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Abstract

Learning representations for solutions of con-
strained optimization problems (COPs) with un-
known cost functions is challenging, as models
like (Variational) Autoencoders struggle to cap-
ture constraints to decode structured outputs. We
propose an inverse optimization latent variable
model (IO-LVM) that constructs a latent space of
COP costs based on observed solutions, enabling
the inference of feasible and meaningful solutions
by reconstructing them with a COP solver in the
loop. To achieve this, we leverage estimated gra-
dients of a Fenchel-Young loss through a non-
differentiable deterministic solver while shaping
the embedding space. In contrast to established
Inverse Optimization or Inverse Reinforcement
Learning methods, which typically identify a sin-
gle or context-conditioned cost function, we ex-
ploit the learned representation to capture under-
lying COP cost structures and identify solutions
likely originating from different agents or con-
ditions, each using distinct cost functions when
making decisions. Using both synthetic and ac-
tual ship routing data, we validate our approach
through experiments on paths and cycles infer-
ence problems, demonstrating the interpretabil-
ity of the latent space and its effectiveness in
path/cycle reconstruction and their distribution
prediction.

1. Introduction

When learning latent generative representations, it is often
necessary for inferred samples to satisfy specific constraints,
such as forming paths in a graph between designated start
and target nodes. This restriction introduces the challenge
of ensuring that the model generates feasible solutions with
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respect to a constrained optimization problem (COPs) for-
mulation. The difficulty intensifies when the feasible set of
solutions is discrete, as the gradients of these solutions with
respect to the model parameters are zero almost everywhere
and therefore non-informative (Abbas & Swoboda, 2021).

State-of-the-art approaches to recovering underlying cost
functions of COPs from observed solutions, e.g., structured
decisions performed by agents, primarily address the non-
informative gradient problem by either smoothing solver
operations (Lahoud et al., 2024), interpolating COP solu-
tions (Pogancic et al., 2020b), or perturbing the COP cost
(Berthet et al., 2020). The alternative are approaches based
on a relaxation of the COP, such as Maximum Entropy In-
verse Reinforcement Learning (Ziebart et al., 2008b), that
seek to match statistics of the observes behavior (i.e., solu-
tions). However, these methods are unable to directly learn
from data of multiple different agents with different underly-
ing cost functions because they assume a single underlying
cost. To correctly recover several agents from real world
data containing behavior from different agents, they require
supervision through agent labels.

In this paper, we introduce IO-LVM, a novel approach for
learning latent representations of COP costs that can re-
cover observed COP solutions, specifically for path and
cycle problems in graphs. Our approach does not assume a
single underlying COP cost, allowing it to learn effectively
even when multiple agents or context are represented in the
data without labels. Similar to a Variational Autoencoder
(VAE) (Kingma, 2013), we use amortized inference and
map into a meaningful and interpretable low-dimensional
latent cost space. In contrast of ordinary VAEs, we guar-
antee that samples fulfill requirements of the feasible set
(e.g., connected paths) by using a black-box COP solver in
the generative step. To address the gradient challenge, we
adopt a technique similar to that of Berthet et al. (2020),
perturbing the input of the black-box solver and employing
the Fenchel-Young loss (Blondel et al., 2020) to estimate
the gradients of the COP solutions.

IO-LVM not only capture the dataset’s path distributions
and predicts paths for new start and target nodes, but also
addresses the interpretability challenge by learning a low-
dimensional latent space for the cost. In this space, similar
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costs are positioned close to each other, offering a more in-
tuitive and interpretable representation of the path-planning
process. This low-dimensional latent space enables new
possibilities for behavior cost analysis, such as clustering
similar COP costs, denoising observed paths by finding a
small number of representative paths, and reconstructing
structured solutions. Additionally, IO-LVM allows for pre-
dicting how different agents might navigate between unseen
source and target nodes, providing a flexible framework for
path inference.

1.1. Our Contributions

¢ We introduce 10-LVM, a method that combines varia-
tional approximation techniques with COP solver gra-
dient estimation to learn latent representations for the
underlying costs of COPs based on observed decisions.

e JO-LVM naturally constructs a disentangled, and some-
times multimodal, latent space, allowing for the recon-
struction of observed path distributions without making
assumptions about inferred paths. Notably, the ability
to recover distinct (e.g., multimodal) representations
for the underlying costs enables the modeling of differ-
ent agents making decisions.

* We demonstrate the versatility of IO-LVM using both
synthetic and real-world ship path datasets, highlight-
ing its potential for path analysis tasks such as naturally
clustering paths and cycles into meaningful groups, de-
noising observed paths, and predicting paths for unseen
start and target nodes. Our aim is not only to provide
quantitative results but also to offer insights through
visualizations of paths and latent variables

1.2. Related Work

To address the aforementioned gradient challenge, sev-
eral works have focused on differentiating through convex
solvers (Amos & Kolter, 2017; Agrawal et al., 2019), en-
abling the construction of end-to-end learning frameworks
that learn from decisions formulated as solutions to linear or
quadratic programs (Donti et al., 2017; Wilder et al., 2019).
However, these methods are mainly limited to continuous
COP formulations and are difficult to extend to combina-
torial problems such as the graph-based problems in our
work.

In addition to convex solvers, efforts to differentiate
through dynamic programming algorithms have also been
explored. For example, Mensch & Blondel (2018) proposed
a method that addresses dynamic programming differentia-
bility. Specifically for path inference, Lahoud et al. (2024)
proposed a differentiable version of the Floyd-Warshall al-
gorithm to learn from observed paths in graphs. Different to
our work, their approach struggles with scalability as graph

size increases.

