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ABSTRACT

Online Kernel Learning (OKL) has attracted considerable research interest due
to its promising predictive performance. Second-order methods are particularly
appealing for OKL as they often offer substantial improvements in regret guarantees.
However, existing approaches like PROS-N-KONS suffer from at least quadratic
time complexity with respect to the budget, rendering them unsuitable for meeting
the real-time demands of large-scale online learning. Additionally, current OKL
methods are typically prone to concept drifting in data streams, making them
vulnerable in adversarial environments. To address these issues, we introduce
FORKS, a fast incremental sketching approach for second-order online kernel
learning. FORKS maintains an efficient time-varying explicit feature mapping that
enables rapid updates and decomposition of sketches using incremental sketching
techniques. Theoretical analysis demonstrates that FORKS achieves a logarithmic
regret guarantee, on par with other second-order approaches, while maintaining a
linear time complexity w.r.t. the budget. We validate the performance of FORKS
through extensive experiments conducted on real-world datasets, demonstrating its
superior scalability and robustness against adversarial attacks.

1 INTRODUCTION

The objective of online learning is to efficiently and effectively update hypotheses in a data stream
environment, where the processes of training and testing are intermixed (Shalev-Shwartz, 2011). A
popular online learning algorithm is Online Gradient Descent (OGD), which aims to minimize the
loss function by iteratively adjusting the parameters in the direction of the negative gradient of the
function (Zinkevich, 2003). However, OGD only uses the linear combination of input features, which
makes it susceptible to challenges posed by nonlinear problems. To overcome this limitation, Online
Kernel Learning (OKL) generates a feature mapping from the input space to a high-dimensional repro-
ducing kernel Hilbert space (RKHS) in order to effectively handle nonlinear learning tasks (Kivinen
et al., 2004; Lu et al., 2016b; Singh et al., 2012; Sahoo et al., 2019; Hu et al., 2015).

OKL can be categorized into first-order and second-order approaches. To achieve logarithmic
regret with respect to the number of rounds, the first-order methods require the assumption that
the loss function exhibits strong convexity. However, this assumption is unrealistic for most loss
functions. In contrast, second-order OKL approaches can achieve logarithmic regret without requiring
strong convexity along all directions, enabling them to learn the optimal hypothesis more efficiently.
Currently, the only approximate second-order OKL approaches known to achieve logarithmic regret
are SKETCHED-KONS and PROS-N-KONS (Calandriello et al., 2017b;a). Both approaches
are built upon the exact second-order optimization method Online Newton Step (ONS). Besides,
these methods rely on online sampling techniques, which involve the incremental construction of
non-uniform sampling distributions, rendering a significant cost of updates.

However, existing second-order approaches, including PROS-N-KONS, suffer from two notable chal-
lenges. First, PROS-N-KONS exhibits at least quadratic time complexity with respect to the budget,
making it unsuitable for large-scale online learning tasks that require real-time processing. Although
several existing first-order methods have successfully reduced their running time to linear complexity
by leveraging function approximation techniques, the extension of such techniques to second-order
approaches requires further exploration (Cavallanti et al., 2007; Wang & Vucetic, 2010; Zhao et al.,
2012; Lu et al., 2016a). Second, most existing first- and second-order approaches are prone to
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concept drifting in data streams, making them susceptible to adversarial environments (Zhang & Liao,
2019). Zhang & Liao (2019) use rank-1 modifications to update incremental randomized sketches
and create a time-varying explicit feature mapping to demonstrate better learning performance in
terms of accuracy and efficiency, even in adversarial environments. Nevertheless, their approach is
limited to first-order gradient descent due to high computational complexity and susceptibility to error
accumulation. Motivated by these challenges, our work aims to address the following question: Can
we construct a second-order online kernel learning algorithm with efficient and effective updates? In
this paper, we provide an affirmative answer by introducing a fast incremental sketching approach for
second-order online kernel learning and a novel decomposition method tailored to sketch updates.
Our contributions can be summarized as follows:
•We propose FORKS, a fast and effective second-order online kernel learning method that can be
generalized to both regression and classification tasks. FORKS maintains incremental randomized
sketches using efficient low-rank modifications and constructs an effective time-varying explicit
feature mapping. We provide a detailed theoretical analysis to illustrate the advantages of FORKS,
including having linear time complexity w.r.t. the budget, and enjoying a logarithmic regret bound.
•We propose TISVD, a novel Truncated Incremental Singular Value Decomposition adapting to
matrix decomposition problems in online learning environments. We theoretically compare the time
complexity between TISVD and the original truncated low-rank SVD, confirming that FORKS with
TISVD is computationally more efficient without compromising prediction performance.
•We conduct an extensive experimental study to demonstrate the superior performance of FORKS
on both adversarial and real-world datasets while maintaining practical computational complexity.
Furthermore, we validate the robustness and scalability of FORKS on large-scale datasets.

2 PRELIMINARIES

Notations. Let [n] = {1, 2, . . . , n}, upper-case bold letters (e.g.,A) represent matrix and lower-case
bold letters (e.g., a) represent vectors. We denote byAi∗ andA∗j the i-th row and j-th column of
matrixA,A† the Moore-Penrose pseudoinverse ofA, ∥A∥2 and ∥A∥F the spectral and Frobenius
norms ofA. Let S = {(xt, yt)}Tt=1 ⊆ (X ×Y)T be the data stream of T instances, where xt ∈ RD.
We useA = UΣV ⊤ to represent the SVD ofA, where U ,V denote the left and right matrices of
singular vectors and Σ = diag[λ1, ..., λn] is the diagonal matrix of singular values.
Online Kernel Learning. We denote the kernel function by κ : X × X → R and the corresponding
kernel matrix by K = (κ(xi,xj)). Let Hκ be the RKHS induced by κ, and the corresponding
feature mapping ϕ : X → Hκ. In this case, the kernel function can be represented as the inner
product κ(xi,xj) = ϕ

⊤(xi)ϕ(xj). We consider the online classification setting, i.e., Y = {−1, 1}.
Given a data stream S and a convex loss function ℓ, we define the hypothesis by ft at round t.
When a new example xt arrives, the hypothesis predicts label ŷt using ft. Then, the hypothesis
incurs loss ℓt(ft(xt)) := ℓ(ft(xt), yt) and updates its model parameters. The goal of an online
learning algorithm is to bound the cumulative regret between the hypothesis and an optimal
hypothesis f∗ in hindsight. The regret can be defined as RegT (f

∗) =
∑T

t=1 [ℓt(ft)− ℓt(f
∗)],

where f∗ = argminf∈Hκ

∑T
t=1 ℓt(f).

3 FORKS: THE PROPOSED ALGORITHM

While certain endeavors have been undertaken to apply the sketching approach to OKL (Lu et al.,
2016a; Cavallanti et al., 2007; Zhang & Liao, 2019), it still harbors inherent limitations that hinder its
scalability to second-order methods. First, imposing the decomposition operation on the sketch is
inefficient, leading to expensive computational costs when updating the feature mapping. Second,
directly performing second-order optimization in the original RKHS with implicit feature mapping
has high computational complexity due to the growing size of the Hessian matrix. To address these
limitations, we propose an efficient second-order online kernel learning procedure, named FORKS.

3.1 CONSTRUCTING EXPLICIT FEATURE MAPPING WITH RANDOMIZED SKETCHING

One of the challenges of applying kernel learning algorithms to online scenarios is the linear growth
of the kernel matrix. Given the kernel matrix K(t) ∈ Rt×t, the prototype model (Williams & Seeger,
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2000) get the approximate kernel matrix K̂(t) = CUfastC
⊤ by solving the following problem:

Ufast = argmin
U

||CUC⊤ −K(t)||2F = C†K(t)(C⊤)†, (1)

where C is the sketch and usually chooses the column-sampling matrix Sm ∈ Rt×sm as the sketch
matrix to reduce the size of the approximate kernel matrix, i.e., formulate C =K(t)Sm ∈ Rt×sm .

However, it’s essential to recognize that solving equation 1 can impose significant computational
demands. Wang et al. (2016) proposed the sketched kernel matrix approximation problem as follows:

Ufast = argmin
U

||S⊤CUC⊤S − S⊤K(t)S||2F = (SC)†S⊤KS(t)((SC)⊤)†, (2)

where S can be different sketching matrices to reduce the complexity of equation 1. In this paper, we
choose the randomized sketch matrix SJLT (defined in Appendix B), i.e., S = Sp ∈ Rt×sp .

