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Abstract

The development of Spider (Yu et al., 2018),001
a large-scale dataset with complex programs002
and databases from several domains, has led to003
much progress in text-to-SQL semantic parsing.004
However, recent work has shown that models005
trained on Spider often struggle to generalize,006
even when faced with small perturbations of007
previously seen expressions. This is mainly008
due to the linguistic form of questions in Spi-009
der which are overly specific, unnatural, and010
display limited variation. In this work, we use011
data augmentation to enhance the robustness012
of text-to-SQL parsers against natural language013
variations. Existing approaches generate ques-014
tion reformulations either via models trained015
on Spider or only introduce local changes. In016
contrast, we leverage the capabilities of large017
language models to generate more realistic and018
diverse questions. Using only a few prompts,019
we achieve a two-fold increase in the number of020
questions in Spider. Training on this augmented021
dataset yields substantial improvements on a022
range of evaluation sets, including robustness023
benchmarks and out-of-domain data.1024

1 Introduction025

Semantic parsing is the task of mapping natural026

language utterances to machine-interpretable ex-027

pressions such as SQL queries or logical forms. It028

has emerged as an important component in many029

natural language interfaces (Őzcan et al., 2020)030

with applications in robotics (Dukes, 2014), ques-031

tion answering (Zhong et al., 2017; Yu et al., 2018),032

dialogue systems (Artzi and Zettlemoyer, 2011),033

and the Internet of Things (Campagna et al., 2017).034

The release of the Spider dataset (Yu et al., 2018)035

marked an important milestone in text-to-SQL se-036

mantic parsing. Apart from its considerable size,037

Spider stands out for including complex and nested038

queries, and databases from various domains. Im-039

1Model checkpoints and data are available at URL.

portantly, it exemplifies a cross-domain generaliza- 040

tion setting, i.e., models trained on Spider are ex- 041

pected to parse natural language questions for any 042

given database, even in previously unseen domains. 043

In practice, models trained on Spider degrade sig- 044

nificantly when tested on different databases from 045

other datasets, for example, on real-world data 046

from Kaggle and Stack Exchange websites (Suhr 047

et al., 2020; Lee et al., 2021; Hazoom et al., 2021). 048

The linguistic composition of questions in Spider 049

contributes to this performance gap. Unlike real- 050

world applications where user questions may be 051

concise, ambiguous, and necessitate commonsense 052

reasoning or domain-specific knowledge, questions 053

in Spider are often overly explicit, directly men- 054

tioning database entities even when such informa- 055

tion is unnecessary for inferring the underlying 056

intent. An example is shown in Figure 1, the first 057

question includes redundant details (e.g., customer, 058

first name, last name) which serve as references 059

to databases entities. Omitting these details would 060

not change the meaning of the question but rather 061

make it more colloquial. Due to the limited diver- 062

sity of questions, Spider falls short in providing 063

enough examples for learning essential skills such 064

as grounding and reasoning. As a result, models 065

tend to overfit to Spider-style questions, and even 066

minor perturbations in how questions are phrased 067

lead to a considerable performance decrease, some- 068

times up to 22% (Gan et al., 2021b; Deng et al., 069

2021; Pi et al., 2022; Chang et al., 2023). 070

More realistic training sets can potentially allevi- 071

ate generalization problems but are challenging to 072

create because semantic parsing requires annotators 073

familiar with the specific meaning representation 074

language being used (e.g., SQL). At the time of 075

writing, Spider (Yu et al., 2018) remains the largest 076

and most extensively used dataset for text-to-SQL 077

tasks. Efforts to automatically increase its diversity 078

often rely on text generation models trained on the 079

same Spider data and unavoidably inherit its char- 080
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acteristics (Zhong et al., 2020; Wang et al., 2021;081

