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Abstract

Designing a lightweight semantic segmentation network
often requires researchers to find a trade-off between per-
formance and speed, which is always empirical due to
the limited interpretability of neural networks. In order
to release researchers from these tedious mechanical tri-
als, we propose a Graph-guided Architecture Search (GAS)
pipeline to automatically search real-time semantic seg-
mentation networks. Unlike previous works that use a sim-
plified search space and stack a repeatable cell to form
a network, we introduce a novel search mechanism with
new search space where a lightweight model can be effec-
tively explored through the cell-level diversity and latency-
oriented constraint. Specifically, to produce the cell-level
diversity, the cell-sharing constraint is eliminated through
the cell-independent manner. Then a graph convolution
network (GCN) is seamlessly integrated as a communica-
tion mechanism between cells. Finally, a latency-oriented
constraint is endowed into the search process to balance
the speed and performance. Extensive experiments on
Cityscapes and CamVid datasets demonstrate that GAS
achieves new state-of-the-art trade-off between accuracy
and speed. In particular, on Cityscapes dataset, GAS
achieves the new best performance of 73.3% mloU with
speed of 102 FPS on Titan Xp.

1. Introduction

As a fundamental topic in computer vision, semantic im-
age segmentation [24, 44, 9, 7] aims at predicting pixel-
level labels for an image. Leveraging the strong ability
of CNNs, many works have achieved state-of-the-art per-
formance in popular semantic segmentation benchmarks
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Figure 1. The inference speed and mloU for different networks
on the Cityscapes test set. Our GAS achieves the state-of-the-art
trade-off between speed and performance. The Mark * denotes the
speed is remeasured on Titan Xp. Best viewed in color.

[13, 15, 4]. To achieve higher accuracy, state-of-the-art
models become increasingly larger and deeper that require
high computational resources and large memory overhead,
which makes it difficult to deploy on resource-constrained
platforms, such as mobile devices, robotics, and self-driving
cars, etc.

Recently, many researches have focused on designing
and improving CNN models with light computation cost
and high segmentation accuracy. For example, [1, 30] re-
duce the computation cost via the pruning algorithms, and
[43] uses an image cascade network to incorporate multi-
resolution input. BiSeNet [41] and DFANet [21] utilize a
light-weight backbone to speed up, and equip with a well-
designed feature fusion or aggregation module to remedy



the accuracy drop. Normally, researchers acquire expertise
in architecture design through enormous trial and error to
carefully balance accuracy and resource-efficiency.

To design more effective segmentation network for em-
bedded devices, some researchers have explored automat-
ically neural architecture search (NAS) methods [23, 46,

, 20, 32, 5, 39] and achieved excellent results. For ex-
ample, Auto-Deeplab [22] searches cell structure and the
downsampling strategy together in the same round. CAS
[42] searches an architecture with customized resource con-
straints and a multi-scale module that has been widely used
in semantic segmentation field [9, 44].

Particularly, CAS has achieved state-of-the-art segmen-
tation performance in lightweight community [43, 21, 41].
Like the general NAS methods, such as ENAS [32], DARTS
[23] and SNAS [39], CAS also searches for a few types of
cells (i.e. normal cell and reduction cell) and then repeat-
edly stacks the same cells through the network. This sim-
plifies the search process, but also increases the difficulties
to find a good trade-off between performance and speed due
to the limited cell diversity. For example, the cell is prone
to learn a complicated structure to pursue high performance
without any resource constraint. As shown in Fig.2(a), the
whole network stacked with complicated cell will result in
high latency. When a low-computation constraint is applied,
the cell structure tends to be over-simplified as shown in
Fig.2(b), which may not achieve satisfactory performance.

Different from the traditional search algorithms with
simplified search space, in this paper, we propose a
novel search mechanism with new search space, where a
lightweight model with high performance can be fully ex-
plored through the well-designed cell-level diversity and
latency-oriented constraint. On one hand, to encourage
the cell-level diversity, we make each cell structure inde-
pendent, thus the cells with different computation cost can
be flexibly stacked to form a lightweight network shown
in Fig.2(c). For example, simple cells can be applied to
the stage with high computation cost to achieve low la-
tency, while complicated cells can be chosen in deep lay-
ers with low computation for high accuracy. On the other
hand, we apply a real-world latency-oriented constraint into
the search process, through which the searched model can
achieve better trade-off between the performance and la-
tency.

