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Abstract

Ensuring group fairness in federated learning (FL) presents unique challenges due to data
heterogeneity and communication constraints. We propose Kernel Fair Federated Learning
(KFFL), a novel algorithmic framework that incorporates group fairness into FL models using
the Kernel Hilbert-Schmidt Independence Criterion (KHSIC) as a fairness regularizer. To
address scalability, KFFL approximates the KHSIC with random feature maps, significantly
reducing computational and communication overhead while achieving group fairness.
To address the resulting non-convex composite optimization problem, we propose
FedProxGrad, a federated proximal gradient algorithm that guarantees convergence.
Through experiments on standard benchmark datasets across both IID and Non-IID set-
tings for regression and classification tasks, KFFL demonstrates its ability to balance accuracy
and fairness effectively, outperforming existing methods by comprehensively exploring the
accuracy–fairness trade-offs. Furthermore, we introduce KFFL-TD, a time-delayed variant
that further reduces communication rounds, enhancing efficiency in decentralized environ-
ments. Code is available at github.com/Huzaifa-Arif/KFFL.

1 Introduction

Unintended unfairness in machine learning models poses significant challenges, particularly in decision-
making processes that impact specific population groups (Dwork et al., 2012a; Agarwal et al., 2019b; Jalal
et al., 2021). For instance, the COMPAS software, used in judicial decision-making for criminal offenses, has
been shown to yield unjust outcomes disproportionately affecting the African American community (Dressel
& Farid, 2018; Barenstein, 2019). Such findings underscore the need for model outputs to be fair with respect
to protected demographic attributes like gender and race. Ensuring demographic fairness has therefore
emerged as a critical challenge in machine learning, driving efforts to develop robust solutions for mitigating
bias and ensuring equitable model deployment.

The literature on fair federated learning often uses the term fairness ambiguously to refer to either client
fairness or group fairness. However, these concepts address distinct objectives. Works such as Chaudhury
et al. (2022); Li et al. (2019); Donahue & Kleinberg (2021); Cui et al. (2021); Du et al. (2021) focus on client
fairness in federated learning, aiming to ensure that the model performs equitably across clients’ data (Mohri
et al., 2019), thereby mitigating disparities arising from data heterogeneity among clients. In contrast, group
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fairness (Ezzeldin et al., 2023; Papadaki et al., 2022) seeks to achieve fairness across different demographic
groups. This involves establishing performance guarantees to ensure the global model is fair with respect to
sensitive attributes, such as race or gender. More discussion on the related works is available in the Appendix
A.1. This work addresses group fairness in the trained global model.

Recent advances in bias mitigation algorithms (Jalal et al., 2021; Correa et al., 2021; Agarwal et al., 2019b;
Memarrast et al., 2023) largely depend on fairness regularizers incorporated into the training objective, which
typically requires centralized access to data. However, in federated learning (FL) (Li et al., 2020), where data
is distributed across clients, privacy regulations and bandwidth constraints often prohibit raw data sharing,
making centralized approaches to group fairness impractical. Furthermore, implementing fairness regularizers
in the FL setting presents additional challenges, including communication overhead, computational costs,
and data heterogeneity, all of which complicate training a globally fair model.

Server

Clients

Fed-Avg

Fed-Avg (KFFL)

Discriminates
 against Gender

Does Not Discriminate
 against Gender

Figure 1: FedAvg can result in models whose predictions are biased with respect to sensitive attributes
such as race or gender. KFFL is a principled approach designed specifically to mitigate demographic bias
when training a model in a distributed setting.

Consequently, prior efforts to achieve group fairness in federated settings have primarily focused on aligning
local and global fairness metrics (Ezzeldin et al., 2023; Papadaki et al., 2022), often avoiding the direct in-
corporation of regularizer terms to ensure statistical group fairness. However, this approach faces challenges,
as applying local debiasing mechanisms at individual clients alone is inadequate to ensure group fairness in
the globally trained model.

We propose a novel approach to fair federated learning that integrates the Kernel Hilbert-Schmidt Inde-
pendence Criterion (KHSIC) (Gretton et al., 2005b) as a fairness regularizer into FL. KHSIC is a powerful
measure of statistical dependence capable of capturing complex, non-linear relationships between variables,
making it well-suited for enforcing group fairness in a statistically principled manner.

The Hilbert-Schmidt Independence Criterion (HSIC) is an effective fairness regularizer in centralized regres-
sion models, as demonstrated in Pérez-Suay et al. (2017). KHSIC, the kernelized version of HSIC, captures
complex, nonlinear dependencies among random variables through the use of kernel functions. Importantly,
KHSIC provably quantifies statistical parity: a low KHSIC value between model outputs and sensitive at-
tributes ensures approximate statistical parity (Kim & Gittens, 2021). Compared to the closely related Rényi
correlation (Baharlouei et al., 2019b), KHSIC is more practical for measuring dependence because its em-
pirical computation reduces to BLAS Level 3 matrix calculations. This makes KHSIC not only theoretically
robust but also computationally efficient in practical applications.

However, directly applying KHSIC in a federated learning (FL) setup presents challenges, as it is compu-
tationally expensive and communication intensive due to the necessity of computing and exchanging large
kernel matrices. To address these limitations, we leverage Random Feature Maps (RFMs) (Rahimi & Recht,
2007) to approximate kernel functions. This approximation significantly reduces both computational and
communication costs, making the integration of KHSIC as a fairness regularizer more feasible and efficient
in the FL setting.
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Furthermore, to efficiently solve the distributed optimization problem incorporating the fairness regularizer,
we introduce FedProxGrad, a federated proximal gradient algorithm. This method ensures convergence
for the non-convex composite optimization problems that arise from the integration of the fairness term.

Our contributions are as follows:

• We propose KFFL, a novel federated learning algorithm that incorporates group fairness using
KHSIC as a fairness regularizer. To the best of our knowledge, this is the first work to adapt KHSIC
for use in federated learning, addressing the unique challenges of the federated setting.

• To reduce the computational and communication overhead associated with KHSIC, we develop a
communication-efficient approximation to the KHSIC using Random Feature Maps. This allows us
to avoid transmitting large kernel matrices, reducing communication costs by orders of magnitude.

• We introduce FedProxGrad, a federated proximal gradient algorithm that provides convergence
guarantees for non-convex composite optimization problems. FedProxGrad allows both terms
of the composite objective to be non-convex, in contrast to prior works on federated composite
optimization (Wang & Li, 2023; Bao et al., 2022; Yuan et al., 2021; Tran Dinh et al., 2021).

• We analyze the communication overhead of the resulting KHSIC-regularized fair federated learn-
ing algorithm, KFFL, and introduce a time-delayed variant, KFFL-TD, which further reduces
communication rounds while maintaining performance. This makes the method more attractive in
real-world FL applications where communication must be minimized.

• We conduct extensive experiments on standard benchmark datasets under both IID and Non-IID
data distributions on both classification and regression tasks. Our results demonstrate that KFFL
effectively balances the trade-off between accuracy and fairness, outperforming existing baselines and
exploring the accuracy–fairness trade-offs more comprehensively. We recommend that practi-
tioners use binary search to choose the fairness hyperparameter λ in KFFL and KFFL-
TD to achieve their desired accuracy–fairness trade-off.

2 Preliminaries

The goal of fair learning is to ensure that the model’s output exhibits no undesirable dependencies on sensitive
attributes.

We assume the observations are sampled i.i.d. from a joint distribution P(X,S, Y ) to obtain training data
{xi, si, yi}n

i=1. Here, xi contains the non-sensitive covariates, si contains sensitive covariates (which may be
a binary scalar si or multi-dimensional vector si), and yi is the ground truth label for the i-th sample. This
dataset is employed to train a classifier f(x; ω), where ω denotes the model parameters.1

As an example, consider the task of training a binary classifier for making hiring decisions. Here x consists
of features that are ethically and legally allowable for use in making hiring decisions, s represents binary
sensitive features such as the individual’s sex or marital status, and the ground truth decisions are yi ∈ {0, 1}.
The classifier makes predictions ŷi = f(xi; ω) ∈ {0, 1}, where 1 signifies a decision to hire.

2.1 Metrics for Group Fairness

We employ two canonical group–fairness notions—statistical parity and equality of opportunity—both in
their classic binary form and in a more general multi-group form needed for intersectional or many–valued
sensitive attributes.

1We follow the notation convention where boldface lowercase letters (e.g., v) denote vectors, non-bold lowercase letters (e.g.,
v) represent scalars, and boldface uppercase letters (e.g., M) signify matrices. For example, in the equation v = Mu + b, v and
u are vectors, M is a matrix, and b is a scalar.
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2.1.1 Binary Classification Metrics

• Statistical-Parity Difference (SPD). A classifier attains statistical parity when the prediction is
independent of the sensitive attribute, ŷ ⊥⊥ s (Dwork et al., 2012b). For a binary attribute s∈{0, 1}
we measure the gap

SPD = Pr(ŷ = 1 | s = 1) − Pr(ŷ = 1 | s = 0). (1)

• Equality of Opportunity (EO). Equality of opportunity requires identical true-positive rates
across sensitive groups (Hardt et al., 2016); we similarly quantify EO by measuring the gap

EO = Pr(ŷ = 1 | y = 1, s = 1) − Pr(ŷ = 1 | y = 1, s = 0). (2)

2.1.2 Multi-group Extension

When the sensitive attribute admits more than two categories or several attributes are combined (e.g. race
and sex), we enforce the fairness constraints across all resulting groups. Let S = {1, 2, . . . ,K} with K≥3.
Definition 1 (Multi-group Statistical Parity (Dwork et al., 2012b)). Define rs := Pr(ŷ = 1 | s). The
multi-group SPD gap is

SPDmulti = max
s∈S

rs − min
s∈S

rs = max
s,s′∈S

| rs − rs′ |. (3)

Definition 2 (Multi-group Equality of Opportunity (Hardt et al., 2016)). Let TPR(y)
s := Pr(ŷ = 1 | y =

1, s).
EOmulti = max

s,s′∈S

∣∣TPR(y)
s − TPR(y)

s′

∣∣. (4)

Lower values of SPDmulti and EOmulti indicate greater fairness; both reduce to Eqs. (1)–(2) when K = 2.

If several sensitive attributes are recorded (e.g. race and sex) one may: (i) concatenate them into an inter-
sectional label S = (race, sex) and apply Definitions 1–2 to the resulting K =

∏
j Kj groups, or (ii) compute

the same gaps separately for each attribute and treat the model as fair only if fairness with respect to each
attribute meets the chosen tolerance. The choice between joint and per-attribute constraints depends on the
policy requirements of the application.

Although our algorithm is designed to target SPD, as is common in the literature we use both SPD and EO
to evaluate classifier fairness empirically in Section 6. We report both the binary metrics (Eqs. (1)–(2)) and
their multi-group counterparts (Eqs. (3)–(4)).

2.1.3 Fairness Metrics for Regression

Fair regression has been extensively studied in centralized settings (Chzhen et al., 2020a; Agarwal et al.,
2019a; Chzhen et al., 2020b). However, the training of fair regression models in the distributed settings
remains underexplored. Fairness metrics like EO and SPD that are designed for classifiers are not applicable
in this context. Instead, the Kolmogorov-Smirnov (KS) distance has been employed to evaluate regression
fairness (Chzhen et al., 2020a). This metric captures the maximum disparity between the distributions of
the model’s predictions for different sensitive groups.

To formally define the KS distance, we denote the set of indices of samples belonging to a sensitive group
s ∈ S by

Is = {i ∈ {1, 2, . . . , n} : si = s}.

The empirical cumulative distribution function (CDF) of the model’s predictions for group s is

F s(t; ω) = 1
|Is|

∑
i∈Is

1{f(xi; ω) ≤ t}, (5)

where f(xi; ω) is the model’s prediction for input xi.
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The KS distance between the predictions for two distinct sensitive groups s and s′ is

KS(ω) = max
s,s′∈S

sup
t∈R

∣∣∣F s(t; ω)− F s′
(t; ω)

∣∣∣ . (6)

A smaller KS distance indicates lower disparity between the regression results across the different sensitive
groups. In fact, the KS distance is commonly used in the KS test, a statistical test for the equality of
one-dimensional probability distributions.

