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Abstract

Multimodal large language models (MLLMs)
perform excellently in cross-modal tasks, but
their spatial understanding capabilities are still
far from human-level performance, and exist-
ing prompt learning methods have not fully
unlocked their potential. Therefore, we pro-
pose a fine-grained image-text dual prompt
learning framework aimed at enhancing the
spatial understanding ability of MLLMs. Our
method utilizes three mechanisms—target de-
tection, image segmentation, and attention visu-
alization—to provide fine-grained prompts for
the input image from different angles, and em-
ploys an LLM-based refined Chain of Thought
method to transform the text into fine-grained
prompts. This approach strengthens the interac-
tion between the image and text prompts, facil-
itating a deeper semantic analysis by MLLMs.
We evaluate our proposed method using the
BLINK dataset, with two tasks—counting and
relative depth judgment—that effectively as-
sess spatial understanding capabilities. Experi-
mental results show that MLLMs prompted by
our method demonstrate significant improve-
ment in both tasks, which strongly validates the
effectiveness of our approach.

1 Introduction

In recent years, the rise of MLLMs such as LLaVA
(Liu et al., 2024b) and GPT-4V (Achiam et al.,
2023) has not only expanded the boundaries of
natural language processing and computer vision
but also revealed emergent behaviors exhibited
by these models on tasks they were not explic-
itly trained for. For example, they can integrate
image and text information to ask and answer ques-
tions about the content of images, demonstrating
their potential in multimodal interaction. This phe-
nomenon is partly attributed to the vastness of the
model’s training corpus— the internet— which in-
herently contains rich cross-modal communication
patterns, including image-text pairs, image descrip-
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Figure 1: In images containing multiple objects and
complex backgrounds, humans can quickly identify the
main objects, understand their relationships, and accu-
rately answer related questions. However, MLLMs may
provide incorrect answers due to their failure to capture
spatially critical details in the image.

tions, visual question answering, and other diverse
data forms.

However, when faced with common spatial rea-
soning tasks, MLLMs often exhibit discrepancies
in understanding images compared to humans, as
shown in Figure 1. This difference arises because
humans not only rely on visual information when
interpreting images but also integrate rich back-
ground knowledge, life experiences, and intuitive
judgments from the real physical world. As a re-
sult, humans can quickly simulate a 3D scene from
a 2D image and make inferences about patterns
and causal relationships. In contrast, MLLMs pri-
marily rely on statistical patterns in training data,
lacking genuine "understanding" abilities(Fu et al.,
2025). Particularly, current MLLMs are pre-trained
on 2D images and text, without explicit modeling
of spatial location information. Furthermore, the
coarse-grained interaction between image and text
during training makes it difficult for the model to



fully grasp the image details, especially the relation-
ships between them. Therefore, when encountering
complex scenes that require spatial reasoning, the
models struggle to achieve satisfactory results.

Although MLLMs lack explicit 3D spatial mod-
eling, the abundant spatial location information
embedded in 2D images gives them the potential
to understand spatial relationships. In the explo-
ration of unimodal large models, researchers have
focused on using carefully designed text prompts
to trigger specific behaviors in the model, a strategy
that has been successful in many downstream tasks.
However, in the task of spatial understanding for
MLLMs image information plays a more crucial
role, and relying solely on text prompts is insuffi-
cient to enable the model to deeply understand the
posed questions.

To address the above issues, we propose a fine-
grained image-text dual prompt learning frame-
work aimed at enhancing the spatial understand-
ing of MLLMs. In terms of image prompts, our
framework constructs fine-grained object bound-
ary information through image segmentation, fine-
grained object location information through target
detection, and highlights the important informa-
tion understood by external multimodal pretrained
models through image attention heatmaps gener-
ated from image-text interactions, thus bridging
the gap between image and text prompts. In terms
of text prompts, we use a fine-grained chain of
thought from unimodal large models to decompose
the question into step-by-step fine-grained informa-
tion, thereby enhancing the model’s understanding
of the image content. We evaluate the proposed
method on the BLINK dataset(Fu et al., 2025) us-
ing object counting and relative depth estimation
tasks, which effectively measure spatial understand-
ing capabilities. Experimental results demonstrate
that the performance of MLLMs prompted by our
method shows significant improvement in both
tasks.In summary, our contributions are as follows:

* As far as we know, we are the first to system-
atically explore the role of fine-grained image
prompt learning in enhancing the spatial un-
derstanding capabilities of MLLMs.

