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Abstract

Recent advances in implicit neural representations have achieved impressive results
by sampling and fusing individual points along sampling rays in the sampling
space. However, accurately representing and synthesizing fine-grained textures in
unbounded, large-scale outdoor scenes presents a significant challenge, attributable
to the exponentially expanding sampling space. To alleviate the dilemma of using
individual sampling points to perceive vast expanses, we explore learning the
surface distribution of the scene to provide structural priors, thereby reducing
the samplable space, and propose a Point Diffusion implicit Function, PDF, for
large-scale scene neural representation. The core of our method is a large-scale
point cloud super-resolution diffusion module that enhances the sparse point cloud
reconstructed from several training images into a dense point cloud as the explicit
prior. Then in the rendering stage, only sampling points with prior points within
the sampling radius are retained. That is, the sampling space is reduced from the
unbounded space to the scene surface. Meanwhile, to fill in the background details
not captured by point clouds, we employ region sampling based on Mip-NeRF 360
for modeling comprehensive background representations. Extensive experiments
have demonstrated the effectiveness of our method for large-scale scene novel view
synthesis, which outperforms relevant state-of-the-art baselines.

1 Introduction

Implicit neural representations have demonstrated proficiency in handling single objects or small
scenes and have found extensive applications in the fields of virtual reality [5], 3D reconstruction [21}
31L136]), video generation [[7]] and computer animation [[19, 1} 41] on tasks such as scene representation
and new perspective synthesis. Nevertheless, as the scale of the target scene increases, particularly in
urban-scale outdoor scenes, traditional implicit neural representation methods encounter significant
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performance limitations. This issue primarily arises from the cubic expansion of the sampling space
in larger scenes, rendering it challenging for individual sampling points to cover the entire space.

Fortunately, some methods try to solve this problem through two primary strategies, narrowing the
sampling space and expanding the sampling area. The first approach represented by Mega-NeRF [28]
decomposes the sampling space into multiple subspaces and models each subspace separately to
reduce complexity. But with the scene scale growing, such as reaching the city level, the quantity of
these subspaces increases cubically, posing scalability concerns. In contrast, the method represented
by Mip-NeRF 360 [2]] compresses the sampling space or samples an area instead of a single point so
that the sampling space can be filled more easily. Nevertheless, this approach may compromise the
precision of the representation.

Benefiting from the inspiration of geometric priors aiding vision tasks, which are widely used in the
domain of 3D reconstruction and stereo vision [16, 13} 6]. We are curious whether implicit large scene
representations could be made easier with explicit representations. Moreover, for outdoor unbounded
large scenes, most of the sampling space is filled with air rather than buildings, cars, plants and other
objects that we care about. A reasonable solution is to restrict the large-scale sampling space of the
implicit neural representation to the object surface, which is provided by the scene geometry prior.
That is to say, we compress a 3D sampling space to a 2D surface plane, which will greatly reduce the
representation complexity. At the same time, the network will pay more attention to the foreground,
which is the same as the human visual perception system. Of course, for the neglected background
information that is relatively less important, we can provide a relatively less accurate expression by
compressing the scene to sample the area in space.

In this paper, we propose PDF, a Point Diffusion implicit Function for large-scale scene neural
representation, which learns a dense surface distribution via a diffusion-based point prior generative
model to reduce the sampling space. To achieve this, we first explore a large-scale outdoor point
cloud augmentation method based on the Point-Voxel Diffusion model [43]. Since point clouds of
real outdoor scenes often lack dense ground truth, it is difficult to train a completion module through
"sparse-dense" point cloud pairs. Therefore, we initially downsample the point cloud twice, and
train a point cloud super-resolution network to generate the denser one from its sparser counterpart.
This approach effectively generates dense point clouds in the absence of ground truth data. With the
help of the surface point cloud, the sampling points will be retained only if there are reconstruction
points within a certain radius, so the space will be greatly reduced to the scene surface. However,
the reconstructed point cloud can only model the scene surface and cannot deal with the unbounded
background of outdoor scenes. Accordingly, following the concept of NeRF++ [41], we model the
foreground and background separately, and use Mip-NeRF 360 [2] to extract background features by
sampling regions in the scene space.