Appendix F provides experimental results on using the KHSIC regularizer for regularization tasks, where
the resulting fairness is quantified using the KS distance.

2.2 The Kernel Hilbert-Schmidt Independence Criterion (KHSIC)

The Kernel Hilbert-Schmidt Independence Criterion (KHSIC) of Gretton et al. (2005a) is key to
our approach to ensuring statistical parity. The KHSIC is predicated on the observation that ŷ and s are
independent if and only if every function of ŷ is uncorrelated with every function of s.

Given two Reproducing Kernel Hilbert Spaces F and G, the (population) KHSIC is the Hilbert-Schmidt
norm of the centered cross-covariance operator Cŷs of ŷ and s (Gretton et al., 2005a):

ψpop(ŷ, s) = ∥Cŷs∥2
HS =

∑
i

∑
j

Cov(fi(ŷ), gj(s))2. (7)

Here {fi}∞
i=1 and {gj}∞

j=1 are orthonormal bases for F and G, respectively. It follows from the bilinearity of
the covariance operator that the KHSIC quantifies the dependence of ŷ and s by bounding the covariance
of every function of ŷ in F with every function of s in G.

Under some regularity conditions on F and G (universality), the population KHSIC is zero if and only if ŷ
and s are independent. Thus when the KHSIC is zero,

SPD = Pr(ŷ = 1 | s = 1) − Pr(ŷ = 1 | s = 0) = Pr(ŷ = 1)− Pr(ŷ = 1) = 0,

so the classifier ŷ achieves statistical parity. More generally, the population KHSIC gives an upper bound
on the total variation distance between the joint distribution Pŷ,s and the product of the marginals Pŷ ⊗Ps,
and thus quantifies the dependence of ŷ and s (Kim & Gittens, 2021).

The KHSIC is more practically useful as a measure of dependence than the closely related Rényi correlation:
the latter is defined in terms of the probability density functions (PDFs) of ŷ and s. This approach does not
scale to high-dimensional inputs because accurately estimating the PDFs of ŷ and s requires an exponential
number of observations relative to their dimensionality. By comparison, empirical estimation of the KHSIC
reduces to simple and scalable linear algebraic computations. The empirical KHSIC is derived in Gretton
et al. (2005a):

ψemp(ŷ, s) = 1
(n− 1)2 Tr

(
HKsH2KŷH

)
, (8)

where
Kŷ = [κF (ŷi, ŷj)]ni,j=1 , Ks = [κG(si, sj)]ni,j=1 , H = I− 1

n
11⊤.

The functions κF and κG are the kernels associated with the RKHSes F and G, respectively, and the matrices
Kŷ and Ks are n×n kernel matrices evaluated on the predictions and the corresponding sensitive attributes.
2 Gretton et al. (2005a) show that ψemp(ŷ, s) is a 1√

n
-consistent estimator of ψpop(ŷ, s).

We propose to measure the fairness (in the sense of statistical parity) of models by using the empirical
KHSIC:

ψ(ω; X,S) = 1
(n− 1)2 Tr (HKsHKŷH) . (9)

2For notational brevity, we use the notation κ to refer to two potentially different kernel functions on the features and the
sensitive variables.
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The notation ψ(ω; X,S) emphasizes that the fairness measure depends on ω through the predictions ŷ =
f(X; ω).

2.3 The Fair Learning Objective

To learn a fair model ω⋆ by using ψ(ω; X,S) as a regularizer, we solve the optimization problem

ω⋆ = argminω

1
n

n∑
i=1

ℓ(yi, f(xi; ω)) + λψ(ω; X,S). (10)

The first term in the objective function represents the loss ℓ(yi, f(xi; ω)), which quantifies the discrepancy
between the model’s predictions and the ground truth labels. This loss function may be instantiated as
the cross-entropy loss for classification tasks or the mean squared error (MSE) for regression tasks. The
second term acts as a fairness regularizer by measuring the dependence between the model’s predictions and
the sensitive attributes using the KHSIC criterion. The fairness parameter λ controls the trade-off between
optimizing predictive performance and enforcing fairness.

Solving (10) in a centralized setting is conceptually straightforward but computationally challenging because,
at each iteration, it involves computing forward and backward passes (for backpropagation) through matrices
Kŷ(ω) of size n × n. The computational burden is compounded in the federated learning setting by the
additional communication burden: clients need to communicate these n × n matrices to compute their
local contributions to the gradients. Hence, a straightforward adaptation of this centralized approach to a
distributed setting is prohibitive from the perspectives of both computation and communication. We address
this challenge in Section 4.

In addition to the challenges posed by the specific form of ψ, the composite structure of optimization
problem (10) is itself a challenge, as both terms in the objective are non-convex. We introduce FedProxGrad
in the next section (Section 3), to address this challenge.

3 Composite Optimization in the Federated Setting

Employing the fair ML formulation of equation (10) in a federated setting requires solving a federated
composite optimization (FCO) problem that can be written in the standard form

argminω

m∑
i=1

ℓi(ω) + ψ(ω),

where the ℓi are data-fitting terms local to each client, and ψ is the global fairness regularizer. For brevity,
we have absorbed the regularization constant λ into ψ. We denote the sum of local-data fitting
terms with ℓ(ω) =

∑m
i=1 ℓ

i(ω) and the composite objective with F (ω) = ℓ(ω) +ψ(ω). In Equation (10) the
fairness term ψ is non-convex and the data fitting term, ℓ, may also be non-convex. This section provides
an algorithm for solving the resulting non-convex FCO problem.

Several existing works provide algorithms for the FCO problem–Wang & Li (2023); Bao et al. (2022); Yuan
et al. (2021) develop algorithms that require the ℓi and ψ to be convex, while the algorithm of Tran Dinh
et al. (2021) requires only ψ to be convex—but, to our knowledge, no extant optimization algorithms for
FCO guarantees convergence for problems where the ℓi and ψ are both non-convex. To fill this gap, we
introduce FedProxGrad, a federated proximal gradient descent algorithm. Unlike prior FCO algorithms,
FedProxGrad imposes no convexity requirements.

The FedProxGrad algorithm, described in Algorithm 1, extends the stochastic proximal gradient algorithm in
a straightforward manner from the centralized setting to the federated setting. We note that the FedProxGrad
algorithm differs significantly from the FedProx algorithm: FedProx is a federated proximal point algorithm
designed to minimize a single objective, while FedProxGrad is a federated proximal gradient algorithm de-
signed to minimize a composite objective.
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Algorithm 1 Federated Proximal Gradient Descent (FedProxGrad)
1: Input: ω0, T , α
2: for t = 0, · · · , T − 1 do
3: Server computes gt, a stochastic gradient estimator for ∇ψ(ωt), and computes ωt+1/2 = ωt − αgt

4: Server sends ωt+1/2 to clients
5: Each client for i ∈ {1, . . . ,m} computes

ωi
t+1 = argminωℓ

i(ω) + 1
2α∥ω − ωt+1/2∥2

2

6: Each client returns ωi
t+1 back to the server

7: Server aggregates the device models to form

ωt+1 = 1
m

m∑
i=1

ωi
t+1.

8: end for

Nonetheless, the analysis of the convergence of FedProxGrad follows closely that of the convergence rate of
FedProx, so we introduce the same notions used in its convergence (Li et al., 2020).
Definition 3 (γ-suboptimality). Let ℓi

t(ω) = ℓi(ω)+ 1
2α∥ω−ωt+1/2∥2 (see Algorithm 1 for the definition of

ωt+1/2). Given γ ∈ [0, 1], a point ω̂ is a γ-suboptimal solution of argminωℓ
i
t(ω) if ∥∇ℓi

t(ω̂)∥ ≤ γ∥∇ℓi
t(ωt)∥.

Smaller γ correspond to higher accuracy.

This definition of γ-suboptimality slightly differs from that used in Li et al. (2020), to facilitate the analysis
of a composite objective. This condition on the local solvers ensures that the local solution for the (t+ 1)th
iterate is a factor of γ less suboptimal than the tth iterate. This condition is agnostic to the particular
solvers employed, and can be achieved using deterministic or randomized solvers that use full gradients or
stochastic gradients.
Definition 4 ((G,B)-Bounded Dissimilarity (Definition A1 of Karimireddy et al. (2020))). The local func-
tions ℓi are (G,B)-boundedly dissimilar at ω if Ei∥∇ℓi(ω) +∇ψ(ω)∥2≤B2∥∇F (w)∥2 +G2.

This condition is standard Li et al. (2020); Karimireddy et al. (2020), and ensures that local progress on the
individual clients can be translated to global progress. The bounded dissimilarity condition mirrors common
optimization assumptions (e.g., bounded Lipschitz or bounded Hessian assumptions): when it is violated by
taking B →∞, the allowed step size shrinks, and the convergence rate degrades3.
Theorem 1. Assume that the functions ℓi, ψ, and F are L-smooth; the functions ℓi are L−-weakly convex;
F is bounded below by a constant F ⋆; the bounded dissimilarity condition (Definition 4) holds with G = 0;
and that the stochastic gradient estimate for the fairness regularizer satisfies E[gt |ωt] = ∇ψ(ωt) and

E[∥gt −∇ψ(ω)∥2
2 | ω] ≤ σ2

for all ω. If the local solvers on each client ensure γ suboptimal solutions (Definition 3) with parameter
γ ≤ 1

8(B+1) and the global stepsize is chosen to satisfy

α < min
{

1
20 ,

1
2L−

,
1

120L(B + 1) ,
1

5LB2

}
,

then the sequence of iterates generated by FedProxGrad satisfies

1
T

T −1∑
t=0

E
[
∥∇F (ωt)∥2

2
]
≤ F (ω0)− F ⋆

αT
+ 4σ2.

3A reviewer astutely pointed out that the bounded dissimilarity assumption may possibly be avoided at the cost of a reduced
convergence rate by using the approach of (Yuan & Li, 2022).
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This result shows that, for an appropriate choice of hyperparameters, the FedProxGrad algorithm converges
at a rate of 1

T up to the noise level of the stochastic gradient. A proof is provided in the Appendix A.2. We
note that only recently has a nonasymptotic rate of convergence of stochastic proximal gradient algorithms
for fully nonconvex composite optimization problems been established in the shared memory setting (Xu
et al., 2019). Theorem 1 shows that a natural generalization of the stochastic proximal gradient algorithm
to the fully nonconvex federating setting also converges at a sublinear rate.

4 Communication-Efficient Kernel Regularized Fair Learning

In the centralized setting, kernel methods pose a computational challenge due to their inherent complexity,
requiring optimization with a kernel matrix incurring a computational cost of up to O(n3). One line of
research for reducing this burden, starting with the seminal work of Rahimi & Recht (2007), uses random
feature maps (RFMs). A random feature map for a shift-invariant kernel function κ is a random function
ϕ : Rp → RD that is constructed to satisfy κ(x,y) = E⟨ϕ(x), ϕ(y)⟩ for any two vectors x and y, where the
expectation is taken over the randomness in ϕ.

RFMs enable the efficient formation of randomized low-rank approximations to kernel matrices. In particular,
if the rows of ZS ∈ Rn×D consist of the application of an RFM ϕ to the si, and the rows of Zf(ω) ∈ Rn×D

likewise consist of the application an RFM to the observed xi, then

KS = E[ZSZT
S ] and Kf(ω) = E[Zf(ω)ZT

f(ω)], (11)

and the variance of the approximations go down as the number of random features D increases, so ZSZT
S

and Zf(ω)ZT
f(ω) are principled randomized low-rank approximations to the corresponding kernel matrices. A

substantial body of work has demonstrated that these approximations exhibit theoretically and empirically
similar performance to full kernel matrices (Hamid et al., 2014; Rahimi & Recht, 2007; Yu et al., 2016).
More details on the construction of randomized feature maps is given in Appendix G

We utilize these randomized low-rank approximations to efficiently compute principled approximations to the
regularizer ψ(ω) in Equation 10. Note that Zf(ω) and ZS have dimensions n×D where D ≪ n. Specifically,
we utilize the Orthogonal Random Feature Maps (ORFM) of (Yu et al., 2016).

