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Abstract

Multiple works have emerged to push the boundaries on multi-modal large lan-1

guage models (MLLMs) towards pixel-level understanding. The current trend in2

pixel-level MLLMs is to train with pixel-level grounding supervision on large-scale3

labelled data with specialized decoders for the segmentation task. However, we4

show that such MLLMs when evaluated on recent challenging vision-centric bench-5

marks, exhibit a weak ability in visual question answering (VQA). Surprisingly,6

some of these methods even downgrade the grounding ability of MLLMs that were7

never trained with such pixel-level supervision. In this work, we propose two8

novel challenging benchmarks with paired evaluation for both VQA and grounding.9

We show that MLLMs without pixel-level grounding supervision can outperform10

the state of the art in such tasks. Our paired benchmarks and evaluation enable11

additional analysis on the reasons for failure with respect to VQA and/or grounding.12

Furthermore, we propose simple baselines to extract the grounding information that13

can be plugged into any MLLM, which we call PixFoundation. More importantly,14

we study the research question of “When does grounding emerge in MLLMs that15

are not trained with pixel-level grounding supervision?” We show that grounding16

can coincide with object parts, its location, appearance, context or state, where we17

show 27-45% of the examples in both benchmarks exhibit this phenomenon. Our18

code and datasets will be made publicly available and some are in the supplemental.19

1 Introduction20

There have been numerous advancements in pixel-level image and video understanding, including21

tasks such as image/video segmentation Zhou et al. (2022); Minaee et al. (2021); Kirillov et al. (2023);22

Ravi et al. (2024), pixel-level visual grounding and reasoning Rasheed et al. (2024); Lai et al. (2024),23

depth estimation Yang et al. (2024) and tracking Wang et al. (2023). The majority of these have24

been transformed with the emergence of foundation models Bommasani et al. (2021), specifically25

multi-modal large language models (MLLMs) Liu et al. (2023/); Dai et al. (2023). Nonetheless,26

pixel-level MLLMs have shown degradation in their capabilities and chat performance Lai et al.27

(2024). Recent models tried to address this gap Zhang et al. (2024b,a), yet they relied on standard28

evaluation benchmarks, overlooking the shortcomings of current MLLMs.29

Recent efforts explored the shortcomings of MLLMs in vision-centric benchmarks Tong et al.30

(2024b,a). Such benchmarks focused on challenging visual tasks such as counting. Nonetheless,31

these benchmarks did not evaluate the recent pixel-level MLLMs and rather used the visual question32

answering task as a proxy to evaluate MLLMs’ grounding ability. In this work, we propose chal-33

lenging vision-centric benchmarks that are dedicated to evaluating pixel-level MLLMs and provide34

a comprehensive paired evaluation for both VQA and grounding, which we call PixMMVP and35

PixCV-Bench. Our paired evaluation means that the referring segmentation is related to the object36

of interest in the visual question, providing a better analysis of MLLMs’ capabilities. Through37
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Instruction: Identify the butterfly's feet in the scene.Question: Are the butterfly's feet visible? 

The butterfly's feet are visible in the scene, with one foot on
the plant and the other foot resting on the ground.

(a) Yes (b) No(a) Yes  (b) No

Are pixel-level MLLMs heading in the right
direction to improve VQA and grounding? 

When does grounding emerge in Multi-modal Large
Language Models?

Corresponding Pixel-
level Visual Grounding

PixMMVP, PixCV-Bench
Paired VQA and Referring
Segmentation benchmarks

Figure 1: The two major research questions we explore: (i) the grounding & VQA ability of pixel-
level MLLMs in challenging scenarios (left), (ii) the ability of vanilla MLLMs to perform grounding
and when does it emerge (right). Right: shows the noun phrases and their corresponding predicted
segmentation, highlighted in red, extracted from LLaVA 1.5 attention maps with three masks due to
point prompt ambiguity from the maximum attention, highlighted as a black circle. Note that not all
noun phrases and segmentations are shown for space constraints.

these, we answer the first research question; “Are the current pixel-level MLLMs trained with full38

grounding supervision heading in the right direction to improve both grounding and visual question39

answering (VQA)?”. Our findings show that the majority of pixel-level MLLMs still fall short in such40

a challenging setting. While evidently, some of these show superior performance in visual grounding,41

we show that MLLMs that were not trained with pixel-level grounding and without using specialized42

segmentation decoders can have better performance.43

There have been recent works showing training-free segmentation emerging from vision language44

models Wang et al. (2024); Luo et al. (2024); Hajimiri et al. (2025). Concurrent work has specifically45

explored emerging grounding in MLLMs Cao et al. (2024). Another concurrent work Wu et al. (2024)46

has observed the degradation of pixel-level MLLMs’ VQA abilities. Nonetheless, previous efforts47

used standard evaluation benchmarks that evaluate each task separately. Our benchmarks provide a48

paired VQA and referring segmentation evaluation, where we propose an evaluation metric that takes49

into account the performance in both. Such paired benchmarks not only provide better scoring for50

pixel-level MLLMs performance, but they are designed to be vision-centric, with a focus on what51

MLLMs fall short in. Moreover, they provide the means to interpret the failures of these MLLMs52

and whether they are stemming from grounding, VQA or both. More importantly, unlike concurrent53

efforts, we focus on the second research question of “When does grounding emerge in MLLMs that54

are not trained with pixel-level supervision?”. Our work documents that emerging grounding in55

MLLMs does not necessarily coincide with the exact language tokens of the object, as shown in Fig. 1.56

We show that up to 45% and 27% of the examples in PixMMVP and PixCV-Bench, respectively,57

have grounding coinciding with concepts about the referred objects’ parts, position, color or context.58

In summary, our contributions include: (i) Proposing paired pixel-level vision-centric benchmarks,59

PixMMVP and PixCV-Bench, with segmentation annotations and referring expression of the object of60

interest in the corresponding questions. (ii) Benchmarking recent efforts in pixel-level MLLMs where61

we show that they degrade VQA capabilities. More importantly, some of them lag in visual grounding62

with respect to simple techniques of extracting the segmentation from vanilla MLLMs, i.e., MLLMs63

that are not trained for pixel-level grounding. (iii) We provide a simple mechanism for extracting64

segmentation from vanilla MLLMs, with an understanding of when grounding emerges, that surpasses65

the state of the art. Our mechanism uses the observation that grounding can emerge corresponding to66

different output tokens describing the object’s appearance or location, not necessarily the exact text67

of the object of interest, which we call PixFoundation.68
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2 Related work69

Pixel-level vision foundation models. There have been various vision foundation models trained for70

the segmentation task (e.g., SAM and SAM 2.0) Kirillov et al. (2023); Ravi et al. (2024). Orthogonal71

to this, some methods discussed the ability of vision foundation models such as CLIP and BLIP in72

image segmentation without any segmentation supervision Luo et al. (2024); Hajimiri et al. (2025);73

Wang et al. (2024). Yet, they relied on earlier foundation models that did not incorporate the power74

of large language models. Combining large language models with vision has been extensively75

researched with pioneering works such as LLaVA Liu et al. (2023/, 2024) and instruct-BLIP Dai et al.76

(2023). Multiple works afterwards focused on pixel-level visual grounding in these MLLMs with full77

supervision and specialized segmentation decoders Lai et al. (2024); Rasheed et al. (2024); Zhang78

et al. (2024a,b,a,b). However, these methods were lagging in their chat performance. Notably, pixel-79

level MLLMs were not evaluated on the challenging benchmarks that focused on the shortcomings80

of MLLMs Tong et al. (2024b,a). Hence, it is still unclear if the pixel-level grounding supervision81

helped to improve their ability on these challenging tasks or not. In this work, we focus on the82

previous question to have a better understanding of their performance. Concurrent work has shown83

that without pixel-level supervision, there is an emerging ability to perform pixel-level grounding Cao84

et al. (2024). We rely on this method as our baseline, but unlike previous works, we provide an85

insight into when grounding emerges in such MLLMs. We propose a baseline that uses a novel and86

simple mechanism to perform mask selection while taking the previous insight into consideration.87

