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Abstract

Multiple works have emerged to push the boundaries on multi-modal large lan-
guage models (MLLMs) towards pixel-level understanding. The current trend in
pixel-level MLLMs is to train with pixel-level grounding supervision on large-scale
labelled data with specialized decoders for the segmentation task. However, we
show that such MLLMs when evaluated on recent challenging vision-centric bench-
marks, exhibit a weak ability in visual question answering (VQA). Surprisingly,
some of these methods even downgrade the grounding ability of MLLMs that were
never trained with such pixel-level supervision. In this work, we propose two
novel challenging benchmarks with paired evaluation for both VQA and grounding.
We show that MLLMs without pixel-level grounding supervision can outperform
the state of the art in such tasks. Our paired benchmarks and evaluation enable
additional analysis on the reasons for failure with respect to VQA and/or grounding.
Furthermore, we propose simple baselines to extract the grounding information that
can be plugged into any MLLM, which we call PixFoundation. More importantly,
we study the research question of “When does grounding emerge in MLLMs that
are not trained with pixel-level grounding supervision?” We show that grounding
can coincide with object parts, its location, appearance, context or state, where we
show 27-45% of the examples in both benchmarks exhibit this phenomenon. Our
code and datasets will be made publicly available and some are in the supplemental.

1 Introduction

There have been numerous advancements in pixel-level image and video understanding, including
tasks such as image/video segmentation Zhou et al.[(2022); Minaee et al.|(2021); [Kirillov et al.| (2023));
Ravi et al.| (2024), pixel-level visual grounding and reasoning |[Rasheed et al.| (2024)); |Lai et al.| (2024)),
depth estimation |Yang et al.| (2024) and tracking |Wang et al.[|(2023). The majority of these have
been transformed with the emergence of foundation models|Bommasani et al.|(2021)), specifically
multi-modal large language models (MLLMs) [Liu et al.[ (2023/); |Dai et al.| (2023)). Nonetheless,
pixel-level MLLMs have shown degradation in their capabilities and chat performance |Lai et al.
(2024). Recent models tried to address this gap Zhang et al.|(2024bja), yet they relied on standard
evaluation benchmarks, overlooking the shortcomings of current MLLMs.

Recent efforts explored the shortcomings of MLLMs in vision-centric benchmarks [Tong et al.
(2024bja). Such benchmarks focused on challenging visual tasks such as counting. Nonetheless,
these benchmarks did not evaluate the recent pixel-level MLLMs and rather used the visual question
answering task as a proxy to evaluate MLLMSs’ grounding ability. In this work, we propose chal-
lenging vision-centric benchmarks that are dedicated to evaluating pixel-level MLLMs and provide
a comprehensive paired evaluation for both VQA and grounding, which we call PixMMVP and
PixCV-Bench. Our paired evaluation means that the referring segmentation is related to the object
of interest in the visual question, providing a better analysis of MLLMs’ capabilities. Through
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Are pixel-level MLLMs heading in the right When does grounding emerge in Multi-modal Large
direction to improve VQA and grounding? Language Models?

Question: Are the butterfly's feet visible? Instruction: Identify the butterfly's feet in the scene.

The butterfly's feet are visible in the scene, with one foot on
the plant and the other foot resting on the ground.

— Y y
(a) Yes (b) No

Corresponding Pixel-
level Visual Grounding

PixMMVP, PixCV-Bench
Paired VQA and Referring
Segmentation benchmarks

Figure 1: The two major research questions we explore: (i) the grounding & VQA ability of pixel-
level MLLMs in challenging scenarios (left), (ii) the ability of vanilla MLLMs to perform grounding
and when does it emerge (right). Right: shows the noun phrases and their corresponding predicted
segmentation, highlighted in red, extracted from LLaVA 1.5 attention maps with three masks due to
point prompt ambiguity from the maximum attention, highlighted as a black circle. Note that not all
noun phrases and segmentations are shown for space constraints.

these, we answer the first research question; “Are the current pixel-level MLLMs trained with full
grounding supervision heading in the right direction to improve both grounding and visual question
answering (VQA)?”. Our findings show that the majority of pixel-level MLLMs still fall short in such
a challenging setting. While evidently, some of these show superior performance in visual grounding,
we show that MLLMs that were not trained with pixel-level grounding and without using specialized
segmentation decoders can have better performance.

There have been recent works showing training-free segmentation emerging from vision language

modelsWang et al| (2024); [Luo et al.| (2024); Hajimiri et al| (2025). Concurrent work has specifically
explored emerging grounding in MLLMs (2024). Another concurrent work [Wu et al.|(2024)

has observed the degradation of pixel-level MLLMs’ VQA abilities. Nonetheless, previous efforts
used standard evaluation benchmarks that evaluate each task separately. Our benchmarks provide a
paired VQA and referring segmentation evaluation, where we propose an evaluation metric that takes
into account the performance in both. Such paired benchmarks not only provide better scoring for
pixel-level MLLMs performance, but they are designed to be vision-centric, with a focus on what
MLLMs fall short in. Moreover, they provide the means to interpret the failures of these MLLMs
and whether they are stemming from grounding, VQA or both. More importantly, unlike concurrent
efforts, we focus on the second research question of “When does grounding emerge in MLLMs that
are not trained with pixel-level supervision?”. Our work documents that emerging grounding in
MLLMs does not necessarily coincide with the exact language tokens of the object, as shown in Fig.[T]
We show that up to 45% and 27% of the examples in PixMMVP and PixCV-Bench, respectively,
have grounding coinciding with concepts about the referred objects’ parts, position, color or context.

In summary, our contributions include: (i) Proposing paired pixel-level vision-centric benchmarks,
PixMMVP and PixCV-Bench, with segmentation annotations and referring expression of the object of
interest in the corresponding questions. (ii) Benchmarking recent efforts in pixel-level MLLMs where
we show that they degrade VQA capabilities. More importantly, some of them lag in visual grounding
with respect to simple techniques of extracting the segmentation from vanilla MLLMs, i.e., MLLMs
that are not trained for pixel-level grounding. (iii) We provide a simple mechanism for extracting
segmentation from vanilla MLLMs, with an understanding of when grounding emerges, that surpasses
the state of the art. Our mechanism uses the observation that grounding can emerge corresponding to
different output tokens describing the object’s appearance or location, not necessarily the exact text
of the object of interest, which we call PixFoundation.
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2 Related work

Pixel-level vision foundation models. There have been various vision foundation models trained for
the segmentation task (e.g., SAM and SAM 2.0) [Kirillov et al.| (2023)); Ravi et al.| (2024). Orthogonal
to this, some methods discussed the ability of vision foundation models such as CLIP and BLIP in
image segmentation without any segmentation supervision [Luo et al.|(2024); [Hajimiri et al.| (2025);
Wang et al.|(2024). Yet, they relied on earlier foundation models that did not incorporate the power
of large language models. Combining large language models with vision has been extensively
researched with pioneering works such as LLaVA |Liu et al.|(2023/,2024) and instruct-BLIP Dai et al.
(2023)). Multiple works afterwards focused on pixel-level visual grounding in these MLLMs with full
supervision and specialized segmentation decoders|Lai et al.|(2024); Rasheed et al.|(2024); Zhang
et al] (2024alblalb). However, these methods were lagging in their chat performance. Notably, pixel-
level MLLMs were not evaluated on the challenging benchmarks that focused on the shortcomings
of MLLMs [Tong et al.| (2024blja). Hence, it is still unclear if the pixel-level grounding supervision
helped to improve their ability on these challenging tasks or not. In this work, we focus on the
previous question to have a better understanding of their performance. Concurrent work has shown
that without pixel-level supervision, there is an emerging ability to perform pixel-level grounding|Cao
et all (2024). We rely on this method as our baseline, but unlike previous works, we provide an
insight into when grounding emerges in such MLLMs. We propose a baseline that uses a novel and
simple mechanism to perform mask selection while taking the previous insight into consideration.