Inverse Optimization (Aswani et al., 2018; Tan et al., 2019;
2020), Inverse Reinforcement Learning, and Inverse Path
Planning (Wulfmeier et al., 2017; Lahoud et al., 2024) also
learn representations from the solutions of COPs in form of
cost parameters and assume that the observed solutions were
generated by some optimization process. Their cost parame-
ters are either global (Lahoud et al., 2024), linear (Ng et al.,
2000; Ziebart et al., 2008a;b; Nguyen et al., 2015) or non-
linear (Finn et al., 2016; Wulfmeier et al., 2017; Fernando
et al., 2020), often learned with end-to-end gradient esti-
mation, exploiting insight in the decision making process.
Other methods instead assume a black box optimizer and
estimate gradients with respect to its inputs (Pogancic et al.,
2020a; Berthet et al., 2020). Similar to our approach, one
of the ideas of Berthet et al. (2020) is to utilize a Fenchel-
Young loss to match inferred and observed paths within a
smooth and convex space. Different to us, these methods
typically assume a single underlying cost function or condi-
tion the cost on a given context, which may not capture the
diversity of agent behaviors present in real-world scenarios.

Although autoencoders (Hinton & Salakhutdinov, 2006)
and Variational Autoencoders (VAEs) (Kingma, 2013) have
been successful in learning latent representation to facil-
itate feature extraction, they typically struggle to decode
structured outputs, which is essential for path inference
tasks. A work with similar motivation to ours is that of
Bentley et al. (2022), which combines VAEs with genetic
algorithms. However, their method lacks a guarantee of op-
timality for COPs. In contrast, [O-LVM leverages gradient
estimation through a specialized solver, ensuring optimal-
ity and feasibility, resulting in a more robust end-to-end
learning framework.

2. Preliminaries

Below, we recap the Evidence Lower Bound (ELBO) for
deep latent variable models and introduce Fenchel-Young
losses which are both fundamental for our approach.

2.1. Evidence Lower Bound (ELBO)

The objective in latent variable models is to identify the
latent variables z that best explain the observed data x.
However, directly computing the posterior P(z | x) is gen-
erally intractable. To address this, a variational distribution
¢4(z | x) is introduced and learned with a lower bound ob-
jective (ELBO) (Kingma, 2013; Rezende et al., 2014). The
ELBO makes a trade-off between accurately reconstructing
the input data (the expected log-likelihood) using a model
po(x | z) and adhering to the prior distribution P(z) for the



I0-LVM: Inverse Optimization Latent Variable Models with Graph-based Planning Applications

Constrained Space

Reconstruction

Figure 1. Proposed latent space model with constrained reconstruction: structured data is mapped from X' to latent space Z, then
reconstructed in two steps—2Z to unconstrained space )/, and ) to constrained space X by a solver w.

latent variables, i.e.,
1(97 ¢) = IEq(l,(z|x) [logPQ(X | Z)}
+ BDxw (4(z | x) || P(2)) ,
where Dgy is Kullback-Leibler (KL) divergence and /3 is a
balance factor (Higgins et al., 2017; Burgess et al., 2018),.
In our approach detailed in Sec. 3, we also use a learned ¢

(encoder), but replace the usual reconstruction loss with a
Fenchel-Young loss (see below).

)

2.2. Fenchel-Young Losses

Fenchel-Young losses are a class of loss functions that
generalize many commonly used losses in machine learn-
ing and structured prediction (Blondel et al., 2020; Bao &
Sugiyama, 2021) and are derived from the Fenchel con-
jugate in convex analysis (Boyd & Vandenberghe, 2004).
Given an input x, a score vector y, a scoring function
f(y,x), and an optimization problem formulated as w(y) €
arg mingec (y, x), the Fenchel-Young loss is defined as
ley(y,x) = f(y,x) — f(y,r(w,y)), where r is a regular-
ization function. The loss compares the score to that of the
regularized output 7(w, y), encouraging solutions w(y) that
align to the input x.

We use a variant of the Fenchel-Young loss where the opti-
mization w(y) is turned into a stochastic process by adding
noise (perturbation) e to the input. This introduces ran-
domness, smoothing the objective function landscape. The
perturbed Fenchel-Young loss is expressed as

ZIE-TY(y7X) = f(yax) - f(Y7)A(e)7 2

where X, := r(w,y) = E. [w(y + €)], and € is typically
drawn from a distribution such as Gaussian. For a more
detailed discussion, refer to Blondel et al. (2020). In our
approach, y is a function of latent variables z and the es-
timated gradient Vy Iy is used to differentiate through a
black-box COP solver.

3. Method

In this section, we introduce the notations and problem defi-
nition (Sec. 3.1), present IO-LVM in a general COP setting

(Sec. 3.2), and discuss specifications and assumptions for
path and cycle applications (Sec. 3.3).

3.1. Notation and Problem Definition

Our dataset D = {(x;, p;)}Y; consists of structured deci-
sion vectors x; € X in a constrained space X, e.g., con-
nected paths performed by agents in a graph, and corre-
sponding problem requirements p; € P, e.g., start and tar-
get nodes for the path. We denote by w a black-box solver
for the COP that takes cost vectors y; and problem require-
ments p; to output an optimal COP solution X; = w(y;, p:)-

The main goal is to model a meaningful low-dimensional
representation of COP costs y; € ) that leads to the ob-
served decision vectors from D. Concretely, we aim to esti-
mate the posterior distribution P(z | x), wherez € Z C R¥
is a latent vector in a space of dimension k.

3.2. I0-LVM Description

Similar to VAEs, we learn a latent representation Z using
a nonlinear mapping ¢ to map samples x; to the latent
space Z, and then reconstruct them back to the constrained
space X'. Different to VAE models, where reconstruction
is done by a decoder network, our reconstruction is non-
trivial due to the constraints on the COP solution space X'.
E.g., X contains valid paths between specific nodes in a
graph. To achieve this, we define our reconstruction as a
composition of functions gp: Z2 — Yandw: Y X P — X,
where the former is a nonlinear map parameterized by 6 and
the latter is a solver that is potentially non-differentiable.
This sequence of transformations is visualized in Fig. 1.