Benchmarking multi-modal large language models. There is an abundance of standard bench-88

marks used for evaluating MLLMs (e.g., MMU Yue et al. (2024)) and pixel-level benchmarks (e.g.,89

refCOCO/+/g Yu et al. (2016); Kazemzadeh et al. (2014)). These have pushed the limits on MLLMs90

capabilities in terms of VQA and visual grounding. Nonetheless, there have been various works that91

discussed the shortcomings of MLLMs. One of them discussed the shortcomings in CLIP Radford92

et al. (2021), which is used in various MLLMs as a visual backbone. They proposed a benchmark,93

MMVP Tong et al. (2024b), that is focused on the visual aspects within a VQA task. More recently,94

CV-Bench Tong et al. (2024a) focused on two major tasks that are vision focused which are counting95

and relative positioning. Both were proposed to evaluate MLLMs that do not have the ability to96

generate segmentation output. Nonetheless, they still provide quite challenging scenarios that can act97

as a strong benchmark for the pixel-level MLLMs counterpart. In this work, we extend these two98

benchmarks with pixel-level annotations and referring expressions that correspond to the object of99

interest within the VQA task, and propose a paired evaluation metric.100

3 Method and benchmarks101

In this section, we describe our two benchmarks and probing techniques for pixel-level MLLMs and102

MLLMs that were not trained with pixel-level grounding supervision.103

3.1 Paired Benchmarks for VQA and Grounding104

PixMMVP benchmark: We build upon the recently released MMVP Tong et al. (2024b) which105

identified clip blind pairs and used them to build a challenging benchmark with the corresponding106

questions and choices for 300 images. We manually annotate each question with the corresponding107

object of interest referring expression, e.g. an elderly person or the butterfly’s feet. There are seven108

questions only that are not designed to inquire about a specific object in the scene, which are excluded,109

such as questions inquiring on the view direction of the camera. The referring expressions in our110

dataset correspond to what needs to be grounded in the image to answer the question and are as111

fine-grained as possible. Afterwards, we manually label these objects of interest with polygonal112

annotations using the VGG annotator Dutta et al. (2016). Hence, we create the first paired benchmark113

for both VQA and pixel-level visual grounding.114

PixCV-Bench benchmark: For this benchmark we build upon the 2D component of the recently115

released CV-Bench Tong et al. (2024a). We specifically select the 2D component, since they are116

sourced from segmentation datasets (i.e., ADE20K Zhou et al. (2017) and COCO Lin et al. (2014)),117

which can be used in our proposed benchmark. However, the publicly released CV-Bench does not118

identify the objects in question and their corresponding segmentation. As such we use GPT-4o to119

parse the questions and identify the objects of interest automatically, followed by manual inspection120
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and correction. Specifically, we collect the classes in each image from the corresponding dataset121

and construct a list of class choices “1. <CLS1>, 2. <CLS2>, ...”. Then we prompt GPT-4o with122

the following, “Provide number only as an answer. Identify the objects of interest in the following123

question: <QUESTION> ? 1. <CLS1>, 2. <CLS2>, ... ”. This provides us with the categories124

per question that highlight the objects of interest. While seemingly these are categorical annotations,125

not referring expressions, certain scenarios in CV-Bench are different. Specifically, in the relative126

positioning task, all the questions that include an object highlighted by a red box in the image are127

annotated with the referring expression, “(annotated by the red box)”, beyond simple categories.128

Afterwards, we use the selected categories from GPT-4o to retrieve the corresponding segmentation129

mask per image. Furthermore, we use a custom annotation tool to manually filter the objects in130

the question, e.g. selecting only the object mask annotated by the red box and filtering out other131

instances. Another example that needs manual filtration, when the class in question is a broader132

category than what is inquired upon, e.g., “Pendant Lamp” which is under the category of “Lamp” in133

ADE20K. In such a case, we filter out the masks of other types such as “Table Lamp”. Moreover,134

we identify missing annotations and manually annotate these missing objects. We provide the final135

paired PixCV-Bench with referring expressions, their segmentation annotations, visual questions and136

corresponding answers that can be used to evaluate the grounding ability in relation to the original137

VQA task. Appendix A provides visual examples from our benchmarks.138

3.2 A Pixel-level MLLMs study139

We utilize the two proposed benchmarks, PixMMVP and PixCV-Bench, to evaluate the current trend140

in pixel-level MLLMs that rely on pixel-level supervision and specialized segmentation decoders.141

Furthermore, we inspect the failures of these pixel-level MLLMs and explore simple approaches to142

pixel-level understanding from MLLMs that overcome the previous shortcomings.143

Pixel-level MLLMs shortcomings. We highlight the failures of the current state-of-the-art pixel-144

level MLLMs through three probing techniques. First, we highlight the degraded performance in145

VQA from most of these MLLMs that are trained with pixel-level supervision. We use for that146

the following prompt, “<IMG><QUESTION>? <OPTION1> <OPTION2>...”, as shown in147

Figure 2a. Notably, the worst two models in this task, LISA Lai et al. (2024) and GLAMM Rasheed148

et al. (2024), are not able to provide an answer and rather refer to a segmentation mask. On the other149

hand, OMG-LLaVA Zhang et al. (2024b) shows better ability in VQA.150

The second shortcoming we discuss is that these MLLMs exhibit a degraded ability to follow151

instructions. In order to probe this, we use the following prompt: “<IMG><QUESTION>?152

a.<OPTION1> b.<OPTION2>... Answer with the option’s letter from the given.” Figure 2b shows153

an example with the answers from the worst two models in this aspect which are LISA Lai et al.154

(2024) and LLaVA-G Zhang et al. (2024a). Both are incapable of following the instruction, yet155

LLaVA-G tries to tackle the question, unlike LISA. On the other hand, OMG-LLaVA shows better156

ability to follow the instructions and answer the questions.157

Third, we highlight their degraded ability to visually ground objects. Surprisingly, although they158

were trained with pixel-level grounding supervision, not all of these models show superior grounding159

performance. Figure 2c shows the second prompt to generate a segmentation mask for the ground-160

truth referring expression. The purpose of this probing is to understand whether the failure in these161

models is purely on the VQA task, or its inability to ground the objects of interest in the corresponding162

question or both. Figure 2c shows the worst two models in this aspect, which are GLAMM, the163

region captioning variant, and LLaVA-G. Both fail to segment the specific object in question, while164

OMG-LLaVA shows better performance.165

Baselines and upper bounds. In addition to evaluating state-of-the-art pixel-level MLLMs, we166

propose two baselines and one upper bound. The first of which is inspired by a concurrent work Cao167

et al. (2024) that identified the emergent grounding in multi-modal large language models without168

the need for any pixel-level grounding supervision. Specifically, we use their attend and segment169

meta architecture as one of our baselines. However, we are the first to discuss when such grounding170

emerges in these models. We identify an interesting connection between the identified output tokens171

and the output grounding from the attention maps that gives insights into how these models reason.172

The attend and segment meta-architecture extracts the raw attention map for the ith output token,173

Ai ∈ [0, 1]nlayer×nhead×(x+hw+y+i−1), where nlayer, nhead are the number of layers and heads, resp.174
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Prompt: Based on the image, is the following statement correct: We cannot see the window on the school bus?
(a) Correct (b) Incorrect

Answer: It is [SEG].   Answer: It is [SEG].     Answer: ...the statement is
incorrect. The image shows a
school bus with a stop sign...