Benchmarking multi-modal large language models. There is an abundance of standard bench-
marks used for evaluating MLLMs (e.g., MMU |Yue et al.| (2024)) and pixel-level benchmarks (e.g.,
refCOCO/+/g|Yu et al.| (2016); Kazemzadeh et al.|(2014))). These have pushed the limits on MLLMs
capabilities in terms of VQA and visual grounding. Nonetheless, there have been various works that
discussed the shortcomings of MLLMs. One of them discussed the shortcomings in CLIP Radford
etall (2021), which is used in various MLLMs as a visual backbone. They proposed a benchmark,
MMVP Tong et al.| (2024b), that is focused on the visual aspects within a VQA task. More recently,
CV-Bench |[Tong et al.|(2024a)) focused on two major tasks that are vision focused which are counting
and relative positioning. Both were proposed to evaluate MLLMs that do not have the ability to
generate segmentation output. Nonetheless, they still provide quite challenging scenarios that can act
as a strong benchmark for the pixel-level MLLMs counterpart. In this work, we extend these two
benchmarks with pixel-level annotations and referring expressions that correspond to the object of
interest within the VQA task, and propose a paired evaluation metric.

3 Method and benchmarks

In this section, we describe our two benchmarks and probing techniques for pixel-level MLLMs and
MLLMs that were not trained with pixel-level grounding supervision.

3.1 Paired Benchmarks for VQA and Grounding

PixMMYVP benchmark: We build upon the recently released MM VP [Tong et al.| (2024b) which
identified clip blind pairs and used them to build a challenging benchmark with the corresponding
questions and choices for 300 images. We manually annotate each question with the corresponding
object of interest referring expression, e.g. an elderly person or the butterfly’s feet. There are seven
questions only that are not designed to inquire about a specific object in the scene, which are excluded,
such as questions inquiring on the view direction of the camera. The referring expressions in our
dataset correspond to what needs to be grounded in the image to answer the question and are as
fine-grained as possible. Afterwards, we manually label these objects of interest with polygonal
annotations using the VGG annotator |Dutta et al.|(2016). Hence, we create the first paired benchmark
for both VQA and pixel-level visual grounding.

PixCV-Bench benchmark: For this benchmark we build upon the 2D component of the recently
released CV-Bench [Tong et al.| (2024a)). We specifically select the 2D component, since they are
sourced from segmentation datasets (i.e., ADE20K Zhou et al.|(2017)) and COCO [Lin et al.| (2014)),
which can be used in our proposed benchmark. However, the publicly released CV-Bench does not
identify the objects in question and their corresponding segmentation. As such we use GPT-4o to
parse the questions and identify the objects of interest automatically, followed by manual inspection
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and correction. Specifically, we collect the classes in each image from the corresponding dataset
and construct a list of class choices “1. <CLS1>, 2. <CLS2>, ...”. Then we prompt GPT-40 with
the following, “Provide number only as an answer. Identify the objects of interest in the following
question: <QUESTION> ? 1. <CLSI>, 2. <CLS2>, ... ”. This provides us with the categories
per question that highlight the objects of interest. While seemingly these are categorical annotations,
not referring expressions, certain scenarios in CV-Bench are different. Specifically, in the relative
positioning task, all the questions that include an object highlighted by a red box in the image are
annotated with the referring expression, “(annotated by the red box)”, beyond simple categories.

Afterwards, we use the selected categories from GPT-4o to retrieve the corresponding segmentation
mask per image. Furthermore, we use a custom annotation tool to manually filter the objects in
the question, e.g. selecting only the object mask annotated by the red box and filtering out other
instances. Another example that needs manual filtration, when the class in question is a broader
category than what is inquired upon, e.g., “Pendant Lamp” which is under the category of “Lamp” in
ADE20K. In such a case, we filter out the masks of other types such as “Table Lamp”. Moreover,
we identify missing annotations and manually annotate these missing objects. We provide the final
paired PixCV-Bench with referring expressions, their segmentation annotations, visual questions and
corresponding answers that can be used to evaluate the grounding ability in relation to the original
VQA task. Appendix [A]provides visual examples from our benchmarks.

3.2 A Pixel-level MLLMs study

We utilize the two proposed benchmarks, PixMMVP and PixCV-Bench, to evaluate the current trend
in pixel-level MLLMs that rely on pixel-level supervision and specialized segmentation decoders.
Furthermore, we inspect the failures of these pixel-level MLLMs and explore simple approaches to
pixel-level understanding from MLLMs that overcome the previous shortcomings.

Pixel-level MLLMs shortcomings. We highlight the failures of the current state-of-the-art pixel-
level MLLMs through three probing techniques. First, we highlight the degraded performance in
VQA from most of these MLLMs that are trained with pixel-level supervision. We use for that
the following prompt, “<IMG><QUESTION>? <OPTIONI> <OPTION2>...”, as shown in
Figure E}i Notably, the worst two models in this task, LISA [Lai et al.| (2024) and GLAMM [Rasheed
et al] (2024), are not able to provide an answer and rather refer to a segmentation mask. On the other
hand, OMG-LLaVA [Zhang et al.| (2024b)) shows better ability in VQA.

The second shortcoming we discuss is that these MLLMs exhibit a degraded ability to follow
instructions. In order to probe this, we use the following prompt: “<IMG><QUESTION>?
a.<OPTIONI> b.<OPTION2>... Answer with the option’s letter from the given.” Figure[2b shows
an example with the answers from the worst two models in this aspect which are LISA |Lai et al.
(2024) and LLaVA-G [Zhang et al.[|(2024a)). Both are incapable of following the instruction, yet
LLaVA-G tries to tackle the question, unlike LISA. On the other hand, OMG-LLaVA shows better
ability to follow the instructions and answer the questions.