To learn our IO-LVM, we adapt the VAE’s ELBO objective
by changing the reconstruction loss (first term) of Eq. (1).
We introduce the solver w and a suitable distance measure d
in X resulting in the term

Eqy () (% 0(y?))] 3)

where y? := gg(z). In contrast to VAE models, the black
box solver w in our reconstruction generally prohibits end-
to-end learning with a common loss such as the Mean



I0-LVM: Inverse Optimization Latent Variable Models with Graph-based Planning Applications

Squared Error. For this reason, we use the Fenchel-Young
loss (see Sec. 2.2) for d by inducing perturbations in the
input space of the COP. Consequently, our loss function is
defined as:

1(97 ¢) :]qus(zb() [lng(yev X)]

4
+ 8D (as(elx) | P@).
By choosing f (in I5y) to be a linear cost function, i.e.,
f(y,x) = (y,x) , the gradient of Eq. (2) with respect to y-
elements is analytically computed as Vy iy (¥, %) = x—X.,
minimizing the Fenchel-Young loss if and only if x = X,
(Berthet et al., 2020). With this, the reconstruction loss of
Eq. (4) can be rewritten as

Eq,(aix) [0, %) — (v, %0)] (5)
0

where x? = E. [w(y? + ¢, p)]. This loss allows us to ob-
tain gradient estimates w.r.t. the weights 6, as the chain of

gradients in the reconstruction block can now be written as

Jge(2) ) (6)
00

Estimating the gradients in Eq. (6) is generally done in a

Monte Carlo fashion, which is expensive due to the need

of running the solver w several times. Therefore, using the

property of expectation linearity, we rewrite the reconstruc-

tion loss in Eq. (5) as

Eqd,(z\x)]Ee [[<y0,x> - <y67w(y0 + €7p)>]] ) (7N

highlighting that the estimator is unbiased with a double
expectation. This result allows us to use a Stochastic Gra-
dient Descent (SGD) method to learn the parameters 6 and
¢, as described in Alg. 1. By leveraging SGD, the solver
runs once (instead of several times) per data sample during
training.

Voliy (v%, %) = (x — %{)

Algorithm details. The algorithm details the steps in the
training process using an encoder h to model g4(z | x),
and a mapping gy. Note that in step 1, the problem re-
quirement can be leveraged into the encoder as additional
information. Step 2 samples the latent value using the VAE
re-parametrization trick (Kingma et al., 2015). In step 3,
we include a transformation ® to ensure that costs y? fits to
COP input space Y. It is common that some COPs require
their cost elements to be positive, for instance, which is gen-
erally fixed by ordinary activation functions. In step 4, we
compute the COP solution given a inferred and perturbed
cost. In step 6, the back-propagation is allowed due to the
gradient estimator described in Eq. (6), bridging the gap of
the non-differentiable COP solver.

Once the IO-LVM is trained, we can reconstruct paths from
parts of the low-dimensional latent space using a compo-
sition of ®(gy) and w(.). Sampling from different parts of

Algorithm 1 One epoch of I0-LVM through a SGD opti-

mization

: Components:

- Encoder hg; Decoder gg.

: Input: Dataset D = {(x;,p:)}¥,

: Output: Trained model parameters

: for each sample (x,p) € D do

Step 1: Encoding: (i, 0) = hy(x, p).

Step 2: Sample z: z=p+o-€6,e ~ N

Step 3: Map z to COP cost space: y? = ®(gy(z)).

Step 4: Solve the COP using w, p and the inferred

costy?: %% = w(y? + ¢, p), where e ~ N.

10:  Step 5: Compute the loss as in Eq. (5).

11:  Step 6: Update the encoder and decoder parameters
(¢, 0) allowed by Eq. (6).

12: end for

RIS D AN

the latent space allows us to observe different patterns re-
constructed in the path space. In Sec. 4.5, we show that the
selection of 3 also mitigates the issue of posterior collapse,
which is often encountered in VAE models with powerful
decoders (Van Den Oord et al., 2017).

3.3. I0-LVM Assumptions and Applications

Since our reconstruction block contains a black-box solver,
we assume the observed structured decision samples in D
presented in Sec. 3.1 are COP optimal solutions, e.g., agents
perform decisions optimally based on their own underlying
cost values. Therefore, the variations in the observed struc-
tured decision samples arises from differences in valuations
of COP costs. Below, we describe how we model the two
problem domains used in experiments in Sec. 4.

Path Planning. For a fixed directed graph with edge set
E, we can model a set of paths as a set of binary vectors X C
{0, 1}®! corresponding to edge usage. Here, D contains
samples of paths (without cycles) in the graph. In this case,
a common path requirement is {p = (s,t) | s,t € V, s #
t}, defining start and target nodes of those paths. In this
scenario, we assume there is an underlying set of edges
costs for each data sample such that a Shortest Path Problem
(SPP) solver (e.g., Dijkstra) w recovers the observed paths.

Hamiltonian Cycles. For a fixed, either directed or undi-
rected graph, with edge set E, we can model a set of cycles
also as a set of binary vectors X C {0, 1}/Z| corresponding
to edge usage. Here, D contains samples of Hamiltonian
cycles in the graph. Here, we assume that there is an un-
derlying set of edge costs for each data sample such that
a Traveling Salesman Problem (TSP) solver recovers the
observed cycle. Although path requirements could be added,
we consider a null set in our experiments.
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Note that in both applications, as in general discrete prob-
lems, the COP can be formulated with a linear objective:
X € argmin, (y,x), fulfilling the requirement for the
gradient estimator.