Answer: (b) IncorrectAnswer: It is [SEG].   Answer: It is [SEG].    

LISA GLAMM OMG-LLaVA

LLaVA-G

Prompt: Can you identify the flowers in
the background in this image? (with

grounding)

GLAMM 
(Region Captioning) OMG-LLaVA

Prompt: Can you please segment the
flowers in the background in the given

image?

Prompt: Can you please segment the
flowers in the background in the given

image?

LISA

Prompt: What color is the chicken's body Options: A. Black B. Red. Answer with the option's letter from the given.

Answer: Sure, the
segmentation result is [SEG].

Answer: It is [SEG].

Answer: The chicken's
body is red.

OMG-LLaVA
Answer: A

Answer: BAnswer: The chicken's
body is red.

a

b

c LLaVA-G

Figure 2: Shortcomings of pixel-level MLLMs. (a) The first shortcoming of pixel-level MLLMs is
the degraded performance in visual question answering. (b) The second shortcoming of pixel-level
MLLMs, which relates to the first, is the degraded performance in instruction following, where the
question is instructing the model to generate one letter from the options. Even when the model tries to
answer the question it still fails to properly answer with one option letter. (c) The third shortcoming
of pixel-level MLLMs is the degraded performance in pixel-level visual grounding in certain models.
The predicted segmentation masks corresponding to the [SEG] token/s are highlighted in red.

Then, x, y are the number of input language tokens before and after the visual tokens, respectively,175

while hw are the height and width of the input image. Only the attention corresponding to the visual176

tokens of length hw is used, and these attention maps are averaged across the layers and heads,177

resulting in Āi ∈ [0, 1]h×w. This is further normalized across all the output, Ãi = Āi − 1
N

∑N
j=1 Āj178

for N output tokens. The attend and segment depends on using the spaCy natural language processing179

tool Honnibal et al. (2020) to identify the noun phrases and associate them with the ground-truth180

referring expressions. Thus, the spaCy embeddings closest to the ground-truth expression are used181

in the mask selection. This is followed by extracting the maximum attention point to feed into182

SAM Kirillov et al. (2023) as a point prompt.183

For our baseline and upper bound, we build upon the previous pipeline and build an oracle upper184

bound and an automatic baseline. We introduce two main modifications to account for our observation185

that the correct grounding can occur with different output tokens describing the object, not necessarily186

aligning with the exact ground-truth expression. The first modification is to inspect all the output187

tokens without relying on spaCy embeddings. In the oracle we rely on the ground-truth mask to188

select the correct token and its corresponding segmentation with the highest intersection over union as189

an upper bound. The automatic baseline uses a simple but powerful mechanism where we highlight190

the predicted masks on the original image to show the potential object of interest. This is followed191

by feeding these images to a multi-modal LLM to inquire which is best in highlighting this object.192
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Image Referring Expression Concept Category Noun Phrase Output

1 the butterfly’s wings Color & Appearance orange wings In the image, there is a
butterfly with orange wings.

3 the flame of the match Location & Position the top
The flame of the match is located
at the top of the image, surrounded
by darkness.

6 the dog’s face Color & Appearance a black and white dog
The dog’s face in the scene is a
black and white dog with a black
nose.

161 the minute hand of the clock Location & Position the 12 o’clock position
The minute hand of the clock in the
scene is located at the 12 o’clock
position.

1 3 6 161

Random First Second Third

0

20

40

26.4

38 37.9 37.3

Oracle + Point Selection Variants

M

Prompts Ablation

Figure 3: Examples of concept categories where the grounding emerges in PixMMVP using LLaVA
1.5 (7B). Top: referring expression, output response, noun phrases and concepts corresponding to the
grounding using the oracle selection. Bottom: the four images with predicted segmentation mask,
highlighted in red, using the oracle selection. The input point prompt highlighted as a black circle. It
shows the segmentation of the referring expression emerging in different output noun phrases than
the original expression. The final plot at the bottom shows the ablation on the different input prompts
to SAM using a random input point vs. the maximum attention point (First) vs. the second vs. the
third maximum, paired with our oracle selection. M: mean intersection over union.

Specifically, we use the following prompt “Select the image that has <EXPR> best highlighted in193

red color than the others? Answer with a number from 1 to <N> and mention the number only.194

<IMG>”, where <EXPR> and <IMG> are the ground-truth expression and the image tokens195

respectively. In our automatic baseline, we rely on GPT-4o for the mask selection, refer to the App. E196

for the mask selection results using the open source Cambrian (8B). The second modification, since197

SAM has a good understanding of point prompting ambiguity, we process three potential masks for198

each prompt instead of one. This enables us to utilize the power of SAM in identifying fine-grained199

objects and referring expressions that tend to surpass what other MLLMs do, even those trained with200

pixel-level grounding supervision. Figure 3 shows qualitative results where the segmentation emerges,201

corresponding to output tokens describing the object in terms of color or location instead of the exact202

ground-truth referring expression, motivating our oracle and automatic baseline. Interestingly, our203

oracle enables a quantifiable study of this phenomenon that can better interpret these MLLMs.204

4 Experiments205

4.1 Experimental Setup206

Evaluation benchmarks, protocols and metrics. PixMMVP is composed of 300 images paired with207

questions, choices, referring expressions and segmentation masks, while PixCV-Bench has 1,438208

images with their corresponding annotations similarly. On each benchmark, we evaluate the VQA and209

visual grounding capabilities following three probing techniques and report their metrics. The first210

probing is to evaluate the VQA ability, where the accuracy is computed using GPT-4o following Tong211

et al. (2024b) as, A†. If the model generates a segmentation without explicitly asking it to, it is212

evaluated with respect to the ground-truth referring segmentation in terms of mean intersection213

over union as M†. The second probing prompts the model to identify the referred expression then214

evaluates the mean intersection over union reported as M. The third probing following Tong et al.215

(2024a) instructs the model to generate a single option letter and evaluate the accuracy directly without216

GPT-4o, reported as A. There is a need for the first probing since some of the recent pixel-level217

MLLMs face challenges in following instructions. We evaluate the score of each model, S , which is218
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Method PixGr. PixMMVP PixCV-Bench
A† A M† M S A† A M† M S

LLaVA 1.5 (7B) 7 27.3 28.0 - - - 17.4 60.3 - - -
LLaVA 1.5 (13B) 7 39.3 30 - - - 14.5 61.4 - - -
Cambrian (8B)* 7 52.0 52.0 - - - 62.2 72.2 - - -
OMG LLaVA (7B)** X 12.0 12.0 17.8 38.0 18.2 12.0 42.1 - 50.5 45.9
GLAMM (7B) X 1.3 2.7 31.5 47.4 5.1 - - 30.2 51.9 -
GLAMM - RegCap (7B) X 12.7 6.7 14.5 18.6 15.1 27.8 54.4 3.6 7.4 13.0
LISA (7B) X 7.3 - 18.1 42.9 12.5 3.7 - 16.8 48.1 6.7
LLaVA-G (7B) X 9.3 - 17.8 13.5 12.2 14.1 4.4 1.7 17.6 15.8
LLaVA 1.5 (7B) + (a+s) 7 27.3 28.0 11.1 11.2 16.0 17.4 60.3 5.2 15.7 24.9
LLaVA 1.5 (13B) + (a+s) 7 39.3 30 9.8 11.4 17.7 14.5 61.4 4.7 14.9 24.0
Cambrian (8B)* + (a+s) 7 52.0 52.0 14.3 15.1 23.4 62.2 72.2 18.6 15.9 29.6
PixFoundation (7B) (Ours) 7 27.3 28.0 18.8 25.9 26.9 17.4 60.3 5.4 28.5 38.7
PixFoundation (13B) (Ours) 7 39.3 30 16.9 25.0 30.6 14.5 61.4 4.8 27.6 38.1
PixFoundation (8B)* (Ours) 7 52.0 52.0 29.6 30.3 38.3 62.2 72.2 23.9 33.1 45.4
Upper Bound - Oracle Selection
PixFoundation† (7B) (Ours) 7 27.3 28.0 26.1 38.0 32.2 17.4 60.3 6.3 49.7 54.5
PixFoundation† (13B) (Ours) 7 39.3 30 23.6 38.2 38.7 14.5 61.4 5.3 50.6 55.5
PixFoundation† (8B)* (Ours) 7 52.0 52.0 52.0 56.1 54.0 62.2 72.2 54.3 64.4 68.1

