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Abstract001

Multimodal large language models (MLLMs)002
perform excellently in cross-modal tasks, but003
their spatial understanding capabilities are still004
far from human-level performance, and exist-005
ing prompt learning methods have not fully006
unlocked their potential. Therefore, we pro-007
pose a fine-grained image-text dual prompt008
learning framework aimed at enhancing the009
spatial understanding ability of MLLMs. Our010
method utilizes three mechanisms—target de-011
tection, image segmentation, and attention visu-012
alization—to provide fine-grained prompts for013
the input image from different angles, and em-014
ploys an LLM-based refined Chain of Thought015
method to transform the text into fine-grained016
prompts. This approach strengthens the interac-017
tion between the image and text prompts, facil-018
itating a deeper semantic analysis by MLLMs.019
We evaluate our proposed method using the020
BLINK dataset, with two tasks—counting and021
relative depth judgment—that effectively as-022
sess spatial understanding capabilities. Experi-023
mental results show that MLLMs prompted by024
our method demonstrate significant improve-025
ment in both tasks, which strongly validates the026
effectiveness of our approach.027

1 Introduction028

In recent years, the rise of MLLMs such as LLaVA029

(Liu et al., 2024b) and GPT-4V (Achiam et al.,030

2023) has not only expanded the boundaries of031

natural language processing and computer vision032

but also revealed emergent behaviors exhibited033

by these models on tasks they were not explic-034

itly trained for. For example, they can integrate035

image and text information to ask and answer ques-036

tions about the content of images, demonstrating037

their potential in multimodal interaction. This phe-038

nomenon is partly attributed to the vastness of the039

model’s training corpus— the internet— which in-040

herently contains rich cross-modal communication041

patterns, including image-text pairs, image descrip-042

Figure 1: In images containing multiple objects and
complex backgrounds, humans can quickly identify the
main objects, understand their relationships, and accu-
rately answer related questions. However, MLLMs may
provide incorrect answers due to their failure to capture
spatially critical details in the image.

tions, visual question answering, and other diverse 043

data forms. 044

However, when faced with common spatial rea- 045

soning tasks, MLLMs often exhibit discrepancies 046

in understanding images compared to humans, as 047

shown in Figure 1. This difference arises because 048

humans not only rely on visual information when 049

interpreting images but also integrate rich back- 050

ground knowledge, life experiences, and intuitive 051

judgments from the real physical world. As a re- 052

sult, humans can quickly simulate a 3D scene from 053

a 2D image and make inferences about patterns 054

and causal relationships. In contrast, MLLMs pri- 055

marily rely on statistical patterns in training data, 056

lacking genuine "understanding" abilities(Fu et al., 057

2025). Particularly, current MLLMs are pre-trained 058

on 2D images and text, without explicit modeling 059

of spatial location information. Furthermore, the 060

coarse-grained interaction between image and text 061

during training makes it difficult for the model to 062
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fully grasp the image details, especially the relation-063