Wu et al., 2021; Jiang et al., 2022).082

In this work, we propose to augment the train-083

ing data for text-to-SQL parsers with more realis-084

tic and diverse question reformulations. We lever-085

age the capabilities of large language models for086

rewriting utterances and devise prompts designed087

to enhance model robustness against linguistic vari-088

ations. We train three state-of-the-art parsers on089

Spider (Yu et al., 2018) with augmentations gener-090

ated by our approach. Extensive experiments show091

that a two-fold increase in the number of questions092

substantially improves model generalization abil-093

ity. Our augmentations increase robustness against094

question perturbations when models are evaluated095

on the challenging Dr.Spider sets (Chang et al.,096

2023) and deliver improvements in a zero-shot set-097

ting, when models are tested on out-of-domain098

datasets like GeoQuery (Zelle and Mooney, 1996)099

and KaggleDBQA (Lee et al., 2021).100

Our contributions are three-fold: a proposal of101

rewrite operations to render questions more diverse102

and natural; a methodology for augmenting exist-103

ing datasets based on the proposed reformulations;104

and empirical results validating our approach im-105

proves generalization across models and datasets.106

2 Related Work107

Out-of-domain Generalization Several datasets108

have been released to facilitate the development of109

models with generalization capabilities. WikiSQL110

(Zhong et al., 2017) is a large-scale benchmark111

with different databases but only one table. As112

a result, WikiSQL queries are relatively easy to113

parse due to the use of a limited set of operations.114

Spider (Yu et al., 2018), contains multiple tables115

per database which result in complex SQL queries.116

Suhr et al. (2020) examine the performance of117

Spider-trained models on datasets varying in terms118

of the questions being asked, the database structure,119

and SQL style. They discover that a key challenge120

in achieving generalization lies in linguistic varia-121

tion, and propose augmenting Spider’s training set122

with WikiSQL data. Our work addresses the prob-123

lem of question diversity in Spider, without com-124

promising its complex query structures or multi-125

table database nature. We evaluate our approach126

on GeoQuery (Zelle and Mooney, 1996), a dataset127

similar to Spider in terms of database structure128

and SQL queries but different in the style of ques-129

tions. We also report results on KaggleDBQA (Lee130

et al., 2021), a dataset with real-world databases 131

and questions created by users with access to field 132

descriptions rather than database schemas. 133

Robustness to Perturbations Another challenge 134

for text-to-SQL parsers is robustness to small per- 135

turbations. Previous studies evaluate robustness in 136

the single-domain setting (Huang et al., 2021) and 137

across databases, e.g., by removing or paraphras- 138

ing explicit mentions of database entities (Spider- 139

Realistic; Deng et al. 2021) or by substituting such 140

mentions with synonyms (Spider-Syn; Gan et al. 141

2021a). Other work explores the effect of perturba- 142

tions in the database schema (Pi et al., 2022) and 143

also in questions (Ma and Wang, 2021). Recently, 144

Chang et al. (2023) released Dr.Spider, a compre- 145

hensive robustness benchmark with a wide range 146

of perturbations in the database schema, questions, 147

and SQL semantics. We evaluate our approach on 148

their “question sets” which cover a broader range of 149

language variations compared to previous efforts. 150

Data Augmentation Several data augmentation 151

and adversarial training techniques have been pro- 152

posed to support SQL queries executed on a single 153

table (Li et al., 2019; Radhakrishnan et al., 2020) 154

and multiple tables (Zhong et al., 2020; Wang et al., 155

2021; Wu et al., 2021; Deng et al., 2021; Wu et al., 156

2021; Jiang et al., 2022). Augmentations in earlier 157

work (Gan et al., 2021a; Deng et al., 2021; Ma and 158

Wang, 2021; Huang et al., 2021) target specific lin- 159

guistic expressions like synonyms or paraphrases. 160

We leverage the capabilities of (very) large lan- 161

guages models (LLMs; Brown et al. 2020; Chowd- 162

hery et al. 2022) to generate linguistically diverse 163

natural language questions. Recent efforts (Dai 164

et al., 2023; He et al., 2023) have shown that LLMs 165

can serve as annotators when given sufficient guid- 166

ance and examples mainly for text classification, 167

while we focus on semantic parsing. 168

3 Motivation 169

3.1 Problem Formulation 170

Semantic parsing aims to translate a natural lan- 171

guage utterance into a formal representation of its 172

meaning. We focus on meaning representations in 173

the form of SQL queries that can be executed in 174

some database to retrieve an answer or denotation. 175

In the cross-domain setting, the parser is not limited 176

to a specific database and can be in theory applied 177

to arbitrary databases and questions. In practice, 178

this task is more or less complex depending on the 179
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database in hand, i.e., the number of tables and180

values, the naming conventions used for tables and181

columns, the way values are formatted, and spe-182

cific domain characteristics. We do not consider183

these challenges in this work, focusing instead on184

generalization issues that arise from the variation185

of questions in natural language.186

3.2 Types of Utterances in Semantic Parsing187

Recent work has demonstrated the importance of188

wording in semantic parsing, indicating that certain189

question formulations can be more difficult to parse190

than others (Radhakrishnan et al., 2020; Gan et al.,191

2021a; Deng et al., 2021; Chang et al., 2023).192

The level of difficulty for a question can be influ-193

enced by the amount of task-specific background194

knowledge used to formulate it. For instance, users195

familiar with SQL and the underlying database will196

have some idea of the desired program, and will197

be able to articulate their intentions more precisely,198

e.g., by providing explicit instructions. In contrast,199

users unfamiliar with the task are more likely to200

ask general questions in a colloquial style. Figure 1201

illustrates different question formulations with the202

same intent. The first question could have been203

posed by a user who is well-versed in SQL and204

has knowledge of the database; it mentions spe-205

cific database entities and operations like summa-206

tion and filtering, unlike the second question which207

does not have any such details. More formally, we208

distinguish between two types of utterances:209

Utterances which demonstrate prior knowledge210

are closely aligned with the desired programs, high-211

light logical structure operations, and explicit ref-212

erences to database entities. Such utterances re-213

semble instructions, suggesting the user has some214

understanding of the desired program. In Figure 1,215

the first question falls under this category, presup-216

posing knowledge of summation and filtering oper-217

ations and the names of entities (e.g., first_name,218

last_name) used in the target SQL query.219

Utterances which do not demonstrate prior220

knowledge are general descriptions of intent, ex-221

pressed in a simple, colloquial language. They222

do not provide intentional hints about the desired223

program, but are often ambiguous, requiring ad-224

ditional reasoning based on domain or common225

sense knowledge. In the examples shown in Fig-226

ure 1, the second question belongs to this category,227

it is laconic, underspecified, and inherently natural.228

Database: driving_school
Customers

customer_id . . . first_name last_name . . . email_address

Lessons
lesson_id . . . customer_id lesson_time . . . price

Prior
Questions SQL DB

1. Calculate the total sum of lesson times filtering
the results by selecting the customer with the first
name "Rylan" and the last name "Goodwin".

✓ ✓

2. How long did Rylan Goodwin’s lesson last? X X

3. How long is the total lesson time taken by a cus-
tomer with a first name as Rylan and a last name
as Goodwin?

X ✓

SQL Query
SELECT sum(T1.lesson_time) FROM Lessons AS T1 JOIN
Customers AS T2 ON T1.customer_id = T2.customer_id WHERE
T2.first_name = "Rylan" AND T2.last_name = "Goodwin".

Figure 1: Different types of questions that are related to
the same database (only relevant tables and columns are
shown) and map to the same SQL query.

These types of utterances represent two impor- 229

tant edge cases but do not cover all possibilities. In 230

the context of text-to-SQL semantic parsing, infor- 231

mation about the database schema and its contents 232

can also be useful when formulating questions. We 233

thus introduce a third category that falls between 234

having task-specific knowledge and none at all. 235

Utterances which demonstrate knowledge of the 236

database schema are general descriptions of in- 237

tent but with explicit references to related database 238

entities. This category differs from the previous 239

two in the type of prior knowledge used; users 240

are familiar with the database schema and pos- 241

sibly database content but have no expertise in 242

query construction. The third question in Figure 1 243

includes explicit references to the database table 244

(e.g., customers) and its columns (e.g., lesson_time, 245

first_name, last_name). Because of that, questions 246

may be less coherent and natural. In our example, 247

the question contains redundant details such as first 248

name, last name, and customer. 249

Questions in Spider (Yu et al., 2018) often in- 250

clude explicit mentions of database elements (Deng 251

et al., 2021). This is a by-product of Spider’s 252

creation process which encouraged annotators fa- 253

miliar with SQL to formulate the questions more 254

clearly and explicitly. In contrast, other datasets 255

like GeoQuery (Zelle and Mooney, 1996) or cross- 256

domain KaggleDBQA (Lee et al., 2021) contain 257

less explicit questions with a smaller percentage of 258
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database entity mentions. In this work, we auto-259