However, simply endowing cells with independence in
exploring its own structure enlarges the search space and
makes the optimization more difficult, which causes accu-
racy degradation as shown in Table 3. To address this issue,
we incorporate a Graph Convolution Network (GCN) [19]
as the communication deliverer between cells. We name the
method as Graph-guided Architecture Search (GAS). Our
idea is inspired by [26] that different cells can be treated
as multiple agencies, whose achievement of social welfare
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Figure 2. (a) The network stacked by complicated cells results in
high latency and high performance. (b) The network stacked by
simple cells leads to low latency and low performance. (c) The
cell diversity strategy, i.e., each cell possesses own independent
structure, can flexibly construct the high accuracy lightweight net-
work. Best viewed in color.

may require communication between them. Specifically, in
the forward process, starting from the first cell, the informa-
tion of each cell is propagated to the next adjacent cell with
a GCN. Our ablation study exhibits that this communication
mechanism tends to guide cells to select less-parametric op-
erations, thus achieving the balance between accuracy and
latency.

We conduct extensive experiments on the standard
Cityscapes [13] and CamVid [4] benchmarks. Compared
to other state-of-the-art methods, the proposed method
achieves the new best performance while maintaining com-
petitive latency. Particularly, our method locates in the top-
right area shown in Fig. 1, which achieves the state-of-the-
art trade-off between speed and performance.

The main contributions can be summarized as follows:

e We propose a novel search framework, for real-time
semantic segmentation task, with a new search space
in which a lightweight model with high performance
can be effectively explored.

e We integrate the graph convolution network seam-
lessly into neural architecture search as a communi-
cation mechanism between cells.

e The lightweight segmentation network searched with
GAS is customizable in real applications. Notably,
GAS has achieved 73.3% mloU on Cityscapes test
dataset and 102FPS on NVIDIA Titan Xp with an
769 x 1537 image.
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Figure 3. Illustration of our Graph-Guided Network Architecture Search. In reduction cells, all the operations adjacent to the input
nodes are of stride two. (a) The backbone network, it’s stacked by a series of independent cells. (b) The GCN-Guided Module (GGM), it
propagates information between adjacent cells. oy and a1 represent the architecture parameters for cell k£ and cell £ — 1 respectively,

and a; is the updated architecture parameters by GGM for cell k. Best viewed in color.

2. Related Work

Efficient Semantic Segmentation Methods Fully con-
volutional neural networks [24] is the pioneer work
in semantic segmentation. Some remarkable network
have achieved state-of-the-art performance by introducing
heavy network backbones (VGGNet [34], ResNet [17],
DenseNet [18], Xception [12]). And some outstanding
works introduce effective modules to capture multi-scale
context information [44, 7, 8]. In terms of efficient seg-
mentation methods, there are two mainstreams: One is to
employ relatively lighter backbone (e.g. ENet [30]) or intro-
duce some efficient operations (depth-wise dilated convolu-
tion). DFANet [21] utilizes a lightweight backbone to speed
up and equips with a cross-level feature aggregation mod-
ule to remedy the accuracy drop. Another is multi-branch
based algorithm that consists of more than one path. For
example, ICNet [43] proposed to use the multi-scale image
cascade to speed up the inference. BiSeNet [41] decouples
the extraction for spatial and context information using two
paths.