* We propose a fine-grained image prompt learn-
ing strategy that effectively integrates image
segmentation, target recognition, and atten-
tion heatmaps to enhance the spatial under-
standing capabilities of MLLMs.

* We propose a method that uses a unimodal
large model to decompose textual questions
into fine-grained chain of thought and com-
bine it with the fine-grained image prompt
learning strategy, forming a fine-grained
image-text dual prompt learning framework.
This combined approach further enhances the
MLLMs’ ability to understand spatial location
information.

* We conducted experiments on multiple
MLLMs, and the results show that the pro-
posed method performs excellently in spatial
understanding-related tasks, providing direc-
tion for the design and optimization of future
MLLMs.

2 Related Work

2.1 Multimodal Large Language Models

Large language models (LLMs) have achieved
widespread success in the field of natural lan-
guage processing (NLP). From early models like
BERT(Kenton and Toutanova, 2019) and GPT-
2(Radford et al., 2019), to more recent ones like
GPT-3(Brown et al., 2020), instructGPT(Ouyang
et al., 2022), and various other large-scale open-
source language models such as LLaMA(Touvron
et al., 2023a) and LLaMA2(Touvron et al., 2023b),
significant advancements have been made in NLP,
especially in natural language understanding and
generation.

In multimodal research, how to apply these pow-
erful LLMs to multimodal tasks has also gradually
gained widespread attention. Early studies, such
as Frozen(Tsimpoukelli et al., 2021), achieved im-
pressive performance by training a visual encoder
to encode image inputs as prefixes to a pre-trained
language model. BLIP(Li et al., 2022) pre-trained
a multimodal encoder-decoder hybrid model to fur-
ther enhance performance on vision-language tasks.
BLIP2(Li et al., 2023) introduced a Q-former to
efficiently align visual features with LLMs. Ad-
ditionally, other studies such as MiniGPT4(Zhu
et al., 2023), LLaVA(Liu et al., 2024b), and Qwen-
VL(Bai et al., 2023) use adapters (e.g., linear layers
or multi-layer perceptrons) to further align image
features extracted from visual encoders.

2.2 Visual Prompts

In multimodal large models, a common strategy
is to insert a set of learnable tokens before the
text input, visual input, or both, as visual prompts,



to guide a frozen model (i.e., one whose param-
eters are not updated) to perform a specific task.
A method has been proposed to enable a frozen
model to perform new tasks through a single im-
age perturbation(Bahng et al., 2022). Addition-
ally, some researchers use red circles on images
to prompt the CLIP model, improving its perfor-
mance(Shtedritski et al., 2023). Other studies have
enhanced the performance of large models by seg-
menting images and adding labels such as numbers
on them (Yang et al., 2023).

2.3 Fine-grained Segmentation

The YOLO algorithm(Jiang et al., 2022) treats tar-
get detection as a regression problem, predicting
bounding boxes and class probabilities directly
through a single forward pass, enabling fast and
accurate object localization. Object detection pro-
vides an overall segmentation of objects, which can
serve as an initial division of image content when
handling complex scene images. In the field of
image segmentation, the Set-of-Mark (SoM)(Yang
et al., 2023) technique offers a more fine-grained
segmentation method, dividing the image into dif-
ferent regions and using interactive segmentation
models to identify these regions. SoM not only
focuses on the overall objects in an image but also
strives to recognize regions with different granular-
ities, allowing for a deeper understanding of these
areas, thus achieving more precise image segmen-
tation.

