural reasoning capability of the models, we use the following prompt template during testing.

Question: {Question} Reason step by step and output the final answer (the correct letter choice
from A-P) within \boxed{ }.
Answer:

Question: {Question in Demonstration 1} Reason step by step and output the final answer (the
correct letter choice from A-P) within \boxed{ }.

Answer: Let’s reason step by step. CoT of Demonstration 1 Therefore, the correct answer is
Answer of Demonstration 1.

(Omit more demonstrations for readability)

Question: {Question} Reason step by step and output the final answer (the correct letter choice
from A-P) within \boxed{}.
Answer:

<lim_start/>system

Reason step by step, and output your final answer (the correct letter choice from A-P) within
\boxed{ }.

<lim_endI>

<lim_start/>user

{Question} Reason step by step and output the final answer (the correct letter choice from A-P)
within \boxed{ }.

<lim_endI>

<lim_start/>assistant

Question: {Question} Reason step by step and output the final answer (A, B, C, or D) within
\boxed{ }.
Answer:

Question: {Question in Demonstration 1} Reason step by step and output the final answer (A, B,
C, or D) within \boxed{ }.

Answer: Let’s reason step by step. CoT in Demonstration 1 Therefore, the correct final answer
is Answer in Demonstration 1.

(Omit more demonstration for readability)
Question: {Question} Reason step by step and output the final answer (A, B, C, or D) within

\boxed{}.
Answer:
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<lim_start/>system

Reason step by step, and output your final answer (A, B, C, or D) within \boxed{ }.
<lim_endI>

<lim_start/>user

{Question} Reason step by step and output the final answer (A, B, C, or D) within \boxed{ }.
<lim_endI>

<lim_start/>assistant

B Case Study

Question: Janet rolls a standard 6-sided die 4 times and keeps a running total of the
numbers she rolls. What is the probability that at some point, her running total will equal
3? The final answer can be written in the form °*, where m and n are relatively prime
positive integers. What is m + n? Response: To solve this problem, we need to determine
the probability that at some point during 4 rolls of a standard 6-sided die, the running total will
equal 3. We can use dynamic programming to keep track of the probabilities of each possible
running total after each roll. Here’s the plan:

1. Initialize a list to keep track of the probability of each possible running total after each roll.
2. Start with the initial condition that the probability of a running total of O after O rolls is 1.

3. For each roll, update the probabilities of each possible running total by considering the
outcomes of rolling a 1, 2, 3,4, 5, or 6.

4. After each roll, check if the probability of a running total of 3 is non-zero.

5. The final answer will be the probability of a running total of 3 after 4 rolls. Let’s implement
this in Python:

(We omit the python code for readability.)

It looks like there was an issue with the implementation. The probability of the running total
being exactly 3 after 4 rolls should not be zero, so let’s correct the approach and re-implement
the solution. Here’s the corrected plan:

1. Initialize a list to keep track of the probability of each possible running total after each roll.
2. Start with the initial condition that the probability of a running total of 0 after O rolls is 1.

3. For each roll, update the probabilities of each possible running total by considering the
outcomes of rolling a 1, 2, 3,4, 5, or 6.

4. After each roll, check if the probability of a running total of 3 is non-zero.

5. The final answer will be the probability of a running total of 3 after 4 rolls.

Let’s re-implement this in Python:

(We omit the python code for readability.)

It seems there is still an issue with the implementation. Let’s manually check the logic and
correct it step by step.

1. Initialize the probability list with the initial condition that the probability of a running total of
0 after O rolls is 1.

2. For each roll, update the probabilities of each possible running total by considering the
outcomes of rolling a 1, 2, 3,4, 5, or 6.

3. After each roll, check if the probability of a running total of 3 is non-zero.

4. The final answer will be the probability of a running total of 3 after 4 rolls. Let’s manually
simulate the process: - After O rolls: Probability of 0 is 1

The probability of a running total of 3 after 4 rolls is 4/1296, which simplifies to 1/324. Therefore,
the final answer in the form of m/n is 1/324, and the sum m + n is 1 + 324 = 325. The final

answer is .
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C Implementation Details about Semantic Clustering

We detail the implementation of semantic clustering in our EMPQ. The semantic cluster process is
shown as Algorithm[T} We also provide the simplified python code to show how we determine whether
two model outputs are equivalent or not in mathematical reasoning (Algorithm [2)) and free-form
natural reasoning tasks (Algorithm 3).