The first crucial observation is that by using RFMs, one need only communicate a D×D matrix to approx-
imate ψ(ω) and its gradient g(ω), rather than communicating two n× n kernel matrices.
Theorem 2. Let Zf(ω) and ZS be the n×D matrices constructed using RFMs, corresponding respectively
to the prediction kernel Kf(ω) and the sensitive attribute kernel KS. Then ψ(ω) = E

[
∥G(ω)∥2

F

]
where

G(ω) = Z⊤
S Zf(ω)−nµsµ⊤

f (ω) ∈ RD×D. Here, µs is the mean over the rows of ZS and µf is the mean over
the rows of Zf(ω).
Corollary 1. g(ω) = ∇∥G(ω)∥2

F is an unbiased stochastic estimate of ∇ψ(ω).

Proofs of these results, consisting of basic linear algebraic manipulations, are supplied in Appendices A.3
and A.5, respectively. In the remainder of this section, we detail how G(ω), and consequently the gradient
estimate g(ω), can be computed efficiently in the federated setting.

The next important observation is that in the federated setting, the RFMs Zf(ω) and ZS are naturally
partitioned across the clientss:

Zf(X) =

Zf(X),1
...

Zf(X),m

 and ZS =

ZS,1
...

ZS,m

 , (12)

where Zf(X),i,ZS,i ∈ Rni×D. Here ni is the number of data points on client i, so n =
∑m

i=1 ni. This
observation allows each client to, independently from the other clients, efficiently compute its contribution
to the feature interaction matrix G(ω).
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Lemma 1. The global feature interaction matrix G(ω) can be partitioned into local interactions as

G(ω) =
m∑

i=1
Z⊤

S,iZf(X),i − n

(
1
n

m∑
i=1

niµS,i

)(
1
n

m∑
i=1

niµf,i

)⊤

,

where µS,i and µf,i are the row averages of ZS,i and Zf(X),i, respectively.

As a consequence of this result, the server can compute the global interaction term G(ω) after each client
transmits its local feature interaction matrix Z⊤

S,iZf(X),i ∈ RD×D, along with its local average feature vectors
µS,i,µf,i ∈ RD to the server. This approach facilitates the computation of G(ω) and g(ω) in a manner that
does not require communication between the clients.
Lemma 2. The unbiased estimate of the gradient of the fairness regularizer ψ from Corollary 1 can be
partitioned into local interactions:

g(ω) =
m∑

i=1
JΩi

(ω)T G(ω),

where Ωi(ω) = Z⊤
S,iZf(X),i(ω) − niµS,iµ

⊤
f,i and JΩi

(ω) is the Jacobian of Ωi with respect to the model
parameters ω.

This result states that once the server computes the global interaction matrix G(ω) and distributes it to the
clients, each client can then independently compute its contribution to a stochastic estimate of the gradient
of the fairness regularizer ψ(ω). Proofs of these lemmata are provided in Appendices A.4 and A.6.

Therefore, by using random feature maps, instead of transmitting n × n matrices, only D × D
matrices need be sent to compute unbiased approximations to ψ and ∇ψ. This results in a substan-
tial reduction in communication costs. For instance, consider training a fair model on the ADULT dataset
(n = 32K). Choosing D = 1024 (the dimensionality of the RFMs used in our experimental evaluations),
computing ψ(ω) exactly requires communicating 32K×32K matrices, compared to 1K×1K matrices when
RFMs are employed to estimate ψ(ω). In this example, the communication cost is reduced by three orders
of magnitude!

The use of randomized projections to reduce the cost of communication is well-established. We note in
particular (Han et al., 2024): this work uses randomized projections to help in their aim of achieving perfor-
mance fairness (see Definition 1 of (Han et al., 2024)), by minimizing the variance in the client objectives;
this concept of fairness differs from that of group fairness, which is our focus. Our contribution is in applying
random projections to achieve group fair federated learning in a statistically principled manner.

5 The KFFL algorithm for Kernel-regularized Fair Federated Learning

We now introduce the KFFL algorithm, which uses the FedProxGrad method to implement kernel-regularized
fair learning using the approximation to ψ introduced in the previous section. A time-delayed variant that
uses stale fairness gradient information to incur one less round of communication per iteration, KFFL-TD, is
presented in Appendix C.

The KFFL algorithm is detailed in Algorithm 2, which gives the client-side procedure, and Algorithm 3, which
gives the server-side process. Equations (13) through 16 are referenced in these algorithms. At a high level,
KFFL uses federated composite optimization to fit a fair model in three rounds:

FAIR1 At the start of the (t+ 1)-th iteration, the clients use the RFMs to compute the local terms Φi(ωt)
needed to compute the interaction matrix G(ωt) for the current global model ωt, and communicate
them to the server. Clients also store the local interaction term for next round Mi(ωt). The server
combines the local terms to compute the interaction matrix G(ωt) on the current global model, and
returns these to the clients.

FAIR2 The clients use G(ωt),µs(t)µf (t)⊤ from the server and the local interaction term Mi(ωt) previously
computed to compute their contribution to the stochastic estimate of the fairness gradient and
communicate these to the server.
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Local -
Update FAIR1 FAIR2

Legend

Figure 2: The communication pattern for KFFL. Different colors correspond to the FAIR1, FAIR2 and Local
Update sub-rounds of KFFL. The direction of the arrows indicate an uplink or downlink communication and
the width of each arrowhead highlights the communication cost in each sub-round. Thicker lines indicate
(large) communication costs on the order of the size of ω, while thinner lines represent communication costs
on the order of D2.

Update 4The rest of the iteration implements FedProxGrad: the server computes the gradient estimate for
ψ and sends ωt+ 1

2
= ωt − gt to the clients. The clients locally update their models ωi

t+1 and send
them back to the server, which then computes the next global model ωt+1.

Figure 7 graphically depicts the rounds of communication in each iteration of the KFFL algorithm. The
following expressions are used in Algorithms 3 and 2.

G(ω) = Z⊤
s Zf (ω)− nµsµ⊤

f (ω)
Mi(ω) = Z⊤

s Zf,i(ω)
Ωi(ω) = Mi(ω)− niµsµ⊤

f

gi(ω) = JΩi
(ω)T G(ω)

µs =
(

1
n

m∑
i=1

niµs,i

)

µf =
(

1
n

m∑
i=1

niµf,i

)⊤

µ⊤
s,i = 1

ni
1⊤Zs,i

µ⊤
f,i = 1

ni
1⊤Zf,i

ωt+1 = argminω

[
fi(ωt) + 1

2αt
∥ω − ωt∥2

2

]

Equations used in KFFL/KFFL-TD

(13)
(14)
(15)
(16)

(17)

(18)

(19)

(20)

(21)

4Here Update is written as a short to the Local Update flag
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Algorithm 2 KFFL – Client Side
Input: (ROUND, ..)

1: if ROUND = FAIR1 then
2: Clients compute Mi(ωt) (see Equation 14) using shared random seed ζ to generate their RFM, µf,i(t) using

Equation 20 and µs,i(t) using Equation 19.
3: Combine terms Φi(ωt) = {Mi(ωt),µs,i,µf,i}
4: Return: Φi(ωt)
5: else if ROUND = FAIR2 then
6: Client compute local interaction for gradients using Equation 15 to get Ωi(ωt)
7: The clients then compute the local gradient gi(ωt) using Equation 16 from Λ(ωt)
8: Return: gi(ωt)
9: else if ROUND = Local Update then

10: Clients do a local update on ωt+1/2 following Equation 21 to get ωi
t+1

11: Return: ωi
t+1

12: end if

Algorithm 3 KFFL – Server Side
1: ω = ω0 {This is the initial model}
2: t← 0
3: while ω not converged do
4: for all i = 1, . . . ,m in parallel do
5: Generation of random seed ζ
6: Φi(ωt) = Client Update(FAIR1,ωt, ζ)
7: end for
8: Φ(ωt) = {Φi(ωt)}m

i=1
9: From Φ(ωt) compute G(ωt) using Equation 13 ; µs(t) using Equation 17 and µf (t) using Equation 18

10: for all i = 1, . . . ,m in parallel do
11: Λ(ωt) = {FAIR2,G(ωt),µs(t)µf (t)⊤}
12: gi(ωt) = Client Update(Λ(ωt))
13: end for
14: ωt+1/2 ← ωt −

∑m

i=1 gi(ωt)
15: for all i = 1, . . . ,m in parallel do
16: ωi

t+1 = Client Update(Local Update,ωt+1/2)
17: end for
18: ωt+1 ← average

(
ωi

t+1
)

19: end while

The following section (6) evaluates the empirical performance of KFFL and KFFL-TD against baseline fed-
erated learning algorithms designed to mitigate demographic bias, utilizing the fairness metrics introduced
in Section 2. Furthermore, we examine the communication costs of KFFL and KFFL-TD relative to these
baselines.

6 Experimental Evaluation

In this section, we evaluate the performance of our methods, KFFL and KFFL-TD, at achieving group
fairness in the federated setting. Fairness is assessed using statistical parity, (1), and equal opportunity, (2),
for classification models and the KS distance, (6), for regression models. While most of the work in fair
federated learning has explored fairness algorithms that aim to achieve client fairness (i.e., consistent per-
formance across clients), as in Cui et al. (2021) and Du et al. (2021), such algorithms do not directly target
statistical group fairness. Thus, these algorithms are not suitable benchmarks for our approach, as we focus
explicitly on addressing statistical group fairness in the federated learning.

We compare KFFL against three baseline methods: FedAvg McMahan et al. (2017); the MinMax algorithm
of Papadaki et al. (2022), which aims to optimize model performance for the worst-performing demographic
group; the FairFed algorithm of Ezzeldin et al. (2023), where clients convey localized fairness metrics and
the server optimizes weighting coefficients by minimizing the contribution of the poorest-performing client
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for a chosen fairness metric. The framework of FairFed allows for different local bias mitigation algorithms.
We use FairFed with the best performing local bias mitigation algorithm, FairBatch (Roh et al., 2020).
The latter two baselines were chosen as these methods are explicitly designed to mitigate demographic bias
in federated learning. To highlight the importance of global communication of fairness information, we also
consider FairFed-Kernel, which uses FedAvg with each local client implementing a local bias mitigation
algorithm (similar to (10)). Finally, KFFL is compared against its time delay variant KFFL-TD.

The selection of the hyperparameters for KFFL and its variants is discussed in Appendix B.1. This section
includes a discussion of both common hyperparameters (e.g., batch size, learning rate, local epochs, global
rounds) and algorithm-specific hyperparameters, such as the feature map size D used in KFFL and KFFL-
TD.

We evaluate the performance in two different federated learning settings: IID (independent and identically
distributed) and Non-IID. In the IID setting, each client is provided with an equal number of samples and a
shared local data distribution Li et al. (2020). In the Non-IID setting, each client has a different distribution
of the protected attribute. Specifically, since the protected group A is binary with attributes A0 and A1,
half of the clients have 90% of A0 and 10% of A1, while the other half has 90% of A1 and 10% of A0 Li
et al. (2020).

For classification tasks, we used five datasets commonly encountered in group fairness research (Han et al.,
2023): Adult, COMPAS, Bank, ACS, and German. Logistic regression and neural networks are used to evaluate
the fairness accuracy trade-off of KFFL (Han et al., 2023). Additional results and details can be found in
Appendix D.

When the underlying task is regression, we incorporate additional datasets into our evaluation. Beyond the
Adult dataset, we also consider the Law School and Communities and Crime datasets, as utilized in the
work Agarwal et al. (2019a). For more details on the datasets refer to Appendix B.2.

A note on the scope of the experimental evaluation. Our primary focus in this work is the development
and evaluation of a novel kernel-based approach to ensuring group fairness in a principled manner. Similar
to prior works in federated learning that do not impose privacy constraints (Crawshaw & Liu, 2024; Cho
et al., 2023; Gu et al., 2021; Malinovsky et al., 2023; Eichner et al., 2019), we use no privacy-preserving
mechanisms in this study. The integration of privacy-preserving protocols such as DP-SGD (Chua et al.,
2024) or secure aggregation (Bonawitz et al., 2017) is left as future work. Furthermore, we consider full client
participation, consistent with approaches such as FairFed (Ezzeldin et al., 2023), the MinMax algorithm
proposed by Papadaki et al. (2022), and other works in federated learning (Zhang et al., 2023; Li et al.,
2023a;b; Zakerinia et al., 2023; Huang et al., 2022). Finally, as wall-clock time differences may be sensitive
to differences in the implementation efficiency of our methods versus the baseline methods, our experimental
evaluation focuses on communication costs rather than wall-clock time. This focus is justified by the fact
that the performance of federated learning techniques is typically communication-bound.