Third, we highlight their degraded ability to visually ground objects. Surprisingly, although they
were trained with pixel-level grounding supervision, not all of these models show superior grounding
performance. Figure[2c shows the second prompt to generate a segmentation mask for the ground-
truth referring expression. The purpose of this probing is to understand whether the failure in these
models is purely on the VQA task, or its inability to ground the objects of interest in the corresponding
question or both. Figure 2k shows the worst two models in this aspect, which are GLAMM, the
region captioning variant, and LLaVA-G. Both fail to segment the specific object in question, while
OMG-LLaVA shows better performance.

Baselines and upper bounds. In addition to evaluating state-of-the-art pixel-level MLLMs, we
propose two baselines and one upper bound. The first of which is inspired by a concurrent work |Cao
et all (2024) that identified the emergent grounding in multi-modal large language models without
the need for any pixel-level grounding supervision. Specifically, we use their attend and segment
meta architecture as one of our baselines. However, we are the first to discuss when such grounding
emerges in these models. We identify an interesting connection between the identified output tokens
and the output grounding from the attention maps that gives insights into how these models reason.

The attend and segment meta-architecture extracts the raw attention map for the i*” output token,
A; € [0, 1]Mwerxmmeaa (zHhwty+i=1) where nijyer, Nhead are the number of layers and heads, resp.
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Prompt: Based on the image, is the following statement correct: We cannot see the window on the school bus?

‘\ é /‘ LISA : :c:.ri:\:li\:) - OMG-LLaVA ‘

Answer: ...the statementis  Answer: (b) Incorrect
incorrect. The image shows a
school bus with a stop sign...

Answer: It is [SEG].

Answer: It is [SEG].

Answer: It is [SEG].

Answer: It is [SEG].

‘:\ b ) ) Prompt: What color is the chicken's body Options: A. Black B. Red. Answer with the option's letter from the given.
LISA LLaVA-G OMG-LLaVA
Answer: Sure, the Answer: The chicken's Answer: A
segmentation result is [SEG]. body is red.
Answer: It is [SEG]. Answer: The chicken's Answer: B
body is red.
o0 GLAMM
e LLaVA-G OMG-LLaVA

(Region Captioning)

Prompt: Can you please segment the
flowers in the background in the given
image?

Prompt: Can you identify the flowers in
the background in this image? (with
grounding)

Prompt: Can you please segment the
flowers in the background in the given
image?

Figure 2: Shortcomings of pixel-level MLLMSs. (a) The first shortcoming of pixel-level MLLMs is
the degraded performance in visual question answering. (b) The second shortcoming of pixel-level
MLLMs, which relates to the first, is the degraded performance in instruction following, where the
question is instructing the model to generate one letter from the options. Even when the model tries to
answer the question it still fails to properly answer with one option letter. (c) The third shortcoming
of pixel-level MLLMs is the degraded performance in pixel-level visual grounding in certain models.
The predicted segmentation masks corresponding to the [SEG] token/s are highlighted in red.

Then, z, y are the number of input language tokens before and after the visual tokens, respectively,
while hw are the height and width of the input image. Only the attention corresponding to the visual
tokens of length hw is used, and these attention maps are averaged across the layers and heads,
resulting in A; € [0, 1]"*™. This is further normalized across all the output, 4; = A; — + Z;vzl A
for N output tokens. The attend and segment depends on using the spaCy natural language processing
tool [Honnibal et al.| (2020) to identify the noun phrases and associate them with the ground-truth
referring expressions. Thus, the spaCy embeddings closest to the ground-truth expression are used
in the mask selection. This is followed by extracting the maximum attention point to feed into

SAM Kirillov et al.| (2023)) as a point prompt.

For our baseline and upper bound, we build upon the previous pipeline and build an oracle upper
bound and an automatic baseline. We introduce two main modifications to account for our observation
that the correct grounding can occur with different output tokens describing the object, not necessarily
aligning with the exact ground-truth expression. The first modification is to inspect all the output
tokens without relying on spaCy embeddings. In the oracle we rely on the ground-truth mask to
select the correct token and its corresponding segmentation with the highest intersection over union as
an upper bound. The automatic baseline uses a simple but powerful mechanism where we highlight
the predicted masks on the original image to show the potential object of interest. This is followed
by feeding these images to a multi-modal LLM to inquire which is best in highlighting this object.
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Image | Referring Expression Concept Category Noun Phrase Output
. . In the image, there is a
1 the butterfly’s wings Color & Appearance orange wings butterfly with orange wings.
The flame of the match is located
3 the flame of the match Location & Position  the top at the top of the image, surrounded
by darkness.
The dog’s face in the scene is a
6 the dog’s face Color & Appearance a black and white dog ~ black and white dog with a black
nose.
The minute hand of the clock in the
161 the minute hand of the clock  Location & Position  the 12 o’clock position  scene is located at the 12 o’clock
position.
40
g E
J 20
J“— o
'A Random  First  Second Third
3 - - {! i g ~ = Oracle + Point Selection Variants
1 3 6 161 Prompts Ablation

Figure 3: Examples of concept categories where the grounding emerges in PixMMVP using LLaVA
1.5 (7B). Top: referring expression, output response, noun phrases and concepts corresponding to the
grounding using the oracle selection. Bottom: the four images with predicted segmentation mask,
highlighted in red, using the oracle selection. The input point prompt highlighted as a black circle. It
shows the segmentation of the referring expression emerging in different output noun phrases than
the original expression. The final plot at the bottom shows the ablation on the different input prompts
to SAM using a random input point vs. the maximum attention point (First) vs. the second vs. the
third maximum, paired with our oracle selection. M: mean intersection over union.

Specifically, we use the following prompt “Select the image that has <EXPR> best highlighted in
red color than the others? Answer with a number from I to <N> and mention the number only.
<IMG>", where <EXPR> and <IMG> are the ground-truth expression and the image tokens
respectively. In our automatic baseline, we rely on GPT-4o for the mask selection, refer to the App. [E]
for the mask selection results using the open source Cambrian (8B). The second modification, since
SAM has a good understanding of point prompting ambiguity, we process three potential masks for
each prompt instead of one. This enables us to utilize the power of SAM in identifying fine-grained
objects and referring expressions that tend to surpass what other MLLMs do, even those trained with
pixel-level grounding supervision. Figure[3]shows qualitative results where the segmentation emerges,
corresponding to output tokens describing the object in terms of color or location instead of the exact
ground-truth referring expression, motivating our oracle and automatic baseline. Interestingly, our
oracle enables a quantifiable study of this phenomenon that can better interpret these MLLM:s.