Therefore, we can maintain some small sketches for approximation instead of storing the entire kernel
matrix. We denote an SJLT S(t+1)

p ∈ R(t+1)×sp and a column-sampling matrix S(t+1)
m ∈ R(t+1)×sm .

At round t+ 1, a new example xt+1 arrives, and the kernel matrix K(t+1) ∈ R(t+1)×(t+1) can be
approximated by K̂(t+1) = C

(t+1)
m UfastC

(t+1)⊤
m , where C(t+1)

m =K(t+1)S
(t+1)
m ∈ R(t+1)×sm .

Ufast is derived by solving the sketched kernel matrix approximation problem, as in equation 2:

Ufast =
(
Φ(t+1)

pm

)†
Φ(t+1)

pp

(
Φ(t+1)⊤

pm

)†
∈ Rsm×sm , (3)

where

Φ(t+1)
pm = S(t+1)⊤

p C(t+1)
m ∈ Rsp×sm , Φ(t+1)

pp = S(t+1)⊤
p K(t+1)S(t+1)

p ∈ Rsp×sp . (4)

Next, we construct the time-varying explicit feature mapping. For simplicity, we begin with rank-k
SVD. Since the elements of the kernel matrix are equal to the inner product of the corresponding
points after feature mapping, i.e. Ki,j = ϕ(xi)ϕ(xj)

⊤. Once we build the approximate kernel matrix
by equation 3, we can obtain a time-varying feature mapping through the rank-k SVD. Specifically, if

Φ(t+1)
pp ≈ V (t+1)Σ(t+1)V (t+1)⊤ ∈ Rsp×sp , (5)

where V (t+1) ∈ Rsp×k,Σ(t+1) ∈ Rk×k and rank k ≤ sp, we can update the time-varying explicit
feature mapping at round t+ 1 by

ϕt+2(·) = ([κ(·, x̃1), κ(·, x̃2), ..., κ(·, x̃sm)]Zt+1)
⊤ ∈ Rk,

where {x̃i}smi=1 are the sampled columns by S(t+1)
m , and Zt+1 =

(
Φ

(t+1)
pm

)†
V (t+1)

(
Σ(t+1)

) 1
2 .

3.2 NOVEL DECOMPOSITION METHOD FOR EFFICIENT FEATURE MAPPING UPDATING

While it is possible to update the feature mapping by directly applying rank-k SVD to Φpp ∈ Rsp×sp ,
this approach proves inefficient for online learning scenarios. Specifically, the standard rank-k SVD
incurs a time complexity of O

(
s3p
)

at each update round, making it impractical for scenarios with a
high volume of updates. To address these limitations, we propose TISVD (Truncated Incremental
Singular Value Decomposition), a novel incremental SVD method explicitly tailored to decomposing
sketches. TISVD offers linear time and space complexity concerning the sketch size sp, efficiently
addressing the computational challenges posed by frequent updates.

We will begin by presenting the construction of TISVD, which is well-suited for decomposing
matrices with low-rank update properties. Without loss of generality, we denote a matrix at round
t as M (t) = U (t)Σ(t)V (t)⊤. In the (t + 1)-th round, M (t) is updated by low-rank matrices
A,B ∈ Rsp×c of rank r ≤ c≪ sp:

M (t+1) =M (t) +AB⊤ = U (t+1)Σ(t+1)V (t+1)⊤. (6)

Our objective is to directly update the singular matrices U (t), Σ(t) and V (t) using low-rank update
matricesA andB, resulting in U (t+1), Σ(t+1) and V (t+1). First, we formulate orthogonal matrices

3



Under review as a conference paper at ICLR 2024

through orthogonal projection and vertical projection. Let P ,Q denote orthogonal basis of the
column space of

(
I −U (t)U (t)⊤

)
A,

(
I − V (t)V (t)⊤

)
B, respectively. We set RA

.
= P⊤

(
I −

U (t)U (t)⊤
)
A andRB

.
= Q⊤

(
I − V (t)V (t)⊤

)
B. Then, we can transform equation 6 into

M (t+1) =
[
U (t) P

]
H

[
V (t) Q

]⊤
, (7)

where

H =

[
Σ(t) 0
0 0

]
+

[
U (t)⊤A
RA

] [
V (t)⊤B
RB

]⊤
∈ R(k+c)×(k+c). (8)

Subsequently, as the size ofH is smaller thanM (t+1), an efficient computation of Ũk, Ṽk, and Σ̃k

can be obtained by performing a truncated rank-k SVD onH . Since the matrices on the left and right
sides are column orthogonal, we finally obtain U (t+1), V (t+1), and Σ(t+1) at round t+ 1:

U (t+1) =
[
U (t) P

]
Ũk, V (t+1) =

[
V (t) Q

]
Ṽk, Σ(t+1) = Σ̃k. (9)

Then, we will elucidate how TISVD can be employed in the context of online kernel learning, leading
to a substantial reduction in the computational overhead associated with updating feature mapping.
Motivated by Zhang & Liao (2019), Φ(t+1)

pp can be updated by low-rank matrices, i.e., Φ(t+1)
pp =

Φ
(t)
pp +∆1∆

⊤
2 , where ∆1,∆2 ∈ Rsp×3 (details in Appendix C). Building upon this foundation, we

can employ TISVD to establish an efficient mechanism for the incremental maintenance of singular
matrices. More precisely, we update V (t+1) and Σ(t+1) using their previous counterparts, V (t) and
Σ(t), along with a low-rank update ∆1,∆2, as in equation 9.

Compared to rank-k SVD, TISVD yields significant improvements by reducing the time complexity
from O

(
s3p
)

to O
(
spk + k3

)
and the space complexity from O

(
s2p
)

to O
(
spk + k2

)
. TISVD

efficiently constructs the feature mapping in linear time, eliminating the need to store the entire
matrix. This renders it a practical decomposition scheme for OKL. The pseudocode of TISVD and
further discussions are presented in the Appendix D, E due to space constraints.

3.3 APPLICATION TO SECOND-ORDER ONLINE KERNEL LEARNING

Since the efficient time-varying explicit feature mappingϕt(·) has been constructed, we can formulate
the approximate hypothesis ft(xt) at round t that is closed to the optimal hypothesis: ft(xt) =
w⊤

t ϕt(xt), wherewt is the weight vector. On the basis of the hypothesis, we propose a two-stage
online kernel learning procedure that follows the second-order update rules, named FORKS (Fast
Second-Order Online Kernel Learning Using Incremental Sketching).

In the first stage, we simply collect the items with nonzero losses to the buffer SV and perform the
Kernelized Online Gradient Descent (KOGD) (Kivinen et al., 2004). When the size of the buffer
reaches a fixed budget B, we calculateKt and initialize sketch matrices Φ(t)

pp ,Φ
(t)
pm in equation 3.

In the second stage, we adopt a periodic updating strategy for sketches. More precisely, we update
Φ

(t)
pp , Φ(t)

pm by equation 11 (details in Appendix C) once for every ρ examples, where ρ ∈ [T −B] is
defined as update cycle. Furthermore, we incrementally update the feature mapping ϕt(·) by TISVD.

In addition to updating the feature mapping ϕt(·), we perform second-order updates on the wt.
Specifically, we update the hypothesis using Online Newton Step (ONS) (Hazan et al., 2007):

vt+1 = wt −A−1
t gt, wt+1 = vt+1 −

h
(
ϕ⊤

t+1vt+1

)
ϕ⊤

t+1A
−1
t ϕt+1

A−1
t ϕt+1, (10)

where gt = ∇wt
ℓt(ŷt) and h(z) = sign(z)max(|z| − C, 0). Moreover, for some parameters α > 0

and σi, ηi ≥ 0, we update At by At = αI +
∑t

i=0(σi + ηi)gig
⊤
i . The second-order updates not

only consider the gradient information but also utilize the curvature information of the loss function,
leading to faster convergence rates.