6.1 Performance Evaluation of KFFL

Table 1 compares the communication rounds required by our proposed methods, KFFL and its time-delay
variant KFFL-TD see (C), with baseline methods FedAvg and FairFed Ezzeldin et al. (2023). While KFFL

Table 1: Communication measured in terms of the number of rounds required for one global update using
KFFL, KFFL-TD, FedAvg, and FairFed. Algorithms that incorporate fairness, such as FairFed, require
a similar number of communication rounds as our methods KFFL and KFFL-TD.

Method Rounds of Communication

KFFL 3
KFFL-TD (Time Delay Variant) 2

FairFed (Ezzeldin et al., 2023) 3
FedAvg (McMahan et al., 2017) 1
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Figure 3: Accuracy versus Demographic Parity (DP) and Equalized Oppurtunity (EO) for KFFL and the
baselines under IID and Non-IID conditions on the ADULT test dataset. Each point represents a different
fairness weight λ ranging from 20.00 to 1000.00 for both KFFL and KFFL-TD. The blue region denotes
higher levels of group fairness (low SPD and EO), while the gray region indicates lower levels of
group fairness (high SPD and EO).
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Figure 4: Accuracy versus Demographic Parity (DP) and Equal Opportunity (EO) for KFFL and its
baselines under IID and Non-IID conditions on the COMPAS test dataset. Each point represents a different
fairness weight λ ranging 0.01 to 123.16 for both KFFL and KFFL-TD. The blue region denotes higher
levels of group fairness (low SPD and EO disparities), while the gray region indicates lower levels of group
fairness (high SPD and EO disparities)

requires a similar number of communication rounds as FairFed, KFFL-TD reduces the number of rounds
needed for a global model update by using stale fairness gradients, thereby lowering the total communication
rounds needed per update.

Existing fair classifiers and regressors that balance fairness and accuracy typically optimize for a single point
on the trade-off curve (see Figure 4 and Figure 3), whereas KFFL and KFFL-TD explore the trade-offs
between accuracy and group fairness more thoroughly as the fairness hyperparameter λ is swept. This
suggests that the baseline algorithms may lead to suboptimal outcomes when practitioners employ them
to achieve specific trade-offs between accuracy and group fairness, while KFFL and KFFL-TD are more
suitable for achieving more control over the achieved trade-off.

For the classification tasks, we evaluate the models’ test accuracy and fairness metrics, focusing on SPD, (1),
and EO, (2), across five datasets: BANK, ACS, COMPAS, ADULT, and GERMAN. Each dataset considers a single

13



Published in Transactions on Machine Learning Research (Apr/2025)

protected binary sensitive attribute. For example, in COMPAS, the protected attribute is race (black/white),
while in ADULT, it is sex (male/female). This subsection presents results for the logistic regression model,
with the Appendix D providing similar results on the performance of the neural network model.

KFFL and its baselines are compared under both IID and Non-IID conditions on the COMPAS test dataset
in Figure 4. The blue region, referred to as the ’Low SPD Region’ and ’Low EO Region,’ represents low
statistical parity discrepancy and low equalized opportunity discrepancy. These regions correspond to higher
levels of group fairness. In contrast, the gray region, labeled as the ’High SPD Region’ and ’High EO Region,’
indicates lower levels of group fairness.

Points labeled “completely fair” indicate trade-off points where the model achieves no statistical parity or
equalized opportunities discrepancies. In contrast, points labeled “completely unfair” represent the perfor-
mance of the standard FedAvg model, which is trained without any fairness objective (i.e., λ = 0 in the
distributed setting of (10)). Each point reflects a different fairness weight λ, ranging from 20.00 to 1000.00
for both KFFL and KFFL-TD using the ADULT dataset and from 0.01 to 123.16 for the COMPAS dataset.
More details on the choice of λ for the other datasets is given in Appendix B.5. As λ increases beyond this
range, we observe non-optimal points to the right of the “completely unfair” point.

It can be seen that other baselines, such as FairFed and MinMax, do not produce a smooth trade-off between
accuracy and fairness. For FairFed (Ezzeldin et al., 2023), the tradeoff is controlled by a parameter β called
the “fairness budge”, which varies from 0.1 to 5, based on the recommendations in Ezzeldin et al. (2023).
Optimal performance of the FairFed baseline requires a local debiasing mechanism, for which we use the
FairBatch algorithm (Roh et al., 2020).

For MinMax, a “global adversary rate” Papadaki et al. (2022) is used to control the reduction of expected loss
for the worst-performing demographic. To explore the accuracy-fairness tradeoff, we varied this parameter
from 0.001 to 0.1 based on the settings in that work.

In the right column, the Centralized method refers to a non-distributed data setting, corresponding to
Equation 10, where the full kernel is used as a regularizer. Similarly, Figure 3 provides an evaluation for
the ADULT test dataset. Each point represents a different fairness weight λ, ranging from 0 to 0.01 for both
KFFL and KFFL-TD.

The Centralized version for each dataset illustrates that using the full kernel allows for a clear tradeoff
between accuracy and fairness. The federated KFFL algorithm preserves this trade-off in Figures 4 and 3.
Specifically, KFFL and KFFL-TD maintain competitive accuracy (approximately 0.85 to 0.78) on the ADULT
dataset and between 0.6 to 0.7 on the COMPAS dataset, across different fairness regions. In contrast, FairFed
and MinMax perform similarly to our methods in regions with lower levels of group fairness but significantly
underperform in regions with higher levels of group fairness, often failing to provide any trade-off points in
the areas identified as high fairness regions.

The smooth exploration of the achievable accuracy–fairness trade-offs by KFFL and KFFL-TD persists
even in the more challenging Non-IID setting. Unlike FairFed and MinMax, which require extensive tuning
for specific evaluation metrics, KFFL and KFFL-TD perform well without metric-specific hyper-
parameter optimization. However, the choice of the fairness weight hyperparameter λ is crucial for
effectively utilizing KFFL and KFFL-TD. Increasing the fairness weight λ beyond a certain threshold can
push the model’s performance towards lower levels of group fairness, as shown in Figures 4 and 3.

Figures 3 and 4 also illustrate the tradeoff achieved when KHSIC is applied as a local fairness regularizer
in the method FairFed-Kernel. In these methods, each client independently solves (10) without global
communication of fairness gradients. The results clearly show that local debiasing methods fail to achieve a
tradeoff comparable to the centralized approach, where distributional information from across all clients is
taken into consideration using (10). These findings underscore the importance of the principled strategies
employed by KFFL and KFFL-TD.
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Table 2: Communication costs of KFFL and KFFL-TD, relative to FedAvg. Here, ε ≜ D2/|ω|. The KFFL
and KFFL-TD algorithms incur additional cost due to the exchange of fairness information, however, the
use of RFMs ensures that this additional cost is vanishing when the model size |ω| is large.

Method Uplink Downlink

KFFL 2 + ε 2 + ε
KFFL-TD (Time Delay Variant) 2 + ε 2 + ε

Fair Fed (Ezzeldin et al., 2023) 1 1
FedAvg (McMahan et al., 2017) 1 1

6.2 The communication cost of KFFL

KFFL and KFFL-TD incur additional communication overhead over FedAvg, due to the exchange of the
parameters needed to compute the fairness gradient. Table 2 compares the relative communication costs
(per client, per iteration) for the FedAvg and KFFL algorithms. Let |ω| denote the size of the model. In
each iteration, FedAvg incurs uplink (client-to-server) and downlink (server-to-client) communication costs
of |ω|, the number of parameters in the model. In contrast, KFFL requires the client to transmit ωi

t,Φi(ωt),
and gi(ωt) (see Algorithm 2), resulting in an uplink cost of 2|ω|+D2, and the server to transmit ωt,Λ(ωt),
and ωt+1/2, incurring a similar downlink cost of 2|ω|+D2 (see Algorithm 3). Notably, D2 is often smaller
than |ω|, particularly for large models. KFFL-TD (Appendix C) incurs comparable communication costs
but reduces the number of communication rounds per iteration (see Figure 7).

To quantify this overhead, Table 2 defines ε ≜ D2

|ω| , where D is the dimension of the RFMs. This results in
total uplink and downlink communication costs of 2 + ε per iteration for KFFL, compared to 1 for nonfair
methods like FedAvg. Since ε is relatively small when D2 ≪ |ω|, the additional communication cost becomes
negligible in practice for large models. Consequently, the overall communication costs of KFFL and KFFL-
TD remains approximately two times that of FedAvg, due to the additional exchange of model parameters,
while providing the benefits of ensuring learning a model that is fair with respect to different demographic
groups.

FairFed also exchanges local and global accuracy and fairness metrics during each global update, but we
exclude these scalar quantities from the comparison for simplicity in Table 2.

6.3 Additional examples of KFFL trade-offs

Table 3 highlights selected trade-off points for additional datasets, including BANK, ACS, and GERMAN, alongside
the previously analyzed COMPAS dataset. The models were trained under the Non-IID setting, and the trade-
off points were computed based on performance on the test dataset averaged over three runs.

To showcase the benefits of our approach, we selected specific trade-off points. For the COMPAS dataset, if
the desired accuracy is around 60%, similar to the performance of FedAvg, KFFL and KFFL-TD achieve a
small SPD gap of 0.06. In contrast, the baselines achieve a similar SPD gap but with an approximately 5%
drop in accuracy. A similar trend is evident in the ACS dataset, where KFFL-TD provides a trade-off point
of relatively high 80% accuracy for a low SPD gap. For the baselines, a comparable fairness point results in
a 22% drop in accuracy.

Additionally, KFFL is robust across different evaluation metrics. On the BANK dataset, KFFL and KFFL-
TD offer a trade-off point of 90% accuracy with SPD gaps of 0.05 and 0.04, respectively. In comparison,
FairFed achieves 0.00 SPD gap with 88% accuracy but as a consequence exhibits a high EO gap of 0.16,
as all methods were optimized for reducing SPD in our experiments. This underscores the sensitivity of the
FairFed method to the choice of the evaluation metric. Additionally, MinMax shows a high SPD gap but low
EO gap, indicating that depending on the dataset one evaluation metric may be favored over the other with
this approach. In contrast, KFFL and KFFL-TD provide a trade-off point that reduces unfairness across
both evaluation metrics for this dataset.
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Method COMPAS BANK ACS GERMAN

Acc. (↑)

FedAvg 61.13 ± 1.25 91.21 ± 1.10 81.14 ± 1.20 72.50 ± 1.15
KFFL 60.30 ± 1.30 90.23 ± 1.25 79.12 ± 1.35 72.50 ± 1.10
KFFL-TD 59.51 ± 1.45 90.78 ± 1.20 81.12 ± 1.05 72.50 ± 1.40
FairFed/FairBatch 55.47 ± 1.50 88.05 ± 1.30 58.77 ± 1.20 30.00 ± 1.25
FairFed-Kernel 44.13 ± 1.55 88.77 ± 1.15 58.77 ± 1.05 70.00 ± 1.35
MinMax 56.68 ± 1.40 64.93 ± 1.20 58.77 ± 1.25 70.00 ± 1.10

SPD (↓)

FedAvg 0.16 ± 0.02 0.23 ± 0.01 0.08 ± 0.04 0.19 ± 0.03
KFFL 0.06 ± 0.01 0.05 ± 0.03 0.04 ± 0.02 0.00 ± 0.04
KFFL-TD 0.05 ± 0.02 0.06 ± 0.01 0.00 ± 0.03 0.00 ± 0.02
FairFed/FairBatch 0.05 ± 0.03 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.03
FairFed-Kernel 0.08 ± 0.02 0.00 ± 0.03 0.00 ± 0.02 0.00 ± 0.01
MinMax 0.03 ± 0.01 0.21 ± 0.02 0.00 ± 0.03 0.00 ± 0.02

EO (↓)

FedAvg 0.23 ± 0.02 0.16 ± 0.01 0.04 ± 0.02 0.02 ± 0.03
KFFL 0.07 ± 0.01 0.04 ± 0.02 0.02 ± 0.03 0.00 ± 0.02
KFFL-TD 0.08 ± 0.02 0.05 ± 0.01 0.03 ± 0.02 0.00 ± 0.03
FairFed/FairBatch 0.09 ± 0.02 0.16 ± 0.03 0.00 ± 0.01 0.00 ± 0.02
FairFed-Kernel 0.05 ± 0.03 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.03
MinMax 0.03 ± 0.02 0.02 ± 0.01 0.00 ± 0.03 0.00 ± 0.02

Table 3: Selected fairness–accuracy trade-off points for the BANK, ACS, GERMAN, and COMPAS datasets in non-
IID settings. The results are averaged over three runs on the test sets. Lower SPD and EO gaps indicate
higher fairness. KFFL and KFFL-TD provide superior trade-off points compared to baselines.