4 Experiments

4.1 Experimental Setup

Evaluation benchmarks, protocols and metrics. PiIxMMVP is composed of 300 images paired with
questions, choices, referring expressions and segmentation masks, while PixCV-Bench has 1,438
images with their corresponding annotations similarly. On each benchmark, we evaluate the VQA and
visual grounding capabilities following three probing techniques and report their metrics. The first
probing is to evaluate the VQA ability, where the accuracy is computed using GPT-40 following Tong
et al] (2024b) as, Af. If the model generates a segmentation without explicitly asking it to, it is
evaluated with respect to the ground-truth referring segmentation in terms of mean intersection
over union as M. The second probing prompts the model to identify the referred expression then
evaluates the mean intersection over union reported as M. The third probing following [Tong et al.
(2024a) instructs the model to generate a single option letter and evaluate the accuracy directly without
GPT-4o, reported as A. There is a need for the first probing since some of the recent pixel-level
MLLMs face challenges in following instructions. We evaluate the score of each model, S, which is
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Method PixGr. PixMMVP PixCV-Bench

At A MT M S At A MT M S
273 28.0 - - 174 60.3 - -
393 30 - - - 145 614 - - -

LLaVA 1.5 (7B)
LLaVA 1.5 (13B)

Cambrian (8B)* 520 52.0 - - - 622 722 - - -
OMG LLaVA (7B)** 120 12.0 178 38.0 182 | 120 42.1 - 50.5 459
GLAMM (7B) 1.3 27 315 474 5.1 - - 30.2 519 -
GLAMM - RegCap (7B) 127 67 145 186 151 | 278 544 36 74 130
LISA (7B) 73 - 18.1 429 125 | 3.7 - 16.8 48.1 6.7

LLaVA-G (7B)

LLaVA 1.5 (7B) + (a+s)

LLaVA 1.5 (13B) + (a+s)
Cambrian (8B)* + (a+s)
PixFoundation (7B) (Ours)
PixFoundation (13B) (Ours)
PixFoundation (8B)* (Ours)
Upper Bound - Oracle Selection
PixFoundationf (7B) (Ours) 273 28.0 26.1 38.0 322|174 603 63 49.7 545
PixFoundationf (13B) (Ours) 393 30 23.6 382 387|145 614 53 50.6 555
PixFoundationf (8B)* (Ours) X 520 52.0 520 56.1 54.0 | 622 722 543 644 68.1

Table 1: PixMMVP and PixCV-Bench benchmark evaluation of pixel-level MLLMs and baselines.
We evaluate the VQA accuracy in the first and third probing (i.e., Af and A resp.). Additionally,
we evaluate pixel-level visual grounding with output segmentation in the first two probing (i.e., M7
and M resp.). *, **: models using Llama 3 (8B) and InternLM?2 (7B) respectively, unlike the rest
that are relying on Vicuna (7B and 13B) for the base LLM. - : indicates either the model can not
be evaluated in that setting, or has low results below 1% showing complete failure in that setting.
S: denotes the score of the MLLM that is the harmonic mean of max (A, At) and. max(M, Mf).
PixGr.: pixel-level grounding training. The oracle results are highlighted in red, the best and second
best are bolded and underlined respectively.

. - 17.8 135 122 | 141 44 17 176 158
273 280 11.1 112 16.0 | 174 603 52 157 249
393 30 9.8 114 177|145 614 47 149 240
520 520 143 1511 234|622 722 186 159 29.6
273 280 188 259 269|174 603 54 285 387
393 30 169 250 306|145 614 48 276 38.1
520 52.0 296 303 383|622 722 239 331 454

3 %) 333X 2 ;X AN N A A X X X
O
(98]

the dorsal fin of the animal

(a) OMG-LLaVA (7B) (b) LISA (7B) (c) GLAMM (7B) (d) LLaVA-G (7B)  (e) PixFoundationt (7B)

Figure 4: PixMMVP qualitative comparison in pixel-level visual grounding following the second
probing technique. The referred expression is shown on top. It shows that mining for the grounding
within the attention maps of vanilla MLLMs using their upper bound is better than MLLMsS trained
with pixel-level supervision, without degrading their VQA abilities. Thus, questioning whether the
current training recipes and specialized decoders in pixel-level MLLMs are in the right direction.

the harmonic mean across the maximum of both pixel-level visual grounding and VQA,

S 2 . (1)

1 + 1
max (A, A7) max (M, MT)

We mainly focus on evaluatmg four state-of-the-art pixel-level MLLMs; LISA [Lai et al. (]m'[)

GLAMM Rasheed et al.|(2024), OMG-LLaVA Zhang et al.| (2024b) and LLaVA-G [Zhang et al.
(2024a). For GLAMM we use two variants; the original model (GLAMM) and the one fine-tuned for

region-level captioning (GLAMM-RegCap). For details on the models” weights, refer to App.[A]

Baselines and upper bound implementation details. We evaluate: (i) the attend and segment (a+s),
(ii) the oracle selection relying on the highest intersection over union in selecting the predicted masks
(PixFoundationt), and (iii) the automatic selection (PixFoundation). These are implemented on top
of three base MLLMs, which are LLaVA 1.5 (7B, 13B)[Liu et al.| (2024) and Cambrian-1(8B)
(2024a). The automatic selection is implemented using GPT-40. App.[A]has more details.
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Figure 5: Frequency of failures in both visual grounding and VQA vs. VQA failures only vs.
grounding only. For visual grounding, IoU < 0.5, is considered as a failure.
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Figure 6: Analysis on when grounding emerges on PixXMMVP benchmark using the three base
MLLMs, LLaVA 1.5 (7, 13B) and Cambrian-1 (8B), that were not trained with pixel-level grounding
supervision. We follow the second probing, then report the oracle selection. Analysis on: (a) the
output location and (b) the output concept category, which coincides with the best segmentation.

4.2 Are the current pixel-level MLLLMs heading in the right direction?

In order to answer this, we evaluate each of these pixel-level MLLMs capability in VQA in challenging
tasks. Additionally, we evaluate their ability to visually ground the objects of interest in these
questions. Table [I] shows the results on the challenging PixMMVP and PixCV-Bench. From the
accuracy of VQA, MLLMs that are not trained with pixel-level grounding surpass their pixel-level
counterpart with up to 14%. The best in pixel-level MLLMs score in this aspect is GLAMM-
RegCap |Zhang et al.| (2024b) yet it has degraded ability to generate segmentation. On the other hand,
when looking at pixel-level visual grounding, we find the best model, GLAMM Rasheed et al.| (2024),
has a weak ability in VQA or following instructions. Moreover, it shows LISA and LLaVA-G are
mostly incapable of following the instruction to output the option letter reported in A. OMG-LLaVA
strikes the right balance in both VQA and pixel-level grounding with the highest score, S, within
pixel-level MLLMs. However, looking at the bottom three rows, the oracle confirms that MLLMs
that were never trained with pixel-level grounding have the correct grounding within their learned
attention maps, refer to Fig.[d] Additional qualitative analysis is in App. [B] Looking at the final score,
S, the oracle variant, PixFoundationt (7B), outperforms the corresponding best pixel-level MLLM,
OMG-LLaVA (7B), by a considerable margin, while the automatic outperforms it with up to 8% on
PixMMVP. Furthermore, the attend and segment baseline Cao et al.|(2024)) lags behind our automatic
method by more than 10%. Refer to App. [C|for additional results and App. D] for failure analysis.
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Finally, we evaluate whether the failures of these MLLMs occur in visual grounding, VQA or both.
Figure 5] shows the frequency of failures per category, where the majority stem from failures in both,
especially in the pixel-level MLLMs. The vanilla MLLMs perform better in the VQA than grounding.