2.4 Multimodal Attention Interaction

Multimodal interaction considers four types
of attention interactions between text and im-
ages(Chefer et al., 2021). For each type, a rele-
vance map is constructed and calculated on the
attention layers through forward propagation. Be-
fore performing attention operations, self-attention
interactions are initialized as an identity matrix,
while cross-modal interactions are initialized to
zero. As the attention layers contextualize the to-
kens, the relevance map is updated using attention
maps and gradients, accounting for the importance
and relevance of heads in multi-head attention. The
update rules differ between self-attention and mul-
timodal attention. Finally, by examining the row
corresponding to the [CLS] token in the relevance
map, the relevance of each token can be extracted
for the final classification task of the Transformer
model.

3 Method

In this section, we outline our approach. First,
we describe the tasks used to evaluate the spatial
understanding capabilities of MLLMs. Then, we
present our proposed prompt learning framework
based on image-text dual prompts. Finally, we
provide a detailed implementation of each module
within the framework.

3.1 Task Description

The BLINK(Fu et al., 2025) evaluation framework,
widely recognized in the academic community, is
effective for assessing the capabilities of MLLMs.
The two core tasks in BLINK—counting and rela-
tive depth judgment(Depth)—are particularly adept
at testing a model’s spatial and positional aware-
ness. Therefore, we chose these two tasks to evalu-
ate the effectiveness of our framework in enhancing
the spatial understanding abilities of MLLMs.

Counting: The model is given an image-text
pair as input, where the text requires the MLLM
to answer the number of objects of a particular
category in the image. Each sample includes an
image, a question, and a numerical answer. In ad-
dition to the correct answer, three other numbers
are randomly selected as distractors. This task ef-
fectively reflects the spatial understanding ability
of MLLMs by requiring them to count the objects
in the image. This involves logical reasoning about
spatial relationships between images at different
locations, especially in complex scenes where ob-
jects may overlap, be occluded, or vary in size and
appearance. The questions are selected from the
TallyQA dataset(Acharya et al., 2019).

Depth: The model is given an image-text pair,
where the text asks the MLLM to determine which
labeled point is closer to the camera. Each question
includes an image and two specified points. The
task is to determine which point is closer to the
observer. This task serves as an alternative metric
for validating whether the geometric understanding
abilities of current MLLMSs are close to human-
level. It effectively reflects the spatial understand-
ing of objects in images. Samples for testing are
constructed using manually annotated data from
the Depth in the Wild dataset(Chen et al., 2016),
ensuring the authenticity and challenge of the task.

3.2 Prompt Framework

The MLLM M takes an image I € RH*XWx3
and a text sequence of length /; ,denoted as T" =



[t ..., tfl] ,as input, and the model outputs a text

sequence of length I , denoted as 7€ = [t9, ..., t]
, formulated as:

79 = M(1,TY (1

Building on this, in this section, we propose
a framework that significantly enhances the spa-
tial understanding ability of MLLMs. The frame-
work integrates four prompt learning modules to
form a comprehensive prompt learning template,
aimed at processing the input image and text more
precisely. Specifically, we introduce fine-grained
image prompts to process the image I,generating
the processed image C,and simultaneously apply
a text-level fine-grained chain of thought (CoT)
to optimize the text sequence 7" resulting in the
processed text T Through our method, the large
model outputs 7' fully exploiting the spatial un-
derstanding potential of MLLMs while ensuring
deep interaction between the image and text, as
shown in the following formula. The overall frame-
work is illustrated in Figure 2.

T9 = M(C,T9) 2)
3.3 Fine-grained Image Prompts

In this section, we describe the specific process of
three types of image prompts.First, we divide the
input image of size H x W into K distinct regions
S, with the output represented by S, consisting of
K binary masks. The MLLM, based on the prompt
text, may not treat the object of interest in the im-
age as a complete whole, but rather as a part of it.
This makes it difficult to capture the boundaries
of the region. Therefore, by performing a finer-
grained segmentation of the image, the boundaries
of objects can be more easily distinguished.