At the start of a new update epoch, we incorporate a reset step before applying the gradient descent
in the new embedded space. We update the feature mapping ϕt but reset At and wt. This step is
taken to ensure that our starting point cannot be influenced by the adversary. By leveraging efficient
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second-order updates, we can effectively converge to the optimal hypothesis within the current
subspace. Furthermore, the reset of the descent procedure when transitioning between subspaces
ensures a stable starting point and maintains a bounded regret throughout the entire process. Finally,
we summarize the above stages into Algorithm 1.

Algorithm 1: FORKS
Input: Data stream {(xt, yt)}Tt=1, sketch size sp, sample size sm, rank k, budget B, update

cycle ρ, regularizer α, number of blocks d
Output: Predicted label {ŷt}Tt=1
for t← 1, . . . , T do

Receive xt and Predict ŷt = sgn
(
ϕ⊤

t wt

)
if |SV | < B then

SVt+1 ← SVt ∪ {xt} whenever the loss is nonzero
Update hypothesis by KOGD

else
if |SV | = B then

Initialize Φ
(t)
pp ,Φ

(t)
pm as in equation 3, the mapping ϕt+1, and the weight wt+1

else if t mod ρ = 1 then
Update Φ

(t)
pp ,Φ

(t)
pm using rank-1 modifications

Update ϕt+1 by TISVD
At ← αI , wt ← 0

else
Φ

(t)
pp ← Φ

(t−1)
pp , Φ

(t)
pm ← Φ

(t−1)
pm , ϕt+1 ← ϕt

# Execute a second-order gradient descent
Compute gt ← ∇wtℓt (ŷt), At+1 ← At + (σi + ηi)gtg

⊤
t

Compute vt+1 ← wt −A−1
t gt, wt+1 ← vt+1 −

h(ϕ⊤
t+1vt+1)

ϕ⊤
t+1A

−1
t ϕt+1

A−1
t ϕt+1

3.4 COMPLEXITY ANALYSIS OF FORKS

Given the budget B, our FORKS consists of three parts: (1) the first stage using KOGD, (2) the
updating round in the second stage, and (3) the regular round in the second stage. At the first stage
(|SV | ≤ B), FORKS has constant time O(B) and space complexities O(B) per round.

The main computational complexity of FORKS during the update round stems from the matrix
decomposition and inversion procedures. These processes are necessary for updating the feature
mapping and performing second-order gradient updates, respectively. Our proposed TISVD reduce
the time complexity of Φpp decomposition from O

(
s3p
)

to O
(
spk + k3

)
, where sp is the sketch size

of Sp and k is the rank in TISVD. A naive implementation of the second-order update requires O
(
k3

)
per-step time and has a space complexity of O

(
k2

)
necessary to store the Hessian At. However,

by taking advantage of the fact thatAt is constructed using rank-1 modification, we can reduce the
per-step cost to O

(
k2

)
. We denote the update cycle as ρ and µ = B +

⌊
T−B

ρ

⌋
. To summarize, the

time complexity of FORKS at each updating round is O
(
µ+ spk

2 + smspk + k3
)

and the space
complexity of FORKS is O

(
µ+ spk + smsp + k2

)
, where sm is the sketch size of Sm.

In online learning, the main time consumption of FORKS is the regular round. At each regular round,
the time complexity of FORKS is O

(
smk + k2

)
. Since we set sm < sp < B in the experiments, our

FORKS enjoys a time complexity of O
(
Bk + k2

)
per step, which is close to the first-order methods

NOGD and SkeGD. The current state-of-the-art second-order online kernel learning method, PROS-
N-KONS, presents a time complexity of O

(
B2

)
per step, making it less practical for large-scale

online learning scenarios. In contrast, FORKS introduces substantial advancements by reducing the
time complexity from O

(
B2

)
to O

(
Bk + k2

)
, leading to more efficient computations.
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4 REGRET ANALYSIS

In this section, we provide the regret analysis for the proposed second-order online kernel learning
algorithm. We begin by making the following assumptions about the loss functions.
Assumption 1 (Lipschitz Continuity). ℓ is Lipschitz continuous with the Lipschitz constant LLip, i.e.,
∥∇ℓ(w)∥2 ≤ LLip.
Assumption 2 (Directional Curvature). Let LCur ≥ 0. Then, for any vectors w1,w2, the
convex function ℓ satisfies the following condition: ℓ(w1) ≥ ℓ(w2) + ⟨∇ℓ(w2),w1 −w2⟩ +
LCur

2 ⟨∇ℓ(w2),w1 −w2⟩2 .

In practical scenarios, the assumption of strong convexity may not always hold as it imposes constraints
on the convexity of losses in all directions. A more feasible approach is to relax this assumption by
demanding strong convexity only in the gradient direction, which is a weaker condition as indicated
by the two assumptions above. For example, exp-concave losses like squared loss and squared hinge
loss satisfy the condition in Assumption 2.
Assumption 3 (Matrix Product Preserving). Let Sp ∈ RT×sp be a sketch matrix, Um ∈ RT×sm

be a matrix with orthonormal columns, U⊥
m ∈ RT×(T−sm) be another matrix satisfying UmU

⊤
m +

U⊥
m (U⊥

m )⊤ = IT and U⊤
mU

⊥
m = O, and δi (i = 1, 2) be the failure probabilities defined as follows:

Pr
{
∥BiAi −BiSpSp

⊤Ai∥2F > 2∥BiAi −BiSpSp
⊤Ai∥2F /(δisp)

}
≤ δi, i = 1, 2,

whereA1 = Um,B1 = IT ,A2 = U⊥
m (Um

⊥)
⊤
K,B2 = U⊤

m ,K ∈ RT×T is a kernel matrix.

The conditions stated in Assumption 3 can be satisfied by several sketch matrices, such as
SJLT (Woodruff, 2014). Given the loss ℓt(wt) := ℓt(ft) = ℓ(ft(xt), yt),∀t ∈ [T ] satisfies the
conditions in Assumption 1 and Assumption 2, we bound the following regret: RegT (f

∗) =∑T
t=1 [ℓt(wt)− ℓt(f

∗)] , where f∗ denotes the optimal hypothesis in hindsight in the original re-
producing kernel Hilbert space, i.e., f∗ = argminf∈Hκ

∑T
t=1 ℓt(f). Please note that although we

optimize the objective function with the regularization term Lt(wt) = ℓt(wt)+λ∥wt∥22/2, our focus
is on the more fundamental unregularized regret and we provide its upper bound that is sublinear.
Theorem 1 (Regret Bound of FORKS). Let K ∈ RT×T be a kernel matrix with κ(xi,xj) ≤ 1,
δ0, ϵ0 ∈ (0, 1), and k (k ≤ sp) be the rank in TISVD. Set the update cycle ρ = ⌊θ(T − B)⌋,
θ ∈ (0, 1), and d = Θ(log3(sm)), in SJLT Sp ∈ RT×sp . Assume the loss ℓt,∀t ∈ [T ] satisfies the
conditions in Assumption 1 and Assumption 2, suppose that the parameters of updatingAt in FORKS
satisfy ηi = 0 and σi ≥ LCur > 0. Assume the eigenvalues ofK decay polynomially with decay rate
β > 1, and the SJLT Sp satisfies Assumption 3 with failure probabilities δ1, δ2 ∈ (0, 1). If the sketch
sizes of Sp and Sm satisfy

sp = Ω
(
sm polylog(smδ−1

0 )/ϵ20
)
, sm = Ω(CCohk log k),

where CCoh is the coherence of the intersection matrix ofK which is constructed by B+⌊(T−B)/ρ⌋
examples independently of T , then with probability at least 1− δ,

RegT (f
∗) ≤αD2

w

2
+

k

2LCur
O(log T ) +

λ

2
∥f∗∥2Hκ

+

1

λ(β − 1)

(
3

2
− B + ⌊(T −B)/ρ⌋

T

)
+

√
1 + ϵ

λ
O(
√
B).

where δ = δ0 + δ1 + δ2, Dw is the diameter of the weight vector space of the hypothesis on the
incremental sketches, ϵ is defined as:

√
ϵ = 2γ

√
T/(δ1δ2) +

√
2γ/δ2

(
ϵ20 + 2ϵ0 + 2

)
, γ = sm/sp.