Summary. In summary, pixel-level grounding supervision with specialized segmentation decoders
degrades MLLMs ability in VQA and sometimes even their generalization in grounding. We show that
MLLMs trained with pixel-level supervision lag behind vanilla MLLMs using simple mechanisms to
extract grounding, and the oracle indicates there is an opportunity to improve this. Moreover, we
show that grounding might not coincide with the noun phrase most similar to the referred expression,
where our oracle upper bound and automatic baseline both surpass the attend and segment.

4.3 When does grounding emerge in MLLMs?

When - location. Taking into account the powerful performance of the oracle upper bound, it begs
the question of when grounding emerges. We start by looking at when it emerges in terms of the
location. We analyze the word/phrase location with respect to the full output text in terms of a
percentage of its total length (i.e., 0% means the beginning of the text). Accordingly, Fig.[6a]shows
the location percentages histogram, binned at 10%, for the three base MLLMs reporting the oracle
selection and evaluating on PixMMVP benchmark using the second probing. In the LLaVA 1.5
variants, the highest grounding is at the last 40%, while for Cambrian it is at the last 60%.

When - concept. For the second analysis, we look into the concept category that the correct output
word/phrase corresponds to. The previous assumption in other works is that grounding emerges in
the exact noun/noun phrase of the object of interest. Except our analysis confirms that this is not
necessarily the case. We take the correct noun/noun phrase where the grounding emerges based on
the oracle from all three variants, then we pass it to GPT-4o to request a grouping of these concepts.
It result in six main groups, which are: (i) color and appearance, (ii) location and position, (iii) object
parts, (iv) context and setting, (v) objects and entities, and (vi) State. We then prompt for each of
the noun/noun phrases, GPT-4o, to categorize it within these six categories. The histogram of the
occurrences of these concept categories is shown in Fig. [6b] It conveys that in certain scenarios, the
correct output when grounding emerges can be describing the position or the color of the object, not
necessarily the exact referring expression. Fig. [3]shows qualitative examples of these scenarios. We
can see in PIXMMVP up to 45% of the examples exhibit this phenomenon, referring to Fig. [6bJand
computing the percentage of examples that are not under the concept “Objects and Entities”. Results
for PixCV-Bench are provided in App.[E] with up to 27% of the examples showing similar behaviour.

Random vs. best. Our baselines rely on the maximum attention per output noun phrase to prompt
SAM for the segmentation mask. Nonetheless, as a lower bound analysis, we evaluate the performance
if we use a random point as a prompt instead. For fair comparison, we generate random points with
the count of output masks that the oracle has to select among (i.e., the number of the output noun
phrases). We conduct this ablation on PixMMVP using LLaVA 1.5 (7B) base MLLM, with random
point prompts followed by the oracle selection among their SAM masks. Figure [3] prompts ablation,
shows that random + oracle lags behind the correct one using the maximum point (i.e., First) with
around 12%. More importantly, we confirm the stability of the results if we select the second-best or
third maximum attention (i.e., Second and Third), which are on par with the maximum point.

Summary. In summary, we found that emergent grounding might not coincide with the input referring
expression. We show that grounding in MLLMs can emerge in the noun phrase that corresponds to
color, position or other characteristics of the object of interest.

5 Conclusion

We propose two benchmarks showing that pixel-level MLLMs degrade the ability in VQA and even
grounding of fine-grained objects. Thus, our results question whether we are heading in the right
direction with these models. Additionally, we provide powerful baselines with improved scores
without training for pixel-level grounding. Our paired benchmarks and evaluation pave the road
towards better interpretability and benchmarking efforts. We leave it for future work to investigate the
use of pixel-level supervision, the training recipes and the use of specialized segmentation decoders
when building pixel-level MLLMs, relying on our benchmarks.
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Figure 7: Examples of ground-truth annotations for referring expressions in the respective object of
interest in the question and their segmentation masks. First row: PixMMVP examples, Second row:
PixCV-Bench examples. Ground-truth highlighted in green.

A Additional implementation details

In this section, we cover additional details about our proposed datasets and the implementation of the
evaluation setup and baselines. We also refer to the output from the questions of the three probing
techniques in the supplementary material for all the studied models.

Datasets. Our proposed datasets, PixMMVP and PixCV-Bench, are composed of ground-truth
referring expressions describing the object of interest in the respective question and its segmentation
mask. We show in Fig. [7examples of these ground-truth annotations for both datasets. It shows the
challenging scenarios in pixel-level visual grounding, which is strongly tied to the visual question
answering task, since an integral part of answering these questions requires the grounding of the
object/s of interest.

Models. We also detail the model checkpoints we use for the four pixel-level MLLMs and their
variants, retrieved from HuggingFace [Wolf et al|| (2019) in Table[2] These also include the model
checkpoints used for the base MLLMs that were not trained with pixel-level visual grounding. It
is worth noting that for GLAMM we use two variants (FullScope and RegCap) since their base
model (i.e., FullScope) has low performance in the visual question answering task. As such, we
use the other variant for GLAMM that was fine-tuned for region-level captioning using RefCOCOg.
Furthermore, we provide details on the oracle selection mechanism, we discard the cases where the
ground-truth segmentation is all background in the when analysis, since there is no ground-truth
grounding emerging to evaluate against. While in the quantitative and qualitative evaluation, we
resort to simply not selecting any mask. These occur in a few cases in PixMMVP.

Additionally, we provide details on the SAM model that is used in the three baselines and upper
bounds in our benchmarks, where we use the ViT-H variant. Finally, we provide an illustrative
example of our automatic selection mechanism with the corresponding predictions on PixMMVP
using LLaVA 1.5 (7B) in Fig. Our automatic selection goes through an iterative process of
prompting the selected MLLM, in our case GPT-40, with N images highlighted with the predicted
segmentation to select the best within each group of three. In the final stage, the best images are used
to prompt the MLLM to select the final mask that best describes the object of interest. In the oracle
upper bound, whenever the model is to be evaluated in a multiple object scenario, we take all the
possible pairs of the masks and select the best pair based on the highest intersection over union.

Evaluation. We also provide the details on computing the visual question answering accuracy using
GPT-4o in the first protocol [Tong et al.| (2024b). We use the following prompt: “Given the following
question <QUESTION>, the correct answer is <ANSWER>. Does the following answer correctly
answers the question, answer: <RESPONSE>? Respond with a Yes/No”. Note that all our inference
and evaluation were conducted on an A600 84G GPU-equipped machine.
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Model Name Model Checkpoint

LISA xinlai/LISA-7B-v1-explanatory
GLAMM MBZUAI/GLaMM-FullScope
GLAMM-RegCap | MBZUAI/GLaMM-RegCap-RefCOCOg
LLaVA-G Haozhangcx/llava_grounding_gd_vp

LLaVA 1.5 (7B) liuhaotian/llava-v1.5-7b
LLaVA 1.5 (13B) | liuhaotian/llava-v1.5-13b
Cambrian-1 (8B) nyu-visionx/cambrian-8b
Table 2: Hugging Face model checkpoints used in our benchmarks.