6.4 KFFL provides fair trade-off points for regression tasks

Fairness hyperparameter λ RMSE ↓ KS distance ↓
0.00 0.49088 ± 0.009294 0.38293 ± 0.016433
0.01 0.49101 ± 0.009303 0.39744 ± 0.027059
0.10 0.49053 ± 0.009130 0.37377 ± 0.030239
1.00 0.49071 ± 0.009039 0.38429 ± 0.053008

500.00 40.32616 ± 48.938383 0.27088 ± 0.139738

Table 4: RMSE and the KS distance with standard deviations for 5 runs of KFFL for the Adult dataset in
the IID case. Points with lower RMSE and lower KS distance are preferable.

Fairness hyperparameter λ RMSE ↓ KS distance ↓
0.00 0.810188 ± 0.002067 0.439208 ± 0.175972
0.01 0.810068 ± 0.002152 0.424060 ± 0.164314
0.10 0.809940 ± 0.002189 0.487244 ± 0.139673
1.00 0.810052 ± 0.002201 0.200248 ± 0.170934
5.00 0.810100 ± 0.002022 0.212672 ± 0.065094

100.00 31.159116 ± 19.366019 0.184708 ± 0.081729

Table 5: RMSE and the KS distance with standard deviations for 5 runs of KFFL for the Law School
dataset in the Non-IID case. Points with lower RMSE and lower KS distance are preferable.

We evaluate KFFL with a linear regression model, measuring predictive accuracy by the root mean square
error (RMSE) and group fairness by the KS distance (Eq. 6); lower values are better for both metrics.

Table 4 reports performance under increasing fairness weights λ in the IID setting on the Adult dataset. As
λ grows, the fairness term gains influence. For small to moderate weights (λ≤ 1) the KS distance falls by
roughly 15%, while RMSE is statistically unchanged. However, once the weight is large enough (λ>1) the
expected accuracy–fairness trade-off does materialize: RMSE increases, yet KS continues to decline.

An analogous pattern appears in the Non-IID setting on the Law School dataset (Table 5).

Additional results in the Appendix— Tables 15, 13, 11, 12, 14, and 9— extend these findings to the
Law School, Communities and Crime, and Adult datasets. These results demonstrate the effectiveness
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Figure 5: Intersectional (Race × Sex) fairness on COMPAS. Accuracy under KFFL versus the multi-
attribute SPD and multi-attribute EO gaps. Markers sweep the fairness weight λ∈{0, 1000, 1100, . . . , 2000};
larger λ pushes the model from the low fairness region towards the high fairness region. Groups are defined by
the Cartesian product {African-American binary indicator}×{Male,Female}, yielding K = 4 intersectional
categories. The two left panels show the trade-offs between the SPD gap and accuracy in the IID and Non-
IID settings, while the right half shows the trade-offs with the EO gap under the IID and Non-IID settings.
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Figure 6: Multi-racial fairness on COMPAS. These panels follow the same layout
as in Figure 5, but with the sensitive attribute “race” taking values over the full set
{African-American,Caucasian,Hispanic,Asian,Native American,Other} (K = 6). The transition from the
low fairness region to the high fairness region as the fairness hyperparameter λ increases illustrates the
trade-off between accuracy and multi-group SPD and multi-group EO gaps.

of KFFL in balancing accuracy and fairness in regression tasks by appropriately tuning the fairness hyper-
parameter λ.

6.5 KFFL yields favourable trade-offs in settings with multiple sensitive attributes

We demonstrate the capability of KFFL to achieve fairness-accuracy trade-offs when there are multiple
sensitive attributes by considering (i) an intersectional attribute race× sex that takes K = 4 values, and (ii)
the full racial spectrum recorded in COMPAS, which takes K = 6 values.5 Fairness is measured by the
max–min gaps SPDmulti and EOmulti ((3)–(4)).

Figures 5 and 6 plot the model accuracy in these two experimental setups, versus the fairness gaps while
sweeping the fairness hyperparameter λ∈{0, 1000, 1100, . . . , 2000} under IID and non-IID federated settings.
In every case the results trace a smooth trade-off between fairness and accuracy: increasing λ moves the
operating point from the high-gap zone into the low-gap zone while keeping the accuracy in the range
[0.60, 0.72].

We note that when λ=1600 in the IID setting of the intersectional experiment, the model attains SPDmulti<
0.05 and EOmulti < 0.05 with an accuracy of around 0.65. This is a substantial improvement over the
unregularised model (λ = 0), in which SPDmulti ≈ 0.30 and EOmulti ≈ 0.40. A comparable pattern emerges
for the multiple-race experiment, showing that KFFL scales gracefully from binary to genuinely multi-group
fairness.

The orthogonal random-feature (ORF) Yu et al. (2016) map utilized in our implementation of KFFL requires
D≥2k, where k is the number of one-hot columns, to satisfy the orthogonality condition. The earlier binary-
attribute experiments used D=10, but the richer group structure in these multiple sensitive attribute settings
demands slightly larger D: we set D=16 for the intersectional setting (k=7) and D=24 for the six-race setting
(k=11). Further increases to D produced no significant changes in either accuracy or fairness, confirming
that a simple rule of thumb of D≈2k is adequate even in the multiple sensitive attribute regime.

5Intersectional groups: (AA = 1, M), (AA = 1, F), (AA = 0, M), (AA = 0, F); racial groups: African-American, Caucasian,
Hispanic, Asian, Native American, Other.
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7 Conclusions

This work introduces a systematic approach for training group-fair machine learning models in a federated
setting by leveraging KHSIC as a fairness regularizer to capture complex, non-linear dependencies between
model outputs and sensitive attributes. The proposed method, KFFL, significantly reduces the communi-
cation and computation costs of a naive implementation by employing random feature maps and a novel
federated proximal gradient algorithm, FedProxGrad, which accommodates the non-convexity of both the
data-fitting term and the fairness regularizer.

Experimental results demonstrate that KFFL performs robustly across diverse client data distributions and
standard datasets commonly used to evaluate fair learning methods. It achieves strong performance in both
regression and classification tasks by more thoroughly exploring the trade-offs between fairness and accuracy
compared to existing baselines. In exchange for this flexibility, KFFL and KFFL-TD incur about twice
the communication cost of FedAvg, and respectively require two and one more round of communication per
iteration in comparison to FedAvg. We leave it up to practitioners to determine, based on the requirements
of their use case, whether the ability to better explore the accuracy-fairness trade-offs justify this additional
cost.

Limitations and Future Work

KFFL effectively enforces statistical parity in a principled manner. Expanding the method to address other
notions of group fairness— e.g. by utilizing conditional variants of the KHSIC to ensure equalized odds—,
would enhance its versatility. Also, the current framework assumes full client participation, making it less
suitable for scenarios with partial participation or privacy constraints, and requires two additional rounds
of communication over FedAvg to compute the fairness gradient in order to guarantee convergence. To
address these challenges, future work can incorporate differentially private gradient estimation techniques
and develop modifications to KFFL and its analyses to support partial participation and to justify the use
of stale gradient information in KFFL-TD, which requires only one additional round of communication
over FedAvg. Additionally, the convergence rate of FedProxGrad is influenced by the variance σ2 of the
stochastic gradient estimate for the fairness regularizer, which imposes a fixed floor on the convergence of the
method to a stationary point of the fairness-regularized learning objective, and the use of the dissimilarity
condition. Future work can overcome these challenges by exploring variance reduction techniques to mitigate
the impact of σ2 on convergence rates and alternative analysis strategies, such as the approach taken in Yuan
& Li (2022), to eliminate the need for the bounded dissimilarity assumption.
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A Appendix

A.1 Related Works

Methods for ensuring fairness within centralized machine learning are typically categorized into three distinct
groups: pre-processing, in-processing, and post-processing Mehrabi et al. (2021). In federated learning, bias
mitigation methods predominantly fall into in-processing approaches, although some work has also been
done in post-processing methods.

For in-processing methods of bias mitigation in federated learning, Ezzeldin et al. (2023) is notable for its
versatility and compatibility with various local bias mitigation techniques.In this approach, clients convey
their localized fairness metrics to the server, which then optimizes weighting coefficients to minimize the
contribution of the poorest-performing client with respect to a chosen fairness metric. Papadaki et al. (2022)
optimize model performance on the worst-performing demographic by adopting a minimax optimization
framework. Salazar et al. (2022) propose a fairness-aware momentum-based method to address bias in
federated learning. The approach in Mehrabi et al. (2022) strives for fair federated learning but requires
the server to maintain a validation dataset. Zeng et al. (2021) address the challenge of bias mitigation in
federated learning through a bi-level optimization problem; their analysis predominantly pertains to specific
loss functions. Pentyala et al. (2022) consider post-processing and pre-processing approaches to ensuring
fairness. Cui et al. (2021) require the clients to achieve Pareto optimality with respect to both fairness and
accuracy.

Other variants of group fairness have been explored in the federated setting. Hu et al. introduce the
concept of bounded group loss as a facet of group fairness in federated learning, although their work does
not specifically develop algorithms targeting bias mitigation. Chang & Shokri (2023) analyze how bias
within participating clients can propagate during the training process but do not propose methods aimed
at explicitly addressing group fairness.A comprehensive summary of additional approaches in group fairness
federated learning is provided in Table 3 of Salazar et al. (2024). For baseline comparisons, we limit our
focus to most published works in group fairness federated learning except the recent Wang et al.
(2023).

Significant related works from the centralized setting that aim to ensure fair models include Pérez-Suay
et al. (2017), which leverages the (non-kernel) Hilbert-Schmidt Independence Criterion (HSIC) to promote
the learning of fair kernel machines, and Baharlouei et al. (2019a), which incorporates the Rényi correlation
as a regularization term to achieve statistically fair models.

A.2 Proof of Theorem 1

In the following, Et[·] = E[· |ωt] denotes the expectation conditioned on all sources of randomness in the
algorithm up to and including the calculation of ωt, and Ei[·] = 1

N

∑N
i=1[·] denotes the average of a quantity

over the clients.

The computations are complicated by the presence of a composite objective and stochasticity in our estimate
of ∇ψ(ω), but the conceptual outline of the proof of the convergence rate follows that of the proof of the
convergence rate for FedProx in Li et al. (2020). Namely,

• First, we establish that the distance between consecutive iterates, ∥ωt+1−ωt∥2, is upper bounded by
the quantity Ei∥∇ℓi(ωt) +∇ψ(ωt)∥2, and use the bounded dissimilarity condition to upper bound
the latter by a multiple of the composite objective gradient at ωt, ∥∇F (ωt)∥2

2, plus a term due to
noise.

• Next, we use this result and the smoothness of the composite objective to establish that after one
round of the algorithm, the composite objective satisfies EtF (ωt+1) ≤ F (ωt) − αEt∥∇F (ωt)∥2

2 +
(vanishing terms) + (noise).
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• We conclude that if the step-size α is chosen appropriately, then the objective decreases in expectation
at each iteration, up to the noise level. A standard argument with Jensen’s inequality and telescoping
sums delivers the claimed convergence rate.

Proof. We flesh out the preceeding outline.

Iterate proximity To bound the iterate proximity, begin by introducing the local exact minimizer,

ω̂i
t+1 = argminωℓ

i
t(ω) := ℓi(ω) + 1

2α∥ω − ωt+1/2∥2
2.