Extensive experiments show the effectiveness of our point diffusion implicit function for large-scale
scene neural representation, which achieves photo-realistic rendering results and outperforms state-
of-the-art methods on OMMO [15]] and BlendMVS dataset [35]]. We summarize the contributions
as follows: 1) Aiming at novel view synthesis for large outdoor scenes, we propose an implicit
neural representation framework based on point diffusion models to provide dense surface priors to
cope with the exploding sampling space. 2) A novel point cloud super-resolution diffusion module
is proposed to generate dense surface points from sparse point clouds without dense annotations.
3) Extensive experiments demonstrate that our PDF network outperforms state-of-the-art methods,
including robustness to large-scale outdoor scene representation and the capability to synthesize more
photo-realistic novel views. Our code and models will be available.

2 Related Work and Background

2.1 Implicit Neural Representation

In recent years, Implicit Neural Representation (INR) has witnessed significant advancements and
provides a versatile framework for representing complex functions and generating high-dimensional
data [23l 117,126, 37]]. By implicitly encoding the scene’s appearance and geometry, neural radiance
fields enable highly realistic rendering and novel view synthesis [25} 120} 8} [18]].

Building upon this foundation, subsequent research has focused on addressing the limitations and
pushing the boundaries of INR. Efforts have been made to improve the efficiency and scalability



of neural radiance fields. For instance, Hanocka et al. propose DeepSDF[22]], which leverages
signed distance functions to implicitly represent 3D shapes. This formulation allows for efficient
ray-marching and facilitates tasks such as shape manipulation and interpolation. Furthermore, recent
advancements in INR have explored differentiable rendering and differentiable volumetric rendering,
enabling the incorporation of geometric and physical priors [10} 4} 27] into the representation. These
methods leverage the differentiable nature of neural networks to optimize scene parameters, leading
to improved realism and control over the generated content [[13} 39, |9, 30]. Another significant
extension to the field of INR is PixelNeRF [38]]. It extends the capabilities of INR to handle images,
going beyond the realm of 3D scenes. PixelNeRF introduces a new differentiable sampler to handle
image-based representations, enabling efficient and accurate sampling of pixels from the neural
radiance field. In addition to PixelNeRF, Semantic Neural Radiance Fields[12]] propose a method to
learn scene representations that capture geometry, appearance, and semantic information, facilitating
interactive virtual scene editing and content creation.

Overall, these advancements have greatly expanded the capabilities of INR. These developments offer
promising avenues for realistic image synthesis, shape completion, scene reconstruction, and dynamic
content generation. The ongoing research in this field holds great potential for further advancements
in computer graphics, computer vision, and virtual reality applications.

2.2 Large-scale Scene Representation

Large-scale scene representation is a crucial aspect of INR research, particularly in the context of
computer graphics and computer vision. It involves capturing and modeling complex scenes that
encompass extensive spatial extents, such as urban environments, landscapes, or virtual worlds.

One notable work in the domain of large-scale scene representation is Neural Scene Flow Fields[14].
This paper introduces a novel approach to model dynamic scenes at a large scale. The authors
propose a scene flow field representation that captures both the geometry and motion of objects
in the scene. By leveraging a neural network architecture, they achieve accurate and temporally
consistent scene synthesis and reconstruction, even in highly complex and dynamic scenes. The
Neural 3D Mesh Renderer[11]] is another significant contribution in large-scale scene representation.
This work addresses the challenge of representing and rendering detailed 3D meshes of large-scale
scenes efficiently. The authors propose a neural network-based renderer that predicts view-dependent
textures and geometric details of the scene. This approach enables real-time rendering and interaction
with large-scale 3D scenes, opening up possibilities for interactive virtual reality experiences and
immersive simulations. In addition to these works, Mega-NeRF [28] and Bungee-NeRF [33]] are
two other notable approaches based on the neural radiance field for constructing interactive 3D
environments from large-scale visual captures. They address the challenges of modeling and rendering
large-scale scenes, spanning from buildings to multiple city blocks and utilizing thousands of images
captured from drones. They extend the capabilities of NeRF to handle multi-scale rendering, capturing
various levels of detail and enabling the interactive exploration of diverse 3D environments.

Overall, the field of large-scale scene representation within INR has witnessed significant progress.
These contributions have paved the way for realistic, interactive, and semantically meaningful
representations of expansive virtual environments, urban landscapes, and dynamic scenes. The
ongoing research in this area holds great potential for further advancements in computer graphics,
virtual reality, and immersive simulations.