Algorithm 1: Semantic Clustering

Require : question ¢, a group set of model response {03, ..., 0¢}, verifier V
Initialize : C' = {0}
for2 <i< Gdo

for c € C'do
// Random choose one element from ¢ for comparison
0. = c[0]
// Is the meaning of old sequence equivalent to new one?
if V(q, 0¢, 0;) == True then
// Put into existing class
¢ = cU{o;} break
end
end
// o0; is semantically distinct, belongs to a novel cluster.
C«+Cu {01}
end
Return :C'

Algorithm 2: Implementation of verifier for mathematical reasoning tasks.

from math_verify import parse, verify

def are_equivalent (model_output_1, model_output_2)
prediction_1 = parse (model_output_1)
prediction_2 = parse (model_output_2)
return verify (prediction_1, prediction_2)

D Additional Results on Llama3 Model Series

We conduct additional experiments to validate the efficacy of our EMPO on other model series beyond
Qwen2.5. The results are shown in Table E} Consistent with other concurrent practice, we are unable
to implement R1-Zero-like training on the Llama series, i.e., directly initializing RL process from
the Base model without SFT). Thus, we instead consider a semi-supervised learning approach by
initializing from instruct-tuned model and enhance the reasoning capability with our EMPQ. As shown
in Table[d] when initialize from Llama3.2-3B-Instruct model, our EMPO can also substantially improve
reasoning capability of instruct-tuned model which have undergone carefully-designed post-training.

Consistent with open-source community practices, we found that R1-Zero-like RL training can only
be reproduced unsupervised on Qwen2.5 series Base models. In contrast, Llama3 series model still
necessitate “cold-start”, i.e., SFT, before RL. Specifically, in our experiments, the Qwen2.5 Base
models demonstrated inherent answer consistency from the initial stages of EMPO training. However,
Llama3 series Base models suffer severe inconsistency and fail to convergence during training.
We hypothesize this divergence stems from Qwen2.5’s pretraining strategy. As mentioned in the
technical report [, the pretrain data corpus are mixed with both web text and QA pairs generated by
instruct-tuned Qwen2 models. This endows Qwen2.5 Base models with native instruction-following
capabilities. Experimental evidence supports this hypothesis. As shown in Table[2] Qwen2.5 Base
models successfully follow the instruction such as “put the final answer (A-P) within box" when
answering multiple-choice questions from MMLU Pro and achieve an accuracy notably higher than
random guess.
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Algorithm 3: Implementation of verifier for natural reasoning tasks.

verifier = AutoModelForCausallM.from_pretrained (...)
tokenizer = AutoTokenizer.from_pretrained (...)

def are_equivalent (model_output_1, model_output_2,
question, verifier)

prediction_1 = parse (model_output_1)
prediction_2 = parse (model_output_2)
prompt = (
f'"User: ###%# Question: {qguestion}\n\n"
f"### Ground Truth Answer: {prediction_1}\n\n"
f"### Student Answer: {prediction_2}\n\n"
"For the above question, please verify 1if the

student’s answer 1s equivalent to the
ground truth answer.\n"

Do not solve the question by yourself; just
check 1f the student’s answer is
equivalent to the ground truth answer.\n"

"If correct, output \"Final Decision: Yes\".
If incorrect, output \"Final Decision:
NO\H.\HH

"

Assistant: Final Decision:

)

inputs = self.tokenizer (modified_prompt,
return_tensors="pt").to(self.model.device)
input_ids = inputs.input_ids

# inference for output logits
with torch.inference_mode () :

outputs = self.model.forward (input_ids)
logits = outputs.logits

# get next output logits
next_token_logits = logits [0, input_ids.shape[l] - 1,
]

# get the token ID of "Yes" and "No"

decision_tokens = self.tokenizer ("Yes", "No")
yes_id = decision_tokens.input_ids [O0]
no_id = decision_tokens.input_ids [1]

# calculate probability

probs = torch.softmax (next_token_logits, dim=0)
yes_prob = probs[yes_id].item ()
no_prob = probs[no_id].item ()

return yes_prob > no_prob
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Table 4: Accuracy on mathematical reasoning benchmarks.