Remark 1. In Theorem 1, the assumption of polynomial decay for eigenvalues of the kernel matrix is a
widely applicable assumption, satisfied by shift-invariant kernels, finite rank kernels, and convolution
kernels (Liu & Liao, 2015; Belkin, 2018). Setting the update cycle ρ = ⌊θ(T −B)⌋, θ ∈ (0, 1), and
the sketch size ratio γ = O(log(T )/

√
T ), we can obtain the optimal regret upper bound of order

O(log(T )) for second-order online kernel learning (Hazan, 2016).
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Remark 2. It’s worth noting that when LCur = 0, Assumption 2 essentially enforces convexity. In
the worst case when LCur = 0, the regret bound in the convex case degenerates to O(

√
T ). The

detailed proof is included in Appendix G.

Table 1 provides a comprehensive comparison of the theoretical results of different budget online
kernel learning algorithms. Analyzing the results reveals that the proposed FORKS algorithm achieves
a tighter logarithmic regret bound compared to existing first-order online kernel learning algorithms,
while significantly reducing the computational time required for second-order online optimization.
Specifically, FORKS effectively reduces the time complexity of the existing second-order algorithm
from quadratic w.r.t. the budget to linear, making it comparable to first-order algorithms.
Table 1: Comparison on different budget online kernel learning algorithms, where B is the budget, D
is the feature dimension, and k is the truncated rank in matrix decomposition.

Algorithms Optimization Update Time Regret Bound

RBP First-Order O(B) O(
√
T )

BOGD First-Order O(B) O(
√
T )

FOGD First-Order O(D) O(
√
T )

BPA-S First-Order O(B) O(
√
T )

Projectron First-Order O(B2) O(
√
T )

NOGD First-Order O(Bk) O(
√
T )

SkeGD First-Order O(Bk) O(
√
T )

PROS-N-KONS Second-Order O(B2) O(log T )
FORKS (Ours) Second-Order O(Bk + k2) O(log T )

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the performance of FORKS on a wide variety of
datasets. The details of datasets and experimental setup are presented in Appendix H, I.

5.1 EXPERIMENTS UNDER A FIXED BUDGET

In this section, we demonstrate the performance of FORKS under a fixed budget, employing six
widely recognized classification benchmark datasets. We compare FORKS with the existing budgeted-
based online learning algorithms, including RBP (Cavallanti et al., 2007), BPA-S (Wang & Vucetic,
2010), BOGD (Zhao et al., 2012), FOGD, NOGD (Lu et al., 2016a), Projectron (Orabona et al., 2008),
PROS-N-KONS (Calandriello et al., 2017a), and SkeGD (Zhang & Liao, 2019). We implement the
above models with the help of the LIBOL v0.3.0 toolbox toolbox 1. All algorithms are trained using
hinge loss, and their performance is measured by the average online mistake rate.

For all the algorithms, we set a fixed budget B = 50 for small datasets (N ≤ 10000) and B = 100

for large datasets. Furthermore, we set buffer size B̃ = 2B, γ = 0.2, sp = B, sm = γsp, θ = 0.3,
and update cycle ρ = ⌊θN⌋ in SkeGD and FORKS if not specially specified. For algorithms with
rank-k approximation, we uniformly set k = 0.1B. Besides, we use the same experimental settings
for FOGD (feature dimension = 4B). The results are presented in Table 2. Our FORKS shows the
best performance on most datasets and the suboptimal performance on german and ijcnn1. The
update time of FORKS is comparable to that of the majority of first-order algorithms, including
NOGD and SkeGD. Besides, FORKS is significantly more efficient than the existing second-order
method PROS-N-KONS in large-scale datasets such as codrna and w7a.

Then, we conduct experiments to evaluate how TISVD affects the performance of the algorithm. We
use the same experimental setup in codrna and vary the update rate θ from 0.5 to 0.0005. Figure 1
demonstrates that TISVD maintains efficient decomposition speed without excessively reducing
performance. Furthermore, considering that frequent updates can potentially result in an elevated loss,
it is essential to carefully choose an optimal update cycle that strikes a balance between achieving
superior accuracy and maintaining efficiency.

1http://libol.stevenhoi.org/
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Table 2: Comparisons among RBP, BPA-S, BOGD, Projectron, NOGD, PROS-N-KONS, SkeGD,
FOGD and our FORKS w.r.t. the mistake rates (%) and the running time (s). The best result is
highlighted in bold font, and the second best result is underlined.

Algorithm german svmguide3 spambase

Mistake rate Time Mistake rate Time Mistake rate Time

RBP 38.830 ± 0.152 0.003 29.698 ± 1.644 0.003 35.461 ± 0.842 0.025
BPA-S 35.235 ± 0.944 0.004 29.027 ± 0.732 0.004 34.394 ± 2.545 0.039
Projectron 36.875 ± 1.403 0.003 25.060 ± 0.373 0.003 32.659 ± 0.914 0.031
BOGD 33.705 ± 1.446 0.007 29.904 ± 1.653 0.006 32.859 ± 0.478 0.049
FOGD 30.915 ± 0.845 0.025 30.024 ± 0.787 0.022 25.651 ± 0.349 0.175
NOGD 26.715 ± 0.552 0.014 19.964 ± 0.077 0.008 31.003 ± 0.751 0.077
PROS-N-KONS 31.235 ± 0.939 1.017 24.529 ± 0.561 0.015 32.227 ± 0.678 6.638
SkeGD 25.170 ± 0.391 0.009 19.976 ± 0.105 0.007 32.413 ± 1.886 0.067
FORKS 26.425 ± 0.562 0.008 19.710 ± 0.557 0.009 30.662 ± 0.670 0.070

Algorithm codrna w7a ijcnn1

Mistake rate Time Mistake rate Time Mistake rate Time

RBP 22.644 ± 0.262 0.210 5.963 ± 0.722 0.945 21.024 ± 0.578 0.633
BPA-S 17.029 ± 0.303 0.313 3.001 ± 0.045 1.145 11.114 ± 0.064 0.747
Projectron 19.257 ± 4.688 0.341 3.174 ± 0.014 0.965 9.478 ± 0.001 0.621
BOGD 17.305 ± 0.146 0.507 3.548 ± 0.164 0.970 11.559 ± 0.174 0.724
FOGD 13.103 ± 0.105 1.480 2.893 ± 0.053 2.548 9.674 ± 0.105 3.125
NOGD 17.915 ± 3.315 0.869 2.579 ± 0.007 2.004 9.379 ± 0.001 1.457
PROS-N-KONS 13.387 ± 0.289 114.983 3.016 ± 0.007 92.377 9.455 ± 0.001 5.000
SkeGD 13.274 ± 0.262 0.779 2.706 ± 0.335 2.093 11.898 ± 1.440 2.216
FORKS 12.795 ± 0.360 0.918 2.561 ± 0.038 2.240 9.381 ± 0.001 2.480

0.5 0.3 0.1 0.05 0.01 0.005 0.001 0.00050.10

0.15

0.20

0.25

0.30

0.35

0.40

A
ve

ra
ge

 M
is

ta
ke

 R
at

e 
(%

)

FORKS with TISVD
FORKS with SVD

(a) average mistake rate

500.0 1000.0 5000.0 10000.0 20000.0 30000.0 50000.0
Number of Updates

0

100

200

300

400

500

600

700

800

900

R
un

ni
ng

 T
im

e 
(s

)

TISVD
RSVD

(b) average running time

Figure 1: The average mistake rates and average running time w.r.t. TISVD on codrna.

5.2 EXPERIMENTS UNDER ADVERSARIAL ENVIRONMENT

To empirically validate the algorithms under an adversarial environment, we build adversarial datasets
using the benchmark codrna and german. We compare FORKS with first-order algorithms
BOGD (Zhao et al., 2012), SkeGD (Zhang & Liao, 2019), NOGD (Lu et al., 2016a) and second-order
algorithm PROS-N-KONS (Calandriello et al., 2017a) under the same budget B = 200. Besides, we
set γ = 0.2, sp = 0.75B, sm = γsp, k = 0.1B and update cycle ρ = ⌊0.005(N − B)⌋ in SkeGD
and FORKS. Inspired by the adversarial settings in (Calandriello et al., 2017a; Zhang & Liao, 2019;
Wang et al., 2018), we generate an online learning game with b blocks. At each block, we extract an
instance from the dataset and repeat it for r rounds. In addition, the labels are flipped in each even
block by multiplying them with -1. We set b = 500, r = 10 for codrna-1 and german-1.