3 Methodology

In this paper, we aim to develop a novel point diffusion model implicit function to reduce the sampling
space and improve the ability to represent large-scale scenes (c. f. Fig. [I). Our PDF network mainly
consists of two modules, a diffusion-based component for point cloud super-resolution and foreground
rendering, and a region-sampling module focused on background processing. The former introduces
a diffusion model to enhance the sparse point cloud reconstructed from the input images into a dense
point cloud, which provides optional points in the rendering stage to reduce the sampling space (c. f.
Sec. [3.1)). The latter samples regions rather than individual points from unbounded scenes so that it is
easy to fill sampled regions and complement the background for new viewpoint synthesis (c. f. Sec.
[3.2). In the final subsection, implementation details and losses are elaborated (c. f. Sec. [3.3).
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Figure 1: The pipeline of our point diffusion implicit function. Our method consists of two modules, a
point diffusion rendering module and a background rendering module. The former learns the surface
distribution of the scene through a diffusion-based point cloud super-resolution model and renders
foreground features from the dense point cloud surface. The latter follows Mip-NeRF 360’s strategy
to render background features. Finally, the foreground and background features are fused to generate
photo-realistic novel views for large-scale outdoor scenes.

3.1 Point Upsampling Diffusion

In this section, we introduce our large-scale outdoor point cloud super-resolution module based on a
denoising diffusion probabilistic model (c. f. Fig. [2).

Point Cloud Pair Preparation. Due to the lack of dense large-scale outdoor point cloud ground truth,
we need to train a diffusion-based super-resolution network to sample a dense surface, symbolized
as g € RV*3, from the point cloud reconstructed by COLMAP [24], denoted as =, € RM*3,
Concurrently, to mitigate the risk of over-fitting, the point cloud reconstructed from the training
views is not utilized as the ground truth for the diffusion model. Instead, training data comprises
pairs of the sparse point cloud zg € R™*? and the sparser point cloud 2o € R™*3, adhering to
m < n < M < N. More specifically, we downsample the sparse point cloud x reconstructed
by COLMAP to get an even sparser point cloud zg. Then we further downsample zy to get the
sparsest point cloud zy, where z, 29 and xg have progressively sparser relationships. Our training
process recovers zg from the sparsest zy. During testing, we take = as input to generate a denser
super-resolved point cloud z4.

Point Super-resolution Diffusion. Our point super-resolution denoising diffusion probabilistic
model is a generative model, which starts with Gaussian noise and progressively denoises to generate
scene structure priors. We record the output containing different levels of noise produced by each
step as &7, L7—1,..., Lo, where Z7 is sampled from Gaussian noise, and 2z represents the generated
point cloud with dense surface. Since we already have a sparse point cloud prior zg, our target point
cloud can be denoted as 29 = (2, o) and the intermediate point cloud during the denoising process
can be denoted as x; = (2, Z;). Subsequently, we define a point super-resolution diffusion process
involving a prior shape 2y, consisting of a forward process and a backward process.

Forward Process. Gaussian noise is repeatedly added to the original point cloud z, resulting in a
series of noisy point clouds x1, x2,..., T7:

qQ(Z4|T—1,20) ~ N (&3 /1 — Ber—1, Be]) (D

where [3; represents a pre-defined increasing sequence of Gaussian noise values, which dictates the
magnitude of noise incrementally introduced at each step of the process.

Reverse Process. Given a point cloud with more noise z;, reverse the forward process and find the
posterior distribution for a less noisy one x;_1:

Po(&e1ld1, 20) ~ N (po (1, 20, 1), 07 1) @
where pg(x¢, 20, t) is the predicted shape at ¢t — 1 step.
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Figure 2: Our point upsampling diffusion. In the forward process, Gaussian noise is gradually added
to the sparse point cloud. In the reverse process, the noise is gradually removed to obtain a dense
point cloud surface.