Minerva

Supervision MATH Math OMNI AIME24 AMC23 Avg.

frontier model

Llama-3.1-70B-Instruct {q,7,a} 64.6 353 31.9 16.7 30.1 35.7
Eurus-2-7B-PRIME {q,r,a} 79.2 38.6 42.1 26.7 57.8 48.9
1B model

Llama3.2-Instruct None 27.2 5.1 5.6 0.0 10.0 9.6
Llama3.2-Instruct w/GRPO {q,a} 29.8 3.7 6.4 0.0 12.5 10.5
Llama3.2-Instruct w/EMPO {q} 31.0 5.1 7.9 33 7.5 11.0
3B model

Llama3.2-Instruct None 46.2 19.1 15.3 33 20.0 20.8
Llama3.2-Instruct w/GRPO {q,a} 49.2 224 17.6 13.3 32.5 27.0
Llama3.2-Instruct w/EMPO {q} 49.8 20.2 18.4 13.3 30.0 26.3

E Additional Training Details

We provide a brief summary of our training recipes in Table[5] Besides, we have release the code in
the supplementary materials which contained the full training configurations for re-implementation.

Table 5: A brief summary of training recipes of Qwen2.5 Base models.

1.5B-Math 7B-Math 3B 7B 14B

Number of generations 7 7 12 12 12
Learning rate 3e-7 3e-7 3e-7  3e-7  3e-7
Max completion length 2048 2048 1024 1024 768
Batch size per GPU 1 2 1 1 1

F Computational Cost of Semantic Clustering

Given the number of responses sampled per question G (i.e., the group size) and the training dataset
size N, the time complexity of the clustering process is O(G? x N). In mathematical reasoning
tasks, semantic clustering is implemented by regular expressions which do not involve notable
computational cost. For natural reasoning tasks, we rely on an additional compact small language
model. To evaluate the additional computational overhead introduced by semantic clustering in EMPQ,
we conducted comparative analyses of EMPO and GRPO in terms of total training duration and GPU
memory utilization. The results of mathematical reasoning and natural reasoning are shown in Table
and Table[7] respectively. It is worthy to note that the 14B model experiments requires slightly less
computational time than the 7B model. This is because, in our 14B experiments, we reduced the
batch size and maximum response length from 2 and 1024 to 1 and 768, respectively, compared to the
3B and 7B configurations. This adjustment was made to fit the limited GPU memory of one single
8xA100 80G machine.

Table 6: Comparison of total runtime (measured as 8 x A100 GPU hours) and storage cost (measured
by max total GPU memory (GiB) utilization) between GRPO and EMPO. The GPU Memory semantic
cluster process requires minimal computation and storage.

Qwen2.5-1.5B-Math Qwen2.5-7B-Math

GPU Hours GPU Mem GPU Hours GPU Mem
GRPO 11.2 240.4 8.5 501.3
EMPO 11.7 208.2 8.7 532.7
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Table 7: Comparison of total runtime (measured as 8 x A100 GPU hours) and storage cost (measured
by total GPU memory (GiB) utilization) between GRPO and EMPQO. The GPU Memory semantic
cluster process requires minimal computation and storage.