4. Experiments

The experiments focus on path planning in graphs using
Dijkstra and a TSP solver for the path planning and Hamil-
tonian cycles assumptions, respectively, as described in Sec.
3.3. Details of the IO-LVM training process is provided
in Appendix B. We use three different datasets to evaluate
our IO-LVM, including path reconstruction, path distribu-
tion prediction, facilitation to latent space analysis, and its
potential for unsupervised learning tasks.

4.1. Datasets

Synthetic Waxman Random Graph. We generate a
Waxman graph (Van Mieghem, 2001) with 700 nodes and
7230 edges; with three different cost functions for the edges
costs y, all of them on the basis of a nonlinear function
from unobserved features. We increased the costs of south-
ern edges for agent 1 and of northern edges for agent 3,
while agent 2 was unbiased in terms of south/north edges
(e.g., in in the top-left graph in Fig. 2 it is clear that agent
1 prefers traveling through north edges)). We solved the
SPP using Dijsktra for each agent cost multiple times on
the basis of the generated edges costs plus a Gaussian noise
(i.e., w(y + €)) to generate multiple paths to D. These paths
are generated in two manners, one set with a single source-
target pair (Fig. 2, top-left) and another set with multiple
pairs (Fig. 2, bottom-left). In both cases, 6,000 paths were
generated, which 5,000 were used for training. More details
in Appendix A.

Ships Dataset. Using Automatic Identification System
(AIS) data from the Danish Maritime Authority (Danish
Maritime Authority, 2020), we use ship locations collected
during three months. We project the locations to a grid
graph with 2513 nodes and 8924 edges, resulting in a set
of 2,500 paths with different start and target nodes, where
2,000 were used for training. More details in Appendix A.

TSPLIB From TSPLIB95 (Reinelt, 1991), we use
burmal4 (14 nodes, 91 edges) and bayg29 (29 nodes, 406
edges) graphs. Actual (underlying) edges costs y are gen-
erated using a nonlinear function incorporating unobserved
features and Euclidean distances between nodes as offset.
We create two versions for each graph, one using 3 unob-
served features and another using 50 unobserved features.
3,000 actual Hamiltonian Cycles (2,400 for training) are
generated with a TSP solver w using the underlying costs y
as input. More details in Appendix A.

4.2. Latent Space Analysis

In this experiment, we analyze the projection of 1,000 test
paths to the latent space Z using the encoder hy. The goal
of this experiment is to observe that paths generated by
similar costs (e.g., coming from the same agent or similar
context) are projected close to each other in latent space
after [O-LVM training.
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Figure 2. Left charts illustrate the paths dataset for single (top) pair
of start and target nodes and for multiple (bottom) pairs of start
and target nodes. Right charts illustrate the respective latent space
embedding of paths after training.

Ship Width

¥ Coordinate

Figure 3. Ship paths in the left chart are represented in black, and
are projected to the latent space using g,. The colors in the right
chart represent the average ship width in each hexagon of the latent
space. The ship width, although not used in training, are observed
as a correlated feature in the latent space.

Synthetic Waxman Paths. Fig. 2 illustrates the two dim.
latent space. The colors indicate which of the three agents
performed the task. Note that the agent identity was not
provided in training. We observe that IO-LVM successfully
disentangles the factors associated with the costs of the
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three different agents. This disentanglement is evident not
only when the dataset contains observed paths between a
single pair of start and end nodes (Fig. 2, top-right) but
more importantly when several different pairs of start and
end nodes are present (Fig. 2, bottom-right). The example
with multiple pairs is important because it highlights that
IO-LVM is capable of encoding the underlying transition
costs (and not only paths) if there is enough data. Note that
there are, for example, multiple different paths performed
by Agent 1 (red), even with different start and target nodes,
but almost all these paths are mapped into the same region
in the latent space because they share similar underlying
transition costs.

Ship Paths. The left chart in Fig. 3 illustrates the 2D
latent space (3D latent space results are seen in Fig. 7 in
the Appendix). Each hexagon in the right chart of Fig. 3
corresponds to a subspace of the latent space. For each
hexagon, the average of the ships’ width is plotted in color.
Larger ships are less frequently found in the top-right corner
of the graph, leading to a low average ship width in that
region. This is another example that IO-LVM was capable
to capture unobserved factors within the latent space, i.e.,
the ship width information (provided by AIS) was not used
during the training process.

Ship Width

10 20 30 40 50 60

Gaussian 20+
X Gaussian Mean

Gaussian 20
X Gaussian Mean

Gaussian 20
X Gaussian Mean

Oresund
Strait

Great Belt

Figure 4. Reconstruction for the ship dataset. Top charts: region of
samples from a Gaussian in the latent space. Bottom charts: corre-
sponding generated trajectories in the graph given a hypothetical
(non-existent in the training paths) pair of start and target nodes.

Hamiltonian Cycles. We select nine samples from the
validation set of the burmal4 graph, distributed across dif-
ferent regions of the latent space. They are organized into
three groups of three samples each (see the top graph of Fig.
11 in Appendix). The corresponding paths that generated
these latent values are visualized in the bottom graph of
Fig. 11. Paths with a more edges intersection tend to be

closer to each other in the latent space. We generalize this
analysis by computing the Euclidean distance between all
pairs of latent values versus the Manhattan distance based
on edge usage (path choice) between those paths. For each
group of sample pairs with a specific Manhattan distance,
we calculate the average Euclidean distance in the latent
space. The results, presented in Fig. 10 in Appendix, reveal
that samples that are closer in the latent space are also closer
in terms of edge intersection.