L J L J
T T

Multi-Modal Large Automatic Mask Multi-Modal Large
Prompt —> | | _nguage Model Selection Prompt Landlageiiods]

Select the image that has the flame of the match best X
highlighted in red color than the others? Answer with a | ——3» Multi-Modal Large —
number from 1 to <N>. Mention the number only. Language Model

Prompt

Figure 8: The automatic selection baseline, PixFoundation, which uses a simple mechanism of
highlighting the predicted masks in red then prompting a multi-modal large language model to select
the right mask from the group of highlighted images, followed by the final mask selection.

B Additional qualitative analysis

In this section, we provide a qualitative ablation of our baselines and a visualization of the attention
maps that can show how vanilla MLLMs are reasoning on the question they are answering. Addition-
ally, we provide qualitative examples showing when grounding emerges in these vanilla MLLMs.
Finally, we provide more examples on PixMMVP and PixCV-Bench benchmarks.

B.1 Baselines ablation

We show the qualitative ablation among the two baselines and upper bound using the best base
MLLM Cambrian-1 (8B) in Fig.[9]on PixMMVP. The three confirm that there is grounding emerging
in MLLMs that were not trained with pixel-level grounding supervision. Nonetheless, it shows that
identifying when that grounding emerges is equally important in retrieving the best segmentation
of the referring expression. The first baseline, attend and segment, assumes the alignment between
the attention map that can be mined for the segmentation mask and the noun phrase that has the
highest correspondence to the ground-truth category or noun phrase. Our findings quantitatively and
qualitatively show otherwise, where grounding can emerge in different output tokens. It also shows
the oracle upper bound for mask selection, PixFoundationf, exhibiting better segmentation than the
attend and segment, confirming the aforementioned finding. Additionally, it shows that our simple
automatic mechanism, PixFoundation, surpasses the attend and segment as well on PixMMVP.
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Figure 9: Baselines and upper bound ablation using the base MLLM, Cambrian-1 (8B), ablating the
different schemes for mask selection. We use the second probing to prompt the MLLM to identify

the referred expression. The referring expressions for these examples are as follows: (a) the key “z”,
(b) the key “z”, (c) people, (d) the elderly person. Predictions are highlighted in red.

six legs the front legs a hairy texture

Figure 10: Normalized attention maps visualization showing the noun phrase and its corresponding
attention in the output text for two PixMMVP examples using Cambrian-1 (§B) base MLLM. While
the attention maps can not be directly used as segmentation, yet it provides initial locations for the
maximally attended pixels corresponding to what the model is looking at. In certain scenarios it
exactly aligns with the noun phrase describing it as in the two examples. Yet in certain scenarios as
we showed earlier, the grounding of the referred expression in question emerges with other noun
phrases describing it.

B.2 Attention maps visualization

In this section, we visualize the normalized attention maps, A, in Fig. We show two examples for
Cambrian-1 (8B) from PixMMVP using the first probing where we directly prompt the model with
question and options. The first row shows outstanding ability to visually ground the different noun
phrases from the output text. The full output text of the first row example is: “The image provided is
a cake designed to resemble a minion from the Despicable Mefranchise. It is not a living creature
and therefore cannot smile or have a tongue out. The cake is an inanimate object, crafted to mimic
the appearance of a minion, which is a fictional character from the animated movie series. The
design elements such as the yellow skin, blue overalls, and goggles are characteristic of the minions’
appearance in the films.” The visualization shows how the maximally attended locations for the last
three noun phrases correspond to the correct locations in the image.
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The second output text corresponding to the example shown is; “The butterfly’s feet, also known as
tarsi, are not distinctly visible in this image due to the angle and the butterfly’s wings being open.
However, we can infer their presence and approximate location. Monarch butterflies have six legs,
with the hind legs being the longest and the front legs being the shortest. The legs are typically
slender and have a hairy texture, which aids in gripping onto surfaces. In this image, the legs are
likely located at the bottom of the butterfly’s body, just below the abdomen, and are probably in
contact with the leaf it is perched on.” The attention maps highlight what we suspect is a failure
where the MLLM mistakes the antenna of the butterfly for front legs. Such hidden failures that do not
necessarily affect the correctness of the answer, are still important to study and we believe our tool
with the oracle upper bound can be used to inspect this further. Finally, we find that these attention
maps in both examples are not sufficiently accurate to be used for segmentation directly, yet when
paired with a powerful segmentation method like SAM it provides a good segmentation performance.

B.3 When does grounding emerge?

We show additional examples of when grounding emerges in multi-modal large language models,
specifically in the LLaVA 1.5 (7B) variant, using the second probing to prompt the model to segment
what is in the referring expression. Figures [T} [I2] [I3] and [14] show the corresponding predicted
masks for the grounding that emerged, highlighted in red with the maximum attention point as a black
circle. Figure[3]shows the aforementioned four examples with the referred expression, the concept
category and the noun phrase corresponding to the best grounding using the oracle selection and the
full output text. It clearly shows that the correct output token can correspond to location or color,
but not necessarily the ground-truth referring expression. While some of the noun phrases and their
masks, from the SAM point prompting, correspond to what the noun phrase is describing. It is not
always the case, for example, in Fig. [T3] “the flame” was not able to highlight the correct object, yet it
appeared in the noun phrase corresponding to the location “the top”. While few scenarios might have
the grounding coinciding with multiple noun phrases, such as in Fig.[TT] “a butterfly” and “orange
wings”. Nonetheless, it is still an important insight that the segmentation can emerge corresponding
to noun phrases that do not correspond to the exact referred expression. Our PixFoundationt serves
as an interesting tool to interpret and understand how MLLMs work and reason to produce the final
output with the oracle selection as an upper bound.

In summary, we provide four strong evidence that grounding can emerge corresponding to noun
phrases that do not match the exact referred expression, as follows: (i) The attend and segment that
rely on SpaCy embeddings lag behind our automatic and oracle mask selection, indicating that the
noun phrases closest to the referred expressions are not necessarily where the optimal segmentation
emerges. (i) We show quantitative analysis on the location and the concept categories of the noun
phrases where the grounding emerge that confirm the previous result. Where we show 45% of the
examples in PixXMMVP and 27% in PixCV-Bench have grounding emerging to noun phrases that are
not describing objects and entities. (iii) We show qualitative analysis to confirm this further. (iv) We
also provide the results for a simple analysis that compares the noun phrases text, where grounding
is emerging, to the input referred expression text, where we find a mismatch between both with up
to 92% in PixMMVP. However, the first two results better reflect the right metric to evaluate when
grounding emerges, as they take into account noun phrases that might have similarities to the input
referred expression with minor differences and same meaning.