The data-fitting term ℓi is L−-weakly convex and the quadratic regularizer is 1
α -strongly convex, so the local

objective ℓi
t is µ strongly convex for µ = 1

α − L−.

The µ-strong convexity of ℓi
t implies that the iterate distance between ωt and ωi

t+1 can be estimated using
the size of the gradient of ℓi

t at those models:

∥ωi
t+1 − ωt∥2 ≤ ∥ωi

t+1 − ω̂i
t+1∥2 + ∥ωt − ω̂i

t+1∥2

≤ 1
µ

[
∥∇ℓi

t(ωi
t+1)∥2 + ∥∇ℓi

t(ωt)∥2
]
.

Employing the γ-suboptimality of ωi
t+1 to estimate the size of ∥∇ℓi

t(ωi
t+1)∥2 refines this estimate to

∥ωi
t+1 − ωt∥2 ≤

1 + γ

µ
∥∇ℓi

t(ωt)∥2.

We note that

∇ℓi
t(ωt) = ∇ℓi(ωt) + 1

α
(ωt − ωt+1/2) = ∇ℓi(ωt) + gt,

and consequently

∥ωi
t+1 − ωt∥2 ≤

1 + γ

µ

[
∥∇ℓi(ωt) +∇ψ(ωt)∥2 + ∥∇ψ(ωt)− gt∥2

]
.

Using Jensen’s inequality delivers

Et∥ωt+1 − ωt∥2
2 ≤ Et

[
Ei∥ωi

t+1 − ωt∥2
2
]

≤ 2
(

1 + γ

µ

)2
Et

[
Ei∥∇ℓi(ωt) +∇ψ(ωt)∥2

2 + ∥∇ψ(ωt)− gt∥2
2

]
≤ 2

(
1 + γ

µ

)2 [
B2∥∇F (ωt)∥2

2 +G2 + σ2
]
. (22)

The last inequality holds because of the bounded dissimilarity condition and the upper bound on the variance
of gt.

Similarly,

Et∥ωt+1 − ωt∥2 ≤ Et

[
Ei∥ωi

t+1 − ωt∥2
]

≤ 1 + γ

µ
Et

[√
Ei∥∇ℓi(ωt) +∇ψ(ωt)∥2

2 +
√
∥∇ψ(ωt)− gt∥2

2

]
≤ 1 + γ

µ

[
B∥∇F (ωt)∥2 +G+ σ

]
. (23)
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Objective Decrease The L-smoothness of the composite objective implies that

EtF (ωt+1) ≤ Et

[
F (ωt) + ⟨∇F (ωt),ωt+1 − ωt⟩+ L

2 ∥ωt+1 − ωt∥2
2

]
(24)

= F (ωt)− α∥∇F (ωt)∥2
2 + Et

[
⟨∇F (ωt),ωt+1 − (ωt − α∇F (ωt)︸ ︷︷ ︸

= ∆t

⟩
]

+ L

2 Et∥ωt+1 − ωt∥2
2.

Equation 22 establishes that, up to noise terms, the term Et∥ωt+1 −ωt∥2
2 scales like α2∥∇F (ωt)∥2

2, because
µ−2 is on the order of α2. Now we develop a series of estimates to establish that the quantity Et⟨F (ωt),∆t⟩
also scales like α2∥∇F (ωt)∥2

2, up to noise terms.

We begin by using the γ-suboptimality of ωi
t+1 to find a useful expression for ∆t. In particular, γ-

suboptimality implies that

∇ℓi(ωi
t+1) + 1

α
(ωi

t+1 − ωt+1/2) = ∇ℓi(ωi
t+1) + gt + 1

α
(ωi

t+1 − ωt)

=
(
∇ℓi(ωi

t+1) +∇ψ(ωt)
)
− (∇ψ(ωt)− gt) + 1

α
(ωi

t+1 − ωt)

= ei
t+1,

where ∥ei
t+1∥2 ≤ γ∥∇ℓi

t(ωt)∥2. Consequently,

ωt+1 − ωt = Ei

[
ωi

t+1 − ωt

]
= αEi

[
ei

t+1 −
(
∇ℓi(ωi

t+1) +∇ψ(ωt)
)

+ (∇ψ(ωt)− gt)
]

and, adding and subtracting terms judiciously yields

= αEi

[
ei

t+1 −∇F (ωt+1) +∇F (ωt+1)
−
(
∇ℓi(ωi

t+1) +∇ψ(ωt)
)

+∇ψ(ωi
t+1)−∇ψ(ωi

t+1)
+ (∇ψ(ωt)− gt)]

= −α∇F (ωt+1)− αEi

[
(∇ℓi(ωi

t+1) +∇ψ(ωi
t+1)−∇F (ωt+1)

]
− αEi

[
∇ψ(ωt)−∇ψ(ωi

t+1)
]

+ α (∇ψ(ωt)− gt) + αEiei
t+1.

It follows that

∆t = ωt+1 − ωt + α∇F (ωt)
= −α (∇F (ωt+1)−∇F (ωt))︸ ︷︷ ︸

= t1

−αEi

[
∇ℓi(ωi

t+1) +∇ψ(ωi
t+1)−∇F (ωt+1)

]︸ ︷︷ ︸
= t2

− αEi

[
∇ψ(ωt)−∇ψ(ωi

t+1)
]︸ ︷︷ ︸

= t3

+α (∇ψ(ωt)− gt)︸ ︷︷ ︸
= t4

+αEiei
t+1︸ ︷︷ ︸

= t5

.

Consider the quantity Et [⟨∇F (ωt),∆t⟩]:

Et [⟨∇F (ωt),∆t⟩] ≤ αEt

[
∥∇F (ωt)∥2 · (∥t1∥2 + ∥t2∥2 + ∥t3∥2 + ∥t4∥2 + ∥t5∥2)

]
Observe that because the composite objective is L-smooth,

Et [∥t1∥2] ≤ LEt [∥ωt+1 − ωt∥2] ≤ LEt

[
Ei

∥∥ωi
t+1 − ωt

∥∥
2

]
.

Similarly, the estimate for t3 uses the L-smoothness of the regularizer:

Et [∥t3∥2] ≤ Et

[
Ei

∥∥∇ψ(ωt)−∇ψ(ωi
t+1)

∥∥
2

]
≤ LEt

[
Ei

∥∥ωt − ωi
t+1
∥∥

2

]
.
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The t2 term can also be bounded in terms of the iterate distance:

Et [∥t2∥2] ≤ Et

[
Ei

∥∥∇ℓi(ωi
t+1) +∇ψ(ωi

t+1)−∇F (ωt+1)
∥∥

2

]
≤ Et

[
Ei

∥∥∇ℓi(ωi
t+1) +∇ψ(ωi

t+1)−∇ℓi(ωt+1)−∇ψ(ωt+1)
∥∥

2

]
,

where the last equality holds because ∇ℓ(ωt+1) = Ei∇ℓi(ωt+1). We use the triangle inequality and the
L-smoothness of ψ and the functions ℓi to continue our estimation:

≤ 2LEt

[
Ei

∥∥ωi
t+1 − ωt+1

∥∥
2

]
≤ 2LEt ∥ωt+1 − ωt∥2 + 2LEt

[
Ei

∥∥ωt − ωi
t+1
∥∥

2

]
≤ 4LEt

[
Ei

∥∥ωt − ωi
t+1
∥∥

2

]
.

Thus we find that

Et

[
∥∇F (ωt)∥2 · (∥t1∥2 + ∥t2∥2 + ∥t3∥2)

]
≤ 6L∥∇F (ωt)∥2 · Et

[
Ei

∥∥ωt − ωi
t+1
∥∥

2

]
≤ 6L(1 + γ)

µ

[
B∥∇F (ωt)∥2

2 + ∥∇F (ωt)∥2 · (G+ σ)
]

≤ 6L(1 + γ)
µ

(
(B + 1)∥∇F (ωt)∥2

2 + σ2 +G2) .
The last two inequalities are justified by equation 23 and the fact that |ab| ≤ 1

2 (a2 + b2) for any real numbers
a and b.

The noise term t4 is controlled by the variance of the stochastic gradient estimate

Et [∥t4∥2] ≤
√
Et ∥∇ψ(ωt)− gt∥2 ≤ σ.

To control the t5 term, recall that ∥ei
t+1∥2 ≤ γ∥∇ℓi

t(ωt)∥2. This implies that

Et [∥t5∥2] = Et

∥∥Eiei
t+1
∥∥

2 ≤ Et

[
Ei

∥∥ei
t+1
∥∥

2

]
≤ γEt

[
Ei

∥∥∇ℓi(ωt) + gt

∥∥
2

]
≤ γEt

[
Ei

∥∥∇ℓi(ωt) +∇ψ(ωt)
∥∥

2 + ∥∇ψ(ωt)− gt∥2
]

≤ γ (B ∥∇F (ωt)∥2 +G+ σ) .

The last inequality holds because of Jensen’s inequality, the bounded dissimilarity condition, and the bound
on the variance of the stochastic gradient estimate.

From these last two estimates, we find that

Et

[
∥∇F (ωt)∥2 · (∥t4∥2 + ∥t5∥2)

]
≤ ∥∇F (ωt)∥2 · σ + γ

(
B∥∇F (ωt)∥2

2 + ∥∇F (ωt)∥2(G+ σ)
)

≤ 1
2∥∇F (ωt)∥2

2 + 1
2σ

2 + γ
(
(B + 1)∥∇F (ωt)∥2

2 +G2 + σ2) ,
and therefore we conclude that

Et [⟨∇F (ωt),∆t⟩] ≤ α
6L(1 + γ)

µ

(
(B + 1)∥∇F (ωt)∥2

2 +G2 + σ2) (25)

+ α

2 ∥∇F (ωt)∥2
2 + α

2 σ
2 + αγ

(
(B + 1)∥∇F (ωt)∥2

2 +G2 + σ2)
≤ α · cγ,L,B,µ ·

(
∥∇F (ωt)∥2

2 +G2 + σ2) ,
where, for convenience, we defined

cγ,L,B,µ =
(

1
2 + γ(B + 1) + 6L(1 + γ)(B + 1)

µ

)
.
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Finally, consider the squared iterate distance in equation 24. In particular, equation 22 implies that

L

2 Et∥ωt+1 − ωt∥2
2 ≤ L

(
1 + γ

µ

)2 [
B2∥∇F (ωt)∥2

2 +G2 + σ2
]
.

Using this estimate and equation 25 in equation 24 gives that

Et [F (ωt+1)] ≤ F (ωt)− α∥∇F (ωt)∥2
2 + Et

[
⟨∇F (ωt),∆t⟩

]
+ L

2 Et

[
∥ωt+1 − ωt∥2

2
]

(26)

≤ F (ωt)− α∥∇F (ωt)∥2
2 + cγ,L,B,µ,α∥∇F (ωt)∥2

2 + cγ,L,B,µ,α(G2 + σ2),

where, for convenience, we define

cγ,L,B,µ,α = α · cγ,L,B,µ + LB2 ·
(

1 + γ

µ

)2

= α

(
1
2 + γ(B + 1) + 6L(1 + γ)(B + 1)

µ

)
+ LB2 ·

(
1 + γ

µ

)2

Because α < 1
2L−

,
1
µ

= α

1− αL−1
< 2α,

and consequently

cγ,L,B,µ,α ≤ α
(

1
2 + γ(B + 1) + 12αL(1 + γ)(B + 1)

)
+ 4α2LB2(1 + γ)2.

We also choose γ < 1
8(B+1) and γ < 1

20 , which further implies that

cγ,L,B,µ,α ≤ α
(

5
8 + 13αL(B + 1)

)
+ 5α2LB2,

and because α < min
{

1
120L(B+1) ,

1
5LB2 ,

1
20

}
, in fact

cγ,L,B,µ,α ≤
3
4α+ α2 ≤ 4

5α.

Thus, we conclude that the expected decrease in the composite objective at each iteration satisfies

Et [F (ωt+1)] ≤ F (ωt)−
α

5 ∥∇F (ωt)∥2
2 + 4α

5 (G2 + σ2). (27)

Convergence rate In the remainder of this proof, E[·] denotes the expectation with respect to all sources
of randomness and we take G = 0. Using the tower rule of expectations and summing over the first T
iterations, we find that

α

5

T −1∑
t=0

E
[
∥∇F (ωt)∥2

2
]
− 4αT

5 σ2 ≤
T∑

t=0
E [F (ωt)− F (ωt+1)]

= F (ω0)− E [F (ωT +1)] ≤ F (ω0)− F ⋆.