matically augment Spider’s training set with more260

general and natural questions aiming to develop se-261

mantic parsing models that can effectively handle262

all types of utterances mentioned above.263

4 Data Generation264

We augment the training set of Spider (Yu et al.,265

2018) by leveraging large language models. Specif-266

ically, we exploit ChatGPT’s2 text generation ca-267

pabilities (gpt-3.5-turbo-0301) and ask it to268

rephrase Spider questions (no SQL- or database-269

specific information is provided; see Table 1), using270

three types of rewrite operations:271

1. Deletion of words or phrases which are redun-272

dant for understanding the question’s intent. For273

this purpose, we use two instructions: the first274

one simplifies the question, while the second one275

explicitly hides unnecessary details that do not276

change the meaning. The first instruction affords277

ChatGPT more freedom in rewriting the question.278

In Table 1, examples 1–2 show how Spider ques-279

tions are reformulated with these instructions.280

2. Substitution of words or phrases with simpler281

ones. We instruct ChatGPT to replace words282

with their synonyms and also to more generally283

attempt to simplify by substituting a few words in284

the question. In Table 1, examples 3–4 show how285

questions are rewritten with these instructions.286

3. Rewriting of the entire question. Some ques-287

tions can have the same meaning, despite being288

significantly dissimilar in their surface realisa-289

tion. For example, the questions Where do most290

people live? and Which cities have the largest291

population? are related to the same database292

about cities and express the same intent but have293

no words in common. We instruct ChatGPT to294

provide different ways of expressing a question.295

We empirically find that ChatGPT can be too con-296

servative at times and also include a prompt with297

examples to encourage more drastic reformula-298

tions. In Table 1, questions 5–6 show example299

outputs for these instructions.300

We also ask ChatGPT to paraphrase questions301

(see example 7 in Table 1). This instruction may be302

viewed as a generalization of previous reformula-303

tions, however, in practice it is only somewhat help-304

ful. ChatGPT often generates very similar versions305

of the original question, retaining the same details,306

2chat.openai.com

1. Instruction: Simplify

Original
Question

Which club has the most female students as
their members? Give me the name of the
club.

Output Which club has the most female students?

2. Instruction: Simplify by hiding details

Original
Question

What is the title and credits of the course that
is taught in the largest classroom (with the
highest capacity)?

Output What course is taught in the biggest
classroom and what are its credits?

3. Instruction: Simplify using synonyms

Original
Question

What is the average duration in milliseconds
of tracks that belong to Latin or Pop genre?

Output What is the mean length in milliseconds of
Latin or Pop songs?

4. Instruction: Simplify using substitutions

Original
Question

What are the locations that have gas stations
owned by a company with a market value
greater than 100?

Output Where are the gas stations owned by a
company worth more than 100?

5. Instruction: Express in a different way

Original
Question

What is the number of routes operated by the
airline American Airlines whose destinations
are in Italy?

Output How many routes does American Airlines
have that fly to Italy?

6. Instruction: Examples of the question
simplification: <. . .>

Original
Question

What are the names of body builders whose
total score is higher than 300?

Output Who are the body builders with a score over
300?

7. Instruction: Paraphrase

Original
Question

Return the categories of music festivals that
have the result "Awarded".

Output List the categories of music festivals that
have been recognized with awards.

Table 1: Different augmentations generated for Spider
questions (see Appendix A, Table 6 for details).

style and structure following this instruction. In 307

general, the approach advocated here rests on the 308

assumption that the rewording of questions would 309

not change their meaning, leading to an entirely 310

different logical form. ChatGPT’s conservative 311

paraphrasing strategy is an advantage as almost all 312

machine-generated questions preserve the meaning 313

of the original question. We manually inspected 314

100 reformulations and found only 6% to be incor- 315

rect (i.e., inaccurate expressions of intent). Given 316

this slight amount of noise, we use the generated 317

questions without any filtering. Analysis in Ap- 318

pendix B further shows that our augmentations do 319
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not affect the nature of parsing errors.320

5 Experimental Setup321

Our experiments aim to evaluate the performance322

of models trained specifically for cross-database323

text-to-SQL parsing. We are interested in two types324

of generalization: robustness to controllable per-325

turbations in utterances and adaptation to new do-326

mains with different question styles. Perturbations327

allow us to study more closely the impact of lan-328

guage variations, while new domains provide a329

more realistic and challenging setting. We first330

describe the datasets we use for training and evalu-331

ation and then briefly discuss the semantic parsing332

models we employ in our experiments.333

5.1 Training Datasets334

Our primary training dataset is Spider (Yu et al.,335

2018), which contains 7,000 questions to 140 differ-336

ent databases and 3,981 target queries (we exclude337

the single-domain datasets Yu et al. (2018) employ338

in addition to their data). Although there can be339

more than one question for the same intent (usually340

two), linguistic variations tend to be scanty and lim-341

ited. We augment Spider with additional questions342

using ChatGPT as an automatic annotator. For each343

intent in the original training set, we generate two344

question reformulations based on the types spec-345

ified in Section 4. We choose the augmentation346

types randomly and do not accept duplicates. The347

resulting augmented training set contains 14,954348

instances; statistics for each category are in Table 2349

and examples in Appendix E. The cost of calling350

the ChatGPT API to obtain our augmentations is351

approximately 7.5$.352

5.2 Evaluation Datasets353

The Spider development set consists of 1,034 ques-354

tions to 20 databases and 564 target SQL queries.355

Since these questions share the same style and level356

of detail as the training set, we instead focus on357

evaluation sets with more natural and diverse lan-358

guage. Specifically, we focus on two groups of359

evaluation sets. The first group are datasets derived360

from the Spider development set, featuring identi-361

cal SQL queries and databases which allow us to362

assess the model’s resilience to variations in linguis-363

tic expression. The second group are independent364

datasets which not only differ in language usage365

but also in SQL style and database specifics. This366

setup enables us to evaluate model performance in367

more realistic conditions.368

Augmentation Type # examples

Simplify 774
Simplify by hiding details 1,136
Simplify using synonyms 1,285
Simplify using substitutions 1,316
Paraphrase 1,130
Express in a different way 1,065
Prompt with examples 1,256

Total 7,962

Table 2: Question reformulations generated for Spider;
number of generations per instruction.