ships between them. Therefore, when encountering064

complex scenes that require spatial reasoning, the065

models struggle to achieve satisfactory results.066

Although MLLMs lack explicit 3D spatial mod-067

eling, the abundant spatial location information068

embedded in 2D images gives them the potential069

to understand spatial relationships. In the explo-070

ration of unimodal large models, researchers have071

focused on using carefully designed text prompts072

to trigger specific behaviors in the model, a strategy073

that has been successful in many downstream tasks.074

However, in the task of spatial understanding for075

MLLMs image information plays a more crucial076

role, and relying solely on text prompts is insuffi-077

cient to enable the model to deeply understand the078

posed questions.079

To address the above issues, we propose a fine-080

grained image-text dual prompt learning frame-081

work aimed at enhancing the spatial understand-082

ing of MLLMs. In terms of image prompts, our083

framework constructs fine-grained object bound-084

ary information through image segmentation, fine-085

grained object location information through target086

detection, and highlights the important informa-087

tion understood by external multimodal pretrained088

models through image attention heatmaps gener-089

ated from image-text interactions, thus bridging090

the gap between image and text prompts. In terms091

of text prompts, we use a fine-grained chain of092

thought from unimodal large models to decompose093

the question into step-by-step fine-grained informa-094

tion, thereby enhancing the model’s understanding095

of the image content. We evaluate the proposed096

method on the BLINK dataset(Fu et al., 2025) us-097

ing object counting and relative depth estimation098

tasks, which effectively measure spatial understand-099

ing capabilities. Experimental results demonstrate100

that the performance of MLLMs prompted by our101

method shows significant improvement in both102

tasks.In summary, our contributions are as follows:103

• As far as we know, we are the first to system-104

atically explore the role of fine-grained image105

prompt learning in enhancing the spatial un-106

derstanding capabilities of MLLMs.107

• We propose a fine-grained image prompt learn-108

ing strategy that effectively integrates image109

segmentation, target recognition, and atten-110

tion heatmaps to enhance the spatial under-111

standing capabilities of MLLMs.112

• We propose a method that uses a unimodal 113

large model to decompose textual questions 114

into fine-grained chain of thought and com- 115

bine it with the fine-grained image prompt 116

learning strategy, forming a fine-grained 117

image-text dual prompt learning framework. 118

This combined approach further enhances the 119

MLLMs’ ability to understand spatial location 120

information. 121

• We conducted experiments on multiple 122

MLLMs, and the results show that the pro- 123

posed method performs excellently in spatial 124

understanding-related tasks, providing direc- 125

tion for the design and optimization of future 126

MLLMs. 127

2 Related Work 128

2.1 Multimodal Large Language Models 129

Large language models (LLMs) have achieved 130

widespread success in the field of natural lan- 131

guage processing (NLP). From early models like 132

BERT(Kenton and Toutanova, 2019) and GPT- 133

2(Radford et al., 2019), to more recent ones like 134

GPT-3(Brown et al., 2020), instructGPT(Ouyang 135

et al., 2022), and various other large-scale open- 136

source language models such as LLaMA(Touvron 137

et al., 2023a) and LLaMA2(Touvron et al., 2023b), 138

significant advancements have been made in NLP, 139

especially in natural language understanding and 140

generation. 141

In multimodal research, how to apply these pow- 142

erful LLMs to multimodal tasks has also gradually 143

gained widespread attention. Early studies, such 144

as Frozen(Tsimpoukelli et al., 2021), achieved im- 145

pressive performance by training a visual encoder 146

to encode image inputs as prefixes to a pre-trained 147

language model. BLIP(Li et al., 2022) pre-trained 148

a multimodal encoder-decoder hybrid model to fur- 149

ther enhance performance on vision-language tasks. 150

BLIP2(Li et al., 2023) introduced a Q-former to 151

efficiently align visual features with LLMs. Ad- 152

ditionally, other studies such as MiniGPT4(Zhu 153

et al., 2023), LLaVA(Liu et al., 2024b), and Qwen- 154

VL(Bai et al., 2023) use adapters (e.g., linear layers 155

or multi-layer perceptrons) to further align image 156

features extracted from visual encoders. 157

2.2 Visual Prompts 158

In multimodal large models, a common strategy 159

is to insert a set of learnable tokens before the 160

text input, visual input, or both, as visual prompts, 161
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to guide a frozen model (i.e., one whose param-162