Neural Architecture Search Neural Architecture
Search (NAS) aims at automatically searching network ar-
chitectures. Most existing architecture search papers are
based on either reinforcement learning [45, 16] or evolu-
tionary algorithm [33, 1 1]. Though they can achieve satis-
factory performance, they need thousands of GPU hours.
To solve this time-consuming problem, one-shot meth-
ods [2, 3] have been developed to greatly solve the time-
consuming problem by training an parent network from

which each sub-network can inherit the weight. They can
be roughly divided into cell-based and layer-based meth-
ods according to the type of search space. For cell-based
methods, ENAS [32] proposes a parameter sharing strategy
among sub-networks, DARTS [23] relaxes the discrete ar-
chitecture distribution as continuous deterministic weights,
such that they could be optimized with gradient descent.
SNAS [39] propose novel search gradients that train neural
operation parameters and architecture distribution parame-
ters in same round of back-propagation. What’s more, there
are also some excellent works [10, 29] to reduce the dif-
ficult of optimization by decreasing gradually the size of
search space. For layer-based methods, FBNet [37], Mnas-
Net [35], ProxylessNAS [5] use a multi-objective search ap-
proach that optimizes both accuracy and real-world latency.
In the field of semantic segmentation, [6] is the pioneer
work by introducing meta-learning techniques into the net-
work search problem. Auto-Deeplab [22] search cell struc-
ture and the downsampling strategy together in same round.
More recently, CAS [42] search an architecture with cus-
tomized resource constraints and a multi-scale module that
has been widely used in semantic segmentation field. And
[28] over-parameterise the architecture during the training
via a set of auxiliary cells using reinforcement learning.

Graph Convolution Network Convolution neural net-
works on graph-structure data is an emerging topic in deep
learning research. Kipf [19] present a scalable approach for
graph-structured data that is based on an efficient variant
of convolutional neural networks which operate directly on
graphs, for better information transfer. After that, Graph



Convolution Networks (GCNs) [19] is widely used in many
domains, such as video classification [36] and action recog-
nition [40]. In this paper, we apply the GCNs [19] to model
the relationship of adjacent cells in network architecture
search. As far as we know, we propose a novel mechanism
which is the first that applies graph-based neural networks
for the network architecture search task.

3. Methods

As shown in Fig. 3, GAS searches for, with GCN-Guided
module (GGM), an optimal network constructed by a se-
ries of independent cells. In the search process, we take the
latency into consideration to get a network with computa-
tional efficiency. This searching problem can be formulated
as:

min Lyq; + ﬂ * Ligt (L
acA

where A denotes the search space, L,q; and L;,; are the
validation loss and the latency loss, respectively. Our goal
is to search an optimal architecture a € A that can achieves
the best trade-off between the performance and speed.

In this section, we will describe three main components
in GAS: 1) Network Architecture Search; 2) GCN-Guided
Module; 3) Latency-Oriented Optimization.

3.1. Network Architecture Search

As shown in Fig. 3 (a), the whole backbone takes one
image as input which is first filtered with three convolu-
tional layers followed by a series of independent cells. The
ASPP [9] module is subsequently used to extract the multi-
scale context for the final prediction.

A cell is a directed acyclic graph (DAG) as shown in
Fig. 4. Each cell consists of N ordered nodes, denoted by
N = {z1,...,xn}, and each node represents the latent rep-
resentation (e.g. feature map) in network. Each directed
edge in this DAG represents an operation transformation
(e.g. conv, pooling). Each cell has two input nodes, rep-
resented as ¢, and io, and output the concatenation of all
intermediate nodes A. In our work, we set N=2. So for
intermediate node 1, it has two input I; = {41,42}. For
intermediate node x5, it has three input Iy = {iy, 2,21 }.
The intermediate nodes x; can be calculated by:

T;= Z 6h7i<ch> (2)

ch€l;

where 5h7i is the final operation at edge (h, 7).

To search the final operation (3;“1', we use the method
described in SNAS [39], where the search space is repre-
sented with a set of one-hot random variables from a fully
factorizable joint distribution p(Z). Concretely, each edge
is associated with a one-hot random variable which is mul-
tiplied as a mask to the all possible operations Oh,F(O}W

Figure 4. The structure of cell in our GAS. Each colored edge
represents one candidate operation.

0,2111-, - 0%) in this edge. We denote one-hot random vari-
able as Zj, ; = (z,%l z%” z,%) where M is the number of
candidate operations. The intermediate nodes during search
process in such way are:

M
xTi= Z On.i(cn) = Z Z zii0h.i(ch) &

ch€l; cpel; m=1

To make P(Z) differentiable, reparameterization trick
[25] is used to relax the discrete architecture distribution
to be continuous:

Zhi= fap, ;(Gn,i) = softmaz((logan,: + Gri)/A)  (4)

where oy, ; is the architecture parameters at the edge (h, 1),
and G, ; = —log(—log(Up,;)) is a vector of Gumbel random
variables, Up, ; is a uniform random variable and X is used
to control the temperature of softmax.