Experimental results are presented in Table 3. It is observed that in the adversarial environment, the
performance of all methods significantly decreases with the increase of adversarial changes except
for FORKS. This is due to the fact that FORKS accurately captures the concept drifting through the
incremental update of the sketch matrix and the execution of rapid second-order gradient descent.
Moreover, FORKS maintains its computational efficiency comparable to first-order algorithms,
thereby ensuring that improved performance is achieved without sacrificing computational time.
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Table 3: Comparisons among BOGD, NOGD, PROS-N-KONS, SkeGD and our FORKS w.r.t. the
mistake rates (%) and the running time (s). The best result is highlighted in bold font.

Algorithm codrna-1 german-1

Mistake rate Time Mistake rate Time

BOGD 26.066 ± 1.435 0.029 32.131 ± 1.079 0.042
NOGD 29.780 ± 1.257 0.024 28.103 ± 1.247 0.040
PROS-N-KONS 21.299 ± 1.364 3.323 17.174 ± 1.437 0.477
SkeGD 24.649 ± 5.087 0.269 11.026 ± 4.018 0.113
FORKS 6.752 ± 1.647 0.023 5.142 ± 0.215 0.035

5.3 EXPERIMENTS ON LARGE-SCALE REAL-WORLD DATASETS

In this experiment, we evaluate the efficiency and effectiveness of FORKS on large-scale online
learning tasks. We use KuaiRec, which is a real-world dataset collected from the recommendation
logs of the video-sharing mobile app Kuaishou (Gao et al., 2022). We conduct experiments on
the dense matrix of KuaiRec, which consists of 4, 494, 578 instances with associated timestamps,
making it an ideal benchmark for evaluating large-scale online learning tasks. We test the performance
of the algorithm used in Section 5.3 under different budgets B ranging from 100 to 500. To avoid
excessive training time, we use a budgeted version of PROS-N-KONS that stops updating the
dictionary at a maximum budget of Bmax = 100. Since the buffer size of PROS-N-KONS is
data-dependent, we repeat the training process 20 times to compute the average error rate and the
average time for comparison. In addition to the hinge loss, we use squared hinge loss to evaluate the
performance of algorithms under the directional curvature conditions.

Figure 2 (a) shows the tradeoff between running time and the average mistake rate in the experiment
using hinge loss. Figure 2 (b) shows the tradeoff between running time and the average mistake rate
in the experiment using squared hinge loss. We observe that FORKS consistently achieves superior
learning performance while maintaining comparable time costs to the other first-order algorithms,
regardless of the loss function’s shape. In particular, for squared hinge loss, both PROS-N-KONS
and FORKS significantly outperform first-order models, highlighting the advantages of second-order
methods under exp-concave losses. Additionally, we note that FORKS exhibits significantly higher
efficiency compared to the second-order algorithm PROS-N-KONS. In fact, to achieve a similar
online error rate, FORKS speeds up the running time by a factor of 3.
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Figure 2: The tradeoff between running time and the average mistake rate on KuaiRec. As PROS-
N-KONS utilizes an adaptive budget, it cannot modify computational costs, thereby being depicted
as a single point in the figures.

6 CONCLUSION

This paper introduces FORKS, a fast second-order online kernel learning approach. FORKS leverages
incremental sketching techniques to efficiently handle complex computations and incremental updates
of data matrices and hypotheses, effectively addresses the challenge of concept drifting in data streams,
and achieves a logarithmic regret bound, while maintaining linear time complexity with respect to
the budget. Extensive experiments are conducted on real-world datasets to validate the superior
scalability and robustness of FORKS, showcasing its potential for real-world online learning tasks.
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A CODE FOR REPRODUCIBILITY

Code without datasets is provided in the supplementary material.

B MATRIX SKETCHING

Without loss of generality, given a matrixM ∈ Ra×b, the sketch ofM is defined asMS ∈ Ra×s,
where S ∈ Rb×s is a sketch matrix. In this paper, we introduce the Sparse Johnson-Lindenstrauss
Transform and Column-sampling matrix as the sketch matrix (Charikar et al., 2002; Kane & Nelson,
2014).

Sparse Johnson-Lindenstrauss Transform (SJLT): Randomized sketches via hash functions can
be described in general using hash-based sketch matrices. We denote {hk : {1, ..., b} → {1, ..., sp}}
and {gk : {1, ..., b} → {−1/

√
d, 1/
√
d}} as two different O(log T )-wise independent hash function

sets, where k ∈ {1, ..., d} and d is the number of blocks. We denote SJLT by:

S = [S1, ...,Sd] ∈ Rb×sp

where [Sk]i,j = g(i) for j = hk(i) and [Sk]i,j = 0 for j ̸= hk(i).

Column-sampling matrix: We denote the Column-sampling matrix by Sm ∈ Rb×sm , the columns
of Sm is obtained by uniformly sampling column vectors of I ∈ Rb×b.

C INCREMENTAL MAINTENANCE OF RANDOMIZED SKETCH

At round t+ 1, a new example xt+1 arrives, and the kernel matrix K(t+1) ∈ R(t+1)×(t+1) can be
represented as a bordered matrix and approximated using several small sketches as follows:

K(t+1) =

[
K(t) ψ(t+1)

ψ(t+1)⊤ κ(xt+1,xt+1)

]
≈ C(t+1)

m

(
Φ(t+1)

pm

)†
Φ(t+1)

pp

(
Φ(t+1)⊤

pm

)†
C(t+1)⊤

m ,

where ψ(t+1) = [κ(xt+1,x1), κ(xt+1,x2), . . . , κ(xt+1,xt)]
⊤.

The sketches can be represented as

Φ(t+1)
pm = S(t+1)⊤

p C(t+1)
m , Φ(t+1)

pp = S(t+1)⊤
p C(t+1)

p ,

where C(t+1)
m =K(t+1)S

(t+1)
m , C(t+1)

p =K(t+1)S
(t+1)
p .

The sketches are obtained using an SJLT S
(t+1)
p ∈ R(t+1)×sp and a column-sampling ma-

trix S(t+1)
m ∈ R(t+1)×sm . We partition the sketch matrices into block matrices as S(t+1)

p =[
S

(t)⊤
p , s

(t+1)
p

]⊤
, S(t+1)

m =
[
S

(t)⊤
m , s

(t+1)
m

]⊤
, where s(t+1)

m ∈ Rsm is a sub-sampling vector and

s
(t+1)
p ∈ Rsp is a new row vector of S(t+1)

p sharing the same hash functions.

Furthermore, we can update the sketches Φ(t+1)
pm and Φ

(t+1)
pp using rank-1 modifications as follows:

12
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1. Sketch Φ
(t+1)
pm

The sketch Φ
(t+1)
pm can be maintained as

Φ(t+1)
pm

= S(t+1)⊺
p C(t+1)

m

= S(t+1)⊺
p K(t+1)S(t+1)

m

= [S(t)⊺
p , s(t+1)

p ]

[
K(t) ψ(t+1)

ψ(t+1)⊺ κ(xt+1,xt+1)

] [
S

(t)
m

s
(t+1)⊺
m

]

=

[
S

(t)⊺
p K(t) + s

(t+1)
p ψ(t+1)⊺

S
(t)⊺
p ψ(t+1) + κ(xt+1,xt+1)s

(t+1)
p

]⊺ [
S

(t)
m

s
(t+1)⊺
m

]
= S(t)⊺

p K(t)S(t)
m +R(t+1)

pm +R(t+1)⊺
mp + T (t+1)

pm

= Φ(t)
pm +R(t+1)

pm +R(t+1)⊺
mp + T (t+1)

pm ,

where the modifications are performed using the following three rank-1 matrices

R(t+1)
pm = s(t+1)

p ψ(t+1)⊺S(t)
m ,

R(t+1)
mp = s(t+1)

m ψ(t+1)⊺S(t)
p ,

T (t+1)
pm = κ(xt+1,xt+1)s

(t+1)
p s(t+1)⊺

m .