Datasets Based on Spider Chang et al. (2023) 369

have recently released Dr.Spider, a comprehensive 370

robustness benchmark which includes 9 evaluation 371

sets with 7,593 examples of perturbations in nat- 372

ural language questions (NLQ sets). They have 373

also created evaluation sets for database and SQL 374

perturbations which are out of scope for this work. 375

NLQ perturbation sets are based on the Spider de- 376

velopment set, they contain the same databases and 377

gold queries, deviating only in terms of the ques- 378

tions asked. They are generated with OPT (Zhang 379

et al., 2022), a large pretrained language model, 380

and manually filtered by SQL experts. There are 381

three main categories of perturbations: change one 382

or a few words that refer to SQL keywords (for 383

example, replace the word maximum referring to 384

the max SQL function with the largest), change 385

references to columns (for example, replace name 386

of the countries referring to column CountryName 387

with which countries) and change references to 388

database values (for example, replace players from 389

the USA referring to the value USA with American 390

players). Changes are made by replacing words 391

with their synonyms or carrier phrases (e.g., name 392

of the countries and which countries). Note that 393

our augmentations target solely language variations 394

and do not manipulate gold SQL queries. 395

Other Datasets GeoQuery (Zelle and Mooney, 396

1996) is a single-domain semantic parsing dataset 397

with questions to a database of US geography. We 398

use a version with SQL queries as logical forms 399

and query-based splits (Finegan-Dollak et al., 2018) 400

with a test set of 182 examples. GeoQuery ques- 401

tions are concise and their interpretation often de- 402

pends on domain knowledge. For example, in the 403

question what is the largest city in the smallest state 404

in the usa, the largest city implies the city with the 405

largest population but the smallest state implies the 406
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state with the smallest area.407

KaggleDBQA (Lee et al., 2021) is a cross-408

domain text-to-SQL dataset for testing models un-409

der more realistic conditions. It contains 272 ex-410

amples related to 8 real-world databases which411

can have abbreviated table and column names and412

“dirty” values. Questions were collected with anno-413

tators having access to column descriptions only,414

rather than the actual database schema (the dataset415

provides these descriptions but we do not use them).416

This simulates realistic database usage but also cre-417

ates a challenge for semantic parsers as questions418

cannot be easily aligned to target SQL queries. For419

example, the question Which artist/group is most420

productive? to a database with information on hip421

hop torrents should be parsed into query SELECT422

artist FROM torrents GROUP BY artist ORDER423

BY count(groupName) DESC LIMIT 1, as produc-424

tive refers to the number of releases and column425

groupName contains released titles.426

5.3 Models427

Current approaches frame text-to-SQL parsing as428

a sequence-to-sequence problem. The input is the429

concatenation of question and database entities,430

including table and column names, and content val-431

ues extracted based on string matching, and the432

output is an SQL query. Shaw et al. (2021) show433

that a pre-trained T5-3B model (Raffel et al., 2020)434

fine-tuned on Spider (Yu et al., 2018) is a com-435

petitive text-to-SQL parser. Scholak et al. (2021)436

build on this approach with PICARD, a method for437

constrained decoding that filters the beam at each438

generation step, taking into account task-specific439

constraints such as grammatical correctness and440

consistency with the database. Recently, Li et al.441

(2023) propose RESDSQL, an approach that de-442

couples schema linking from SQL parsing. They443

first filter relevant database entities and then use444

T5-3B to generate a sketch (i.e., SQL keywords)445

and then the actual SQL query. We use the best ver-446

sion of their model which also leverages NatSQL447

intermediate representations (Gan et al., 2021c).448

We use the implementations from Scholak et al.449

(2021) and Li et al. (2023) for training models on450

augmented data and their released checkpoints for451

training on the original Spider. All models are452

trained for 100 epochs; we use a batch size of 200453

for the base T5-3B to reduce the computational454

cost, leaving all other hyperparameters unchanged.455

We train on a single NVIDIA A100 GPU.456

Our approach to data augmentation is model ag-457

nostic but our experiments focus on settings where 458

the model is specifically trained or fine-tuned on 459

text-to-SQL data. An alternative is large language 460

models which are trained on huge text collections 461

(including code) and able to translate natural lan- 462

guage to SQL, without further fine-tuning on task- 463

specific data (Rajkumar et al., 2022). Since our 464

augmentations are generated by ChatGPT, a model 465

trained with Reinforcement Learning for Human 466

Feedback (Christiano et al., 2017), we include it as 467

a standalone baseline. Following Liu et al. (2023), 468

we prompt ChatGPT in a zero-shot setting with the 469

description of the database schema followed by the 470

question (the full prompt is shown in Appendix C). 471

Large language models like ChatGPT differ from 472

task-specific models in many respects, including 473

potential use cases, resource requirements, trans- 474

parency, and accessibility and thus any comparison 475

should be interpreted with a grain of salt. 476

6 Results 477

Our experiments compare models trained on the 478

original Spider data against models trained on aug- 479

mented data. In addition, we report results for 480

ChatGPT tested in a zero-shot mode. We evaluate 481

model performance in two settings: zero-shot pars- 482

ing on Spider-based data with perturbed questions 483

and zero-shot parsing on other datasets. All results 484

are evaluated with execution accuracy. 485

6.1 Robustness to Question Perturbations 486

Table 3 reports execution accuracy results on eval- 487

uation sets from Dr.Spider (Chang et al., 2023) 488

which include perturbations in natural language 489

questions. We also present results on the original 490

Spider development set (see Appendix D for more 491

results, including other Dr.Spider perturbation sets). 492

Pre/Post refer to Spider subsets before/after pertur- 493

bations (post-perturbation sets are the same subsets 494

but with the questions rewritten). 495

We compare T5-3B with and without PICARD 496

and RESDSQL models fine-tuned on the original 497

Spider data and our augmentations; we also pro- 498

vide results for ChatGPT evaluated in the zero-shot 499

setting. Our results show that ChatGPT is most 500

vulnerable to question reformulations among all 501

models. Chang et al. (2023) reach similar conclu- 502

sions with Codex (Chen et al., 2021), another large 503

pre-trained language model, and hypothesize this 504

is due to the training data being biased towards 505

docstrings (which is what most natural language 506
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Augmented Augmented Augmented
T5-3B T5-3B PICARD PICARD RESDSQL RESDSQL ChatGPT