For the set of candidate operations O, we only use the
following 7 kinds of operations to better balance the speed
and performance: 3 x 3 separable conv, 3 X 3 max pool-
ing, 3 x 3 conv, skip connection, zero operation, 3 x 3
dilated separable conv (dilation=2), and 3 x 3 dilated sepa-
rable conv (dilation=4).

3.2. GCN-Guided Module

With cell independent to each other, the inter-cell rela-
tionship becomes every important for searching efficiently.
We propose a novel GCN-Guided Module (GGM) to nat-
urally bridge the operation information between adjacent
cells. The total network architecture of our GGM is shown
in Fig. 3(b). Inspired by [36], the GGM represents the com-
munication between adjacent cells as a graph and perform
reasoning on the graph for information delivery. Specifi-
cally, we utilize the similarity relations of edges in adjacent
cells to construct the graph where each node represents one
edge in cells. In this way, the state changes for previous cell
can be delivery to current cell by reasoning on this graph.

Let oy, represents the architecture parameters matrix for
the cell k, and the dimension of «y, is ¢ x j where ¢ and j
represents the number of edges and the number of candidate
operations respectively. Same for cell k, the architecture pa-
rameters a1 for cell k—1 alsoisa+ x j dimension matrix.



Given a edge in cell k, we calculate the similarity between
this edge and all other edges in cell k — 1. Therefore, the ad-
jacency matrix Adj of the graph between two adjacent cells
k and k — 1 can be established by

Adj = ¢1(ag) * dalap—1)" (5)

where we have ¢ = wiay, and ¢o = waag 1 for two differ-
ent transformations of the original matrixes, and parameters
wj and wy are both ¢ X 7 dimensions weights which can be
learned via back propagation. The result Adj is an i X i
matrix.

Based on this adjacency matrix Adj, we use Graph Con-
volution Networks (GCNs) [19] to perform reasoning on the
graph, efficiently propagating information from cell £ — 1
to cell k. The reasoning process includes the following three
steps.

Firstly, to get the graph node feature representation, we
apply the convolutional operation @, to the architecture pa-
rameters «_1 and then obtain its ¢ X d dimension node
feature representation matrix Fj_; in the embedding space:

Fro1 = O1(og—1;wp—1) (6)

where wy,_; represents the convolutional operation weight.

Secondly, with the graph node representations Fj_; and
the Adj, we use the GCNs [19] to perform information
propagation on the graph as shown in Equation 7. A resid-
ual connection is added to each layer of GCN. The GCNs al-
low us to compute the response of a node based on its neigh-
bors defined by the graph relations, so performing graph
convolution is equal to performing message propagation on
the graphs.

Ok-1=AdjF W] | + Fr1 @)

where the W, denotes the GCNs weight with dimension
d x d, which can be learned via back propagation.

Finally, the output of each GCNs is still in 7 x d di-
mensions, so we use another convolutional operation ®, to
map the representation from the embedding space to source
space as the A« in Equation 8. So we then add the A« and
the original o, in element-wise manner as the updated o,
in Equation 9, where ~y control the weight between «, and
Aa. Then the current cell &k has fused the parameter infor-
mation of previous cell £k — 1. We use the new «j, as the
new architecture parameter of cell k. And the e;_; denotes
the weight for ®,.

Aa = P3(Ok_1;€k-1) (8)
ay = ap +vAa )

Through the proposed well-designed GGM that seam-
lessly integrates the graph convolution network and neural

architecture search, which can bridge the operation infor-
mation between adjacent cells.