Rearranging terms yields the claimed result:

1
T

T −1∑
t=0

E
[
∥∇F (ωt)∥2

2
]
≤ F (ω0)− F ⋆

αT
+ 4σ2.
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A.3 Proof of Theoram 2

Proof. We know from the definition of KHSIC that

ψ(ω) = 1
(n− 1)2 Tr(KsHKf H)

= 1
(n− 1)2E

[
Tr(ZsZ⊤

s HZf Z⊤
f H)

]
= 1

(n− 1)2E
[
Tr(Z⊤

s HZf · Z⊤
f HZs)

]
= 1

(n− 1)2E
[
∥Z⊤

s HZf∥2
F

]
.

The first equality is the definition of the KHISC, and the second holds because the outer products of the
random feature maps are the kernel matrices, in expectation. The third holds due to the cyclicity of the
trace operator, and the final holds by the definition of the Frobenius norm. The rest of the proof follows
Lemma 1

A.4 Proof of Lemma 1:

Consider the following:

Proof. The reduced size fairness interaction matrix can be computed efficiently, by noting that

Z⊤
s HZf = Z⊤

s HHZf

Thus,

Z⊤
s H = Z⊤

s

(
I− 1

n
11⊤

)
= Z⊤

s − µs1⊤, and

HZf =
(

I− 1
n

11⊤
)

Zf = Zf − 1µ⊤
f .

Putting these identities together and using the local paritition of the random feature matrices and their
means, we have that

Z⊤
s HZf = Z⊤

s Zf − µs1⊤Zf − Z⊤
s 1µ⊤

f + nµsµ⊤
f

= Z⊤
s Zf − nµsµ⊤

f

=
m∑

i=1
Z⊤

s,iZf,i − n

(
1
n

m∑
i=1

niµs,i

)(
1
n

m∑
i=1

niµf,i

)⊤

, (28)

A.5 Proof of Corollary 1

Proof. We use the linearity of expectation to obtain an unbiased approximation of the gradient of the fairness
regularizer:

∇ωψ(ω) = E∇ωψ̃(ω)

= 1
(n− 1)2E∇ω∥G(ω)∥2

F .

28



Published in Transactions on Machine Learning Research (Apr/2025)

A.6 Proof of Lemma 2

The stochastic gradient can then be computed in terms of the Jacobians of the local interaction terms Ωi

by a simple application of chain rule:

1
(n− 1)2∇ω∥G(ω)∥2

F = 2
(n− 1)2 JG(ω)T G(ω)

= 2
(n− 1)2

m∑
i=1

JGi
(ω)T G(ω).

B Details of the experimental Evaluation

B.1 Choice of Hyperparameters

Common Hyperparameters: To ensure a fair comparison, all evaluated algorithms utilize a consistent set
of common hyperparameters. The batch size is uniformly set to 64. Each algorithm undergoes a total of 10
global training rounds, with each round comprising 5 local epochs on every client. This choice of local epochs
ensured that the global model converges within 10 rounds or fewer for all datasets and distribution, allowing
us to limit the number of global rounds to 10. The experiments are conducted with 4 clients, a configuration
determined based on recent studies. Ezzeldin et al. (2023); Papadaki et al. (2022). The learning rate α was
set to 0.01 and Adam Optimizer Kingma & Ba (2014) was used for optimization

Algorithm Specific Hyperparameters: Some hyperparameters are specific to the algorithm being used.
For example, the KFFL and KFFL-TD algorithms rely on feature maps D to estimate the kernel regular-
izer. In our experiments, we use the Pyrfm librarypyr to generate random feature maps based on Orthogonal
Random Features Yu et al. (2016). The dimensionality of the feature maps used for kernel approximation,
denoted as D, is set to 10. While higher dimensions also yielded good results, we selected the smallest
feature map size that ensured KFFL performed effectively..

For other baselines such as Ezzeldin et al. (2023), a tradeoff parameter called "fairness budget" β is used to
control the effect of reweighing. This tradeoff parameter determines the balance between model accuracy
and a specific evaluation metric, by varying β from 0.1 to 5 based on the suggestions provided in the paper.
However, it should be noted that for the best performance of the Ezzeldin et al. (2023) baseline, a local
debiasing mechanism is required. Based on the results from the paper, we used the Roh et al. (2020)
algorithm as a local demographic bias mitigation algorithm to compare with our method. Papadaki et al.
(2022) use a "global adversary rate" to control how the expected loss over the worst-performing demographic
is reduced. To consider an accuracy-fairness tradeoff, we varied this parameter from 0.001 to 0.1.

To enable fine-grained control over the tradeoff between fairness and other performance metrics, our methods
incorporate a controllable fairness weight λ. This weight can be fine-tuned based on the desired tradeoff.More
on this in Section B.5

B.2 Dataset

Datasets for Classification Task

• ADULT: Becker & Kohavi (1996) is a binary classification dataset that contains up to 14 attributes
used in predicting whether an individual would earn an income ≥ 50K or ≤ 50K. The features used
in the prediction include continuous attributes such as age, hours per week worked, etc, and discrete
attributes including relationship, race, sex, and education. For the purpose of our experimental
evaluation, we train a Logistic Regression model Mohri et al. (2019) on this dataset and we consider
sex as the protected sensitive variable.

• COMPAS:Barenstein (2019) is used for predicting criminal recidivism for individuals.The number
of samples considered is 6,172 samples and the number of predictive features used in determining
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recidivism is 52 including race, age, and previous criminal offenses. For the purpose of our experi-
mental evaluation on this dataset, we consider race as the protected sensitive variable evaluated on
a Logistic Regression model.

• BANK:Data from a Portuguese bank utilized to forecast client subscriptions to term deposits
Han et al. (2023).Here we consider age as the sensitive attribute and Loan Approval as the target
attribute.There are 64 predictive features (including the sensitive) and 41188 target samples.

• ACS: From the American Community Survey, utilized for various prediction tasks including income
and employment Han et al. (2023). There are 910 (including the sensitive) predictive features and
195665 samples for this dataset. We consider income as the target variable with sex as the protected
attribute.

• GERMAN:Dataon credit applicants from a German bank used for predicting credit risk ratings
Han et al. (2023) where the sensitive attribute we consider is sex and the target attribute is Credit
risk rating. There are 60 (including the sensitive) predictive features and 1000 target samples.

Datasets for Regression Task

• Law School: Sourced from the Law School Admissions Council’s National Longitudinal Bar Passage
Study Wightman (1998), this dataset contains 20,649 examples. The task is to predict a student’s
GPA—normalized to the range [0, 1]—using squared loss minimization. Race serves as the protected
attribute, categorized as white versus non-white.

• Communities and Crime: This dataset comprises socio-economic, law enforcement, and crime statis-
tics from various U.S. communities Redmond & Baveja (2002), totaling 1,994 examples. The objec-
tive is to predict the number of violent crimes per 100,000 inhabitants, normalized to [0, 1], through
squared loss minimization. The protected attribute is race, defined by whether the community’s
majority population is white.By including these datasets, we aim to thoroughly evaluate the fair
regression estimator’s performance across different contexts where fairness with respect to sensitive
attributes like race is crucial.

B.3 Data Distribution on Clients

We explore both the IID (Independent and Identically Distributed) and Non-IID (Non-Independent and
Non-Identically Distributed) settings in our evaluation:

• IID: In this setting, each client is provided with an equal number of samples and a consistent data
distribution for local training Li et al. (2020)

• Non-IID: In this setting, each of the clients has different distribution of the protected attribute.
Particularly, in our case, since the protected group A is binary with attributes being A0 and A1 ,
half of the clients have 90 % of A0 and 10 % of A1 while the other half has 90 % of A1 and 10 % of
A0 Li et al. (2020)

B.4 Models

We consider two distinct types of models for classification and a linear model for regression, which
clients use for local training. In the fairness literature, Logistic Regression is commonly employed for fair
classification tasks Ezzeldin et al. (2023), while linear models are the standard choice for fair regression
Chzhen et al. (2020a). Beyond these, we extend our evaluation to include a more complex, non-convex
model for classification.

• Logistic Regression: This involves a binary logistic regression model with a sigmoid activation
function Han et al. (2023)
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• Neural Network: We also examine the performance of our algorithm using a neural network
configuration. This neural network consists of a single hidden layer with 100 neurons and employs
ReLU activation, culminating in an output layer.

B.5 Fairness weights

• ADULT: 0.00,20.00, 71.58, 123.16, 174.74, 226.32, 277.89, 329.47, 381.05, 432.63, 484.21, 535.79,
587.37, 690.53, 742.11, 793.68, 845.26, 896.84, 948.42, 1000.00

• COMPAS: 0.00, 0.01, 0.10, 20.00, 71.58, 123.16

• BANK: 0.00, 0.01, 0.10, 1.00

• GERMAN: 0.00, 0.01, 0.10, 1.00

• ACS: 0.00, 0.01, 0.10, 1.00

Local -
Update FAIR1 FAIR2

Legend
Local -
Update FAIR

Legend

Figure 7: KFFL and KFFL-TD are illustrated in the figure. Different colors correspond to various segments
of communication associated with either the FAIR1, FAIR2 or Local Update sub-rounds (see the KFFL
Algorithm for detail on these flags). For KFFL-TD the relevant flags are FAIR and Local Update (see see
the KFFL-TD Algorithm for detail on these flags) The direction of the arrows indicate an uplink or downlink
communication and the width of each arrowhead highlights the communication cost in each sub-round.
Thicker lines indicate higher communication overhead, while thinner lines represent smaller overhead.

C KFFL-TD - Kernel Regualarized Fair Learning with time delay

The KFFL-TD variant optimizes communication efficiency by incorporating delayed information for the fair
term. Assuming the training begins at round t with t ≥ 1 ; the server transmits the current model Algorithm
5 ωt and all global information from the preceding time step µs(t− 1),µf (t− 1),G(ωt−1) to the client for
local gradient computation. This set of downlink information is denoted as Γ(ωt). In this case, the server also
shares a common seed ζ to control the randomness in the generation of random feature maps generated. The
client also receives a FAIR flag, indicating that no data-fitting operation is required. The clients leverage
this information to calculate the fair gradient gi(ωt−1) (if the global round is not zero) and relevant details
Φi(ωt) (see Algorithm 4), contributing to the computation of the global interaction G(ωt), µs(t), and µf (t)
which will be used in the subsequent round for the fair update (see Algorithm 5) . All of this information is
Ψi(ωt) sent by each client.

With these outdated fair gradients, the server updates the global model see Algorithm 5 and compute the
global fairness interaction terms G(ωt),µs(t) to be used by the clients in the next round. To steer the
model towards the data-fit direction, the server sends Local Update flag instructing the clients perform
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Algorithm 4 KFFL-TD – Client Update
Input: (ROUND, ..)

1: if ROUND = FAIR then
2: if t ̸= 0 then
3: Clients compute local interaction for gradients using Equation 15 at ωt−1 to get Ωi(ωt−1)
4: The clients then compute the local gradient gi(ωt−1) using Equation 16
5: end if
6: Clients compute Mi(ωt) using Equation 14 with random seed ζ and RFMs (such as ORFMs Yu et al.