S =[s1,...,sx] € {0, 1} WV (3

Next, we apply an target detection algorithm
to perform fast target detection on the image I,
generating a set of bounding boxes Y. Since the
attention capability of MLLMs is limited when
it comes to the content of the image, we use an
target detection algorithm because it can quickly
identify and accurately locate the main elements
in the image. With the bounding boxes generated
by target detection, the model can rapidly focus on
key objects. Thus, the use of the target detection
algorithm allows the large model to better attend to

the main parts of the image as indicated by the text
prompt.
Y =F,(I) )

Finally, we generate an attention map A for the
input image I and text 17" after processing. This
prompting method primarily targets the multimodal
attributes of large models, aiming to fully leverage
the role of the text modality. It highlights the weak
supervision of the text modality over the image
modality, focusing on the interaction between im-
ages and text, and reflecting the attention of the text
within the image. By generating attention maps,
the MLLM can more accurately understand the key
issues in the text prompts.

KT
A = softmax (%) ®))

In the formula, Q7: is the query matrix for the
text,K; is the key matrix for the image, and dj, is
the dimension of the attention head. The so ftmax
operation ensures that the attention of each text
token to the image is correctly normalized at each
layer.

In summary, we propose a comprehensive im-
age processing method that integrates target detec-
tion algorithms, image segmentation algorithms,
and text attention mechanisms in images. Specifi-
cally, we first use an object detection algorithm to
quickly locate the main elements in the image, then
combine it with image segmentation algorithms for
fine-grained partitioning. At the same time, we
leverage the attention areas of the text in the image
to achieve fine-grained segmentation driven by the
text. This method not only retains the advantages
of image segmentation techniques but also compen-
sates for the limitations of previous work through
object detection and text attention mechanisms,
helping large models to more comprehensively and
deeply understand the spatial relationships in im-
ages. The weighted results of the three modules are
integrated to generate the final fused image C.The
parameters Aj,\2,A3 represent the weight param-
eters for the segmentation region set S,bounding
box set Y, and attention map A, respectively.

C = fusion(A1 X S, \a x A, A3 xY) (6)

3.4 Fine-Grained CoT

In this section, we describe the specific process
of text prompting. While exploring how to en-
hance the understanding of the interaction between
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Figure 2: Our method consists of two main components: image prompts and text prompts. In the image prompt
phase, we apply three different processing techniques to the raw input image and combine them based on their
respective importance, assigning different weights for fusion. In the text prompt phase, we use fine-grained Chain of
Thought techniques and design a question decomposition template to structure complex problems into sub-questions,
which are then decomposed by the large language model following our approach.

images and text in multimodal large models, we
not only delved into image processing techniques
but also proposed an innovative fine-grained chain
of thought (CoT) for text processing. Since large
models have limited understanding of text, we de-
compose the text by fine-grained segmentation and
guide it step by step. This significantly improves
the model’s focus on key elements of the problem,
thus enhancing its ability to solve complex prob-
lems.

For example, in a counting task, suppose the
scene is an image containing several dogs, only
some of which are blue. If the model is directly
asked, "How many blue dogs are there in the im-
age?", it might need to scan the entire image and
identify all the dogs. In a complex or unclear back-
ground, this approach could increase the error rate
and lower accuracy. To solve this problem, we
propose a decomposition strategy based on a fine-
grained CoT at the text level.

We decompose the original question into two
more specific and manageable sub-questions:
"What are the dogs in the image?" and "How many
of these dogs are blue?" This decomposition helps
the model first focus on identifying dog features
in the image, and then the second question further
guides the model to identify and count the blue
dogs. In this way, the model can more efficiently

use the information in the text prompt to guide its
search and recognition process in the image, re-
ducing unnecessary computational overhead and
errors. The following formula demonstrates this
process:

T® = Decompose (T’) ={Q1,Q2} (1

We input this case along with the text prompt 7"
into the large language model, allowing it to out-
put the decomposed text prompt T, where T is
the combination of the two sub-questions (J; and
(2, The primary reason for choosing a large lan-
guage model (LLM) for question decomposition is
that the training corpora for both MLLMs and uni-
modal large language models are largely derived
from the internet. This means that they are already
adapted to the language patterns and expressions
commonly found online. Therefore, compared to
manual question decomposition by humans, LLMs
are better at generating structured queries that align
with the model’s expectations, thereby improving
the accuracy and efficiency of the parsing process.