Table 1: PixMMVP and PixCV-Bench benchmark evaluation of pixel-level MLLMs and baselines.
We evaluate the VQA accuracy in the first and third probing (i.e., A† and A resp.). Additionally,
we evaluate pixel-level visual grounding with output segmentation in the first two probing (i.e., M†
and M resp.). *, **: models using Llama 3 (8B) and InternLM2 (7B) respectively, unlike the rest
that are relying on Vicuna (7B and 13B) for the base LLM. - : indicates either the model can not
be evaluated in that setting, or has low results below 1% showing complete failure in that setting.
S: denotes the score of the MLLM that is the harmonic mean of max(A,A†) and. max(M,M†).
PixGr.: pixel-level grounding training. The oracle results are highlighted in red, the best and second
best are bolded and underlined respectively.

the dorsal fin of the animal

(a) OMG-LLaVA (7B) (b) LISA (7B) (c) GLAMM (7B) (d) LLaVA-G (7B) (e) PixFoundation† (7B)

Figure 4: PixMMVP qualitative comparison in pixel-level visual grounding following the second
probing technique. The referred expression is shown on top. It shows that mining for the grounding
within the attention maps of vanilla MLLMs using their upper bound is better than MLLMs trained
with pixel-level supervision, without degrading their VQA abilities. Thus, questioning whether the
current training recipes and specialized decoders in pixel-level MLLMs are in the right direction.

the harmonic mean across the maximum of both pixel-level visual grounding and VQA,219

S =
2

1
max(A,A†) +

1
max(M,M†)

. (1)

We mainly focus on evaluating four state-of-the-art pixel-level MLLMs; LISA Lai et al. (2024),220

GLAMM Rasheed et al. (2024), OMG-LLaVA Zhang et al. (2024b) and LLaVA-G Zhang et al.221

(2024a). For GLAMM we use two variants; the original model (GLAMM) and the one fine-tuned for222

region-level captioning (GLAMM-RegCap). For details on the models’ weights, refer to App. A.223

Baselines and upper bound implementation details. We evaluate: (i) the attend and segment (a+s),224

(ii) the oracle selection relying on the highest intersection over union in selecting the predicted masks225

(PixFoundation†), and (iii) the automatic selection (PixFoundation). These are implemented on top226

of three base MLLMs, which are LLaVA 1.5 (7B, 13B) Liu et al. (2024) and Cambrian-1(8B) Tong227

et al. (2024a). The automatic selection is implemented using GPT-4o. App. A has more details.228

7



VQA - Fail Grounding - Fail Both - Fail Both - Success

0

50

100

Failures

Fr
eq

ue
nc

y

OMG-Llava (7B) Llava-G (7B) LISA (7B) GLaMM (7B) GLaMM† (7B)
Llava (13B) Llava (7B) Cambrian (8B)

Figure 5: Frequency of failures in both visual grounding and VQA vs. VQA failures only vs.
grounding only. For visual grounding, IoU < 0.5, is considered as a failure.
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Figure 6: Analysis on when grounding emerges on PixMMVP benchmark using the three base
MLLMs, LLaVA 1.5 (7, 13B) and Cambrian-1 (8B), that were not trained with pixel-level grounding
supervision. We follow the second probing, then report the oracle selection. Analysis on: (a) the
output location and (b) the output concept category, which coincides with the best segmentation.

4.2 Are the current pixel-level MLLMs heading in the right direction?229

In order to answer this, we evaluate each of these pixel-level MLLMs capability in VQA in challenging230

tasks. Additionally, we evaluate their ability to visually ground the objects of interest in these231

questions. Table 1 shows the results on the challenging PixMMVP and PixCV-Bench. From the232

accuracy of VQA, MLLMs that are not trained with pixel-level grounding surpass their pixel-level233

counterpart with up to 14%. The best in pixel-level MLLMs score in this aspect is GLAMM-234

RegCap Zhang et al. (2024b) yet it has degraded ability to generate segmentation. On the other hand,235

when looking at pixel-level visual grounding, we find the best model, GLAMM Rasheed et al. (2024),236

has a weak ability in VQA or following instructions. Moreover, it shows LISA and LLaVA-G are237

mostly incapable of following the instruction to output the option letter reported in A. OMG-LLaVA238

strikes the right balance in both VQA and pixel-level grounding with the highest score, S, within239

pixel-level MLLMs. However, looking at the bottom three rows, the oracle confirms that MLLMs240

that were never trained with pixel-level grounding have the correct grounding within their learned241

attention maps, refer to Fig. 4. Additional qualitative analysis is in App. B. Looking at the final score,242

S, the oracle variant, PixFoundation† (7B), outperforms the corresponding best pixel-level MLLM,243

OMG-LLaVA (7B), by a considerable margin, while the automatic outperforms it with up to 8% on244

PixMMVP. Furthermore, the attend and segment baseline Cao et al. (2024) lags behind our automatic245

method by more than 10%. Refer to App. C for additional results and App. D for failure analysis.246
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Finally, we evaluate whether the failures of these MLLMs occur in visual grounding, VQA or both.247

Figure 5 shows the frequency of failures per category, where the majority stem from failures in both,248

especially in the pixel-level MLLMs. The vanilla MLLMs perform better in the VQA than grounding.249

Summary. In summary, pixel-level grounding supervision with specialized segmentation decoders250

degrades MLLMs ability in VQA and sometimes even their generalization in grounding. We show that251

MLLMs trained with pixel-level supervision lag behind vanilla MLLMs using simple mechanisms to252

extract grounding, and the oracle indicates there is an opportunity to improve this. Moreover, we253

show that grounding might not coincide with the noun phrase most similar to the referred expression,254

where our oracle upper bound and automatic baseline both surpass the attend and segment.255

4.3 When does grounding emerge in MLLMs?256

When - location. Taking into account the powerful performance of the oracle upper bound, it begs257

the question of when grounding emerges. We start by looking at when it emerges in terms of the258

location. We analyze the word/phrase location with respect to the full output text in terms of a259

percentage of its total length (i.e., 0% means the beginning of the text). Accordingly, Fig. 6a shows260

the location percentages histogram, binned at 10%, for the three base MLLMs reporting the oracle261

selection and evaluating on PixMMVP benchmark using the second probing. In the LLaVA 1.5262

variants, the highest grounding is at the last 40%, while for Cambrian it is at the last 60%.263

When - concept. For the second analysis, we look into the concept category that the correct output264

word/phrase corresponds to. The previous assumption in other works is that grounding emerges in265

the exact noun/noun phrase of the object of interest. Except our analysis confirms that this is not266

necessarily the case. We take the correct noun/noun phrase where the grounding emerges based on267

the oracle from all three variants, then we pass it to GPT-4o to request a grouping of these concepts.268