Therefore, our point cloud upsampling diffusion model can be regarded as a noise adding and
denoising process. The former gradually adds random noise to the initial point cloud z through the
forward process; the latter denoises sequentially through the reverse process to obtain a dense point
cloud x(. Based on Markov transition probabilities, the whole process can be expressed as:

T

q(ko.r, 20) = q(&0, 20) [ [ a(@+]2e-1, 20) 3
t=1
T

po(o.r, 20) = p(dr, 20) [ [ po(e-112¢, 20) )
t=1

Throughout the optimization process, our prior shape z is fixed, and only the missing surface point
cloud is diffused. The network is typically trained with a simplified L2 denoising loss:

Lp = ||e — €g(Z4, 20, 1)||* §))

where e is the added random noise and € ~ N(0, I), and € (Z+, 20, t) is the prediction noise output.
Since point cloud prior zg is fixed, it will be masked when minimizing the loss.

3.2 Volume Rendering and Implicit Function Representation

Foreground Rendering. For the foreground, we sample points along the rays from the dense point
cloud xg and render features in the neighborhood, following Point-NeRF [34]]. The difference is that
our point super-resolution diffusion module only generates denser point cloud coordinates without
color information, so we redesign a more general point aggregate module. For ray marching through
a pixel, we sample M sampling points at {p; | ¢ = 1,..., M}, and query K neighboring neural
points kp; = {kp;, kp3, ..., kpf( } around p; within a certain euclidean distance radius R. Then we
interpret the local geometric structure as a feature f; of each sampling point p; to equip structural
information. Therefore, we utilize ¢; and kc; to represent the coordinates of the sampling point and
its neighborhood points, respectively. The geometric structure feature k f, = {kf }, kf ?, o kf f( } of
the neighborhood are encoded as follows:

where d(, ) is the Euclidean distance between two points, and @ is the concatenation operator. Next,
the local geometric features f; of the sampling points p; are obtained by neighborhood points kp;
weighted summation:

fi = SUM (softmax(MLP(kf,;) ©kf;) @)



where softmax operation is performed on each dimension, and ® is the hadamard product. Our
point-based radiance field can be abstracted as a neural module that regresses the volume density o
and view-dependent radiance r from coordinates ¢, local geometric features f, and ray direction d
according to Point-NeRF [34]:

(o,7) = Point-NeRF(c,d, f) 8)
Finally, the foreground feature is synthesized by each neural sampling point along the sampling ray.

Background Rendering. In consideration of the limitation that point clouds are confined to rep-
resenting foreground elements and are incapable of addressing unbounded background contexts,
it becomes necessary to procure supplementary background features. Benefiting from Mip-NeRF
360 [2], which contracts the scene to a bounded ball and then samples a region to meet the challenge
of large scenes, we employ this method to extract background features as a supplement along the
same sampling ray as Point-NeRF [34].

Fore-Background Fusion. Since the detail-preserving foreground features can be obtained from
the dense surface points, while the bounded domain can cope with large scenes but loses details
during the compression process. So we propose a foreground-background fusion module consisting
of several layers of multi-layer perceptrons to preserve their respective advantages.

We adopt L2 loss to supervise our rendered pixels r,, from ray marching with the ground truth g, to
optimize our PDF volume render reconstruction network.

Lr = ||rp_rg||2 ©

3.3 Implementation Details

Our PDF method is a two-stage neural representation network for outdoor unbounded large-scale
scenes. We optimize these two stages separately.

In the first stage, a diffusion-based point cloud super-resolution network is designed to learn a prior
distribution to generate a dense point cloud surface. In the point cloud pair preparation process,
we employed the random down-sampling method with a retention rate between 0.2 and 1 for both
samplings. For point super-resolution diffusion, we set 7' = 1000, 3y = 10~%, 7 = 0.01 and linearly
interpolate other 3’s for all experiments. We use Adam optimizer with learning rate 2 x 10~* and
train on 4 A100 GPUs for around one day.

In the second stage, the foreground and background extraction modules plus a feature fusion module
are optimized. We find 8 neighbors for each sampling point and expand the dimension of neighbor-
hood geometric features to 8. Both the foreground and the background output a 128-dimensional
feature, and then they are concatenated and passed through 4 MLP layers to get the color of the
rendered point. We train this stage using Adam optimizer with an initial learning rate 5 x 10~ for
2 x 106 iterations about 20 hours on a single A100 GPU.