By introducing a fine-grained CoT at the text
level, we transform complex problems into a series
of organized and specific queries. This not only
simplifies the problem-solving process but also sig-
nificantly enhances the accuracy and efficiency of
MLLMs in understanding and answering questions.



Specifically, the step-by-step guidance enables the
model to focus on key areas in stages, avoiding
the processing of too much information at once,
thereby improving processing speed and accuracy.
Additionally, each sub-question directs the model’s
attention to specific image features, such as ob-
ject categories, colors, etc., allowing the model to
capture details in the image more precisely and re-
ducing the likelihood of background interference
and misjudgments.

By combining the fine-grained CoT at the text
level with the three image prompting methods de-
scribed above, we can better enhance the spatial
understanding ability of MLLMs.

4 Experiment

In this experimental section, we first provide a
detailed description of the experimental setup in
Section 4.1. This section covers the selection of
datasets, the choice of MLLMSs, and the baseline
standards established. In Section 4.2, we perform
an in-depth performance evaluation of the MLLMs
we selected. We further explore the performance
of each model on different tasks. Additionally, we
conducted ablation studies to analyze the contri-
bution of each individual method to specific tasks
and the potential interference it may cause. Finally,
in Section 4.3, we present a detailed analysis of
specific cases, demonstrating the powerful effec-
tiveness of the proposed framework in practical
applications.

4.1 Experimental Setup

Dataset. In this experiment, for the sake of fairness
and rationality, we used the original text and images
from the BLINK dataset(Fu et al., 2025), which in-
cludes 120 image-text pairs in the Counting task.
The questions for the Counting task were selected
from the TallyQA dataset(Acharya et al., 2019),
known for its challenging human-written count-
ing problems. Each sample consists of an image,
a question, and a numerical answer. In addition
to the correct answer, we randomly selected three
other numbers as distractor options. The Depth task
contains 124 image-text pairs, with human annota-
tions from the Depth in the Wild dataset(Chen et al.,
2016) used to organize our samples. Each question
contains an image and two specified points. The
task is to determine which point is closer to the
observer.

MLLMs. We selected four MLLMs for the

experiment: LLaVA-v1.5-7B(Liu et al., 2023),
Qwen-VL-Chat(Bai et al., 2023), GLM-4V(Wang
etal., 2023), and LLaVA-v1.6-vicuna-7B(Liu et al.,
2024a).

Baselines. The accuracy of human recognition
and random choice is referenced against the bench-
mark data published in the BLINK(Fu et al., 2025)
paper. All experimental data were processed using
locally deployed MLLMs, including the question
and answer stages. When evaluating the accuracy
of the model’s responses, if the answer fails to
provide specific and correct information, it is con-
sidered incorrect. This setting is designed to rig-
orously test the model’s ability to understand and
respond to questions, ensuring the reliability and
validity of the experimental results.

Processing Method. For the image segmenta-
tion task, we chose the SoM algorithm(Yang et al.,
2023) and removed the identifiers. For target detec-
tion, we applied YOLO v5(Jocher, 2020), which
is known for its fast and accurate detection capa-
bilities, enabling efficient identification and local-
ization of multiple objects in an image. To gener-
ate attention heatmaps, we selected CLIP(Radford
et al., 2021), a powerful multimodal model that
establishes a deep connection between text and im-
ages, allowing it to generate high-quality heatmaps
that highlight important regions of the image. The
weight parameters \1,\2, and A3 are selected using
the Monte Carlo method(Rubinstein and Kroese,
2016).For text decomposition, we used the LLM
ChatGLM2-6B(GLM et al., 2024).