Perturbation Set Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

Keyword-synonym 70.2 62.6 73.8 65.4 72.6 66.3 75.3 69.4 81.5 72.4 84.2 74.7 64.7 55.7
Keyword-carrier 82.7 76.4 83.0 79.2 85.0 82.7 88.7 84.0 89.0 83.5 87.5 85.0 85.0 82.0
Column-synonym 63.9 51.3 66.3 54.2 71.0 57.2 68.7 59.7 78.7 63.1 77.4 66.1 66.1 48.8
Column-carrier 83.1 61.7 82.0 70.5 86.9 64.9 85.0 73.1 86.5 63.9 86.4 76.3 82.2 52.0
Column-attribute 49.6 48.7 60.5 58.8 58.8 56.3 63.9 62.2 82.4 71.4 82.4 71.4 77.3 62.2
Column-value 69.1 58.6 76.3 58.9 82.9 69.4 83.2 70.4 96.4 76.6 95.1 77.6 74.0 57.9
Value-synonym 68.6 46.4 68.6 53.0 72.5 53.0 70.8 57.1 79.2 53.2 79.6 55.1 69.0 45.8
Multitype 70.1 51.1 71.4 56.3 74.4 57.1 74.0 61.4 83.8 60.7 83.8 65.7 71.9 49.8
Others 75.3 73.1 76.6 72.7 79.6 78.3 80.9 77.6 85.2 79.0 84.8 80.2 74.0 66.4

Average 70.3 58.9 73.2 63.2 76.0 65.0 76.7 68.3 84.7 69.3 84.6 72.5 73.8 57.9

Spider Dev 74.4 75.3 79.3 79.3 84.1 84.0 72.2

Table 3: Execution Accuracy on Spider development set and subsets taken from Dr.Spider (NLQ sets); model
performance is shown before (Pre) and after perturbations (Post). We compare T5-3B, T5-3B+PICARD, and
RESDSQL fine-tuned with and without augmentations and zero-shot ChatGPT.

KaggleDBQA

Model GeoQuery Nuclear Crime Pesticide Math Baseball Fires WhatCD Soccer Avg

T5-3B 54.4 59.4 48.2 16.0 7.1 20.5 43.2 7.3 16.7 27.3
+Augmented 60.4 56.3 48.2 18.0 7.1 20.5 43.2 26.8 22.2 30.3

PICARD 56.6 59.4 51.9 18.0 10.7 25.6 43.2 9.8 22.2 30.1
+Augmented 62.6 56.3 48.1 22.0 14.3 25.6 43.2 24.4 27.8 32.7

RESDSQL 56.6 59.4 48.1 16.0 25.0 23.1 43.2 17.1 22.2 31.8
+Augmented 59.3 65.6 44.4 24.0 25.0 23.1 43.2 19.5 27.8 34.1

ChatGPT 20.9 34.4 18.5 16.0 10.7 15.4 27.0 4.9 16.7 17.9

Table 4: Execution accuracy on GeoQuery test set (query splits) and different databases from KaggleDBQA. All
models are tested in a zero-shot setting; +Augmented refers to models fine-tuned on the augmented Spider data.

utterances look like on websites like GitHub).507

Execution accuracy for augmented models508

(T5-3B with and without PICARD and RESDSQL)509

improves by more than 3% compared to base mod-510

els in almost all cases, while the accuracy gap on511

pre- and post-perturbed data decreases. Augmented512

RESDSQL delivers the highest post-perturbation513

accuracy of 72.5%. It also obtains the best results in514

almost all individual categories of post-perturbed515

sets confirming that our augmentations enhance516

robustness. Augmented models do not have an ad-517

vantage over base models on the original Spider518

development set (see the last row in Table 3). There519

are two reasons for this: firstly, we augment ques-520

tions only without adding new SQL queries, and521

secondly, augmentations shift the language distri-522

bution by removing specific details and rendering523

questions more natural, but the development set524

remains closer to the original training set.525

6.2 Generalization to Other Datasets 526

Table 4 summarizes our results in the more chal- 527

lenging zero-shot setting. Specifically, we evaluate 528

model performance on two out-of-domain datasets, 529

namely GeoQuery (Zelle and Mooney, 1996) and 530

KaggleDBQA (Lee et al., 2021). Both datasets 531

differ from Spider in many respects, i.e., the types 532

of questions being asked, the style of SQL queries, 533

and the database structure. 534

We find ChatGPT performs very poorly on these 535

datasets compared to models fine-tuned on Spi- 536

der with or without augmentations. In all cases, 537

augmented models improve execution accuracy 538

compared to base models. PICARD trained with 539

augmentations performs best on GeoQuery reach- 540

ing an accuracy of 62.6% (a 6% difference against 541

the base model). Augmented RESDSQL performs 542

best on KaggleDBQA, which is more challenging, 543

reaching an average accuracy of 34.1%. Augmenta- 544
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Spider Dr.Spider GeoQuery KaggleDBQAModel Dev NLQ

T5-3B 74.4 58.9 54.4 27.3
+ Deletion 74.7 59.7 56.0 28.7
+ Substitution 75.1 62.9 56.0 31.2
+ Rewriting 75.0 62.3 53.8 27.4
+ Paraphrase 75.3 61.4 41.8 25.9
+ All (ours) 75.3 63.2 60.4 30.3

+ One Prompt 74.4 60.4 40.7 29.2
+ Spider-Syn 75.6 59.2 49.5 27.0
+ MT-TEQL* 75.0 62.0 47.8 29.2

Table 5: Execution accuracy on Spider development set,
Dr.Spider NLQ sets, GeoQuery, and KaggleDBQA for
T5-3B base and trained with different augmentations in-
cluding Spider-Syn (Gan et al., 2021a) and sub-sampled
(diacritic *) version of MT-TEQL (Ma and Wang, 2021).