3.3. Latency-Oriented Optimization

Similar to many excellent NAS works [5, 37, 42, 35],
we also take real-world latency for a network into consid-
eration during the search process, which orients the search
process toward the direction to find a optimal lightweight
model. Specifically, we create a GPU-latency lookup table
which records the inference latency of each candidate oper-
ation. During the search process, each candidate operation
m at edge (h, ) will be assigned a cost lat}’; given by the
designed lookup table. In this way, the total latency for cell
k is accumulated as:

M
laty=>Y_ " 2, lat}y, (10)

h,t m=1

where 27", is the architecture parameter for operation m at
edge (h, ¢) and M is the number of candidate operations.
Given a architecture a, the total latency cost is estimated as:

K
LAT(a) :Z laty, (11)
k=0

where K refers to the number of cells in architecture a. The
latency for each operation z;’; is a constant and thus total
latency loss is differentiable with respect to the architecture
parameters z,";.

Different from the exponent coefficient latency loss

[37], we briefly define the total loss function as follows:
L(a,w)= CE(a,w,) + S log(LAT (a)) (12)

where C'E(a,w,) denotes the cross-entropy loss of archi-
tecture a with parameter w,, LAT (a) denotes the over-
all latency of architecture a, which is measured in micro-
second, and the coefficient S controls the balance between
the accuracy and latency. During the search phrase, we di-
rectly optimize the architecture parameter a and the weight
w in same round of back-propagation rather than using iter-
ative optimization [37].

4. Experiments

In this section, we conduct extensive experiments to ver-
ify the effectiveness of our GAS. Firstly, we compare the
network searched by our method with the state-of-the-art
works on two standard benchmarks. Secondly, we perform
the ablation study for the GCN-Guided Module and latency
optimization settings and close with a insight about GCN-
Guided module.



4.1. Benchmark and Evaluation Metrics

Datasets In order to verify the effectiveness and robust-
ness of our method, we evaluate our method on Cityscapes
[13] and CamVid [4] datasets. The Cityscapes [13] is a pub-
lic released dataset for semantic urban scene understanding.
It contains 5,000 high quality pixel-level fine annotated im-
ages (2975, 500, and 1525 for the training, validation, and
testing sets respectively) with size 1024 x 2048 collected
from 50 cities. The dense annotation contains 30 common
classes and 19 of them are used in training and testing fol-
lowing [13]. CamVid [4] is another public released dataset
with object class semantic labels. It contains 701 images in
total, in which 367 for training, 101 for validation and 233
for testing. The images have a resolution of 960 x 720 and
11 semantic categories.

Evaluation Metrics For evaluation, we use three met-
rics, including mean of class-wise intersection over uniou
(mIOU), network forward time (Latency), and Frames Per
Second (FPS).

4.2. Implementation Details

We conduct all experiments based on Pytorch 0.4 [31].
All experiments are on a workstation with Titan Xp GPU
cards under CUDA 9.0, and the inference time in all exper-
iments is also reported on Nvidia Titan Xp GPU.

We first conduct architecture search using GAS on seg-
mentation dataset and then obtain the target light-weight
network architecture according to the optimized .. We then
utilize the ImageNet [14] dataset to pretrain the searched
network from scratch. We finally finetune the network on
the specific segmentation dataset for 200 epochs.

In search process, the architecture contains 16 cells and
each cell has N =2 nodes. With the consideration of speed,
the initial channel for network is 8. For the training hyper-
parameters, the mini-batch size is set to 16. The architec-
ture distribution parameters « are optimized by Adam, with
initial learning rate 0.001, 8 = (0.5, 0.999) and weight de-
cay 0.0001. The network parameters are optimized using
SGD with momentum 0.9, weight decay 0.001, and cosine
learning scheduler that decays learning rate from 0.025 to
0.001. For gumbel softmax, we set the initial temperature A
in equation 4 as 1.0, and gradually decrease to the minimum
value of 0.03.

For finetuning details, we train the network with mini-
batch 8 and SGD optimizer with poly learning rate sched-
uler that decay learning rate from 0.01 to zero. Following
[38], The online bootstrapping strategy has been applied to
the training process. For data augmentation, we use ran-
dom flip and random resize with scale between 0.5 and 2.0.
Finally, we randomly crop the image into a fixed size for
training.