4.2 Main Results and Ablation Study

In this section, Counting refers to the counting task,
and Depth refers to the relative depth estimation
task. It is important to note that the Depth task
is not suitable for using the YOLO method alone,
as the bounding boxes in the image may occlude
the markers. The best results are highlighted in
bold. The numbers in the table represent accuracy,
calculated as the correct count divided by the total,
and are rounded to two decimal places.

As shown in Table 1, for the Counting and Depth
tasks, the accuracy of the MLLMs is significantly
lower than human performance, indicating a clear
deficiency in the models’ ability to understand spa-
tial relationships in images. Specifically, for the
Counting task, the accuracy of the LLaVA-v1.5-
7B and Qwen-VL-Chat is only about 40%, while
the best-performing GLM-4V has an accuracy of
only 67.5%. For the Depth task, except for the



Table 1: Main Experimental Results. The table presents the experimental results for single methods, as well as
the effects of combining two different methods, including the results of our proposed approach. Additionally, we
compare the accuracy of random selection versus human selection probabilities. The numbers in the table represent
accuracy, calculated as the number of correct answers divided by the total number of answers, rounded to two
decimal places. In the table, S stands for SoM, Y stands for YOLO v5, and A stands for attention.Baseline is the

result obtained on a dataset without any operations.

Counting(Acc%) Depth(Acc%)
Random Choice 25 50
Human 93.75 99.19
Open-source multimodal LLMs

Baseline 40.83 Baseline 51.61
Y 4333  Y+S 43.33 Y - Y+S  57.26
LLaVA -v1.5-7B S 46.67 S+A 44.17 S 4597 S+A 5645
A 38.33 A+Y 39.17 A 49.19 A+Y 5242

Ours 47.50 Ours 58.06

Baseline 42.50 Baseline 57.26
Y 4417 Y+S 44.17 Y - Y+S 53.23
Qwen-VL-Chat S 4417 S+A 47.50 S 54.84 S+A 58.06
A 40.83 A+Y 45.00 A 49.19 A+Y 54.84

Ours 48.33 Ours 59.68

Baseline 67.50 Baseline 65.32
Y 59.17 Y+S 61.67 Y - Y+S  62.10
GLM-4V S 61.67 S+A 67.50 S 61.29 S+A 65.32
A 56.67 A+Y 60.83 A 66.13 A+Y 60.48

Ours 68.33 Ours 70.97

Baseline 49.17 Baseline 52.42
Y 50.00 Y+S 48.33 Y 51.61 Y+S 5323
LLaVA -v1.6-vicuna-7B S 4250 S+A 46.67 S 51.61 S+A 5323
A 4583 A+Y 47.50 A 54.03 A+Y 53.23

Ours 50.00 Ours 54.03

GLM-4V, the other three models have accuracies
just above 50%, which is close to the probability
of random selection. This suggests that during the
initial training process, MLLMs may not have ade-
quately focused on datasets and training strategies
related to spatial understanding, and these models
might lack fine-grained segmentation capabilities.

Further observation reveals that the performance
of the LLaVA-v1.6-vicuna-7B on the Counting task
improved by 8.34% compared to LLaVA-v1.5-7B,
but the accuracy on the Depth task did not show
significant improvement. This indicates that while
certain improvements can enhance performance
on specific tasks, the overall spatial understanding
ability remains limited.

In addition, compared to the baseline methods,
our proposed method significantly improved the
accuracy of multimodal large models on both tasks,
demonstrating its effectiveness. Specifically, on the

Counting task, our method improved the accuracy
by an average of 3.54% over the baseline, with an
improvement of 6.67% for LLaVA-v1.5-7B. On
the Depth task, our method improved accuracy by
an average of 4.03% over the baseline, with the
most notable improvement of 6.42% for LLaVA-
v1.5-7B. These results not only demonstrate the
effectiveness of our method but also suggest that
targeted optimization can help mitigate the spatial
understanding deficiencies in MLLMs.