It result in six main groups, which are: (i) color and appearance, (ii) location and position, (iii) object269

parts, (iv) context and setting, (v) objects and entities, and (vi) State. We then prompt for each of270

the noun/noun phrases, GPT-4o, to categorize it within these six categories. The histogram of the271

occurrences of these concept categories is shown in Fig. 6b. It conveys that in certain scenarios, the272

correct output when grounding emerges can be describing the position or the color of the object, not273

necessarily the exact referring expression. Fig. 3 shows qualitative examples of these scenarios. We274

can see in PixMMVP up to 45% of the examples exhibit this phenomenon, referring to Fig. 6b and275

computing the percentage of examples that are not under the concept “Objects and Entities”. Results276

for PixCV-Bench are provided in App. E with up to 27% of the examples showing similar behaviour.277

Random vs. best. Our baselines rely on the maximum attention per output noun phrase to prompt278

SAM for the segmentation mask. Nonetheless, as a lower bound analysis, we evaluate the performance279

if we use a random point as a prompt instead. For fair comparison, we generate random points with280

the count of output masks that the oracle has to select among (i.e., the number of the output noun281

phrases). We conduct this ablation on PixMMVP using LLaVA 1.5 (7B) base MLLM, with random282

point prompts followed by the oracle selection among their SAM masks. Figure 3 prompts ablation,283

shows that random + oracle lags behind the correct one using the maximum point (i.e., First) with284

around 12%. More importantly, we confirm the stability of the results if we select the second-best or285

third maximum attention (i.e., Second and Third), which are on par with the maximum point.286

Summary. In summary, we found that emergent grounding might not coincide with the input referring287

expression. We show that grounding in MLLMs can emerge in the noun phrase that corresponds to288

color, position or other characteristics of the object of interest.289

5 Conclusion290

We propose two benchmarks showing that pixel-level MLLMs degrade the ability in VQA and even291

grounding of fine-grained objects. Thus, our results question whether we are heading in the right292

direction with these models. Additionally, we provide powerful baselines with improved scores293

without training for pixel-level grounding. Our paired benchmarks and evaluation pave the road294

towards better interpretability and benchmarking efforts. We leave it for future work to investigate the295

use of pixel-level supervision, the training recipes and the use of specialized segmentation decoders296

when building pixel-level MLLMs, relying on our benchmarks.297
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the front of the school bus the dorsal fin of the animal the window on the school bus the spider’s legs the spots on the animal

mouse, keyboard (annotated by
the red box)

bottle
.

chair (annotated by the red box),
kite

glass,
drinking glass

Figure 7: Examples of ground-truth annotations for referring expressions in the respective object of
interest in the question and their segmentation masks. First row: PixMMVP examples, Second row:
PixCV-Bench examples. Ground-truth highlighted in green.

A Additional implementation details391

In this section, we cover additional details about our proposed datasets and the implementation of the392

evaluation setup and baselines. We also refer to the output from the questions of the three probing393

techniques in the supplementary material for all the studied models.394

Datasets. Our proposed datasets, PixMMVP and PixCV-Bench, are composed of ground-truth395

referring expressions describing the object of interest in the respective question and its segmentation396

mask. We show in Fig. 7 examples of these ground-truth annotations for both datasets. It shows the397

challenging scenarios in pixel-level visual grounding, which is strongly tied to the visual question398

answering task, since an integral part of answering these questions requires the grounding of the399

object/s of interest.400

Models. We also detail the model checkpoints we use for the four pixel-level MLLMs and their401

variants, retrieved from HuggingFace Wolf et al. (2019) in Table 2. These also include the model402

checkpoints used for the base MLLMs that were not trained with pixel-level visual grounding. It403

is worth noting that for GLAMM we use two variants (FullScope and RegCap) since their base404

model (i.e., FullScope) has low performance in the visual question answering task. As such, we405

use the other variant for GLAMM that was fine-tuned for region-level captioning using RefCOCOg.406

Furthermore, we provide details on the oracle selection mechanism, we discard the cases where the407

ground-truth segmentation is all background in the when analysis, since there is no ground-truth408

grounding emerging to evaluate against. While in the quantitative and qualitative evaluation, we409

resort to simply not selecting any mask. These occur in a few cases in PixMMVP.410

Additionally, we provide details on the SAM model that is used in the three baselines and upper411

bounds in our benchmarks, where we use the ViT-H variant. Finally, we provide an illustrative412

example of our automatic selection mechanism with the corresponding predictions on PixMMVP413

using LLaVA 1.5 (7B) in Fig. 8. Our automatic selection goes through an iterative process of414

prompting the selected MLLM, in our case GPT-4o, with N images highlighted with the predicted415

segmentation to select the best within each group of three. In the final stage, the best images are used416

to prompt the MLLM to select the final mask that best describes the object of interest. In the oracle417

upper bound, whenever the model is to be evaluated in a multiple object scenario, we take all the418

possible pairs of the masks and select the best pair based on the highest intersection over union.419

Evaluation. We also provide the details on computing the visual question answering accuracy using420

GPT-4o in the first protocol Tong et al. (2024b). We use the following prompt: “Given the following421

question <QUESTION>, the correct answer is <ANSWER>. Does the following answer correctly422

answers the question, answer: <RESPONSE>? Respond with a Yes/No”. Note that all our inference423

and evaluation were conducted on an A600 84G GPU-equipped machine.424
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Model Name Model Checkpoint
LISA xinlai/LISA-7B-v1-explanatory
GLAMM MBZUAI/GLaMM-FullScope
GLAMM-RegCap MBZUAI/GLaMM-RegCap-RefCOCOg
LLaVA-G Haozhangcx/llava_grounding_gd_vp
LLaVA 1.5 (7B) liuhaotian/llava-v1.5-7b
LLaVA 1.5 (13B) liuhaotian/llava-v1.5-13b
Cambrian-1 (8B) nyu-visionx/cambrian-8b

Table 2: Hugging Face model checkpoints used in our benchmarks.

...

... ...

Multi-Modal Large
Language Model

Multi-Modal Large
Language Model

Multi-Modal Large
Language Model

Select the image that has the flame of the match best
highlighted in red color than the others? Answer with a
number from 1 to <N>. Mention the number only.

Prompt

Prompt Prompt
Automatic Mask

Selection

Figure 8: The automatic selection baseline, PixFoundation, which uses a simple mechanism of
highlighting the predicted masks in red then prompting a multi-modal large language model to select
the right mask from the group of highlighted images, followed by the final mask selection.

B Additional qualitative analysis425

In this section, we provide a qualitative ablation of our baselines and a visualization of the attention426

maps that can show how vanilla MLLMs are reasoning on the question they are answering. Addition-427

ally, we provide qualitative examples showing when grounding emerges in these vanilla MLLMs.428

Finally, we provide more examples on PixMMVP and PixCV-Bench benchmarks.429

B.1 Baselines ablation430

We show the qualitative ablation among the two baselines and upper bound using the best base431

MLLM Cambrian-1 (8B) in Fig. 9 on PixMMVP. The three confirm that there is grounding emerging432

in MLLMs that were not trained with pixel-level grounding supervision. Nonetheless, it shows that433

identifying when that grounding emerges is equally important in retrieving the best segmentation434

of the referring expression. The first baseline, attend and segment, assumes the alignment between435

the attention map that can be mined for the segmentation mask and the noun phrase that has the436

highest correspondence to the ground-truth category or noun phrase. Our findings quantitatively and437

qualitatively show otherwise, where grounding can emerge in different output tokens. It also shows438

the oracle upper bound for mask selection, PixFoundation†, exhibiting better segmentation than the439

attend and segment, confirming the aforementioned finding. Additionally, it shows that our simple440

automatic mechanism, PixFoundation, surpasses the attend and segment as well on PixMMVP.441
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Attend and Segment Cao et al. (2024) (Cambrian-1 (8B))

PixFoundation (Cambrian-1 (8B))

PixFoundation† (Cambrian-1 (8B))

(a) (b) (c) (d)

Figure 9: Baselines and upper bound ablation using the base MLLM, Cambrian-1 (8B), ablating the
different schemes for mask selection. We use the second probing to prompt the MLLM to identify
the referred expression. The referring expressions for these examples are as follows: (a) the key “z”,
(b) the key “z”, (c) people, (d) the elderly person. Predictions are highlighted in red.

the yellow skin blue overalls goggles

six legs the front legs a hairy texture

Figure 10: Normalized attention maps visualization showing the noun phrase and its corresponding
attention in the output text for two PixMMVP examples using Cambrian-1 (8B) base MLLM. While
the attention maps can not be directly used as segmentation, yet it provides initial locations for the
maximally attended pixels corresponding to what the model is looking at. In certain scenarios it
exactly aligns with the noun phrase describing it as in the two examples. Yet in certain scenarios as
we showed earlier, the grounding of the referred expression in question emerges with other noun
phrases describing it.