2. Sketch Φ
(t+1)
pp

For sketch Φ
(t+1)
pp , we have

Φ(t+1)
pp

= S(t+1)⊺
p C(t+1)

p

= S(t+1)⊺
p K(t+1)S(t+1)

p

= [S(t)⊺
p , s(t+1)

p ]

[
K(t) ψ(t+1)

ψ(t+1)⊺ κ(xt+1,xt+1)

] [
S

(t)
p

s
(t+1)⊺
p

]

=

[
S

(t)⊺
p K(t) + s

(t+1)
p ψ(t+1)⊺

S
(t)⊺
p ψ(t+1) + κ(xt+1,xt+1)s

(t+1)
p

]⊺ [
S

(t)
p

s
(t+1)⊺
p

]
= S(t)⊺

p K(t)S(t)
p +R(t+1)

pp +R(t+1)⊺
pp + T (t+1)

pp ,

= Φ(t)
pp +R(t+1)

pp +R(t+1)⊺
pp + T (t+1)

pp ,

where the modifications are done by the following two rank-1 matrices

R(t+1)
pp = s(t+1)

p ψ(t+1)⊺S(t)
p ,

T (t+1)
pp = κ(xt+1,xt+1)s

(t+1)
p s(t+1)⊺

p .

In summary, sketches can be updated through low-rank matrices:

Φ(t+1)
pm = Φ(t)

pm + s(t+1)
p ψ(t+1)⊤S(t)

m + S(t)⊤
p ψ(t+1)s(t+1)⊤

m + κ(xt+1,xt+1)s
(t+1)
p s(t+1)⊤

m ,

Φ(t+1)
pp = Φ(t)

pp + s(t+1)
p ψ(t+1)⊤S(t)

p + S(t)⊤
p ψ(t+1)s(t+1)⊤

p + κ(xt+1,xt+1)s
(t+1)
p s(t+1)⊤

p ,
(11)

Specifically, the proposed TISVD method efficiently constructs the time-varying explicit feature
mapping ϕt(·) in equation 5 by settingM = Φpp and

A =
[
s
(t+1)
p ,S

(t)⊤
p ψ(t+1), s

(t+1)
p

]
, B =

[
S

(t)⊤
p ψ(t+1), s

(t+1)
p , κ(xt+1,xt+1)s

(t+1)
p

]
. (12)

13



Under review as a conference paper at ICLR 2024

D MORE DISCUSSION ABOUT TISVD

Current incremental SVD methods necessitate the prerequisite that the decomposition matrix adheres
to a low-rank structure Brand (2006). When this low-rank condition isn’t met, these methods devolve
into traditional SVD. However, in online learning scenarios, the assurance of a low-rank decomposed
sketch matrix isn’t guaranteed. In this context, TISVD innovatively accomplishes incremental
maintenance of singular value matrices without relying on low-rank assumptions, rendering it adapt
to online learning algorithms founded on incremental sketching methodologies.

More precisely, given the matrixA = UΣV ⊤ ∈ Rn×n, the conventional incremental SVD (ISVD)
streamlines the process by omitting the rotation and re-orthogonalization of U and V , leading to a
time complexity of O(nr + r3). where r denotes the matrix rank. Consequently, ISVD relies on the
assumption that r ≪ n in order to effectively establish a linear-time SVD algorithm.

Nevertheless, in online learning scenarios, the sketch matrix earmarked for decomposition frequently
fails to adhere to the low-rank characteristic, thereby rendering the direct application of ISVD
ineffective in achieving linear time complexity. To counter this predicament, we have integrated
truncation techniques within the framework of traditional incremental SVD methods. This adaptation
yields a time complexity of O(nrt + r3t ), with rt signifying the predetermined truncated rank.
Crucially, this truncation innovation positions TISVD as a linear incremental SVD technique that
stands independent of low-rank assumptions.

As previously discussed, applying ISVD directly to online learning algorithms isn’t viable. Recog-
nizing the substantial enhancement that accelerated decomposition feature mapping can offer to the
performance of online kernel learning algorithms, prevailing research employs the randomized SVD
algorithm to expedite these algorithms Wan & Zhang (2021); Zhang & Liao (2019). However, it’s
important to highlight that, unlike the incremental SVD method, the randomized SVD is a rapid SVD
technique reliant on random matrices and lacks the capability to perform incremental updates on
singular value matrices. Furthermore, it’s worth noting that the time complexity of randomized SVD
is O(n2r + r3), which is comparatively slower than TISVD’s O(nr + r3).

We have compared TISVD with the rank-k truncated SVD in section 5.2. We further construct an
experiment to test the performance of randomized SVD. We initialize a random Gaussian matrix
A ∈ R100×100 and use random Gaussian matrix B,C ∈ Rm×100 as low rank update. We set
m = 3, k = 30 and updateA 500 to 50000 times respectively.

Figure 3: The comparison of running time between TISVD and RSVD
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From Figure 3, we see that TISVD continues to show desirable decomposition performance. Both
TIVD and randomized SVD can reduce the size of the decomposed matrix through the low-rank
approximation matrix, thereby accelerating the algorithm. However, randomized SVD enjoys a time
complexity of O(n2k + k3), which is worse than O(nk + k3). Besides, TISVD uses incremental
updates to update the singular value matrix, which is more scalable for online learning algorithms
based on incremental sketching.

E THE PSEUDO CODE OF TISVD

Algorithm 2: TISVD

Input: Rank-k singular matrix U (t), V (t) and Σ(t) at round t, low-rank matrixA andB,
truncated rank k

Output: Rank-k singular matrix U (t+1), V (t+1) and Σ(t+1) at round t+ 1

UA ←
(
I −U (t)U (t)⊤

)
A, VB ←

(
I − V (t)V (t)⊤

)
B

Compute orthogonal basis P ,Q of the column space of UA,VB , respectively.

RA ← P⊤
(
I −U (t)U (t)⊤

)
A,RB ← Q⊤

(
I − V (t)V (t)⊤

)
B

H ←
[
Σ(t) 0
0 0

]
+

[
U (t)⊤A
RA

] [
V (t)⊤B
RB

]⊤
Compute Ũk, Ṽk and Σ̃k from rank-k SVD ofH
# Update singular matrix.
U (t+1) ←

[
U (t) P

]
Ũ

V (t+1) ←
[
V (t) Q

]
Ṽ

Σ(t+1) ← Σ̃

return U (t+1),V (t+1),Σ(t+1)

F PROOF OF THEOREM 1

Proof. We can refine the representation of the difference in losses between f∗ and w∗ using the
approximation error of the kernel matrix, where f∗ is the optimal hypothesis in the original RKHS in
hindsight, and w∗ is the optimal hypothesis on the incremental randomized sketches in hindsight.
Specifically, we utilize the following conclusion from Theorem 2 in (Yang et al., 2012):

ℓ(w∗)− ℓ(f∗) ≤ 1

2Tλ
∥K(T )

sk −K∥2,

yielding that

T∑
t=1

(ℓt(w
∗)− ℓt(f

∗)) ≤ 1

2λ

(∥∥∥[K(T )
sk ]B,ρ −KB,ρ

∥∥∥
2
+
∥∥∥K̂B,ρ −K

∥∥∥
2

)
(13)

whereKB,ρ ∈ R(B+⌊(T−B)/ρ⌋)×(B+⌊(T−B)/ρ⌋) is the intersection matrix ofK, constructed using
B + ⌊(T − B)/ρ⌋ examples, [Ksk(T )]B, ρ is the approximate matrix for KB,ρ obtained using
the proposed incremental sketching method with a rank parameter k, O is a zero matrix of size
(T −B − ⌊(T −B)/ρ⌋)× (T −B − ⌊(T −B)/ρ⌋), and

K̂B,ρ = diag {KB,ρ, O} ∈ RT×T ,

̂
[K

(T )
sk ]

B,ρ
= diag

{
[K

(T )
sk ]B,ρ, O

}
∈ RT×T .
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Given that the eigenvalues of the kernel matrix decay polynomially with a decay rate β > 1, we can
establish the following bound:

∥K̂B,ρ −K∥2 ≤
T −B − ⌊(T −B)/ρ⌋

T

T∑
i=1

i−β

≤ T −B − ⌊(T −B)/ρ⌋
T

∫ T

1

i−βdi

=
T −B − ⌊(T −B)/ρ⌋

T

1

β − 1

(
1− 1

T β−1

)
≤ 1

β − 1

(
1− B + ⌊(T −B)/ρ⌋

T

)
.