tions are generally helpful but not across all individ-545

ual categories (note that categories are represented546

by a limited number of examples per database547

and even a small number of errors can result in a548

drop of several percentage points). We suspect the549

low accuracy on KaggleDBQA is primarily due to550

challenges that are unrelated to language variation.551

In particular, its databases contain abbreviations552

which might be difficult to parse and SQL queries553

exemplify operations which are not present in Spi-554

der (e.g., arithmetic operators between columns).555

6.3 Ablations and Analysis556

We next investigate the impact of different types of557

question reformulations introduced in Section 4,558

and also compare against related augmentation559

methods: Gan et al. (2021a) manually annotate560

Spider-Syn with synonym substitutions, whereas561

Ma and Wang (2021) introduce MT-TEQL, a frame-562

work for generating semantics-preserving variants563

of utterances and database schemas. We use a ver-564

sion of MT-TEQL that changes prefixes and aggre-565

gator mentions in Spider questions. Additionally,566

we include a baseline which follows our procedure567

for data generation but uses only one prompt: pro-568

vide different ways of expressing a question.569

Table 5 shows the execution accuracy of T5-3B570

trained with and without augmentations pertain-571

ing to Deletion, Substitution, Rewriting, and Para-572

phrasing. We also include results with All augmen-573

tations combined. The ablation study shows that574

different types of augmentation are helpful for dif-575

ferent datasets. On GeoQuery, models augmented576

with deletions and substitutions perform best; sub-577

stitutions also perform best on the NLQ sets of 578

Dr.Spider and KaggleDBQA. Paraphrasing-based 579

augmentations are best for the original Spider de- 580

velopment set, with Rewriting trailing behind. Re- 581

sults obtained with a single prompt (express in 582

a different way) further illustrate the need for 583

diverse instructions. We also trained T5-3B with 584

augmentations from Spider-Syn (Gan et al., 2021a) 585

and MT-TEQL (Ma and Wang, 2021). For a fair 586

comparison, we randomly sample MT-TEQL ex- 587

amples with question transformations to match the 588

training size obtained through our augmentations. 589

As can be seen in Table 5, our combined augmenta- 590

tions outperform models trained on Spider-Syn and 591

MT-TEQL on all evaluation sets (Dr.Spider NLG, 592

GeoQuery, and KaggleDBQA). 593

The results in Table 5 reaffirm the observation 594

that different evaluation sets exemplify different 595

linguistic variations and that there is no single type 596

of augmentation that represents them all. Rather, 597

a combination of augmentations is needed to per- 598

form well across datasets. This in turn suggests 599

that a model can acquire useful knowledge by be- 600

ing exposed to a diverse range of linguistic varia- 601

tions. We also observe that a model trained on com- 602

bined augmentations outperforms models trained 603

on more specialized datasets (i.e., Spider-Syn and 604

MT-TEQL) which confirms that relying solely on 605

local transformations of the questions is not suffi- 606

cient for better generalization. 607

7 Conclusion 608

We propose to enhance the generalization capa- 609

bilities of text-to-SQL parsers by increasing nat- 610

ural language variation in the training data. We 611

leverage a large language model like ChatGPT to 612

automatically generate a variety of question refor- 613

mulations, thereby augmenting existing datasets 614

with more natural and diverse questions. We eval- 615

uate state-of-the-art models trained with and with- 616

out our augmentations on a variety of challenging 617

datasets focusing on robustness (to perturbations) 618

and out-of-domain generalization. Across models 619

and datasets we find that augmentations improve 620

performance by a wide margin. Our experiments 621

further underscore the need for a broad range of 622

augmentations representing the full spectrum of 623

rewrite operations. In the future, we plan to ex- 624

plore the potential of large language models for 625

multilingual semantic parsing. 626
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Limitations627

Our work aims to increase the robustness of seman-628

tic parsers against natural language variation but629

does not handle problems related to SQL queries630

and database structures that are also important for631

out-of-domain generalization. We obtain augmen-632

tations using ChatGPT, a black-box model pro-633

vided by OpenAI, which limits its usage for non-634

academic purposes. Our augmentations are un-635

filtered and may add a small amount of noise to636

training data. Moreover, even though our proposed637

rewrite operations are diverse, they may still not638

cover all possible reformulations. In fact, we found639

it challenging for ChatGPT to generate wildly dif-640

ferent expressions of the original intent. Finally,641

this work does not consider multilingual or conver-642

sational semantic parsing which we hope to explore643

in the future.644
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A Data Generation 912

Table 6 shows the full versions of the prompts we 913

use to generate the augmentations defined in Sec- 914

tion 4 for the Spider training set.

1. Instruction: Simplify

Full version Simplify the following sentence: . . .

2. Instruction: Simplify by hiding details

Full version Simplify the sentence by hiding unnecessary
details that do not change the meaning: . . .

3. Instruction: Simplify using synonyms

Full version Simplify the following sentence using
synonyms: . . .

4. Instruction: Simplify using substitutions

Full version Make the sentence simpler by substituting
some words in . . .

5. Instruction: Express in a different way

Full version What are different ways of expressing this
question: . . .

6. Instruction: Examples of the question
simplification: <. . .>

Full version Examples of the question simplification:
Original: Find the names of stadiums whose
capacity is smaller than the average capacity.
Simplified: Which stadiums are smaller than
the average?
Original: Show the fleet series of aircraft
flown by pilots younger than 34.
Simplified: Return the fleet series of the
planes whose captains are younger than 34.
Original: Which cities have the largest
population?
Simplified: Where do most people live?
Original: In which year was most of the ships
built?
Simplified: When were most of the ships
constructed?
Original: Tell me the number of orders with
"Second time" as the order detail.
Simplified: How many orders have "Second
time" as an order detail?
Original: . . .
Simplified:

7. Instruction: Paraphrase

Full version Give me a paraphrase of the following
question: . . .

Table 6: The full version of the prompts used for data
generation.
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Augmented Augmented Augmented
T5-3B T5-3B PICARD PICARD RESDSQL RESDSQL ChatGPT

Perturbation Set Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

NLQ Average 70.3 58.9 73.2 63.2 76.0 65.0 76.7 68.3 84.7 69.3 84.6 72.5 73.8 57.9

SQL

Comparison 62.9 62.4 71.3 66.3 68.0 68.0 74.2 70.8 80.9 82.0 84.3 83.7 73.6 64.0
Sort-order 75.0 70.3 76.0 75.5 79.2 74.5 78.1 76.6 88.0 85.4 88.5 83.3 66.7 57.8
NonDB-number 77.1 73.3 71.8 77.1 83.2 77.1 73.3 77.9 87.8 85.5 90.8 90.8 90.8 90.1
DB-text 59.5 58.3 59.9 61.6 64.7 65.1 66.2 66.7 77.2 74.3 91.5 75.0 67.5 68.2
DB-number 83.9 83.7 79.8 78.8 86.3 85.1 84.6 83.2 88.8 88.8 91.5 91.2 82.7 79.8