eters are not updated) to perform a specific task.163

A method has been proposed to enable a frozen164

model to perform new tasks through a single im-165

age perturbation(Bahng et al., 2022). Addition-166

ally, some researchers use red circles on images167

to prompt the CLIP model, improving its perfor-168

mance(Shtedritski et al., 2023). Other studies have169

enhanced the performance of large models by seg-170

menting images and adding labels such as numbers171

on them (Yang et al., 2023).172

2.3 Fine-grained Segmentation173

The YOLO algorithm(Jiang et al., 2022) treats tar-174

get detection as a regression problem, predicting175

bounding boxes and class probabilities directly176

through a single forward pass, enabling fast and177

accurate object localization. Object detection pro-178

vides an overall segmentation of objects, which can179

serve as an initial division of image content when180

handling complex scene images. In the field of181

image segmentation, the Set-of-Mark (SoM)(Yang182

et al., 2023) technique offers a more fine-grained183

segmentation method, dividing the image into dif-184

ferent regions and using interactive segmentation185

models to identify these regions. SoM not only186

focuses on the overall objects in an image but also187

strives to recognize regions with different granular-188

ities, allowing for a deeper understanding of these189

areas, thus achieving more precise image segmen-190

tation.191

2.4 Multimodal Attention Interaction192

Multimodal interaction considers four types193

of attention interactions between text and im-194

ages(Chefer et al., 2021). For each type, a rele-195

vance map is constructed and calculated on the196

attention layers through forward propagation. Be-197

fore performing attention operations, self-attention198

interactions are initialized as an identity matrix,199

while cross-modal interactions are initialized to200

zero. As the attention layers contextualize the to-201

kens, the relevance map is updated using attention202

maps and gradients, accounting for the importance203

and relevance of heads in multi-head attention. The204

update rules differ between self-attention and mul-205

timodal attention. Finally, by examining the row206

corresponding to the [CLS] token in the relevance207

map, the relevance of each token can be extracted208

for the final classification task of the Transformer209

model.210

3 Method 211

In this section, we outline our approach. First, 212

we describe the tasks used to evaluate the spatial 213

understanding capabilities of MLLMs. Then, we 214

present our proposed prompt learning framework 215

based on image-text dual prompts. Finally, we 216

provide a detailed implementation of each module 217

within the framework. 218

3.1 Task Description 219

The BLINK(Fu et al., 2025) evaluation framework, 220

widely recognized in the academic community, is 221

effective for assessing the capabilities of MLLMs. 222

The two core tasks in BLINK—counting and rela- 223

tive depth judgment(Depth)—are particularly adept 224

at testing a model’s spatial and positional aware- 225

ness. Therefore, we chose these two tasks to evalu- 226

ate the effectiveness of our framework in enhancing 227

the spatial understanding abilities of MLLMs. 228

Counting: The model is given an image-text 229

pair as input, where the text requires the MLLM 230

to answer the number of objects of a particular 231

category in the image. Each sample includes an 232

image, a question, and a numerical answer. In ad- 233

dition to the correct answer, three other numbers 234

are randomly selected as distractors. This task ef- 235

fectively reflects the spatial understanding ability 236

of MLLMs by requiring them to count the objects 237

in the image. This involves logical reasoning about 238

spatial relationships between images at different 239

locations, especially in complex scenes where ob- 240

jects may overlap, be occluded, or vary in size and 241

appearance. The questions are selected from the 242

TallyQA dataset(Acharya et al., 2019). 243

Depth: The model is given an image-text pair, 244

where the text asks the MLLM to determine which 245

labeled point is closer to the camera. Each question 246

includes an image and two specified points. The 247

task is to determine which point is closer to the 248

observer. This task serves as an alternative metric 249

for validating whether the geometric understanding 250

abilities of current MLLMs are close to human- 251

level. It effectively reflects the spatial understand- 252

ing of objects in images. Samples for testing are 253

constructed using manually annotated data from 254

the Depth in the Wild dataset(Chen et al., 2016), 255

ensuring the authenticity and challenge of the task. 256

3.2 Prompt Framework 257

The MLLM M takes an image I ∈ RH×W×3 258

and a text sequence of length li ,denoted as T i = 259
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[ti1, ..., t
i
li
] ,as input, and the model outputs a text260