Since no prior researchers have conducted simi-
lar experiments, we analyzed the main experimen-
tal results alongside the ablation experiments. We
present the results of single methods and combi-
nations of two methods. A notable finding in the
experiments is that, in most cases, the combination
of two methods actually reduced the accuracy of
MLLM responses. This phenomenon suggests that
each method has inherent limitations, and simply



combining two methods may lead to interference,
affecting the model’s judgment ability. This further
proves that our proposed method effectively com-
pensates for the shortcomings of various methods,
helping MLLMs better understand spatial knowl-
edge in images.

Moreover, we observed in the experiments that
different MLLMs show varying sensitivity to differ-
ent prompt methods when handling different types
of tasks. For example, LLaVA-v1.5-7B is more
sensitive to SoM-based prompts when facing the
Counting task, with an accuracy improvement of
5.84%. However, when dealing with the Depth
task, the SoM prompt method actually led to a per-
formance decline. This phenomenon reveals that
different tasks have significantly different require-
ments for prompt methods, and the selection of
prompt strategies should be optimized according to
the specific characteristics of each task.

4.3 Case Study
Case 1:

Q:Two points are circled on the image, labeled by
A and B beside each circle. Which point is closer to
the camera?
Select from the following choices.

(A) Ais closer

(B) B is closer
GLM-4V: B is closer to the camera. x

1
1
1
1
1
1
1
1
1
1
1
1
In the image, there are two points labeled A and :
B. Based on their positions, which point is closer 1
to the camera? Please select one answer: 1
(A) Ais closer 1
(B) B is closer !
GLM-4V: The point labeled "A" is closer to the :
camera than the point labeled "B." This is I
indicated by the relative size of the circles and the 1
position of the labels. The circle around point "A" V I
is larger, and the label is placed much closer to :
the body of the dragonfly than the label for point |
"B," which is further away and smaller in size. 7

Figure 3: An example of the Depth task.

In Figure 3, when only the upper image and the
original text are input into the GLM-4V, the model
fails to generate an accurate answer. In contrast,
for the lower image, after applying our prompt
framework, GLM-4V not only provides the cor-
rect answer but also explains its reasoning process
and the logic behind the conclusion. This case
demonstrates that in the Depth task, our method
can significantly enhance the spatial understanding
ability of MLLMs.

Case 2:

In Figure 4, when only the top image and the
original text were input into the LLaVA-v1.5-7B,
the model failed to generate an accurate answer.
However, when processing the lower image, image
segmentation techniques were applied to divide the

Q: How many black suitcases are pulled in the
image?
Select from the following choices.
(A)2
(B)4
| (C)1
(D)3 x

GLM-4V: : (D) 3.

Q: How many black suitcases are pulled in the
image?

Select from the following choices.

(A)2

()4

(€1

| 0)3
€ GLM-4V: A

___________________________________________

S e e e e e —————————

Figure 4: A counting task example.

image into multiple semantic regions, and the tar-
get detection algorithm accurately identified the
specific locations of different objects. Addition-
ally, with the help of the attention visualization
mechanism, the model highlighted the attention
region for key items (e.g., the suitcase), signifi-
cantly enhancing its understanding and localization
of important elements. As a result, the model was
able to provide a more accurate answer. This case
demonstrates that in the Counting task, our method
significantly improves the spatial understanding
ability of MLLMs.

5 Conclusion

This paper proposes a novel large model prompting
framework aimed at enhancing the spatial under-
standing capabilities of MLLMs. The framework
develops a comprehensive image processing ap-
proach that cleverly integrates target detection, im-
age segmentation, and attention visualization mech-
anisms. This approach not only retains the inherent
advantages of image segmentation technology but
also effectively addresses the limitations of previ-
ous works by incorporating object detection and
attention visualization. Furthermore, we innova-
tively introduce a fine-grained CoT decomposition
strategy at the text level, which improves the accu-
racy and efficiency of the model in understanding
and answering complex questions.

6 Limitations

In the LLaVA-v1.6-vicuna-7B, it was observed that
the model is less sensitive to prompts compared
to other MLLMs, and the exact reasons for this re-
main to be further investigated. Additionally, there
are differences in sensitivity to weight distribution
across different MLLMs, and the underlying causes
of this phenomenon are also not yet clear.
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