4.3. Qualitative Reconstruction Analysis

In this experiment, we analyze how structure in the latent
space influences reconstruction. For this, we sample 20
latent cost functions from Gaussians in latent space and
compare distribution of paths generated by the composition
of the decoder and solver.

Synthetic Waxman Paths. Reconstructed synthetic paths
are shown in the bottom graphs of Fig. 12 (Appendix). It is
observed that points closer in the latent space share a high
number of edges in the graph. Additionally, as the variance
increases, the number of distinct reconstructed paths grows,
indicating consistency in the learned latent space. E.g.,
difference between the third and fourth columns in Fig. 12.

Ship Paths. As seen in Fig. 4, neighbor latent values share
a high number of edges in the graph (e.g., many path sam-
ples are the same). Moreover, an interesting pattern emerges:
some regions of the latent space containing wider ships
avoid the Oresund Strait when traveling from the east to the
north part of Denmark even though it is the shortest path
in terms of euclidean distance, as observed in the second
column of the figure where ships prefer going through the
Great Belt. Note that Dijsktra in the reconstruction ensures
that all reconstructed paths remain feasible.

Hamiltonian Cycles. We input Hamiltonian cycles to the
encoder to evaluate whether they are correctly reconstructed.
Fig. 5 illustrates some samples reconstruction of IO-LVM
against VAE , where the decoder outputs paths as binary
edge usage indicators (i.e., probabilities converted to bi-
nary). In the figure, thick edges illustrate the reconstructed
paths for the first three validation samples of each dataset
(burmal4 and bayg29). It can be seen from the figure that,
different from VAEs, IO-LVM ensures that the output forms
a valid Hamiltonian cycle due to the inclusion of a TSP
solver in its processing loop. This happens even when the
reconstruction is not fully correct (e.g., most right graph in
in Fig. 5). Reconstructions of other baselines and the respec-
tive ground truth are provided in the Appendix (Fig. 13).
There, we include the TSP-EUC as a naive, non-learning
baseline where the TSP solution is computed using edge
costs defined as the Euclidean distances between node po-
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Sample 0 (Valid set burma14) Sample 1 (Valid set burma14) Sample 2 (Valid set burmal4) Sample 0 (Valid set bayg29) Sample 1 (Valid set bayg29) Sample 2 (Valid set bayg29)

—o

=10)

VAE (dim

=10)

10-LVM (dim:

Edges correctly reconstructed Edges not correctly reconstructed

Figure 5. Each column illustrates an inferred sample for the Hamiltonian Cycles experiment using VAE (top) and IO-LVM (bottom)
with 10 latent dimensions on the first three samples of each path dataset generated with 50 dimensions. Green edges denote correct
reconstructions relative to the validation path, while red edges indicate false positives. VAEs might yield unstructured outputs, not being
able to guarantee Hamiltonian cycles reconstruction. Groundtruths and other baseline results are available in the Appendix, Figure 13

Table 1. Reported are the average Recall of edges reconstruction on the train/validation set for the Hamiltonian Cycles experiment.

Methods  Latent Dims burmal4 (3 dims) bayg29 (3 dims) burmal4 (50 dims) bayg29 (50 dims)
TSP-EUC — 0.634/0.636 0.557/0.552 0.535/0.532 0.596,/0.590
VAE 2 0.852/0.835 0.660/0.639 0.626,/0.582 0.521,/0.500
VAE 10 1.000/0.958 0.969/0.891 0.999/0.884 0.877/0.741
10-LVM 1 0.839/0.823 0.739/0.729 0.679/0.663 0.636,/0.620
10-LVM 2 0.928/0.892 0.854/0.799 0.846/0.763 0.751/0.653
10-LVM 10 1.000/0.976 0.999/0.939 1.000/0.939 0.997/0.836

sitions; and IO-LVM and VAE with less number of latent
dimensions.

4.4. Quantitative Results

Here, we aim to measure the reconstruction and prediction
power of IO-LVM versus selected baselines. In the recon-
struction experiment, the idea is to understand if IO-LVM
is capable to reconstruct the Hamiltonian cycles input of
both training and validation cycles with a limited number
of latent dimensions. In the predictive experiment, we aim
to measure the prediction quality of the overall validation
paths distribution, where we do not input the observed paths
in the encoder, but used a kernel density estimator (KDE) in
the learned latent space to estimate the probability density
function and sample predictions from it.

Reconstruction of Hamiltonian Cycles: Metric and Re-
sults. Reconstruction performance is evaluated using Re-
call of edges usage. The choice of this metric in the Hamil-
tonian experiment is due to the fixed number of actual edges
usage (true positives plus false negatives). Table 1 demon-
strates that IO-LVM outperforms VAE for a fixed number
of latent dimensions. The superior performance of IO-LVM
is attributed to its structured reconstruction process, which

is not guaranteed in VAEs. Note that even though the re-
construction results of VAE with 10 latent dimensions are
reasonable, the mistakes are generally non-structured out-
puts. This was already observed in Fig. 5. Additional
results on the variation of the number of latent dimensions
is provided in Appendix C.

Prediction of Synthetic Waxman: Metric and Results.
For the synthetic data with a single start-target pair, two
metrics are evaluated: the Jensen-Shannon divergence (Djs,
lower is better) between edge usage in 1,000 test versus
predicted (KDE) samples, indicating the similarity of edge
frequencies, and Spearman’s rank correlation (higher is bet-
ter) between the common paths in the inferred and actual
set of paths to assess the alignment in frequency ranking.
Each method is sampled five times to compute the mean and
standard deviation. IO-LVM outperforms the baseline PO
(details of this baseline below) in Spearman’s correlation,
due to its ability to recover distinct costs in the unconstrained
space, even in multimodal cases (e.g., three agents with dif-
ferent paths). In contrast, PO generates noisy paths around
a (single) learned optimal set of transition costs, which may
not align with the true distribution. The VAE, despite good
training performance, failed to reconstruct valid paths, indi-
cating poor generalization.
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Table 2. Results on the prediction of paths distribution. NC denotes
no convergence.