4 Experiments

4.1 Experimental settings

Dataset. We use two outdoor large-scale scene datasets, OMMO [15] and BlendedM VS [35]], to
evaluate our model. The OMMO dataset is a real fly-view large-scale outdoor multi-modal dataset,
containing complex objects and scenes with calibrated images, prompt annotations and point clouds.
The number of training point cloud samples in the OMMO dataset varies from 40,000 to 100,000 for
different scenes, including abundant real-world urban and natural scenes with various scales, camera
trajectories, and lighting conditions. More experimental results can be found in our supplementary
material.

Baselines and Evaluation Metrics. We compare our method with the previous state-of-the art
methods on novel view synthesis, including NeRF [[19], NeRF++ [41]], Mip-NeRF [1]], Mip-NeRF
360 [2], Mega-NeRF [28]], Ref-NeRF [29]. NeRF is the first continuous MLP-based neural network
for synthesizing photo-realistic views of a scene through volume rendering. NeRF++ models large-
scale unbounded scenes by separately modeling foreground and background neural representations.



Mip-NeRF reduces aliasing artifacts and better represents fine details by using anti-aliasing cone
sampling. Mip-NeRF 360 models large unbounded scenes using non-linear scene parameterization,
online distillation, and distortion-based regularization. Mega-NeRF uses a sparse structure and
geometric clustering algorithm to decompose the scenes. Ref-NeRF improves synthesized views by
restructuring radiance and regularizing normal vectors. To evaluate the performance of each method
for large-scale implicit neural representation, we use three common metrics for novel view synthesis:
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM [32]]), and Learned Perceptual
Image Patch Similarity (LPIPS [42]]). Higher PSNR and SSIM indicate better performance, while
lower LPIPS indicates better performance.

4.2 Performance Comparison

Quantitative Results. Quantitative comparisons on the OMMO [15] dataset are shown in Tab.
including the mean PSNR, SSIM, and LPIPS. We outperform other methods on all average evaluation
metrics, especially LPIPS, a perceptual metric close to the human visual system, which is significantly
more sensitive to the foreground than the background. So better LPIPS metric indicates that our
model can better reconstruct the foreground of the scene, benefiting from sampling the foreground
from the reconstructed dense point cloud surface instead of the entire sampling space.

NeRF [19], NeRF++ [41], Mip-NeRF [1]], and Ref-NeRF [29] are not specially designed for large-
scale scenes, so directly applying them to large scenes will lead to performance degradation. Mip-
NeRF 360 [2]] and Mega-NeRF [28]] have achieved the optimal performance in one or several scenes
by sampling regions in the limited sampling space or subdividing the sampling space. But it is still
not as good as ours in most scenes due to the loss of detail caused by compression or decomposing
the sampling space.

Table 1: Quantitative results of our PDF method with the baselines on the OMMO dataset. 1 means
the higher, the better.

NeRF[19] NeRF++[41] Mip-NeRF|[1] Mip-NeRF 360[2] Mega-NeRF[28] Ref-NeRF[29] Ours

Scene ID PSNRT SSIM{ LPIPS||PSNR{ SSIM{ LPIPS||PSNRT SSIM{ LPIPS||PSNR{ SSIM] LPIPS||PSNRT SSIM{ LPIPS||PSNR7 SSIM| LPIPS||PSNR{ SSIM{ LPIPS|
1 16.93 037 0.744 | 1686 036 0.780 | 16.84 0.37 0.793 | 1391 031 0771 | 16.12 034 0782 | 15.10 0.34 0.755 | 1480 0.32 0.755

1531 044 0.694 | 1489 047 0.653 | 1516 040 0731 | 15.06 044 0.646 | 1564 047 0.679 | 1590 049 0.632 | 19.63 0.62 0.374

3 1438 028 0.556 | 1464 029 0547 | 1456 029 0533 | 1425 031 0526 | 1521 033 0517 | 1544 037 0.526 | 1474 034 0515

4 2539 086 0431 | 2747 090 0.380 | 21.78 0.76 0.469 | 27.68 0.94 0292 | 23.36 0.86 0.419 | 27.86 091 0404 | 31.74 0.94 0.202

5 2226 0.67 0531 | 2432 073 0450 | 1498 054 0.633 | 25.76 0.80 0.317 | 2578 0.76 0.436 | 23.54 071 0491 | 27.58 0.90 0.162

6 24.09 068 0504 | 2559 075 0.39 |23.18 066 0529 | 28.86 0.90 0.211 | 2492 0.77 0.393 | 26.07 0.72 0459 | 23.69 0.87 0212