Average 71.7 69.6 71.8 71.9 76.3 74.0 75.3 75.0 84.5 83.2 89.3 84.8 76.3 72.0

DB

Schema-synonym 66.4 46.9 67.8 52.8 73.0 56.5 73.4 61.9 81.3 68.3 80.9 70.4 67.6 56.0
Schema-abbreviation 69.5 53.3 71.0 55.5 74.9 64.7 75.2 65.3 82.4 70.0 81.8 71.7 68.8 63.5
Content-equivalence 84.6 40.8 72.3 46.1 88.7 43.7 86.9 37.2 90.3 40.1 91.9 41.4 81.2 46.3

Average 73.5 47.0 72.3 46.1 78.9 55.0 78.5 54.8 84.7 59.5 84.9 61.1 72.5 55.3

All 71.3 59.9 72.6 62.7 76.6 65.9 76.6 67.9 84.7 71.7 86.0 74.1 74.3 61.5

Table 7: Execution Accuracy on subsets taken from Dr.Spider (NLQ, DB, and SQL sets); model performance is
shown before (Pre) and after perturbations (Post). We compare T5-3B, T5-3B+PICARD, and RESDSQL fine-tuned
with and without augmentations, and zero-shot ChatGPT.

B Error Analysis916

In order to verify that our augmentations do not917

introduce new parsing errors, we examined exam-918

ples in the Spider development set which were cor-919

rectly parsed by a T5 model trained without aug-920

mentations but rendered incorrect after the same921

T5 model was trained with augmentations. Based922

on a sample of 60 instances, we observed that the923

majority of errors are similar in nature and symp-924

tomatic of a T5-trained semantic parser, e.g., errors925

in the output columns or join operation.926

The only type of error that might be due to our927

augmentations concerns minor changes in values.928

Baseline T5 almost always copies values from the929

question but T5 trained with augmentations can930

slightly change them, e.g., use the full name in-931

stead of an abbreviation or lowercase instead of932

uppercase. We found this occurs in 10% of cases.933

Database values are mentioned verbatim in Spider934

questions but this could be different in real-world935

settings or other datasets where some tolerance to936

surface variations might be advantageous.937

C ChatGPT Zero-Shot Prompt938

Below we show the prompt we used when evaluat-939

ing the zero-shot ChatGPT on text-to-SQL datasets940

following Liu et al. (2023):941

### SQL tables , with their properties: 942
# 943
# stadium(Stadium_ID , Location , Name , 944

Capacity , Highest , Lowest , Average) 945
# singer(Singer_ID , Name , Country , 946

Song_Name , Song_release_year , Age , 947
Is_male) 948

# concert(concert_ID , concert_Name , 949
Theme , Stadium_ID , Year) 950

# singer_in_concert(concert_ID , 951
Singer_ID) 952

# 953
### How many singers do we have? Return 954

only a SQL query. 955
SELECT 956

D Additional Results 957

Table 7 shows our results on all Dr.Spider pertur- 958

bation subsets (NLQ refers to subsets with pertur- 959

bations in natural language questions, SQL and 960

DB are perturbations in SQL and database tokens). 961

We compare three models trained with and without 962

augmentations: T5-3B, PICARD, and RESDSQL. 963

We also employ ChatGPT in a zero-shot setting. 964

Overall, the best model is augmented RESDSQL 965

(74.1%) which is better than the base version by 966

more than 2% on post-perturbed sets. Augmented 967

T5-3B and PICARD also improve robustness com- 968

pared to base models. Augmented RESDSQL de- 969

livers the best average results for all three types 970

of perturbations and performs best on the major- 971

ity of individual categories, even though our aug- 972

mentations are not designed to improve robustness 973

against SQL and DB perturbations. 974
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Augmented Augmented Augmented
Dataset T5-3B T5-3B PICARD PICARD RESDSQL RESDSQL ChatGPT

Realistic 64.2 66.7 71.4 79.3 80.7 84.0 63.4
Spider-Syn 62.4 70.8 69.8 72.8 76.9 79.2 58.6
GeoQuery dev 59.1 64.2 64.2 68.6 59.7 54.1 25.8

Table 8: Execution accuracy on Spider-Realistic, Spider-Syn and GeoQuery dev set for T5-3B with and without
PICARD and RESDSQL trained with or without augmentations.

Table 8 shows results on the additional eval-975

uation sets, Spider-Realistic, (Gan et al., 2021a)976

Spider-Syn with 1,034 examples, and GeoQuery977

dev set with 152 examples (query splits of Finegan-978

Dollak et al. 2018). Both evaluation sets are based979

on the Spider development set, aiming to remove980

from the questions explicit references to database981

entities. These references were manually deleted982

or paraphrased in Spider-Realistic and replaced983

with synonyms in Spider-Syn. We observe that984

augmented RESDSQL obtains best results on both985

datasets (84.0% on Spider-Realistic and 79.2% on986

Spider-Syn) and is better than the base version by987

more than 4%. On the GeoQuery development set,988

the best model is augmented PICARD with 68.6%989

accuracy. Across all benchmarks, fine-tuned text-990

to-SQL parsers significantly outperform zero-shot991

ChatGPT.992

E Examples of Spider Augmentations993

We provide samples for the augmented Spider train-994

ing set. Questions are grouped based on the intent.995

Types indicate whether the question is taken from996

the original Spider training set or is generated using997

one of the following instructions: simplify, simplify998

by hiding details, simplify by synonyms, simplify999

by substitutions, express differently, paraphrase, or1000

by showing examples.1001
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1. SQL query SELECT personal_name FROM Students EXCEPT SELECT T1.personal_name FROM
Students AS T1 JOIN Student_Course_Enrolment AS T2 ON T1.student_id = T2.student_id

Questions Find the personal names of students not enrolled in any course. Type: original
Which students not enrolled in any course? Find their personal names. Type: original
Find names of unenrolled students. Type: hide-details
Can you provide me with the names of the students who are not currently registered
in any course?