B.2 Attention maps visualization442

In this section, we visualize the normalized attention maps, Ã, in Fig. 10. We show two examples for443

Cambrian-1 (8B) from PixMMVP using the first probing where we directly prompt the model with444

question and options. The first row shows outstanding ability to visually ground the different noun445

phrases from the output text. The full output text of the first row example is: “The image provided is446

a cake designed to resemble a minion from the D̈espicable Mef̈ranchise. It is not a living creature447

and therefore cannot smile or have a tongue out. The cake is an inanimate object, crafted to mimic448

the appearance of a minion, which is a fictional character from the animated movie series. The449

design elements such as the yellow skin, blue overalls, and goggles are characteristic of the minions’450

appearance in the films.” The visualization shows how the maximally attended locations for the last451

three noun phrases correspond to the correct locations in the image.452
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The second output text corresponding to the example shown is; “The butterfly’s feet, also known as453

tarsi, are not distinctly visible in this image due to the angle and the butterfly’s wings being open.454

However, we can infer their presence and approximate location. Monarch butterflies have six legs,455

with the hind legs being the longest and the front legs being the shortest. The legs are typically456

slender and have a hairy texture, which aids in gripping onto surfaces. In this image, the legs are457

likely located at the bottom of the butterfly’s body, just below the abdomen, and are probably in458

contact with the leaf it is perched on.” The attention maps highlight what we suspect is a failure459

where the MLLM mistakes the antenna of the butterfly for front legs. Such hidden failures that do not460

necessarily affect the correctness of the answer, are still important to study and we believe our tool461

with the oracle upper bound can be used to inspect this further. Finally, we find that these attention462

maps in both examples are not sufficiently accurate to be used for segmentation directly, yet when463

paired with a powerful segmentation method like SAM it provides a good segmentation performance.464

B.3 When does grounding emerge?465

We show additional examples of when grounding emerges in multi-modal large language models,466

specifically in the LLaVA 1.5 (7B) variant, using the second probing to prompt the model to segment467

what is in the referring expression. Figures 11, 12, 13 and 14 show the corresponding predicted468

masks for the grounding that emerged, highlighted in red with the maximum attention point as a black469

circle. Figure 3 shows the aforementioned four examples with the referred expression, the concept470

category and the noun phrase corresponding to the best grounding using the oracle selection and the471

full output text. It clearly shows that the correct output token can correspond to location or color,472

but not necessarily the ground-truth referring expression. While some of the noun phrases and their473

masks, from the SAM point prompting, correspond to what the noun phrase is describing. It is not474

always the case, for example, in Fig. 13 “the flame” was not able to highlight the correct object, yet it475

appeared in the noun phrase corresponding to the location “the top”. While few scenarios might have476

the grounding coinciding with multiple noun phrases, such as in Fig. 11, “a butterfly” and “orange477

wings”. Nonetheless, it is still an important insight that the segmentation can emerge corresponding478

to noun phrases that do not correspond to the exact referred expression. Our PixFoundation† serves479

as an interesting tool to interpret and understand how MLLMs work and reason to produce the final480

output with the oracle selection as an upper bound.481

In summary, we provide four strong evidence that grounding can emerge corresponding to noun482

phrases that do not match the exact referred expression, as follows: (i) The attend and segment that483

rely on SpaCy embeddings lag behind our automatic and oracle mask selection, indicating that the484

noun phrases closest to the referred expressions are not necessarily where the optimal segmentation485

emerges. (ii) We show quantitative analysis on the location and the concept categories of the noun486

phrases where the grounding emerge that confirm the previous result. Where we show 45% of the487

examples in PixMMVP and 27% in PixCV-Bench have grounding emerging to noun phrases that are488

not describing objects and entities. (iii) We show qualitative analysis to confirm this further. (iv) We489

also provide the results for a simple analysis that compares the noun phrases text, where grounding490

is emerging, to the input referred expression text, where we find a mismatch between both with up491

to 92% in PixMMVP. However, the first two results better reflect the right metric to evaluate when492

grounding emerges, as they take into account noun phrases that might have similarities to the input493

referred expression with minor differences and same meaning.494

B.4 PixMMVP benchmark495

Figure 15 shows additional results on PixMMVP benchmark comparing different pixel-level MLLMs496

with our oracle baseline using LLaVA 1.5 (7B). While GLAMM shows strong pixel-level visual497

grounding yet we have shown earlier that it is almost incapable of visual question answering which498

renders the model weak for general purpose tasks. On the other hand, OMG-LLaVA shows a499

better balance in pixel-level visual grounding and visual question answering as previously detailed.500

Nonetheless, the simple mining of attention maps from LLaVA 1.5 (7B) using the oracle selection501

which we call PixFoundation† shows the strongest capability in both grounding and VQA. In fact,502

certain MLLMs that were trained with pixel-level visual grounding, such as LISA, have degraded the503

performance with respect to the hidden information already existing in powerful MLLMs that were504

not trained with such supervision.505
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the image

a butterfly

orange wings

Figure 11: First example of when grounding emerges, corresponding to Image 1 in Fig. 3. Each row
has the corresponding noun phrase on top and three potential SAM predicted masks highlighted in
red using the maximum attention point of this noun phrase as a point prompt, highlighted as a black
circle. It shows the output from mining the attention maps for pixel-level grounding using LLaVA
1.5 (7B) base MLLM.

Model Name Probing Output Length # Noun Phrases
LLaVA 1.5 (7B) First 44.2 2.3
LLaVA 1.5 (13B) First 45.3 2.4
Cambrian-1 (8B) First 313.8 15.2
LLaVA 1.5 (7B) Second 92.6 5.2
LLaVA 1.5 (13B) Second 97.2 5.5
Cambrian-1 (8B) Second 561.3 27.3

Table 3: The average output length across PixMMVP dataset for the three base MLLMs using the
first and second probing techniques.

B.5 PixCV-Bench benchmark506

Figure 16 shows qualitative results on PixCV-Bench. It shows that pixel-level MLLMs struggle507

with segmenting the object annotated by the red box unlike our oracle baseline, PixFoundation†.508

Indeed the attention maps from these MLLMs are looking at the right object annotated by the red box509

without receiving any pixel-level grounding supervision during training.510

C Analysis on the output length511

In this section, we provide additional analysis on the output length on average through PixMMVP512

dataset using the first and second probing schemes. Specifically, we report the output length as the513

number of characters in the output, and the number of noun phrases extracted from it. The reason514

to study this, since it has relation to the number of noun phrases and consequently the number of515

masks our baselines are selecting among. Table 3 shows the average output length computed across516

PixMMVP dataset, comparing the three base MLLMs. We notice that Cambrian-1 (8B) generates517

longer outputs with a considerable margin than LLaVA variants. Hence, we believe the superiority518

of the oracle upper bound with Cambrian-1 in the grounding has strong correlation to producing519

longer outputs with more attention maps to mine and select from, than LLaVA variants. Nonetheless,520

it makes it more challenging for the automatic baseline.521
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the dog’s face

the scene

a black and white dog

a black nose

Figure 12: Third example of when grounding emerges, corresponding to Image 6 in Fig. 3. Each row
has the corresponding noun phrase on top and three potential SAM predicted masks highlighted in
red using the maximum attention point of this noun phrase as a point prompt, highlighted as a black
circle. It shows the output from mining the attention maps for pixel-level grounding using LLaVA
1.5 (7B) base MLLM.