sequence of length l0 , denoted as TO = [t01, ..., t
0
l0
]261

, formulated as:262

TO = M(I, T i) (1)263

Building on this, in this section, we propose264

a framework that significantly enhances the spa-265

tial understanding ability of MLLMs. The frame-266

work integrates four prompt learning modules to267

form a comprehensive prompt learning template,268

aimed at processing the input image and text more269

precisely. Specifically, we introduce fine-grained270

image prompts to process the image I ,generating271

the processed image C,and simultaneously apply272

a text-level fine-grained chain of thought (CoT)273

to optimize the text sequence T i,resulting in the274

processed text TQ.Through our method, the large275

model outputs TO,fully exploiting the spatial un-276

derstanding potential of MLLMs while ensuring277

deep interaction between the image and text, as278

shown in the following formula. The overall frame-279

work is illustrated in Figure 2.280

TO = M(C, TQ) (2)281

3.3 Fine-grained Image Prompts282

In this section, we describe the specific process of283

three types of image prompts.First, we divide the284

input image of size H ×W into K distinct regions285

S, with the output represented by S , consisting of286

K binary masks. The MLLM, based on the prompt287

text, may not treat the object of interest in the im-288

age as a complete whole, but rather as a part of it.289

This makes it difficult to capture the boundaries290

of the region. Therefore, by performing a finer-291

grained segmentation of the image, the boundaries292

of objects can be more easily distinguished.293

S = [s1, ..., sK ] ∈ {0, 1}K×H×W (3)294

Next, we apply an target detection algorithm295

to perform fast target detection on the image I ,296

generating a set of bounding boxes Y . Since the297

attention capability of MLLMs is limited when298

it comes to the content of the image, we use an299

target detection algorithm because it can quickly300

identify and accurately locate the main elements301

in the image. With the bounding boxes generated302

by target detection, the model can rapidly focus on303

key objects. Thus, the use of the target detection304

algorithm allows the large model to better attend to305

the main parts of the image as indicated by the text 306

prompt. 307

Y = Fy (I) (4) 308

Finally, we generate an attention map A for the 309

input image I and text T i after processing. This 310

prompting method primarily targets the multimodal 311

attributes of large models, aiming to fully leverage 312

the role of the text modality. It highlights the weak 313

supervision of the text modality over the image 314

modality, focusing on the interaction between im- 315

ages and text, and reflecting the attention of the text 316

within the image. By generating attention maps, 317

the MLLM can more accurately understand the key 318

issues in the text prompts. 319

A = softmax

(
QT i ·KT

I√
dh

)
(5) 320

In the formula, QT i is the query matrix for the 321

text,KI is the key matrix for the image, and dh is 322

the dimension of the attention head. The softmax 323

operation ensures that the attention of each text 324

token to the image is correctly normalized at each 325

layer. 326

In summary, we propose a comprehensive im- 327

age processing method that integrates target detec- 328

tion algorithms, image segmentation algorithms, 329

and text attention mechanisms in images. Specifi- 330

cally, we first use an object detection algorithm to 331

quickly locate the main elements in the image, then 332

combine it with image segmentation algorithms for 333

fine-grained partitioning. At the same time, we 334

leverage the attention areas of the text in the image 335

to achieve fine-grained segmentation driven by the 336

text. This method not only retains the advantages 337

of image segmentation techniques but also compen- 338

sates for the limitations of previous work through 339

object detection and text attention mechanisms, 340

helping large models to more comprehensively and 341

deeply understand the spatial relationships in im- 342

ages. The weighted results of the three modules are 343

integrated to generate the final fused image C.The 344

parameters λ1,λ2,λ3 represent the weight param- 345

eters for the segmentation region set S,bounding 346

box set Y , and attention map A, respectively. 347

C = fusion(λ1 × S, λ2 ×A, λ3 × Y ) (6) 348

3.4 Fine-Grained CoT 349

In this section, we describe the specific process 350

of text prompting. While exploring how to en- 351

hance the understanding of the interaction between 352
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Figure 2: Our method consists of two main components: image prompts and text prompts. In the image prompt
phase, we apply three different processing techniques to the raw input image and combine them based on their
respective importance, assigning different weights for fusion. In the text prompt phase, we use fine-grained Chain of
Thought techniques and design a question decomposition template to structure complex problems into sub-questions,
which are then decomposed by the large language model following our approach.