B.4 PixMMVP benchmark

Figure[I5]shows additional results on PixMMVP benchmark comparing different pixel-level MLLMs
with our oracle baseline using LLaVA 1.5 (7B). While GLAMM shows strong pixel-level visual
grounding yet we have shown earlier that it is almost incapable of visual question answering which
renders the model weak for general purpose tasks. On the other hand, OMG-LLaVA shows a
better balance in pixel-level visual grounding and visual question answering as previously detailed.
Nonetheless, the simple mining of attention maps from LLaVA 1.5 (7B) using the oracle selection
which we call PixFoundationt shows the strongest capability in both grounding and VQA. In fact,
certain MLLM:s that were trained with pixel-level visual grounding, such as LISA, have degraded the
performance with respect to the hidden information already existing in powerful MLLMs that were
not trained with such supervision.
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Figure 11: First example of when grounding emerges, corresponding to Image 1 in Fig.[3] Each row
has the corresponding noun phrase on top and three potential SAM predicted masks highlighted in
red using the maximum attention point of this noun phrase as a point prompt, highlighted as a black
circle. It shows the output from mining the attention maps for pixel-level grounding using LLaVA
1.5 (7B) base MLLM.

Model Name Probing Output Length # Noun Phrases
LLaVA 1.5 (7B) First 44.2 23
LLaVA 1.5 (13B) First 453 24
Cambrian-1 (8B) First 313.8 15.2
LLaVA 1.5 (7B) Second 92.6 5.2
LLaVA 1.5 (13B) | Second 97.2 5.5
Cambrian-1 (8B) Second 561.3 27.3

Table 3: The average output length across PixXMM VP dataset for the three base MLLMs using the
first and second probing techniques.

B.5 PixCV-Bench benchmark

Figure [T6] shows qualitative results on PixCV-Bench. It shows that pixel-level MLLMs struggle
with segmenting the object annotated by the red box unlike our oracle baseline, PixFoundationt.
Indeed the attention maps from these MLLMs are looking at the right object annotated by the red box
without receiving any pixel-level grounding supervision during training.

C Analysis on the output length

In this section, we provide additional analysis on the output length on average through PixMMVP
dataset using the first and second probing schemes. Specifically, we report the output length as the
number of characters in the output, and the number of noun phrases extracted from it. The reason
to study this, since it has relation to the number of noun phrases and consequently the number of
masks our baselines are selecting among. Table [3]shows the average output length computed across
PixXMMVP dataset, comparing the three base MLLMs. We notice that Cambrian-1 (8B) generates
longer outputs with a considerable margin than LLaVA variants. Hence, we believe the superiority
of the oracle upper bound with Cambrian-1 in the grounding has strong correlation to producing
longer outputs with more attention maps to mine and select from, than LLaVA variants. Nonetheless,
it makes it more challenging for the automatic baseline.
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Figure 12: Third example of when grounding emerges, corresponding to Image 6 in Fig.|3| Each row
has the corresponding noun phrase on top and three potential SAM predicted masks highlighted in
red using the maximum attention point of this noun phrase as a point prompt, highlighted as a black
circle. It shows the output from mining the attention maps for pixel-level grounding using LLaVA
1.5 (7B) base MLLM.

D Failure Cases Analysis

In this section, we conduct additional failure case analysis of pixel-level MLLMs and our baselines
qualitatively and quantitatively.

D.1 Failures in Visual Question Answering

We start with a fine-grained quantitative analysis of how the studied models perform across PixMMVP
and PixCV-Bench. For PixMMVP we follow their scheme to identify the nine visual patterns and
report the model’s accuracy with each pattern in Fig.[I7} Similarly, we show fine-grained analysis
relying on the tasks for the two datasets (ADE20K and COCO) in Fig.[I8]

PixMMVP results show that the majority of pixel-level MLLMs, highlighted in blue, suffer in the
state, orientation and quantity related tasks. On the other hand, relational context, color and presence
of features show the best performance with pixel-level MLLMs. Nonetheless, across all the visual
patterns, the MLLMs that were not trained with pixel-level supervision persistently surpass these
pixel-level MLLMs with a considerable margin. PixCV-Bench, similarly shows the count task is
more challenging than the relational positioning. It also shows that ADE20K dataset serves as a more
challenging dataset than COCO.

D.2 Failures in Pixel-level Visual Grounding

Finally, we show qualitatively the failure cases of the oracle upper bound in Fig.[T9] It shows failures
in segmenting all the object instances in the first row, since the current point prompting assumes one
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Figure 13: Second example of when grounding emerges, corresponding to Image 3 in Fig.|3| Each
row has the corresponding noun phrase on top and three potential SAM predicted masks highlighted
in red using the maximum attention point of this noun phrase as a point prompt, highlighted as a
black circle. It shows the output from mining the attention maps for pixel-level grounding using
LLaVA 1.5 (7B) base MLLM.

connected component corresponding to each expression. However, certain scenarios, such as the
image with the spots on the animal, can lead to these failures in the oracle even when the localisation
of some of these is correct. Mechanisms that solve this multi instance scenarios of the same object
are left for future work.

Another failure occurring such as in the second row stems from ambiguity in the referring expression
itself or failures from SAM identifying the separation between the wall and the ceiling. Hence, the
oracle upper bound is generally inheriting SAM failures. However, its main purpose of showing that
the hidden information within powerful MLLMs is sufficient to perform pixel-level grounding is
achieved, and even surpassing pixel-level MLLMs without degrading their VQA abilities.

E Additional quantitative analysis

E.1 Automatic baseline using open-source models

In our automatic baseline, we replace GPT-40, which is a closed source model, with another open-
source model, in our case Cambrian-1 (8B). Tabled]shows the results on PixMMVP for PixFoundation
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Figure 14: Fourth example of when grounding emerges, corresponding to Image 161 in Fig.|3| Each
row has the corresponding noun phrase on top and three potential SAM predicted masks highlighted
in red using the maximum attention point of this noun phrase as a point prompt, highlighted as a
black circle. It shows the output from mining the attention maps for pixel-level grounding using
LLaVA 1.5 (7B) base MLLM.

Method PixMMVP

At A Mi M S
OMG LLaVA (7B)** 120 120 178 38.0 182
LLaVA 1.5 (7B) + (a+s) 273 280 11.1 112 16.0
LLaVA 1.5 (13B) + (a+s) 393 30 9.8 114 17.7
Cambrian (8B)* + (a+s) 52.0 520 143 151 234
PixFoundationx (8B)* (Ours) | 52.0 52.0 17.2 18.9 27.7

Table 4: PixMMVP comparison of pixel-level MLLMs to our automatic baseline that relies on
Cambrian-1 (8B), an open-source model, for the automatic selection (PixFoundationx). Instead of
using GPT-40, which is closed source. Best results are bolded.

automatic baseline that still surpasses the best pixel-level MLLM, OMG-LLaVA, without the use
of pixel-level supervision. More importantly, this baseline confirms that even with the use of a self-
contained model as Camrbian- 1, without additional help from GPT-40 in a training-free mechanism,
it can still compete with these pixel-level supervised models.