7

8

9

536 0.17 0747 | 21.93 071 0542 | 1557 0.64 0.624 | 2305 0.73 0523 | 2233 0.69 0552 | 2579 0.73 0511 | 2146 0.81 0.193
21.14 050 0594 | 2291 0.57 0509 | 19.82 0.46 0.638 | 25.07 0.71 0354 | 16.65 048 0431 | 21.21 049 0.606 | 27.62 0.92 0.101
1492 034 0744 | 1457 034 0.732 | 1458 034 0746 | 1540 030 0.706 | 17.32  0.49 0.673 | 20.34 043 0.649 | 1577 049 0.381
10 2226 055 0626 | 2437 0.60 0.578 | 19.80 0.53 0.643 | 26.68 0.72 0420 | 21.78 0.62 0.558 | 2423 0.58 0597 | 25.74 0.83 0.136
11 2236 082 0420 | 2461 0.85 0342 | 2281 082 0423|2706 093 0217 | 2437 084 0392|2381 0.84 0355|3029 095 0.188
12 2241 059 0533 | 2429 0.68 0447 | 22.13 0.60 0.526 | 28.12 0.83 0.274 | 21.60 0.62 0.493 | 23.06 0.60 0524 | 27.92 0.86 0.063
13 2227 059 0608 | 23.52 0.62 0.581 | 1890 0.54 0.673 | 26.63 0.77 0403 | 2550 0.72 0.517 | 2329 0.61 0594 | 2594 0.74  0.205
14 19.85 055 0569 | 2389 0.74 0417 | 17.06 048 0.655 | 28.06 0.89 0.224 | 2442 0.75 0411 | 21.76 0.63 0.508 | 28.11 0.94 0.127
15 2035 053 0552 | 21.71 0.61 0490 | 1944 049 0594 | 28.63 0.89 0.179 | 22.69 0.67 0445 | 2033 050 0576 | 27.22 0.89 0.136
16 17.86 040 0.631 | 18.75 041 0597 | 1849 040 0610 | 10.01 034 0.850 | 20.26 0.53 0509 | 19.64 043 0.572 | 1870 047 0.392
17 2202 057 0610 | 2420 0.67 0461 | 1701 053 0.696 | 29.53 0.83 0247 | 1723 0.57 0.529 | 23.17 059 0529 | 26.59 0.88 0.111
18 2606 075 0428 | 2557 073 0461 | 2461 073 0.469 | 28.55 0.86 0265 | 2476 0.73 0.448 | 2279 0.67 0.569 | 28.07 0.91 0.152
19 1420 040 0.726 | 13.86 037 0.703 | 13.84 039 0738 | 1472 037 0.676 | 2381 0.68 0.465 | 1434 039 0.691 | 27.55 0.84 0.170
20 2284 0.61 0499 | 2328 0.64 0475 | 2241 0.60 0519 | 2833 0.86 0.228 | 21.11 0.63 0490 | 21.54 0.55 0574 | 26.88 0.81 0.197
21 2259 051 0532 |21.84 047 0593 | 2231 051 0537 | 25.64 075 0344 | 21.92 051 0.578 | 21.07 044 0.672 | 28.62 0.94 0.141
22 16.53 047 0.733 | 20.66 0.56 0.575 | 13.37 042 0.776 | 2479 0.77 0.362 | 2084 0.60 0.527 | 20.31 0.53 0.615 | 26.33 0.85 0.074
23 18.99 041 0.669 | 19.51 042 0597 | 18.09 039 0671 | 21.25 051 0539 | 20.13 044 0585 | 1994 041 0.622 | 21.64 0.65 0.206
24 1932 039 0.69 | 23.14 052 0535 | 1689 037 0715 | 25.86 0.71 0373 | 2387 0.56 0518 | 22.17 045 0.616 | 30.90 0.87 0.097
25 2472 055 0528 | 2242 051 0.613 | 2424 054 0542 | 2891 0.79 0306 | 2598 0.63 0457 | 23.62 050 0.598 | 30.85 0.94 0.083
26 856 024 0564 | 1994 059 0513 | 1343 035 0.688 | 1459 0.46 0.626 | 1923 0.67 0467 | 21.00 0.62 0489 | 23.88 0.83 0.311
27 454 001 0705 | 2125 055 0546 | 1482 045 0674 | 21.26 0.60 0.235 | 20.59 0.61 0.543 | 20.82 0.52 0.590 | 21.77 0.66 0.164
28 2448 0.66 0479 | 23.28 0.64 0475 | 2476 0.66 0.406 | 29.62 0.87 0.240 | 25.87 0.72 0442 | 22.17 045 0616 | 29.22 091 0.153