For the GCN-guided Module, we use one Graph Convo-
lution Network (GCN) [19] between every adjacent cells,

and each GCN contains one layer of graph convolutions.
The kernels size of the parameters W in graph convolutions
operation is 64x64.

Method InputSize |mIOU |Latency(ms) | FPS |
FCN-8S 512x1024 [ 653 | 22723 | 44

PSPNet 713x713 | 812 | 12880 | 0.78
DeepLabV3* | 769x769 | 81.3 | 769.23 | 1.3

SegNet 640x320 | 57.0 303 33

ENet 640x320 | 58.3 127 | 784
SQ 1024x2048| 59.8 460 | 217
ICNet 1024x2048 | 69.5 26.5 377
BiSeNet 768x1536 | 68.4 9.52  |105.8
DFANet A§ |1024x1024| 71.3 100 |100.0
DFANet AT ' |1024x1024 | 71.3 1148 | 87.1

CAS 768x1536 | 70.5 925  |108.0
CAS* 768x1536 | 723 925  |108.0
GAS 769x1537 | 71.6 9.80  [102.0
GAS A 769x1537 | 70.4 8.68  [115.1

GAS* 769x1537 | 73.3 9.80 102.0

Table 1. Comparing results on Cityscapes test dataset. Methods
trained using both fine and coarse data are marked with *. The
mark § represents the speed on TitanX, and the mark t represents
the speed is remeasured on Titan Xp.

4.3. Real-time Semantic Segmentation Results

In this part, we compare the model searched by GAS
with other existing state-of-the-art real-time segmentation
models on semantic segmentation datasets. The inference
time is calculated on one Nvidia Titan Xp GPU and the
speed of other methods reported in the paper [42] are used
for comparing. Moreover, the speed is measured again on
the Titan Xp if the origin paper reports the speed on differ-
ent GPU.

Results on Cityscapes. We evaluate the network
searched by GAS on Cityscapes test sets. The validation set
is added to train network before submitting to Cityscapes
server. Following [41, 42], GAS takes as an input im-
age with size 769x1537 that resize from origin image size
1024x2048. Overall, our GAS get the best performance
among all methods while maintains the comparable speed
with 102 FPS. With only fine data and without any evalua-
tion tricks, our GAS yields 71.6% mloU which is the state-
of-the-art trade-off for light-weight semantic segmentation.
The performance achieve 73.3% when coarse data is added
into the training dataset. The full comparison results are
shown in Table 1. Compared to BiSeNet and CAS which
have a slight speed advantage, our GAS beat them along
multiple performance points with 3.2% and 1.1% respec-
tively. Compared to other methods such as SegNet, ENet,
SQ and ICNet, our method achieves significant improve-
ment in speed while get performance improvement over



them about 14.6%, 13.3%, 11.8%, 2.1% respectively. GAS
A is searched by the latency constraint 0.01.

Results on CamVid. We also conduct the whole GAS
pipeline on CamVid dataset to further verify our method’s
ability. Table 2 shows the comparison results with other
methods. With input size 720x960, we achieve the 71.9%
mloU with 142 FPS which is also the state-of-the-art trade-
off between accuracy and speed.

[Method | mIOU |Latency(ms) | FPS |
SegNet 55.6 34.01 294
ENet 51.3 16.33 61.2
ICNet 67.1 28.98 34.5
BiSeNet 65.6 - -
DFANet A| 64.7 8.33 120
CAS 71.2 5.92 169
GAS 71.9 7.04 142.0

Table 2. Results on CamVid test set with resulotion 960x720. ”-”
indicates the corresponding result is not provided by the methods.

4.4. Ablation Study

In this part, we detailedly verify the effect of each com-
ponent in our framework, we perform the ablation study
experiments for the GCN-Guided Module and the latency
loss. Furthermore, we give a insight about what role does
the GCN-Guided Module play in the search process.

[ Methods |mIOU |
a) Cell shared 63.0
b) Cell independent 60.7

¢) Cell independent + FC 63.6
d) Cell independent + GCN | 66.3

Table 3. Ablation study for the effectiveness of GCN-Guided Mod-
ule on Cityscapes dataset.