(14)

Besides, from Assumption 3, with probability at least 1− δ, we have∥∥∥[K(T )
sk ]B,ρ −KB,ρ

∥∥∥
2
≤
√
1 + ϵ ∥[CmFmodC

⊺
m]B,ρ −KB,ρ∥F, (15)

where [CmFmodC
⊺
m]B,ρ is the approximate matrix forKB,ρ using the modified Nyström approach

with a rank parameter k.

Denoting the best rank-k approximation ofA as (A)k, and considering that the eigenvalues of K
decay polynomially with a decay rate β > 1, we can find a value of β > 1 such that λi(K) = O(i−β).
This leads to the following expression:

∥KB,ρ − (KB,ρ)k∥F =
√

B + ⌊(T −B)/ρ⌋ − k · (k + 1)−β = O(
√
B). (16)

Given ϵ′ ∈ (0, 1), when sm = Ω(µ(KB,ρ)k log k), according to Theorem 22 in (Wang et al., 2016),
we can derive the following bound:

∥[CmFmodC
⊺
m]B,ρ −KB,ρ∥F

≤
∥∥[CmFmodC

⊺
m]B,ρ − [CmC

†
mKB,ρ]B,ρ

∥∥
F
+

∥∥[CmC
†
mKB,ρ]B,ρ −KB,ρ

∥∥
F

=
∥∥∥[CmC

†
mKB,ρ

(
CmC

†
m

)⊺ −CmC
†
mKB,ρ]B,ρ

∥∥∥
F
+

∥∥[CmC
†
mKB,ρ]B,ρ −KB,ρ

∥∥
F

≤
∥∥[CmC

†
m]B,ρ

∥∥
F

∥∥∥[KB,ρ

(
CmC

†
m

)⊺
]B,ρ −KB,ρ

∥∥∥
F
+
∥∥[CmC

†
mKB,ρ]B,ρ −KB,ρ

∥∥
F

=
(
1 +

∥∥[CmC
†
m]B,ρ

∥∥
F

) ∥∥[CmC
†
mKB,ρ]B,ρ −KB,ρ

∥∥
F

≤ (1 +
√
sm)

∥∥[CmC
†
mKB,ρ]B,ρ −KB,ρ

∥∥
F

≤
√
1 + ϵ′ (1 +

√
sm)∥KB,ρ − (KB,ρ)k∥F ,

(17)

where [A]B, ρ indicates thatA is constructed based on the matrixKB, ρ, and µ(KB,ρ) represents
the coherence of KB,ρ. By combining equation 15, equation 16, and equation 17, we obtain the
following result: ∥∥∥[K(T )

sk ]B,ρ −KB,ρ

∥∥∥
2
≤
√
1 + ϵ O(

√
B). (18)

Substituting equation 14 and equation 18 into equation 13, we have

T∑
t=1

(ℓt(w
∗)− ℓt(f

∗))

≤ 1

2λ(β − 1)

(
1− B + ⌊(T −B)/ρ⌋

T

)
+

√
1 + ϵ

2λ
O(
√
B) +

λ

2
∥f∗∥2Hκ

− λ

2
∥w∗∥22.

(19)

Next, we analyze the regret resulting from hypothesis updating on the incremental randomized
sketches. We begin by decomposing ℓt(wt)− ℓt(w

∗) into two terms as follows:

ℓt(wt)− ℓt(w
∗) = ℓt(wt)− ℓt(w

∗
t )︸ ︷︷ ︸

Term 1: Optimization Error

+ ℓt(w
∗
t )− ℓt(w

∗)︸ ︷︷ ︸
Term 2: Estimation Error

,
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where f∗
t (·) = ⟨w∗

t ,ϕt(·)⟩ represents the optimal hypothesis on the incremental sketches for the first
t instances, and w∗ denotes the optimal hypothesis on the incremental sketches in hindsight.

The optimization error quantifies the discrepancy between the hypothesis generated by the proposed
faster second-order online kernel learning algorithm and the optimal hypothesis on the incremental
randomized sketches at each round. On the other hand, the estimation error measures the difference
between the optimal hypotheses on the incremental randomized sketches for the first t instances and
for all T instances, respectively.

To obtain an upper bound for the optimization error, we leverage the directional curvature condition
presented in Assumption 2. Given that the Euclidean regularization is a strongly convex regularizer,
the loss function ℓt also satisfies the directional curvature condition. As a result, we can utilize the
inequality provided in Assumption 2 to bound the optimization error. Specifically, we obtain the
following expression:

ℓt(wt)− ℓt(w
∗
t ) ≤ ⟨∇ℓt(wt),wt −w∗

t ⟩ −
LCur

2
⟨∇ℓt(wt),w

∗
t −wt⟩2 . (20)

Letting

∆t = ⟨∇ℓt(wt),wt −w∗
t ⟩ −

LCur

2
⟨∇ℓt(wt),w

∗
t −wt⟩2 ,

equation 20 can be rewritten as ℓt(wt) − ℓt(w
∗
t ) ≤ ∆t. Note that gt = ∇ℓt(wt) in the FORKS

algorithm, we first give the bound of ⟨gt,wt −w∗
t ⟩ = ⟨∇ℓt(wt),wt −w∗

t ⟩ in ∆t. Based on the
update steps for vt and wt proposed in FORKS, it can be inferred that

vt+1 −w∗
t = wt −w∗

t −A−1
t gt, At(vt+1 −w∗

t ) = At(wt −w∗
t )− gt,

yielding that

⟨vt+1 −w∗
t ,At(vt+1 −w∗

t )⟩
= ⟨wt −w∗

t ,At(wt −w∗
t )⟩ − 2⟨gt,wt −w∗

t ⟩+ ⟨gt,A−1
t gt⟩.

(21)

Considering that wt+1 in FORKS can be interpreted as the generalized projection of vt+1 within
the norm induced byAt, by leveraging equation 21 and the Pythagorean theorem, we can derive the
following relationship:

2⟨gt,wt −w∗
t ⟩

= ⟨wt −w∗
t ,At(wt −w∗

t )⟩+ ⟨gt,A−1
t gt⟩ − ⟨vt+1 −w∗

t ,At(vt+1 −w∗
t )⟩

≤ ⟨wt −w∗
t ,At(wt −w∗

t )⟩+ ⟨gt,A−1
t gt⟩ − ⟨wt+1 −w∗

t ,At(wt+1 −w∗
t )⟩.

(22)

By summing equation 22 for t ∈ [T ], combining with equation 20 we obtain

T∑
t=1

ℓt(wt)− ℓt(w
∗
t )

≤
T∑

t=1

⟨gt,wt −w∗
t ⟩ −

T∑
t=1

LCur

2
⟨∇ℓt(wt),w

∗
t −wt⟩2

≤ 1

2

T∑
t=1

⟨wt −w∗
t ,At(wt −w∗

t )⟩+
1

2

T∑
t=1

⟨gt,A−1
t gt⟩−

1

2

T∑
t=1

⟨wt+1 −w∗
t ,At(wt+1 −w∗

t )⟩ −
T∑

t=1

LCur

2
⟨∇ℓt(wt),w

∗
t −wt⟩2 .