29 2298 0.61 0540 | 23.17 0.62 0.529 | 2301 061 0539|2551 0.74 0400 | 21.57 061 0557 | 21.11 054 0.631 | 25.86 0.84 0.174
30 2023 052 0.605 | 23.27 0.64 0476 | 1863 0.46 0.675 | 26.54 0.84 0.296 | 2404 0.69 0459 | 21.62 0.54 0586 | 26.10 0.93  0.096
31 1897 037 0.645 | 19.05 037 0.643 | 1891 036 0.659 | 13.08 023 0.708 | 2093 0.60 0.545 | 19.18 0.37 0.645 | 26.68 0.90 0.208
32 17.99 058 0.621 | 18.99 0.61 0540 | 11.28 042 0.687 | 17.16 0.57 0.601 | 21.29 0.70 0.475 | 18.98 0.60 0.565 | 23.43 0.69 0.142

33 579 001 0.745 | 20.19 050 0597 | 1431 042 0.755 | 22.76  0.63 0457 | 2289 0.64 0478 | 21.23 0.52 0.578 | 2291 0.75 0.134
Mean | 1872 048 0.600 | 2145 0.58 0.538 | 1839 0.50 0.623 | 23.10 0.67 0419 | 21.63 0.62 0508 | 21.28 0.55 0.574 | 25.10  0.79  0.205

Qualitative Results. Qualitative results on the OMMO [15]] dataset are shown in Fig. |3} We can
see that the rendering results of NeRF [19] and Mip-NeRF [1] are of the lowest quality, and they
use global MLPs for the entire space to reconstruct radiance fields, resulting in a trade-off in the
accuracy of sampling the foreground and background which makes them almost impossible to handle
large-scale unbounded scenes. NeRF++ [41]], Mega-NeRF [28]] and Ref-NeRF [29] improve some
limitations of NeRF by corresponding techniques, but the rendering results are often missing details,
especially when the scene contains a lot of intricate details. The rendering quality of Mip-NeRF
360 [2] is relatively high, but loses some detail and edges due to its down-scaling of the scene into a
limited sampling space. Our method uses the dense point cloud up-sampled by the diffusion model
as a detailed foreground geometry prior combined with Mip-NeRF 360 background features, so our
model can reconstruct the fine foreground texture provided by the generative model. At the same



Figure 3: Qualitative results of our method with the baselines on the OMMO dataset. Our PDF
method outperforms baseline methods with reliably constructed details. For Mip-NeRF and Mega-
NeRF, which are also aimed at large scenes, we use yellow dashed boxes to mark some areas that are
easy to distinguish the performance of details. Please zoom-in for the best of views.

time, compared with Mip-NeRF 360, our method is more robust to scene representation and new
view generation without failing scenes (c. f. Fig. f).

4.3 Ablation Studies

We perform multiple ablation studies to validate the effectiveness of our proposed modules. Tab. [2]
shows the impact of diffusion point cloud super-resolution module and background feature fusion
module on the 5-th scene (sydney opera house) from the OMMO dataset [13]].



Mip-NeRF 360

Ours GT

Figure 4: A failure scene representation of Mip-NeRF 360.

Table 2: Quantitative performance of ablation experiments, including removing both the diffusion-
based point cloud up-sampling module and the background fusion module, removing only the
diffusion-based point cloud up-sampling module, removing only the background fusion module, our
PDF method.

Method PSNRT  SSIM{T  LPIPS|
w/o diffusion, w/o background 9.28 0.51 0.355
w/o diffusion, w/ background 21.05 0.83 0.219
w/ diffusion, w/o background 22.93 0.78 0.235
Ours 27.58 0.90 0.162

For the ablation experiment on the effectiveness of diffusion, we remove the diffusion-based
point cloud up-sampling module and sample directly on the sparse point cloud reconstructed by
COLMAP [24] from training views. Since the directly reconstructed point cloud is very sparse and
concentrated in the central area, only a very blurry image with large missing blocks can be rendered,
as shown in the first column of Fig. [5] At the same time, quantitative indicators also suggest that this
method is not suitable for outdoor unbounded large-scale scenes with its PSNR of 9.28.