4.4.1 Effectiveness of the GCN-Guided Module

We propose the GCN-Guided Module (GGM) to build the
connection between cells. To verify the advantage of the
GGM, we conducted a series of experiments with different
strategies: a) network stacked by shared cell; b) network
stacked by independent cell; ¢) Based on b, using fully con-
nected layer to infer the relationship between cells; d) Based
on b, using GCN-Guided Module to infer the relationship

! After merging the BN layers for DFANet, there still has a speed gap
between the original paper and our measurement. We suspect that it’s
caused by the inconsistency of implementation platform in which DFANet
has optimized the depth-wise convolution (DW-Conv). GAS also have
many candidate operations using DW-Conv, so the speed of our GAS is still
capable of beating it if the DW-Conv be optimized correctly like DFANet
or BiSeNet.
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Figure 5. The validation accuracy on Cityscapes dataset for differ-
ent latency constraint. Best viewed in color.

between cells. Experiment results are shown in Table 3. The
performance reported here is the average mloU over five
repeated experiments on Cityscapes validation dataset dur-
ing search phrase without latency loss. Overall, with only
independent cell, the performance degrades due to the en-
large search space which make optimization more difficult.
This reduction is mitigated through adding communication
mechanism between cells by GCN. Specially, our GCN-
guided module can bring about 2.7 points performance im-
provement compare to the setting (c).

We illustrate the network structure searched by GAS in
the Fig. 6. An interesting observation is that the operations
selected by GAS with GGM have fewer parameters and less
computational complexity than GAS without GGM, where
more dilated or separated convolution kernels are preferred.
This exhibits the emergence of concept of burden sharing
in a group of cells when they know how much others are
willing to contribute. It also explains why GAS with GGM
on is less overfitted.

4.4.2 Effectiveness of the Latency Constraint

As mentioned earlier, GAS provides the ability to flexi-
bly achieve a good trade-off between the performance and
speed with the latency-oriented optimization. We conduct a
series of experiments with different loss weight 3 in Equa-
tion 12. Fig. 5 shows the variation of mloU and latency
as [ changes. With smaller 3, we can obtain a model with
higher accuracy, and vice-versa. When the (3 increases from
0.0005 to 0.005, the latency decreases rapidly and the per-
formance is slowly falling. But when [ increases from
0.005 to 0.05, the performance drops quickly and the de-
cline of latency is fairly limited. So in our experiments, we
set B as 0.005. We can clearly see that the latency-oriented
optimization is effective for balancing the accuracy and la-
tency.



4.4.3 Analysis of the GCN-Guided Module

One concern is about what kind of role does GCN play in
the search process. We suspect that its effectiveness is de-
rived from the following two aspects: 1) In order to learn
a light-weight network, we allow the cell structures not to
share with each other to encourage structure diversity. Ap-
parently, learning cell independently makes the search more
difficult and does not guarantee better performance, thus the
GCN-Guided Module can be regraded as a regularization
term to regularize the search process. 2) We have discussed
that p(Z) is a fully factorizable joint distribution in above
section. As shown in Equation 4, p(Z, ;) for current cell be-
comes a conditional probability if the architecture parame-
ter vy, ; depends on the probability oy, ; for previous cell. In
this case, the GCN-Guided Module plays a role that model
the condition in probability distribution p(Z).

5. Conclusion & Discussion

In this paper, a novel Graph-guided architecture search
(GAS) framework is proposed to tackle the real-time se-
mantic segmentation task. Different to the existing NAS
approaches that stacks the same searched cell into a whole
network, GAS explores to search different cell architectures
and adopts the graph convolution network to bridge the in-
formation connection among cells. In addition, a latency-
oriented constraint is endowed into the search process for
balancing the accuracy and speed. Extensive experiments
have demonstrated that GAS has achieved much better per-
formance than the state-of-the-art real-time segmentation
approaches.

In the future, we will extend the GAS to the following
directions: 1) We will search networks directly for the seg-
mentation and detection tasks without retraining. 2) We will
explore some deeper research on how to effectively com-
bine the NAS and the graph convolution network. 3) Ex-
ploring other approaches to apply latency constraint.
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Figure 6. The model structure searched by GAS. Best viewed in

color.