images and text in multimodal large models, we353

not only delved into image processing techniques354

but also proposed an innovative fine-grained chain355

of thought (CoT) for text processing. Since large356

models have limited understanding of text, we de-357

compose the text by fine-grained segmentation and358

guide it step by step. This significantly improves359

the model’s focus on key elements of the problem,360

thus enhancing its ability to solve complex prob-361

lems.362

For example, in a counting task, suppose the363

scene is an image containing several dogs, only364

some of which are blue. If the model is directly365

asked, "How many blue dogs are there in the im-366

age?", it might need to scan the entire image and367

identify all the dogs. In a complex or unclear back-368

ground, this approach could increase the error rate369

and lower accuracy. To solve this problem, we370

propose a decomposition strategy based on a fine-371

grained CoT at the text level.372

We decompose the original question into two373

more specific and manageable sub-questions:374

"What are the dogs in the image?" and "How many375

of these dogs are blue?" This decomposition helps376

the model first focus on identifying dog features377

in the image, and then the second question further378

guides the model to identify and count the blue379

dogs. In this way, the model can more efficiently380

use the information in the text prompt to guide its 381

search and recognition process in the image, re- 382

ducing unnecessary computational overhead and 383

errors. The following formula demonstrates this 384

process: 385

TQ = Decompose
(
T i
)
= {Q1, Q2} (7) 386

We input this case along with the text prompt T i 387

into the large language model, allowing it to out- 388

put the decomposed text prompt TQ,where TQ is 389

the combination of the two sub-questions Q1 and 390

Q2,The primary reason for choosing a large lan- 391

guage model (LLM) for question decomposition is 392

that the training corpora for both MLLMs and uni- 393

modal large language models are largely derived 394

from the internet. This means that they are already 395

adapted to the language patterns and expressions 396

commonly found online. Therefore, compared to 397

manual question decomposition by humans, LLMs 398

are better at generating structured queries that align 399

with the model’s expectations, thereby improving 400

the accuracy and efficiency of the parsing process. 401

By introducing a fine-grained CoT at the text 402

level, we transform complex problems into a series 403

of organized and specific queries. This not only 404

simplifies the problem-solving process but also sig- 405

nificantly enhances the accuracy and efficiency of 406

MLLMs in understanding and answering questions. 407
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Specifically, the step-by-step guidance enables the408