For the ablation experiment on the effectiveness of background fusion, we remove the background
fusion module and render novel view images directly from the diffusion-enhanced point cloud. As
shown in the second column of Fig. [5] with the help of the dense point cloud produced by the
diffusion module learning the scene distribution, we find that large missing patches have been filled
in and produce a more refined foreground. However, limited by the characteristics of point cloud
expression, the background points are very sparse, which leads to blurred background rendering
results. Quantitative results, while substantially improved, still convey poor image quality.

As shown in the third column of Fig. [5} using the background fusion module alone can also fill in
the missing blocks of the background, but due to the sparseness of the point cloud reconstructed by
COLMAP [24], it will lead to the loss of detail and blurring of the rendering result. However, our
method, which combines a diffusion module and a background fusion module, achieves satisfactory
quantitative and qualitative performance and surpasses existing methods.

w/o diffusion w/ diffusion w/o diffusion
w/o background w/o background w/ background

Ours

Figure 5: Qualitative performance of ablation experiments. From left to right: removing both the
diffusion-based point cloud up-sampling module and the background fusion module, removing only
the background fusion module, removing only the diffusion-based point cloud up-sampling module,
our PDF method, and the groundtruth.

We also perform ablation experiments to compare our method with other point cloud up-sampling
methods. With the same experimental setup, we use a GAN-based method [40] for point cloud
up-sampling instead of the diffusion-based up-sampling module. Tab. [3]shows the quantitative results
for three scenes (scan5, scanl1 and scan12) in the OMMO dataset. Our method exhibits superior
performance compared to the GAN-based point cloud up-sampling method, primarily due to its



Table 3: Quantitative results of ablation experiments, including removing the diffusion-based point
cloud up-sampling module, using the GAN-based point cloud up-sampling method, our PDF method.

Method PSNRT _ SSIMT _ LPIPS]
w/o diffusion 21.85 0.84 0.204
GAN-based method [40]  24.83 0.86 0.161
Ours 28.60 0.90 0.137

ability to preserve the structural and topological characteristics of point clouds while effectively
handling incomplete or noisy point cloud data. In addition, Fig. [6] shows the visualization results of
the diffusion-based point cloud up-sampling module, and our method can not only densify the sparse
point cloud reconstructed by the COLMAP, but also fill in the missing regions of the point cloud such
as the background and empty space.

(2) (b) () (d)

Figure 6: Qualitative evaluation of the diffusion-based point cloud super-resolution module. From
left to right: (a) Point cloud of a large-scale scene reconstructed using COLMAP. (b) Point cloud
of the same large-scale scene enhanced using our method. (c) Point cloud of a small-scale scene
reconstructed using COLMAP. (d) Point cloud of the same small-scale scene enhanced using our
method (zoom-in for the best view).

5 Conclusions and Limitations

In this paper, we propose PDF, a point diffusion implicit function for large-scale scene neural
representation, and demonstrate its robustness and fidelity on novel view synthesis tasks. The core
of our method is to provide dense point cloud surface priors to reduce the huge sampling space of
large-scale scenes. Therefore, a point cloud super-resolution module based on diffusion model is
proposed to learn from the sparse point cloud surface distribution reconstructed from training views
to generate more dense point clouds. However, only constraining the sampling space to the point
cloud surface does not fully solve the novel view synthesis problem since point clouds do not have
background information. So Mip-NeRF 360 [2] is employed to provide background features and
synthesize photo-realistic new perspectives. Extensive experiments demonstrate that our method
outperforms current methods in both subjective and objective aspects. At the same time, ablation
experiments also prove the effectiveness of our core module, point up-sampling diffusion.

In future work, we will attempt to explore a cross-scene point cloud up-sampling generalization
diffusion model instead of training a diffusion model for each scene to improve efficiency. Even more
futuristically, it may be possible to extract representative scene representations and inject them into
reconstructed point clouds to achieve cross-scene rendering, i.e., generalized point diffusion NeRF.
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