Type: paraphrase

2. SQL query SELECT donator_name , sum(amount) FROM endowment GROUP BY donator_name
ORDER BY sum(amount) DESC

Questions List each donator name and the amount of endowment in descending order of the
amount of endowment

Type: original

Enumerate contributors and their endowment sums in decreasing order Type: synonyms
List donors and their endowments in descending order Type: hide-details

3. SQL query SELECT count(*) FROM CLASS AS T1 JOIN enroll AS T2 ON T1.class_code = T2.class_code
WHERE T1.crs_code = ’ACCT-211’

Questions How many students enrolled in class ACCT-211? Type: original
What are the total number of students enrolled in ACCT-211? Type: original
How many pupils registered for course ACCT-211? Type: synonyms
How many students are enrolled in ACCT-211? Type: from-examples

4. SQL query SELECT T2.roomName FROM Reservations AS T1 JOIN Rooms AS T2 ON T1.Room = T2.RoomId
WHERE firstname LIKE ’%ROY%’

Questions Find the name of rooms booked by some customers whose first name contains ROY. Type: original
What are the name of rooms booked by customers whose first name has "ROY" in
part?

Type: original

What are the room names that have been reserved by customers with "ROY" in their
first name?

Type: paraphrase

What rooms did customers with "ROY" in their first name book? Type: substitutions

5. SQL query SELECT T1.account_name , T1.other_account_details FROM Accounts AS T1 JOIN
Customers AS T2 ON T1.customer_id = T2.customer_id WHERE
T2.customer_first_name = ’Meaghan’ AND T2.customer_last_name = ’Keeling’

Questions Show the account name and other account detail for all accounts by the customer
with first name Meaghan and last name Keeling.

Type: original

What are the names and other details for accounts corresponding to the customer
named Meaghan Keeling?

Type: original

What are Meaghan Keeling’s account names and details? Type: simplify
I am looking for the account details and names associated with Meaghan Keeling.
Can you help me with that?

Type: paraphrase

6. SQL query SELECT sum(acc_bal) FROM customer WHERE state = ’Utah’ OR state = ’Texas’

Questions Find the total account balance of each customer from Utah or Texas. Type: original
What are the total account balances for each customer from Utah or Texas? Type: original
Add up the account balances of customers who live in Utah or Texas. Type: express-differently
What is the total account balance for customers from Utah or Texas? Type: from-examples

7. SQL query SELECT date_of_enrolment , date_of_completion FROM Student_Course_Enrolment

Questions List all the dates of enrollment and completion of students. Type: original
What are all the dates of enrollment and completion in record? Type: original
Provide a record of the enrollment and completion dates for all students. Type: paraphrase
What are the enrollment and completion dates of all students? Type: from-examples

8. SQL query SELECT headquarter FROM manufacturers WHERE founder = ’James’

Questions Where is the headquarter of the company founded by James? Type: original
What is the headquarter of the company whose founder is James? Type: original
Where was the company founded by James headquartered? Type: express-differently
Where is the main office of the company established by James? Type: paraphrase
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9. SQL query SELECT max(Price) , max(Score) FROM WINE WHERE Appelation = ’St. Helena’

Questions What are the maximum price and score of wines produced by St. Helena
appelation?

Type: original

Give the maximum price and score for wines produced in the appelation St. Helena. Type: original
What is the topmost price and score that can be obtained by wines produced in St.
Helena?

Type: paraphrase

What is the highest price and score for St. Helena wines? Type: simplify

10. SQL query SELECT degrees FROM campuses AS T1 JOIN degrees AS T2 ON t1.id = t2.campus
WHERE t1.campus = ’San Francisco State University’ AND t2.year = 2001

Questions What are the degrees conferred in "San Francisco State University" in 2001. Type: original
What degrees were conferred in San Francisco State University in the year 2001? Type: original
What diplomas were granted at SF State in 2001? Type: synonyms
What degrees were given at San Francisco State University in 2001? Type: substitutions

11. SQL query SELECT membership_card FROM member WHERE address = ’Hartford’ INTERSECT
SELECT membership_card FROM member WHERE address = ’Waterbury’

Questions What is the membership card held by both members living in Hartford and ones
living in Waterbury address?

Type: original

What is the membership card for people in Hartford and Waterbury called? Type: substitutions
Is there a membership card that is valid for both Hartford and Waterbury residents? Type: express-differently

12. SQL query SELECT kids FROM Reservations WHERE FirstName = ’ROY’ AND LastName = ’SWEAZY’

Questions How many kids stay in the rooms reserved by ROY SWEAZY? Type: original
Find the number of kids staying in the rooms reserved by a person called ROY
SWEAZ.

Type: original

How many children are staying in ROY SWEAZY’s reserved rooms? Type: from-examples
How many kids are in Roy Sweaz’s reserved rooms? Type: hide-details

13. SQL query SELECT count(*) FROM products AS t1 JOIN product_characteristics AS t2
ON t1.product_id = t2.product_id JOIN CHARACTERISTICS AS t3
ON t2.characteristic_id = t3.characteristic_id WHERE t1.product_name = ’laurel’

Questions How many characteristics does the product named "laurel" have? Type: original
Count the number of characteristics of the product named ’laurel’. Type: original
How many features does "laurel" have? Type: simplify
How many qualities does the product "laurel" have? Type: substitutions

14. SQL query SELECT customer_name FROM customers WHERE payment_method = (SELECT payment_method
FROM customers GROUP BY payment_method ORDER BY count(*) DESC LIMIT 1)

Questions What are the names of customers using the most popular payment method? Type: original
Find the name of the customers who use the most frequently used payment method. Type: original
Who are the customers using the popular payment method? Type: hide-details
Who are the customers utilizing the most favored payment option? Type: synonyms

15. SQL query SELECT TYPE FROM ship WHERE Tonnage > 6000 INTERSECT SELECT TYPE FROM ship
WHERE Tonnage < 4000

Questions Show the types of ships that have both ships with tonnage larger than 6000 and
ships with tonnage smaller than 4000.

Type: original

What are the types of the ships that have both shiips with tonnage more than 6000
and those with tonnage less than 4000?

Type: original

Display ships with tonnage above 6000 and below 4000. Type: simplify
Which types of ships have tonnage exceeding 6000 and also less than 4000? Type: express-differently

16. SQL query SELECT customer_name FROM customers EXCEPT SELECT t1.customer_name FROM customers AS t1
JOIN customer_addresses AS t2 ON t1.customer_id = t2.customer_id JOIN addresses AS t3
ON t2.address_id = t3.address_id WHERE t3.state_province_county = ’California’

Questions Find the names of customers who are not living in the state of California Type: original
Discover the names of non-California customers. Type: substitutions
Who are the customers not residing in California? Type: from-examples
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