D Failure Cases Analysis522

In this section, we conduct additional failure case analysis of pixel-level MLLMs and our baselines523

qualitatively and quantitatively.524

D.1 Failures in Visual Question Answering525

We start with a fine-grained quantitative analysis of how the studied models perform across PixMMVP526

and PixCV-Bench. For PixMMVP we follow their scheme to identify the nine visual patterns and527

report the model’s accuracy with each pattern in Fig. 17. Similarly, we show fine-grained analysis528

relying on the tasks for the two datasets (ADE20K and COCO) in Fig. 18.529

PixMMVP results show that the majority of pixel-level MLLMs, highlighted in blue, suffer in the530

state, orientation and quantity related tasks. On the other hand, relational context, color and presence531

of features show the best performance with pixel-level MLLMs. Nonetheless, across all the visual532

patterns, the MLLMs that were not trained with pixel-level supervision persistently surpass these533

pixel-level MLLMs with a considerable margin. PixCV-Bench, similarly shows the count task is534

more challenging than the relational positioning. It also shows that ADE20K dataset serves as a more535

challenging dataset than COCO.536

D.2 Failures in Pixel-level Visual Grounding537

Finally, we show qualitatively the failure cases of the oracle upper bound in Fig. 19. It shows failures538

in segmenting all the object instances in the first row, since the current point prompting assumes one539
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The flame

the match

the top

the image

darkness

Figure 13: Second example of when grounding emerges, corresponding to Image 3 in Fig. 3. Each
row has the corresponding noun phrase on top and three potential SAM predicted masks highlighted
in red using the maximum attention point of this noun phrase as a point prompt, highlighted as a
black circle. It shows the output from mining the attention maps for pixel-level grounding using
LLaVA 1.5 (7B) base MLLM.

connected component corresponding to each expression. However, certain scenarios, such as the540

image with the spots on the animal, can lead to these failures in the oracle even when the localisation541

of some of these is correct. Mechanisms that solve this multi instance scenarios of the same object542

are left for future work.543

Another failure occurring such as in the second row stems from ambiguity in the referring expression544

itself or failures from SAM identifying the separation between the wall and the ceiling. Hence, the545

oracle upper bound is generally inheriting SAM failures. However, its main purpose of showing that546

the hidden information within powerful MLLMs is sufficient to perform pixel-level grounding is547

achieved, and even surpassing pixel-level MLLMs without degrading their VQA abilities.548

E Additional quantitative analysis549

E.1 Automatic baseline using open-source models550

In our automatic baseline, we replace GPT-4o, which is a closed source model, with another open-551

source model, in our case Cambrian-1 (8B). Table 4 shows the results on PixMMVP for PixFoundation552
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The minute hand

the clock

the scene

the 12 o’clock position

Figure 14: Fourth example of when grounding emerges, corresponding to Image 161 in Fig. 3. Each
row has the corresponding noun phrase on top and three potential SAM predicted masks highlighted
in red using the maximum attention point of this noun phrase as a point prompt, highlighted as a
black circle. It shows the output from mining the attention maps for pixel-level grounding using
LLaVA 1.5 (7B) base MLLM.

Method PixMMVP
A† A M† M S

OMG LLaVA (7B)** 12.0 12.0 17.8 38.0 18.2
LLaVA 1.5 (7B) + (a+s) 27.3 28.0 11.1 11.2 16.0
LLaVA 1.5 (13B) + (a+s) 39.3 30 9.8 11.4 17.7
Cambrian (8B)* + (a+s) 52.0 52.0 14.3 15.1 23.4
PixFoundation? (8B)* (Ours) 52.0 52.0 17.2 18.9 27.7

Table 4: PixMMVP comparison of pixel-level MLLMs to our automatic baseline that relies on
Cambrian-1 (8B), an open-source model, for the automatic selection (PixFoundation?). Instead of
using GPT-4o, which is closed source. Best results are bolded.

automatic baseline that still surpasses the best pixel-level MLLM, OMG-LLaVA, without the use553

of pixel-level supervision. More importantly, this baseline confirms that even with the use of a self-554

contained model as Camrbian-1, without additional help from GPT-4o in a training-free mechanism,555

it can still compete with these pixel-level supervised models.556

E.2 When grounding emerges - PixCV-Bench557

In Fig. 20a we show the analysis on when grounding emerges on PixCV-Bench in terms of the558

frequency of the grounding location. It is worth noting that PixMMVP is more challenging than559

PixCV-Bench, evidently from the reported IoU and accuracy metrics on both with respect to Table 1.560

It seems on the less challenging dataset PixCV-Bench, grounding tends to emerge frequently near the561

beginning of the output. This might relate to PixMMVP being more challenging in terms of the level562
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the butterfly’s feet

the window on the school bus

the window on the school bus

the yellow animal’s head

the yellow animal’s head

(a) OMG-Llava (b) LISA (c) GLAMM (d) Llava-G (e) PixFoundation† (7B)

Figure 15: PixMMVP qualitative comparison between the pixel-level visual grounding following
the second probing. The referred expression used in the segmentation is shown on top of each
row. It shows persistently that mining for the grounding within attention maps of MLLMs that
were not trained with pixel-level grounding supervision and using the oracle selection outperforms
the pixel-level MLLMs. It clearly shows the oracle excels in identifying fine-grained object parts
and descriptions that other pixel-level MLLMs are not necessarily capable of. The second best
performance is GLAMM, yet we showed it is completely incapable of performing visual question
answering unless fine-tuned for the region captioning task at which then it loses its grounding ability.

of reasoning than PixCV-Bench or the fact that PixMMVP poses a harder referring segmentation task563

than PixCV-Bench, which is mostly using the class names. Another difference is that PixMMVP is out564

of the distribution of the seen datasets for these MLLMs. However, the consistent finding among both565

datasets is that grounding can emerge coinciding with various concept categories, whether location,566

color or state, as shown in Fig. 20b. It shows that up to 27% of the examples in PixCV-Bench exhibit567

this behaviour. Note that across this analysis, we compute the frequency per object in the referred568

expression corresponding to the visual question. Hence, if we have two objects in one visual question,569
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cell phone

mouse and keyboard (annotated by the red box)

sports ball and person (annotated by the red box)

chair and cell phone

(a) OMG-Llava (b) LISA (c) GLAMM (d) Llava-G (e) PixFoundation† (7B)

Figure 16: PixCV-Bench qualitative comparison between the pixel-level visual grounding following
the second probing. The referred expression used in the segmentation is shown on top of each row. It
shows similar to PixMMVP that mining for the grounding within MLLMs that were not trained with
pixel-level grounding supervision paired with the oracle selection outperforms pixel-level MLLMs.

such as in the relative positioning questions, each object’s concept, corresponding to the emergence,570

is computed as part of our analysis.571

F Licences and Assets572

We use the MMVP and CV-Bench (2D) that were provided in their original works Tong et al.573