E.2 When grounding emerges - PixCV-Bench

In Fig. we show the analysis on when grounding emerges on PixCV-Bench in terms of the
frequency of the grounding location. It is worth noting that PixMMVP is more challenging than
PixCV-Bench, evidently from the reported IoU and accuracy metrics on both with respect to Table[I]
It seems on the less challenging dataset PixCV-Bench, grounding tends to emerge frequently near the
beginning of the output. This might relate to PixMMVP being more challenging in terms of the level
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Figure 15: PixMMVP qualitative comparison between the pixel-level visual grounding following
the second probing. The referred expression used in the segmentation is shown on top of each
row. It shows persistently that mining for the grounding within attention maps of MLLMs that
were not trained with pixel-level grounding supervision and using the oracle selection outperforms
the pixel-level MLLMs. It clearly shows the oracle excels in identifying fine-grained object parts
and descriptions that other pixel-level MLLMs are not necessarily capable of. The second best
performance is GLAMM, yet we showed it is completely incapable of performing visual question
answering unless fine-tuned for the region captioning task at which then it loses its grounding ability.

of reasoning than PixCV-Bench or the fact that PixXMMVP poses a harder referring segmentation task
than PixCV-Bench, which is mostly using the class names. Another difference is that PixMMVP is out
of the distribution of the seen datasets for these MLLMs. However, the consistent finding among both
datasets is that grounding can emerge coinciding with various concept categories, whether location,
color or state, as shown in Fig. It shows that up to 27% of the examples in PixCV-Bench exhibit
this behaviour. Note that across this analysis, we compute the frequency per object in the referred
expression corresponding to the visual question. Hence, if we have two objects in one visual question,
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Figure 16: PixCV-Bench qualitative comparison between the pixel-level visual grounding following
the second probing. The referred expression used in the segmentation is shown on top of each row. It
shows similar to PixMMVP that mining for the grounding within MLLMs that were not trained with
pixel-level grounding supervision paired with the oracle selection outperforms pixel-level MLLMs.

such as in the relative positioning questions, each object’s concept, corresponding to the emergence,
is computed as part of our analysis.

F Licences and Assets

We use the MMVP and CV-Bench (2D) that were provided in their original works
(2024bla). The first is licensed under a MIT License that allows its use without restriction for research
purposes. The second refers to the OpenAl Terms of Use for the instruction tuning dataset, which
we do not employ and the specific licenses for base language models for checkpoints trained using
the dataset (e.g. Llama community license for LLaMA-3, and Vicuna-1.5). They do not impose any
additional constraints beyond those stipulated in the original licenses. Finally, all the studied models’
trained weights were retrieved from HuggingFace as detailed earlier.

G Impact Statement

Multi-modal large language models are widely used in various applications, such as robotics, medical
image processing and remote sensing. The pixel-level understanding within such MLLMs is necessary
for such applications that require the localization and even in certain scenarios the delineation of the
boundaries for the objects of interest. It is even more important to maintain a good chat performance
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Figure 17: Fine-grained analysis of the studied models performance across the different visual pattern
in PixMMVP showing the model’s accuracy with each pattern.
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Figure 18: Fine-grained analysis of the studied models performance across the different visual
patterns in PixCV-Bench (ADE20K and COCO), showing the model’s accuracy with each pattern.

and visual question answering ability in such applications as well. In our work, we have investigated
the shortcomings of pixel-level MLLMs while providing more challenging benchmarks for these, to
improve them further.

However, as with many other Al advancements there are risks that could be entailed from the
deployment of such models. There could be inherent biases emerging in such pixel-level MLLMs
impacting various under-represented groups. We think that our benchmarking efforts and providing a
tool to understand the pitfalls in the understanding and reasoning of these models could be an initial
direction for mitigating such biases. Nonetheless, we leave it for future work to explore this further.

H Limitations

Note that our training-free baselines do entail a computational overhead with the use of the mask
selection process. Nonetheless, the benefit from exploring what is already learned in these MLLMs
through mining the attention maps with an understanding of when grounding emerges, provides
greater benefit to interpretability. Where we believe interpretability of MLLMs is a crucial aspect
when following a responsible approach to Al. Additionally, these baselines are mainly designed as
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Figure 19: Failures of the oracle upper bound, PixFoundationf, using Cambrian-1 (8B) as base
MLLM on PixMMVP. It shows the failures mostly emerge in quantity or counting tasks. It also shows
that the upper bound is inheriting SAM failures and the ambiguity arising in the referred expression
itself, e.g., “the wall behind the bed”, which direction does “behind” indicate.
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Figure 20: Analysis on (W)hen grounding emerges on PixCV-Bench bench(m)ark using the three base
MLLMs, LLaVA 1.5 (7, 13B) and Cambrian-1 (8B), that were not trained with pixel-level grounding
supervision. We follow the second probing then report the oracle selection. Analysis on: (a) the
output location and (b) the output concept category, that coincides with the best segmentation.

strong baselines in our paired benchmarks and to showcase the shortcomings in the current pixel-level
MLLMs.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claimed two novel benchmarks, providing strong baselines and benchmark-
ing pixel-level MLLMs to investigate their shortcomings. In addition to using our paired
benchmark to study the second research question on when grounding emerges. All of which
reflect our contributions.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Appendix D we discuss the failure cases, and in Appendix H we discuss a
limitation in our strong baselines.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No theoretical results.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details in Appendix A. Additionally, we provide
the code and the dataset to reproduce our results in PixMMVP in the supplemental.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?

Answer: [Yes]

Justification: We provide the dataset and code for PixMMVP and promise to release the
full datasets and codes for PixMMVP and PixCV-Bench upon acceptance. We only provide
PixMMVP to protect our work.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the necessary implementation details in Appendix A.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper proposes two novel benchmarks and strong baselines that are
training-free. As such, there is no current randomness entailed from this setup, to the best of
our knowledge.

8. Experiments compute resources
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10.

11.

12.

13.

14.

15.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: It is mentioned in Appendix A.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We follow NeurIPS code of conduct.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Appendix G includes that.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our benchmarks are based on publicly available datasets. As such, they do not
incur high risk. Additionally, we do not release pre-trained models but rather discuss strong
baselines and interpretability techniques that are training-free.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We build on two publicly released datasets, which we cite and use their licences
for research purposes only in Appendix F.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide paired referring segmentation datasets with their referring ex-
pressions and segmentation masks, which are explained in the method section and in the
supplemental.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or human subjects involved.
Guidelines:

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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16.

Answer: [NA]

Justification: Not required for our research.
Guidelines:

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We describe it in the method and Appendix A in detail.
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