(23)

Since incremental sketches in FORKS are periodically updated,w∗
t can be updated at most ⌊(T −

B)/ρ⌋ times. Consequently, by leveraging the fact that At+1 = At + σtgtg
⊤
t , where σt ≥ LCur,
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the upper bound in equation 23 can be simplified to the following expression:
T∑

t=1

ℓt(wt)− ℓt(w
∗
t )

≤ 1

2
⟨w1 −w∗

1 , (A2 − g1g⊤1 /2)(w1 −w∗
1)⟩+

1

2

T∑
t=1

⟨gt,A−1
t gt⟩+

1

2

T∑
t=1

(wt −w∗
t )

⊤(At −At−1 − σtgtg
⊤
t )(wt −w∗

t )

=
1

2
⟨w1 −w∗

1 ,A1(w1 −w∗
1)⟩+

1

2

T∑
t=1

⟨gt,A−1
t gt⟩+

T∑
t=1

ηt
2
(wt −w∗

t )
⊤gtg

⊤
t (wt −w∗

t )

=
α

2
∥w1 −w∗

1∥
2
2 +

1

2

T∑
t=1

⟨gt,A−1
t gt⟩

≤ αD2
w

2
+

1

2

T∑
t=1

⟨gt,A−1
t gt⟩,

(24)

By applying the result from (Hazan et al., 2007), we can obtain the following upper bound on the
sum of the inner products ⟨gt,A−1

t gt⟩,∀t ∈ [T ]:
T∑

t=1

⟨gt,A−1
t gt⟩ ≤

1

LCur
log

(
TL2

Lip/LCur + 1
)k

=
k

LCur
log

(
TL2

Lip/LCur + 1
)
. (25)

Combining equation 25 with equation 24, we find that
T∑

t=1

(ℓt(wt)− ℓt(w
∗
t ))

≤ αD2
w

2
+

k

2LCur
O(log T ) +

λ

2
∥w∗

t ∥22 −
λ

2
∥wt∥22. (26)

For the estimation error, we obtain the following upper bound
T∑

t=1

(ℓt(w
∗
t )− ℓt(w

∗))

≤ 1

2λ

∥∥∥K(T0)
sk −K(T )

sk

∥∥∥
2
+

λ

2
∥w∗∥22 −

λ

2
∥w∗

t ∥22

≤ 1

2λ

(∥∥∥K(T0)
sk −K(T0)

∥∥∥
2
+
∥∥∥K(T0) −K

∥∥∥
2
+
∥∥∥K(T )

sk −K
∥∥∥
2

)
+

λ

2
∥w∗∥22 −

λ

2
∥w∗

t ∥22

≤ 1

2λ

[√
1 + ϵ̃ O(

√
B) +

1

β − 1

(
1− B

T

)
+
∥∥∥K(T )

sk −K
∥∥∥
2

]
+

λ

2
∥w∗∥22 −

λ

2
∥w∗

t ∥22.

(27)

Finally, the three inequalities equation 19, equation 26 and equation 27 combined give the following
bound:

T∑
t=1

(ℓt(wt)− ℓt(f
∗))

≤ αD2
w

2
+

k

2LCur
O(log T )+

λ

2
∥f∗∥2Hκ

+
1

λ(β − 1)

(
3

2
− B + ⌊(T −B)/ρ⌋

T

)
+

√
1 + ϵ

λ
O(
√
B).
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G PROOF OF REMARK 2

Proof. By leveraging the fact thatAt+1 = At + (σt + ηt)gtg
⊤
t , where σt ≥ LCur and applying the

Proposition 1 from (Luo et al., 2016), we can rewrite equation 24 as:

T∑
t=1

ℓt(wt)− ℓt(w
∗
t )

≤ 1

2
⟨w1 −w∗

1 , (A2 − g1g⊤1 /2)(w1 −w∗
1)⟩+

1

2

T∑
t=1

⟨gt,A−1
t gt⟩+

1

2

T∑
t=1

(wt −w∗
t )

⊤(At −At−1 − σtgtg
⊤
t )(wt −w∗

t )

=
1

2
⟨w1 −w∗

1 ,A1(w1 −w∗
1)⟩+

1

2

T∑
t=1

⟨gt,A−1
t gt⟩+

T∑
t=1

ηt
2
(wt −w∗

t )
⊤gtg

⊤
t (wt −w∗

t )

=
α

2
∥w1 −w∗

1∥
2
2 +

1

2

T∑
t=1

⟨gt,A−1
t gt⟩+

T∑
t=1

ηt
2
(wt −w∗

t )
⊤gtg

⊤
t (wt −w∗

t )

≤ αD2
w

2
+

1

2

T∑
t=1

⟨gt,A−1
t gt⟩+ 2L2

Lip

T∑
t=1

ηt

≤ αD2
w

2
+

k

2(ηT + LCur)
O(log T ) + 2L2

Lip

T∑
t=1

ηt,

(28)

In the worst case, if LCur = 0, we set ηt =
√

k
L2

Lipt
and the bound can be simplified to:

T∑
t=1

(ℓt(wt)− ℓt(f
∗))

≤ αD2
w

2
+

√
kLLip

2
O(
√
T ) + 4

√
kLLipO(

√
T )

λ

2
∥f∗∥2Hκ

+
1

λ(β − 1)

(
3

2
− B + ⌊(T −B)/ρ⌋

T

)
+

√
1 + ϵ

λ
O(
√
B).

H DATASET AND EXPERIMENTAL SETUP

We evaluate FORKS on several real-world datasets for binary classification tasks. We use several
well-known classification benchmarks for online learning, where the number of instances ranges
from 1000 to 581, 012. All the experiments are performed over 20 different random permutations
of the datasets. Besides, we introduce a large-scale real-world dataset KuaiRec (Gao et al., 2022),
which has 4, 494, 578 instances and associated timestamps. We do not tune the stepsizes η of
all the gradient descent-based algorithms but take the value η = 0.2. We uniformly set d = 1,
α = 0.01, ηi = 0, σi = 0.5 and λ = 0.01 for FORKS and SkeGD. We take the Gaussian kernel
κ(xi,xj) = exp

(
−||xi−xj ||22

2σ2

)
with parameter set σ ∈ {2[−5:+0.5:7]} used by Zhang & Liao (2019).

All experiments are performed on a machine with 24-core Intel(R) Xeon(R) Gold 6240R 2.40GHz
CPU and 256 GB memory.

19



Under review as a conference paper at ICLR 2024

I MORE ABOUT KUAIREC DATASET

For our experiment, we utilize KuaiRec’s small matrix as the dataset. The processing of dependent
variables involves dividing the ratio of the user’s time spent on the video to the video duration (watch
ratio) by a threshold of 0.75, with values greater than 0.75 classified as positive and values less than
or equal to 0.75 classified as negative. The selection of independent variables is obtained from three
csv files, as specified in the code.

J ADDITIONAL EXPERIMENT RESULTS

J.1 ADDITIONAL EXPERIMENT RESULTS UNDER ADVERSARIAL ENVIRONMENT

We set b = 500, r = 20 for codrna-2 and german-2. The results are presented in Table 4.

Table 4: Comparisons among BOGD, NOGD, PROS-N-KONS, SkeGD and our FORKS w.r.t. the
mistake rates (%) and the running time (s). The best result is highlighted in bold font.

Algorithm codrna-2 german-2

Mistake rate Time Mistake rate Time

BOGD 14.745 ± 0.063 0.043 21.290 ± 0.918 0.060
NOGD 19.977 ± 1.536 0.041 16.527 ± 0.810 0.056
PROS-N-KONS 15.430 ± 2.315 20.612 11.187 ± 1.782 1.144
SkeGD 15.829 ± 2.583 0.203 5.742 ± 2.647 0.077
FORKS 4.127 ± 0.769 0.039 2.960 ± 0.185 0.050

We demonstrate that all methods exhibit improved performance in a less hostile adversarial setting.
Nevertheless, FORKS remains superior to other algorithms with significant advantages in terms of
both time and prediction performance.

J.2 ADDITIONAL EXPERIMENT RESULTS UNDER LARGE-SCALE REAL-WORLD DATASETS

Similar to the experimental setup described in section 5.3, we evaluate the performance of the
algorithms across various budgets B, spanning from 100 to 500. To avoid excessive training time, we
use a budgeted version of PROS-N-KONS with a maximum budget of Bmax = 100. Since the buffer
size of PROS-N-KONS is data-dependent, we repeat the training process 20 times to compute the
average error rate and the logarithm of the average time for comparison.

From Figure 4, we can observe that our FORKS show the best learning performance under most
budget conditions. The large-scale experiments validate the effectiveness and efficiency of our
proposed FORKS, making it potentially more practical than the existing second-order online kernel
learning approaches. Meanwhile, we observed that increasing the budget size B results in a lower
mistake rate but also leads to a higher computation time cost. In practice, we can flexibly adjust the
budget size based on our estimates of the data stream size to obtain a better approximation quality.
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Figure 4: The mistake rates and average running time on KuaiRec under hinge loss. As PROS-N-
KONS utilizes an adaptive budget, it cannot modify computational costs, thereby being depicted as a
parallel line in the figures.
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