(2024b,a). The first is licensed under a MIT License that allows its use without restriction for research574

purposes. The second refers to the OpenAI Terms of Use for the instruction tuning dataset, which575

we do not employ and the specific licenses for base language models for checkpoints trained using576

the dataset (e.g. Llama community license for LLaMA-3, and Vicuna-1.5). They do not impose any577

additional constraints beyond those stipulated in the original licenses. Finally, all the studied models’578

trained weights were retrieved from HuggingFace as detailed earlier.579

G Impact Statement580

Multi-modal large language models are widely used in various applications, such as robotics, medical581

image processing and remote sensing. The pixel-level understanding within such MLLMs is necessary582

for such applications that require the localization and even in certain scenarios the delineation of the583

boundaries for the objects of interest. It is even more important to maintain a good chat performance584
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Figure 17: Fine-grained analysis of the studied models performance across the different visual pattern
in PixMMVP showing the model’s accuracy with each pattern.
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Figure 18: Fine-grained analysis of the studied models performance across the different visual
patterns in PixCV-Bench (ADE20K and COCO), showing the model’s accuracy with each pattern.

and visual question answering ability in such applications as well. In our work, we have investigated585

the shortcomings of pixel-level MLLMs while providing more challenging benchmarks for these, to586

improve them further.587

However, as with many other AI advancements there are risks that could be entailed from the588

deployment of such models. There could be inherent biases emerging in such pixel-level MLLMs589

impacting various under-represented groups. We think that our benchmarking efforts and providing a590

tool to understand the pitfalls in the understanding and reasoning of these models could be an initial591

direction for mitigating such biases. Nonetheless, we leave it for future work to explore this further.592

H Limitations593

Note that our training-free baselines do entail a computational overhead with the use of the mask594

selection process. Nonetheless, the benefit from exploring what is already learned in these MLLMs595

through mining the attention maps with an understanding of when grounding emerges, provides596

greater benefit to interpretability. Where we believe interpretability of MLLMs is a crucial aspect597

when following a responsible approach to AI. Additionally, these baselines are mainly designed as598
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the spots on the animal the spots on the animal the pills the pills

the words “SCHOOL BUS” the words “SCHOOL BUS” the wall behind the bed the wall behind the bed

Figure 19: Failures of the oracle upper bound, PixFoundation†, using Cambrian-1 (8B) as base
MLLM on PixMMVP. It shows the failures mostly emerge in quantity or counting tasks. It also shows
that the upper bound is inheriting SAM failures and the ambiguity arising in the referred expression
itself, e.g., “the wall behind the bed”, which direction does “behind” indicate.
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Figure 20: Analysis on when grounding emerges on PixCV-Bench benchmark using the three base
MLLMs, LLaVA 1.5 (7, 13B) and Cambrian-1 (8B), that were not trained with pixel-level grounding
supervision. We follow the second probing then report the oracle selection. Analysis on: (a) the
output location and (b) the output concept category, that coincides with the best segmentation.

strong baselines in our paired benchmarks and to showcase the shortcomings in the current pixel-level599

MLLMs.600
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NeurIPS Paper Checklist601

1. Claims602

Question: Do the main claims made in the abstract and introduction accurately reflect the603

paper’s contributions and scope?604

Answer: [Yes]605

Justification: We claimed two novel benchmarks, providing strong baselines and benchmark-606

ing pixel-level MLLMs to investigate their shortcomings. In addition to using our paired607

benchmark to study the second research question on when grounding emerges. All of which608

reflect our contributions.609

2. Limitations610

Question: Does the paper discuss the limitations of the work performed by the authors?611

Answer: [Yes]612

Justification: In Appendix D we discuss the failure cases, and in Appendix H we discuss a613

limitation in our strong baselines.614

3. Theory assumptions and proofs615

Question: For each theoretical result, does the paper provide the full set of assumptions and616

a complete (and correct) proof?617

Answer: [NA]618

Justification: No theoretical results.619

4. Experimental result reproducibility620

Question: Does the paper fully disclose all the information needed to reproduce the main ex-621

perimental results of the paper to the extent that it affects the main claims and/or conclusions622

of the paper (regardless of whether the code and data are provided or not)?623

Answer: [Yes]624

Justification: We provide implementation details in Appendix A. Additionally, we provide625

the code and the dataset to reproduce our results in PixMMVP in the supplemental.626

5. Open access to data and code627

Question: Does the paper provide open access to the data and code, with sufficient instruc-628

tions to faithfully reproduce the main experimental results, as described in the supplemental629

material?630

Answer: [Yes]631

Justification: We provide the dataset and code for PixMMVP and promise to release the632

full datasets and codes for PixMMVP and PixCV-Bench upon acceptance. We only provide633

PixMMVP to protect our work.634

6. Experimental setting/details635

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-636

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the637

results?638

Answer: [Yes]639

Justification: We provide the necessary implementation details in Appendix A.640

7. Experiment statistical significance641

Question: Does the paper report error bars suitably and correctly defined or other appropriate642

information about the statistical significance of the experiments?643

Answer: [NA]644

Justification: This paper proposes two novel benchmarks and strong baselines that are645

training-free. As such, there is no current randomness entailed from this setup, to the best of646

our knowledge.647

8. Experiments compute resources648
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Question: For each experiment, does the paper provide sufficient information on the com-649

puter resources (type of compute workers, memory, time of execution) needed to reproduce650

the experiments?651

Answer: [Yes]652

Justification: It is mentioned in Appendix A.653

9. Code of ethics654

Question: Does the research conducted in the paper conform, in every respect, with the655

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?656

Answer: [Yes]657

Justification: We follow NeurIPS code of conduct.658

10. Broader impacts659

Question: Does the paper discuss both potential positive societal impacts and negative660

societal impacts of the work performed?661

Answer: [Yes]662

Justification: Appendix G includes that.663

11. Safeguards664

Question: Does the paper describe safeguards that have been put in place for responsible665

release of data or models that have a high risk for misuse (e.g., pretrained language models,666

image generators, or scraped datasets)?667

Answer: [NA]668

Justification: Our benchmarks are based on publicly available datasets. As such, they do not669

incur high risk. Additionally, we do not release pre-trained models but rather discuss strong670

baselines and interpretability techniques that are training-free.671

12. Licenses for existing assets672

Question: Are the creators or original owners of assets (e.g., code, data, models), used in673

the paper, properly credited and are the license and terms of use explicitly mentioned and674

properly respected?675

Answer: [Yes]676

Justification: We build on two publicly released datasets, which we cite and use their licences677

for research purposes only in Appendix F.678

13. New assets679

Question: Are new assets introduced in the paper well documented and is the documentation680

provided alongside the assets?681

Answer: [Yes]682

Justification: We provide paired referring segmentation datasets with their referring ex-683

pressions and segmentation masks, which are explained in the method section and in the684

supplemental.685

14. Crowdsourcing and research with human subjects686

Question: For crowdsourcing experiments and research with human subjects, does the paper687

include the full text of instructions given to participants and screenshots, if applicable, as688

well as details about compensation (if any)?689

Answer: [NA]690

Justification: No crowdsourcing or human subjects involved.691

Guidelines:692

15. Institutional review board (IRB) approvals or equivalent for research with human693

subjects694

Question: Does the paper describe potential risks incurred by study participants, whether695

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)696

approvals (or an equivalent approval/review based on the requirements of your country or697

institution) were obtained?698
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Answer: [NA]699

Justification: Not required for our research.700

Guidelines:701

16. Declaration of LLM usage702

Question: Does the paper describe the usage of LLMs if it is an important, original, or703

non-standard component of the core methods in this research? Note that if the LLM is used704

only for writing, editing, or formatting purposes and does not impact the core methodology,705

scientific rigorousness, or originality of the research, declaration is not required.706

Answer: [Yes]707

Justification: We describe it in the method and Appendix A in detail.708
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