model to focus on key areas in stages, avoiding409

the processing of too much information at once,410

thereby improving processing speed and accuracy.411

Additionally, each sub-question directs the model’s412

attention to specific image features, such as ob-413

ject categories, colors, etc., allowing the model to414

capture details in the image more precisely and re-415

ducing the likelihood of background interference416

and misjudgments.417

By combining the fine-grained CoT at the text418

level with the three image prompting methods de-419

scribed above, we can better enhance the spatial420

understanding ability of MLLMs.421

4 Experiment422

In this experimental section, we first provide a423

detailed description of the experimental setup in424

Section 4.1. This section covers the selection of425

datasets, the choice of MLLMs, and the baseline426

standards established. In Section 4.2, we perform427

an in-depth performance evaluation of the MLLMs428

we selected. We further explore the performance429

of each model on different tasks. Additionally, we430

conducted ablation studies to analyze the contri-431

bution of each individual method to specific tasks432

and the potential interference it may cause. Finally,433

in Section 4.3, we present a detailed analysis of434

specific cases, demonstrating the powerful effec-435

tiveness of the proposed framework in practical436

applications.437

4.1 Experimental Setup438

Dataset. In this experiment, for the sake of fairness439

and rationality, we used the original text and images440

from the BLINK dataset(Fu et al., 2025), which in-441

cludes 120 image-text pairs in the Counting task.442

The questions for the Counting task were selected443

from the TallyQA dataset(Acharya et al., 2019),444

known for its challenging human-written count-445

ing problems. Each sample consists of an image,446

a question, and a numerical answer. In addition447

to the correct answer, we randomly selected three448

other numbers as distractor options. The Depth task449

contains 124 image-text pairs, with human annota-450

tions from the Depth in the Wild dataset(Chen et al.,451

2016) used to organize our samples. Each question452

contains an image and two specified points. The453

task is to determine which point is closer to the454

observer.455

MLLMs. We selected four MLLMs for the456

experiment: LLaVA-v1.5-7B(Liu et al., 2023), 457

Qwen-VL-Chat(Bai et al., 2023), GLM-4V(Wang 458

et al., 2023), and LLaVA-v1.6-vicuna-7B(Liu et al., 459

2024a). 460

Baselines. The accuracy of human recognition 461

and random choice is referenced against the bench- 462

mark data published in the BLINK(Fu et al., 2025) 463

paper. All experimental data were processed using 464

locally deployed MLLMs, including the question 465

and answer stages. When evaluating the accuracy 466

of the model’s responses, if the answer fails to 467

provide specific and correct information, it is con- 468

sidered incorrect. This setting is designed to rig- 469

orously test the model’s ability to understand and 470

respond to questions, ensuring the reliability and 471

validity of the experimental results. 472

Processing Method. For the image segmenta- 473

tion task, we chose the SoM algorithm(Yang et al., 474

2023) and removed the identifiers. For target detec- 475

tion, we applied YOLO v5(Jocher, 2020), which 476

is known for its fast and accurate detection capa- 477

bilities, enabling efficient identification and local- 478

ization of multiple objects in an image. To gener- 479

ate attention heatmaps, we selected CLIP(Radford 480

et al., 2021), a powerful multimodal model that 481

establishes a deep connection between text and im- 482

ages, allowing it to generate high-quality heatmaps 483

that highlight important regions of the image. The 484

weight parameters λ1,λ2, and λ3 are selected using 485

the Monte Carlo method(Rubinstein and Kroese, 486

2016).For text decomposition, we used the LLM 487

ChatGLM2-6B(GLM et al., 2024). 488

4.2 Main Results and Ablation Study 489

In this section, Counting refers to the counting task, 490

and Depth refers to the relative depth estimation 491

task. It is important to note that the Depth task 492

is not suitable for using the YOLO method alone, 493

as the bounding boxes in the image may occlude 494

the markers. The best results are highlighted in 495

bold. The numbers in the table represent accuracy, 496

calculated as the correct count divided by the total, 497

and are rounded to two decimal places. 498

As shown in Table 1 , for the Counting and Depth 499

tasks, the accuracy of the MLLMs is significantly 500

lower than human performance, indicating a clear 501

deficiency in the models’ ability to understand spa- 502

tial relationships in images. Specifically, for the 503

Counting task, the accuracy of the LLaVA-v1.5- 504

7B and Qwen-VL-Chat is only about 40%, while 505

the best-performing GLM-4V has an accuracy of 506

only 67.5%. For the Depth task, except for the 507
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Table 1: Main Experimental Results. The table presents the experimental results for single methods, as well as
the effects of combining two different methods, including the results of our proposed approach. Additionally, we
compare the accuracy of random selection versus human selection probabilities. The numbers in the table represent
accuracy, calculated as the number of correct answers divided by the total number of answers, rounded to two
decimal places. In the table, S stands for SoM, Y stands for YOLO v5, and A stands for attention.Baseline is the
result obtained on a dataset without any operations.

Counting(Acc%) Depth(Acc%)
Random Choice 25 50

Human 93.75 99.19
Open-source multimodal LLMs

LLaVA -v1.5-7B

Baseline 40.83 Baseline 51.61
Y 43.33 Y+S 43.33 Y - Y+S 57.26
S 46.67 S+A 44.17 S 45.97 S+A 56.45
A 38.33 A+Y 39.17 A 49.19 A+Y 52.42

Ours 47.50 Ours 58.06

Qwen-VL-Chat

Baseline 42.50 Baseline 57.26
Y 44.17 Y+S 44.17 Y - Y+S 53.23
S 44.17 S+A 47.50 S 54.84 S+A 58.06
A 40.83 A+Y 45.00 A 49.19 A+Y 54.84

Ours 48.33 Ours 59.68

GLM-4V

Baseline 67.50 Baseline 65.32
Y 59.17 Y+S 61.67 Y - Y+S 62.10
S 61.67 S+A 67.50 S 61.29 S+A 65.32
A 56.67 A+Y 60.83 A 66.13 A+Y 60.48

Ours 68.33 Ours 70.97

LLaVA -v1.6-vicuna-7B

Baseline 49.17 Baseline 52.42
Y 50.00 Y+S 48.33 Y 51.61 Y+S 53.23
S 42.50 S+A 46.67 S 51.61 S+A 53.23
A 45.83 A+Y 47.50 A 54.03 A+Y 53.23