Table 3. Effect of varying § on path reconstruction. Lower 3 yields
more distinct paths, while a balanced 3 enables denoising. Higher

Method Synthetic Ship
Spearman Djs sample
PO 0.058 £ 0008 0.813 0025 0.500 = 0.161
VAE 0.112 0002  0.639 £ 0.144 NC
I0-LVM  0.056 +0.003 0.873 £o0016 0.467 4 0.195

(3 leads to posterior collapse. FY denotes Fenchel-Young.

Prediction of Ship Dataset: Metric and Results. In the
ship dataset, paths include multiple start and end nodes,
making it infeasible to measure distribution distances for
fixed start-target pairs due to the limited number (or even a
single) of available paths per pair. Therefore, Djg is mea-
sured between the edges of each inferred sample and its
corresponding test sample, and the average is computed
across the dataset. For this evaluation, the most likely path
from each model and baseline is compared to the observed
paths. I0-LVM slightly better than PO, but the difference is
not statistically significant due to high variance in the error
metric. The VAE baseline failed to converge, likely due to
the graph size and the complexity of having multiple start
and target node scenarios.

Baseline PO Perturbed Optimizer (PO) Berthet et al.
(2020) focus on recovering structured outputs also with
gradient estimates, but without a latent space model. We
adapt their method in two ways: (1) we learn based on
paths without considering context, as the original paper is
context-based and ours is not; and (2) to promote distri-
bution reconstruction, we re-introduce the noise e during
inference.

4.5. Effect of varying [3: Denoising versus
Reconstruction

We analyze the effect of varying 3 on three metrics in the
synthetic Waxman dataset: i) the number of distinct paths
reconstructed by the decoder using the test dataset; ii) the
Fenchel-Young loss; iii) and the Intersection over Union
(IoU) metric between observed and inferred edges usage
during training. Table 3 shows that as 3 increases, the num-
ber of distinct paths decreases, indicating a denoising effect
due to the diminished influence of the reconstruction loss.
This results in the decoder reducing diversity of generated
paths due to the posterior collapse. The Fenchel-Young loss
increases and the IoU decreases with larger /3, also reflect-
ing a reduction in reconstruction accuracy. An illustration
of the correlation between Fenchel-Young loss and IoU is
also observed in the learning curve ( Fig. 9 in Appendix).

15} Distinct paths  FY train loss  IoU train
0.002 66 0.021 0.973
0.02 59 0.022 0.981
0.1 51 0.027 0.975
1 15 0.049 0.940
10 4 0.099 0.832
20 1 0.150 0.491
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Figure 6. Varying $3 in the latent space projection (top graphs) and
in the reconstruction (bottom graphs).

5. Conclusion

This paper proposed IO-LVM, a novel approach for learning
latent representations of COP costs, specifically for paths
and cycles in graphs. The method leverages amortized infer-
ence and integrates black-box solvers within a probabilistic
framework, allowing for the modeling of multiple agents
and diverse behaviors in graphs. By employing a Fenchel-
Young loss with perturbed inputs, it overcomes the gradient
challenges in optimizing COPs, ensuring feasible and in-
terpretable path reconstructions. The learned latent space
captures meaningful structures, highlighting the model’s
characteristic to distinct agent behaviors, while maintaining
accurate path reconstruction and prediction. Our method
description is valid for a general set of COPs if gradient
estimation is available.



I0-LVM: Inverse Optimization Latent Variable Models with Graph-based Planning Applications

References

Abbas, A. and Swoboda, P. Combinatorial optimization for
panoptic segmentation: A fully differentiable approach.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P,,
and Vaughan, J. W. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 34, pp. 15635-15649.
Curran Associates, Inc., 2021.

Agrawal, A., Barratt, S., Boyd, S., Busseti, E., and Moursi,
W. M. Differentiating through a cone program. arXiv
preprint arXiv:1904.09043, 2019.

Amos, B. and Kolter, J. Z. OptNet: Differentiable optimiza-
tion as a layer in neural networks. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 136—145. PMLR, 06—

11 Aug 2017. URL https://proceedings.mlr.

press/v70/amosl7a.html.

Aswani, A., Shen, Z.-J., and Siddiq, A. Inverse optimization
with noisy data. Operations Research, 66(3):870-892,
2018.

Bao, H. and Sugiyama, M. Fenchel-young losses with
skewed entropies for class-posterior probability estima-
tion. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1648—-1656. PMLR, 2021.

Bentley, P. J., Lim, S. L., Gaier, A., and Tran, L. Coil: Con-
strained optimization in learned latent space: Learning
representations for valid solutions. In Proceedings of
the Genetic and Evolutionary Computation Conference
Companion, pp. 1870-1877, 2022.

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-
P, and Bach, F. Learning with differentiable pertubed
optimizers. Advances in neural information processing
systems, 33:9508-9519, 2020.

Blondel, M., Martins, A. F., and Niculae, V. Learning
with fenchel-young losses. Journal of Machine Learning
Research, 21(35):1-69, 2020.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Burgess, C. P, Higgins, L., Pal, A., Matthey, L., Watters, N.,
Desjardins, G., and Lerchner, A. Understanding disen-
tangling in beta-vae. arXiv preprint arXiv:1804.03599,
2018.

Danish Maritime Authority. Ais data, 2020.
https://www.dma.dk/safety-at-sea/

navigational-information/ais—-data.
Accessed: 2024-08-01.

URL

Donti, P., Amos, B., and Kolter, J. Z. Task-based end-to-end
model learning in stochastic optimization. Advances in
neural information processing systems, 30, 2017.