Qwen2.5-3B Qwen2.5-7B Qwen2.5-14B
GPU Hours GPU Mem GPU Hours GPUMem GPU Hours GPU Mem
GRPO 9.5 274.8 12.4 508.6 11.0 588.2
EMPO 11.1 286.9 14.6 532.7 11.5 541.1

G Details of Prompt Collection

For mathematical reasoning, we directly use 20,000 prompts randomly selected from Numina-Math-
CoT. For free-form natural reasoning tasks, we adopt the prompts from Natural Reasoning[z’_’] by filtering
out the questions with over-long prompt, reference answer. Besides, we use the response length of
Llama3.3-70B-Instruct as a difficulty estimation metric, and filter out overly difficult samples with
response lengths exceeding 4096 tokens. The data collection python code is demonstrated as follow:

Algorithm 4: Python code of data filtering in a huggingface-like style.

from datasets import load_dataset

dataset=1load_dataset (" facebook/Natural —Reasoning')

filtered_dataset = dataset.filter (
lambda x: (
# no answer
len(x["reference_answer"]) > 0

# over-long answer

and len(x["reference_answer"]) < 129
# overly difficult gquestions

and len(x["1llama_responses"]) < 4096
# over—-long prompt

and len(x["guestion"]) < 512

# proof-oriented

and ("prove!" not in x["qguestion'"].lower ())
and ("proof" not in x["question'"].lower ())

H Additional Results about Pass@k

We provide additional visualization pass@k results of models trained with EMPQ. The results are
shown as follow. As shown in Figure[H] the Base model consistently catch up with RL trained models
when k is large.

I Discussion about Concurrent Works

Recent works explore self-supervised RL with various internal reward signals including majority
voting (TTRL [[15], SRT [46]]), semantic coherence (our EMPO), token-level confidence score
(Intuitor [47], One-shot Entropy Minimization [48]]), and self-play (Absolute Zero [49]]). TTRL and
SRT generate pseudo label by majority voting, which is limited to close-end mathematical reasoning.
Besides, TTRL directly conduct RL on test prompts (test-time training), while our EMPO keeps the
strict separation between training and testing. Intuitor and One-shot EM use the token level softmax
probability as confidence. By contrast, EMPO rewards coherent outcomes regardless the token-level
probability. Besides, Absolute Zero further remove the dependency of prompts, which only relies on
a compile environment only.

8https://huggingface.co/datasets/facebook/natural_reasoning
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J The Influence of Clustering Quality on the Performance of EMPO

In our mathematical reasoning experiments, semantic clustering is achieved solely through regular
expression matching without introducing additional models. Due to the naturally structured response
formats in mathematical tasks, regular expression could accurately determine answer equivalence,
resulting in relatively high clustering quality.

However, in more general free-form natural reasoning tasks where model responses are free-form
much more diverse (e.g., matrix, numbers, a few lines of sentences/codes...), the clustering quality
can impact EMPO’s effectiveness. For instance, in our more early practice, we tried DeBERTa
(a bert-like model with 300M parameters trained by microsoft) for semantic clustering. Due to
the poor quality of semantic clustering, our EMPO straggled to scale up and suffered from frequent
reward hacking. Subsequently, by leveraging the general-verifier released by Tiger-Lab (a fine-tuned
Qwen2.5-1.5B-Math model) for clustering, we successfully generalized EMPO to more general
free-form reasoning tasks. Noted that even though this small language model undergoes supervised
finetuning, it serves within our fully unsupervised framework as a fixed utility function for semantic
comparison, rather than serving as a external supervisor for task-specific feedback. There are several
fundamental difference between cluster model and the reward model used in supervised RL:

* The cluster model does not evaluate output correctness relative to input queries. It just
provides pairwise comparisons between the model’s own outputs. That is, it only provides
binary answer about “whether these two answer is the same?” rather than “which answer is
better?”.

* The cluster model does not provide any guidance, such as gradient information or hints on
how to refine the reasoning traces.

* Compared to reward model or human-verifier golden answers, it can be much easier to
implement such a cluster model. For example, in mathematical reasoning tasks, only regular
expressions are enough for clustering. In natural reasoning tasks, a finetuned Qwen2.5-1B
model can provide high quality semantic cluster results.

Essentially, this is related to the non-identifiability problem in statistical inference [50]. The issue
of non-identifiability arises because multiple, distinct underlying states (potential "truths," or more
accurately, different reasoning pathways or different clusters of incorrect answers) could produce the
same pattern of relational signals (i.e., the same semantic clustering results).
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