Ours 50.00 Ours 54.03

GLM-4V, the other three models have accuracies508

just above 50%, which is close to the probability509

of random selection. This suggests that during the510

initial training process, MLLMs may not have ade-511

quately focused on datasets and training strategies512

related to spatial understanding, and these models513

might lack fine-grained segmentation capabilities.514

Further observation reveals that the performance515

of the LLaVA-v1.6-vicuna-7B on the Counting task516

improved by 8.34% compared to LLaVA-v1.5-7B,517

but the accuracy on the Depth task did not show518

significant improvement. This indicates that while519

certain improvements can enhance performance520

on specific tasks, the overall spatial understanding521

ability remains limited.522

In addition, compared to the baseline methods,523

our proposed method significantly improved the524

accuracy of multimodal large models on both tasks,525

demonstrating its effectiveness. Specifically, on the526

Counting task, our method improved the accuracy 527

by an average of 3.54% over the baseline, with an 528

improvement of 6.67% for LLaVA-v1.5-7B. On 529

the Depth task, our method improved accuracy by 530

an average of 4.03% over the baseline, with the 531

most notable improvement of 6.42% for LLaVA- 532

v1.5-7B. These results not only demonstrate the 533

effectiveness of our method but also suggest that 534

targeted optimization can help mitigate the spatial 535

understanding deficiencies in MLLMs. 536

Since no prior researchers have conducted simi- 537

lar experiments, we analyzed the main experimen- 538

tal results alongside the ablation experiments. We 539

present the results of single methods and combi- 540

nations of two methods. A notable finding in the 541

experiments is that, in most cases, the combination 542

of two methods actually reduced the accuracy of 543

MLLM responses. This phenomenon suggests that 544

each method has inherent limitations, and simply 545
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combining two methods may lead to interference,546

affecting the model’s judgment ability. This further547

proves that our proposed method effectively com-548

pensates for the shortcomings of various methods,549

helping MLLMs better understand spatial knowl-550

edge in images.551

Moreover, we observed in the experiments that552

different MLLMs show varying sensitivity to differ-553

ent prompt methods when handling different types554

of tasks. For example, LLaVA-v1.5-7B is more555

sensitive to SoM-based prompts when facing the556

Counting task, with an accuracy improvement of557

5.84%. However, when dealing with the Depth558

task, the SoM prompt method actually led to a per-559

formance decline. This phenomenon reveals that560

different tasks have significantly different require-561

ments for prompt methods, and the selection of562

prompt strategies should be optimized according to563

the specific characteristics of each task.564

4.3 Case Study565

Case 1:

Figure 3: An example of the Depth task.

566

In Figure 3, when only the upper image and the567

original text are input into the GLM-4V, the model568

fails to generate an accurate answer. In contrast,569

for the lower image, after applying our prompt570

framework, GLM-4V not only provides the cor-571

rect answer but also explains its reasoning process572

and the logic behind the conclusion. This case573

demonstrates that in the Depth task, our method574

can significantly enhance the spatial understanding575

ability of MLLMs.576

Case 2:577

In Figure 4, when only the top image and the578

original text were input into the LLaVA-v1.5-7B,579

the model failed to generate an accurate answer.580

However, when processing the lower image, image581

segmentation techniques were applied to divide the582

Figure 4: A counting task example.

image into multiple semantic regions, and the tar- 583

get detection algorithm accurately identified the 584

specific locations of different objects. Addition- 585

ally, with the help of the attention visualization 586

mechanism, the model highlighted the attention 587

region for key items (e.g., the suitcase), signifi- 588

cantly enhancing its understanding and localization 589

of important elements. As a result, the model was 590

able to provide a more accurate answer. This case 591

demonstrates that in the Counting task, our method 592

significantly improves the spatial understanding 593

ability of MLLMs. 594

5 Conclusion 595

This paper proposes a novel large model prompting 596

framework aimed at enhancing the spatial under- 597

standing capabilities of MLLMs. The framework 598

develops a comprehensive image processing ap- 599

proach that cleverly integrates target detection, im- 600

age segmentation, and attention visualization mech- 601

anisms. This approach not only retains the inherent 602

advantages of image segmentation technology but 603

also effectively addresses the limitations of previ- 604

ous works by incorporating object detection and 605

attention visualization. Furthermore, we innova- 606

tively introduce a fine-grained CoT decomposition 607

strategy at the text level, which improves the accu- 608

racy and efficiency of the model in understanding 609

and answering complex questions. 610

6 Limitations 611

In the LLaVA-v1.6-vicuna-7B, it was observed that 612

the model is less sensitive to prompts compared 613

to other MLLMs, and the exact reasons for this re- 614

main to be further investigated. Additionally, there 615

are differences in sensitivity to weight distribution 616

across different MLLMs, and the underlying causes 617

of this phenomenon are also not yet clear. 618
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