Fernando, T., Denman, S., Sridharan, S., and Fookes, C.
Deep inverse reinforcement learning for behavior predic-
tion in autonomous driving: Accurate forecasts of vehicle
motion. IEEE Signal Processing Magazine, 38(1):87-96,
2020.

Finn, C., Levine, S., and Abbeel, P. Guided cost learning:
Deep inverse optimal control via policy optimization. In
International conference on machine learning, pp. 49-58.

PMLR, 2016.

Furnon, V. and Perron, L. Or-tools routing li-
brary. URL https://developers.google.
com/optimization/routing/.

Hagberg, A., Swart, P., and S Chult, D. Exploring net-
work structure, dynamics, and function using networkx.
Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

Higgins, 1., Matthey, L., Pal, A., Burgess, C. P., Glorot, X.,
Botvinick, M. M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained
variational framework. ICLR (Poster), 3, 2017.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the di-
mensionality of data with neural networks. science, 313
(5786):504-507, 2006.

Kingma, D. P. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. Advances
in neural information processing systems, 28, 2015.

Lahoud, A. A., Schaffernicht, E., and Stork, J. A. Datasp: A
differential all-to-all shortest path algorithm for learning
costs and predicting paths with context. arXiv preprint
arXiv:2405.04923, 2024.

Mensch, A. and Blondel, M. Differentiable dynamic pro-
gramming for structured prediction and attention. In
International Conference on Machine Learning, pp. 3462—
3471. PMLR, 2018.

Ng, A. Y., Russell, S., et al. Algorithms for inverse rein-
forcement learning. In Icml, volume 1, pp. 2, 2000.

Nguyen, Q. P, Low, B. K. H,, and Jaillet, P. Inverse rein-
forcement learning with locally consistent reward func-

tions. Advances in neural information processing systems,
28, 2015.


https://proceedings.mlr.press/v70/amos17a.html
https://proceedings.mlr.press/v70/amos17a.html
https://www.dma.dk/safety-at-sea/navigational-information/ais-data
https://www.dma.dk/safety-at-sea/navigational-information/ais-data
https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/

I0-LVM: Inverse Optimization Latent Variable Models with Graph-based Planning Applications

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Poganci¢, M. V., Paulus, A., Musil, V., Martius, G., and
Rolinek, M. Differentiation of blackbox combinatorial
solvers. In International Conference on Learning Repre-
sentations, 2020a.

Poganci¢, M. V., Paulus, A., Musil, V., Martius, G., and
Rolinek, M. Differentiation of blackbox combinatorial
solvers. In International Conference on Learning Repre-
sentations, 2020b.

Reinelt, G. Tsplib - a traveling salesman problem li-
brary, 1991. Available at http://comopt.ifi.
uni-heidelberg.de/software/TSPLIB95/.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In International conference on machine
learning, pp. 1278-1286. PMLR, 2014.

Tan, Y., Delong, A., and Terekhov, D. Deep inverse op-
timization. In Integration of Constraint Programming,
Artificial Intelligence, and Operations Research: 16th
International Conference, CPAIOR 2019, Thessaloniki,
Greece, June 4-7, 2019, Proceedings 16, pp. 540-556.
Springer, 2019.

Tan, Y., Terekhov, D., and Delong, A. Learning linear
programs from optimal decisions. Advances in Neural
Information Processing Systems, 33:19738-19749, 2020.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Van Mieghem, P. Paths in the simple random graph and
the waxman graph. Probability in the Engineering and
Informational Sciences, 15(4):535-555, 2001.

Wilder, B., Dilkina, B., and Tambe, M. Melding the data-
decisions pipeline: Decision-focused learning for combi-
natorial optimization. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 1658—1665,
2019.

Waulfmeier, M., Rao, D., Wang, D. Z., Ondruska, P., and
Posner, I. Large-scale cost function learning for path
planning using deep inverse reinforcement learning. The
International Journal of Robotics Research, 36(10):1073—
1087, 2017.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K.,
et al. Maximum entropy inverse reinforcement learning.

10

In Aaai, volume 8, pp. 1433-1438. Chicago, IL, USA,
2008a.

Ziebart, B. D., Maas, A. L., Dey, A. K., and Bagnell, J. A.
Navigate like a cabbie: Probabilistic reasoning from ob-
served context-aware behavior. In Proceedings of the

10th international conference on Ubiquitous computing,
pp- 322-331, 2008b.


http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

I0-LVM: Inverse Optimization Latent Variable Models with Graph-based Planning Applications

A. Datasets in more detail

Synthetic Waxman Random Graph We generate a Wax-
man graph (Van Mieghem, 2001) with 700 nodes (o = 0.05,
B = 0.6), where the probability of an edge between two

d(u,v)
o ﬂ'dmax ’

where we considered d(u, v) as the Euclidean distance be-
tween nodes u and v, and dp, 1S the maximum distance
between of two nodes, consequently ending up in 7230
edges. We create three edge cost sets to simulate three dif-
ferent agents performing decisions to go from start and end
nodes. The edge costs are based on Euclidean distances,
with higher costs for the southern edges for agent 1, and
higher costs in the northern for agent 3, while agent 2 is
not biased by the edges position. For each agent, we add a
random noise in the cost elements y so the generated paths
can be different from each other even within the same agent.
The “observed” paths are generated by running the Dijkstra
on the noisy edge costs. Two sets of 6,000 observed paths
are generated: one with a single source and target pair (Fig.
2, top-left) and another with multiple source-target pairs
(Fig. 2, bottom-left). In each of these sets, 5,000 paths are
used for training I0-LVM and the baselines, while 1,000
are used for evaluation purposes. Further details on cost
generation are provided in the code.

nodes u and v is given by P(u,v) = « - exp (

Ships dataset We use the Automatic Identification Sys-
tem (AIS) data provided by the Danish Maritime Authority
(Danish Maritime Authority, 2020), considering latitude
and longitude projected in a 2D space for simplicity. The
analysis focuses on paths from the first week of the months
January 2024, May 2024, and June 2024. Only paths that
exceed a distance of 4 units (in latitude/longitude) in Eu-
clidean space are included. A path is considered completed
either when the ship speed approaches zero or when there
is an abrupt change in its heading. In some cases, there
are gaps in the latitude/longitude signals; when such jumps
occur, we segment the data and treat them as separate paths.
We created a grid graph with a distance of 0.09 units be-
tween adjacent nodes, focusing on the area where there are
more route options to be taken, which in total led to 2513
nodes and 8924 edges. This resulted in approximately 2,500
ship paths.

TSPLIB We use datasets from TSPLIB95 (Reinelt, 1991),
a library of benchmark instances for the Traveling Salesman
Problem (TSP) and related optimization problems. Specif-
ically, we selected two graphs: burmal4, which consists
of 14 nodes representing locations in Myanmar, forming a
complete graph with 91 edges, and bayg29, which consists
of 29 nodes representing the coordinates of cities in Bavaria,
Germany, forming a complete graph with 406 edges. To
assign the actual edge costs y, we uses the Euclidean dis-
tance between nodes as an offset, and design a nonlinear
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function that incorporates unobserved features to calculate
edge costs. We generate two datasets for each graph, one
considering 3 unobserved features (less complex), and one
considering 50 unobserved features (more complex). The
observed paths are generated as w(y) without noise, where
w represents a TSP search solver.

B. Implementation details

IO-LVM is trained according to Algorithm 1. We used
PyTorch (Paszke et al., 2019) for the implementation. We
consider a learning rate of 0.00004 and a batch size of 250
for the Waxman synthetic dataset and the Ship dataset, while
the Hamiltonian Cycle experiment uses a learning rate of
0.0001 and a batch size of 200. COPs are solved in parallel
for the batches. The neural network architectures do not
have any special implementations. The encoder architecture
consists of a neural network with 4 hidden layers, each con-
taining 1000 neurons, with ReL U activation functions in the
hidden layers. The decoder architecture is the same as the en-
coder, but with a Softplus activation function to ensure that
all edge costs remain positive. The RMSProp optimizer is
used for the Synthetic and Ship datasets, while the AdamW
optimizer is used for the Hamiltonian Cycles experiment.
The experiments were run on a CPU due to the bottleneck
introduced by COP solvers. The processor model used was
the 13th Gen Intel(R) Core(TM) i7-13700KF, which has
24 cores. We use Dijkstra from networkx library in python
(Hagberg et al., 2008) for solving SPP: and Ortools routing
python library for TSP solutions (Furnon & Perron). Further
details are in the provided code.

C. Varying the number of latent dimensions

In our experiments, we observed that for certain tasks, a
very low number of latent dimensions was enough. For
instance, in the Ship Dataset, attempting to add a third
dimension to the latent space revealed that the second and
third dimensions are highly correlated (Fig. 7), indicating
that the third dimension is unnecessary.

Conversely, in the Hamiltonian Cycles experiment, where
50 hidden features were used to generate edge costs with
a complex relationship, increasing the latent dimensions
proved beneficial in mitigating underfitting during the re-
construction process. This effect is illustrated in Fig. 8,
which compares the performance of using 2 latent dimen-
sions (left graphs) versus 10 latent dimensions (right graphs)
for both the burmal4 (top graphs) and bayg29 datasets. In
the right-hand charts, we observe that using 10 latent di-
mensions achieves 100% Recall in the reconstructions for
the training datasets and improves Recall for the valida-
tion datasets compared to the 2-dimensional case shown in
the left-hand charts. However, with 10 latent dimensions, a
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slight overfitting emerges, which could be mitigated through
more careful regularization and neural network architecture
design. Addressing this was beyond the scope of our current
study.
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Figure 7. Latent space of ship trajectories using three dimensions.
The right graph indicates that there is no need for a third latent
dimension. Narrow ships are more concentrated in the top right
corner of the two left graphs.
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Figure 8. Comparison of training and validation curves for recon-
struction performance using 2 latent dims (left) and 10 (right)
for the burmal4 (top) and bayg29 (bottom) datasets. Increasing
the number of latent dims improves Recall for both training and
validation datasets.

D. Additional Figures
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Figure 9. Fenchel-Young loss and IoU between edges computed
during the training process.
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Figure 10. Bar plot showing the relationship between Manhattan
distance groups (horizontal axis) and the average Euclidean dis-
tance in the latent space (vertical axis). The plot illustrates that
samples with smaller Manhattan distances (i.e., paths with more
similar edge usage) tend to have smaller Euclidean distances in the
latent space.
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Figure 11. Visualization of the latent space and paths for the
burmal4 graph. The top graph shows the latent space with nine
manually selected samples. The bottom graphs display the corre-
sponding paths for these samples.
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Figure 12. Reconstruction for the synthetic data with single pair of start and end nodes. Top charts: region of samples from a Gaussian in
the latent space. Bottom charts: corresponding generated trajectories. Blue agents has higher costs on edges in the north, while red edges
has higher costs on edges in the south.
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Figure 13. Each column illustrates an inferred sample for the Hamiltonian Cycles experiment. The first row represents the cycle observed
in the validation set. The second row represents a solution of the TSP using edges cost as euclidean distances (offset in the data generation
process). Third and Fourth rows represent inference using VAE and 10-LVM with 10 latent dimensions. Green edges denote correct
reconstructions relative to the groundtruth, while red edges indicate false positives.
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