(2016)) , µf,i(t) using Equation 18 and µs,i(t) using 17
7: Φi(ωt) = {Mi(ωt),µs,i(t),µf,i(t)}
8: if t ̸= 0 then
9: Ψi(ωt) = {gi(ωt−1),Φi(ωt)}

10: else
11: Ψi(ωt) = Φi(ωt)
12: end if
13: Return: Ψi(ωt)
14: else if ROUND = Local Update then
15: Clients do a local update on ωt+1/2 following Equation 21 to get ωi

t+1
16: Return: ωi

t+1
17: end if

Algorithm 5 KFFL-TD – Server Side
1: ω = ω0 {This is the initial model}
2: t← 0
3: while ω not converge do
4: for all i = 1, . . . ,m in parallel do
5: Generation of random seed ζ
6: if t ̸= 0 then
7: Γ(ωt) = {ωt,µs(t− 1),µf (t− 1),G(ωt−1), ζ, t}
8: else
9: Γ(ωt) = {ωt, ζ, t}

10: end if
11: Ψ(ωt) = Client Update(Γ(ωt),FAIR)
12: end for
13: if t ̸= 0 then
14: ωt+1/2 ← ωt −

∑m
i=1 gi(ωt−1)

15: end if
16: From Ψ(ωt) clients get Φ(ωt) = {Φi(ωt)}m

i=1
17: From Φ(ωt) compute G(ωt) using Equation 13; µs(t) using Equation 17; and µf (t) using Equation

18
18: for all i = 1, . . . ,m in parallel do
19: if t ̸= 0 then
20: ωi

t+1 = Client Update(ωt+1/2,Local Update)
21: else
22: ωi

t+1 = Client Update(ωt,Local Update)
23: end if
24: end for
25: ωt+1 ← FedAvg(ωi

t+1)
26: end while

local optimization (see Equation 21) and communicate the updated copy to the server ; the server conducts
Fed-Avg after receiving these locally updated models, resulting in the generation of a the updated model.
The process continues till the model ωt converges.
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D Additional Empirical Evaluation of Classification

Table 3 and 7 show the results of KFFL and its baselines on Logistic Regression and Neural Network across
different datasets.KFFL is most robust across datasets in the Non-IID setting and provides greater tradeoffs
for accuracy and fairness.

Method Adult COMPAS BANK ACS GERMAN
A

cc
.

FedAvg 84.30 ± 1.41 61.13 ± 1.25 91.21 ± 1.10 81.14 ± 1.20 72.50 ± 1.15
KFFL 83.14 ± 0.42 60.3 ± 1.30 90.23 ± 1.25 79.12 ± 1.35 72.50 ± 1.10
KFFL-TD 83.97 ± 1.12 59.51 ± 1.45 90.78 ± 1.20 81.12 ± 1.05 72.50 ± 1.40
FairFed/FairBatch 76.34 ± 0.1 55.47 ± 1.50 88.05 ± 1.30 58.77 ± 1.20 30.00 ± 1.25
KHSIC-Local 63.40 ± 0.03 44.13 ± 1.55 88.77 ± 1.15 58.77 ± 1.05 70.00 ± 1.35
MinMax 76.34 ± 0.1 56.68 ± 1.40 64.93 ± 1.20 58.77 ± 1.25 70.00 ± 1.10

SP
D

FedAvg 0.18 ± 0.06 0.16 ± 0.02 0.23 ± 0.01 0.08 ± 0.04 0.19 ± 0.03
KFFL 0.14 ± 0.02 0.06 ± 0.01 0.05 ± 0.03 0.04 ± 0.02 0.00 ± 0.04
KFFL-TD 0.16 ± 0.03 0.05 ± 0.02 0.06 ± 0.01 0.00 ± 0.03 0.00 ± 0.02
FairFed/FairBatch 0.004 ± 0.001 0.05 ± 0.03 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.03
KHSIC-Local 0.34 ± 0.00 0.08 ± 0.02 0.00 ± 0.03 0.00 ± 0.02 0.00 ± 0.01
MinMax 0.004 ± 0.001 0.03 ± 0.01 0.21 ± 0.02 0.00 ± 0.03 0.00 ± 0.02

EO

FedAvg 0.22 ± 0.03 0.23 ± 0.02 0.16 ± 0.01 0.04 ± 0.02 0.02 ± 0.03
KFFL 0.12 ± 0.03 0.07 ± 0.01 0.04 ± 0.02 0.02 ± 0.03 0.00 ± 0.02
KFFL-TD 0.04 ± 0.1 0.08 ± 0.02 0.05 ± 0.01 0.03 ± 0.02 0.00 ± 0.03
FairFed/FairBatch 0.013 ± 0.001 0.09 ± 0.02 0.16 ± 0.03 0.00 ± 0.01 0.00 ± 0.02
FairFed-Kernel 0.12 ± 0.00 0.05 ± 0.03 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.03
MinMax 0.013 ± 0.001 0.03 ± 0.02 0.02 ± 0.01 0.00 ± 0.03 0.00 ± 0.02

Table 6: Comparison of Methods in the Non-IID environment with Logistic Regression for 3 seperate
runs.Similar to the results in Table 3 under Non-IID conditions we have improved tradeoff points us-
ing KFFL

Method Adult COMPAS BANK ACS GERMAN

A
cc

.

FedAvg 84.35 ± 1.45 63.20 ± 1.30 94.25 ± 1.15 84.10 ± 1.25 72.55 ± 1.20
KFFL 83.10 ± 0.45 62.35 ± 1.35 92.20 ± 1.30 81.15 ± 1.40 75.0 ± 0.01
KFFL-TD 83.95 ± 1.10 59.55 ± 1.50 90.75 ± 1.25 81.15 ± 1.10 75.0 ± 0.01
FairFed/FairBatch 76.30 ± 0.15 55.50 ± 1.55 88.10 ± 1.35 58.75 ± 1.25 37.50 ± 1.30
FairFed-Kernel 63.45 ± 0.05 44.15 ± 1.60 88.80 ± 1.20 58.80 ± 1.10 70.05 ± 1.40
MinMax 76.30 ± 0.15 56.70 ± 1.45 64.95 ± 1.25 58.75 ± 1.30 70.05 ± 1.15

SP
D

FedAvg 0.17 ± 0.05 0.15 ± 0.03 0.22 ± 0.02 0.09 ± 0.05 0.20 ± 0.04
KFFL 0.13 ± 0.03 0.07 ± 0.02 0.06 ± 0.04 0.03 ± 0.03 0.01 ± 0.05
KFFL-TD 0.17 ± 0.04 0.06 ± 0.03 0.07 ± 0.02 0.01 ± 0.04 0.01 ± 0.03
FairFed/FairBatch 0.005 ± 0.002 0.06 ± 0.04 0.01 ± 0.03 0.01 ± 0.02 0.01 ± 0.04
FairFed-Kernel 0.35 ± 0.01 0.09 ± 0.03 0.01 ± 0.04 0.01 ± 0.03 0.01 ± 0.02
MinMax 0.005 ± 0.002 0.04 ± 0.02 0.20 ± 0.03 0.01 ± 0.04 0.01 ± 0.03

EO

FedAvg 0.23 ± 0.04 0.24 ± 0.03 0.17 ± 0.02 0.05 ± 0.03 0.03 ± 0.04
KFFL 0.13 ± 0.04 0.08 ± 0.02 0.05 ± 0.03 0.03 ± 0.04 0.01 ± 0.03
KFFL-TD 0.05 ± 0.11 0.09 ± 0.03 0.06 ± 0.02 0.04 ± 0.03 0.01 ± 0.04
FairFed/FairBatch 0.014 ± 0.002 0.10 ± 0.03 0.17 ± 0.04 0.01 ± 0.02 0.01 ± 0.03
FairFed-Kernel 0.13 ± 0.01 0.06 ± 0.04 0.01 ± 0.03 0.01 ± 0.02 0.01 ± 0.04
MinMax 0.014 ± 0.002 0.04 ± 0.03 0.03 ± 0.02 0.01 ± 0.04 0.01 ± 0.03

Table 7: Comparison of Methods in the Non-IID environment with Neural Network for 3 seperate runs.
Similar to the results in Table 3 under Non-IID conditions we have improved tradeoff using KFFL

E Additional Experiments for Regression Task

Tables 15, 13, 11, 12, 14, and 9 show how KFFL performs under various regression tasks.

F Fair Regression

The KHSIC method facilitates the training of predictive models for regression tasks while ensuring fairness
across various sensitive groups. Fair regression has been extensively explored in centralized settings, with
significant contributions from studies such as Chzhen et al. (2020a); Agarwal et al. (2019a); Chzhen et al.
(2020b).
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Fairness weight λ RMSE ↓ KS Difference ↓
0.0 0.322400 ± 0.015698 0.462100 ± 0.152637
1.0 0.326067 ± 0.018071 0.386633 ± 0.163709
50.0 0.311633 ± 0.024243 0.410500 ± 0.106058
100.0 0.322400 ± 0.016542 0.277200 ± 0.114275

Table 8: RMSE and KS Difference with standard deviations for 5 runs KFFL-TD with IID for the Com-
munities and Crime Dataset

Fairness weight λ RMSE ↓ KS Difference ↓
0.0 0.317528 ± 0.024826 0.671308 ± 0.202138
1.0 0.317952 ± 0.025052 0.620508 ± 0.251276
5.0 0.316936 ± 0.025075 0.662032 ± 0.159920
50.0 0.317576 ± 0.024314 0.444808 ± 0.163534
100.0 0.317592 ± 0.025111 0.395280 ± 0.141982

Table 9: RMSE and KS Difference with standard deviations for 5 runs KFFL with Non-IID for the Com-
munities and Crime Dataset

In our framework, we employ the Root Mean Squared Error (RMSE) as the primary evaluation metric to
assess the accuracy of the regression model. The objective function is defined as:

ℓ(y, f(x; ω)) = 1
n

n∑
i=1

(f(xi; ω)− yi)2 + λψ(ω)

where xi ∈ Rd denotes the input features, yi ∈ R is the target variable, and f(xi; ω) represents the model’s
prediction parameterized by ω. Consistent with the rest of this paper, we exclude the sensitive attribute si

from the training process of the fair regressor.

Consider a regression task on a dataset D = {(xi, si,yi)}n
i=1, where xi is the input feature vector, si ∈ S

is the sensitive attribute (e.g., gender, race), and yi is the target variable (e.g., GPA, income). For each
sensitive group s ∈ S, we define the corresponding subset of data as:

Ds = {(x, s,y) ∈ T : s = s}

To evaluate fairness in regression tasks, we utilize the Kolmogorov-Smirnov (KS) distance Chzhen et al.
(2020a), which measures the distributional differences between the model’s predictions for different sensitive
groups s ∈ S. The KS distance is a widely adopted fairness metric in regression, enabling the assessment of
disparities between groups. For instance, in a normalized GPA prediction task where the sensitive attribute
S represents gender (e.g., male and female), the KS distance quantifies the difference in GPA predictions
between these groups.

The KS distance between predictions for any two groups s and s′ is defined as:

KS(f(x, s)) = max
s,s′∈S

sup
t∈R

∣∣∣F s(t)− F s′
(t)
∣∣∣

where F s(t) denotes the empirical cumulative distribution function (CDF) of the model’s predictions for
group s, calculated as:

F s(t) = 1
|Ds|

∑
(x,s,y)∈Ds

1{f(x, s) ≤ t}
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Fairness weight λ RMSE ↓ KS Difference ↓
0.0 0.320332 ± 0.024803 0.604128 ± 0.166035
5.0 0.320936 ± 0.024753 0.618280 ± 0.186275
10.0 0.321824 ± 0.024351 0.551812 ± 0.179296
50.0 0.314788 ± 0.026521 0.391712 ± 0.157367
100.0 0.318976 ± 0.023506 0.290872 ± 0.099638
250.0 1.034776 ± 0.015979 0.774960 ± 0.043567

Table 10: RMSE and KS Difference with standard deviations for 5 runs with KFFL with IID for the Com-
munities and Crime Dataset.Optimal points are those with lower RMSE (for accuracy) and KS (for fairness)

Fairness weight λ RMSE ↓ KS Difference ↓
0.00 0.800667 ± 0.002491 0.450867 ± 0.065047
0.01 0.800367 ± 0.002579 0.398433 ± 0.224212
0.10 0.800300 ± 0.002524 0.412733 ± 0.303714
1.00 0.799533 ± 0.001940 0.148967 ± 0.009340
5.00 0.820100 ± 0.023256 0.348280 ± 0.030390

Table 11: RMSE and KS Difference with standard deviations for 5 runs KFFL-TD with IID for the Law
School Dataset

This formulation ensures that the regression model maintains fairness by minimizing the KS distance across
all sensitive groups, thereby promoting equitable outcomes.
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Fairness weight λ RMSE ↓ KS Difference ↓
0.00 0.799293 ± 0.002132 0.514920 ± 0.124809
0.01 0.799253 ± 0.002306 0.452160 ± 0.163044
0.10 0.799187 ± 0.002101 0.467133 ± 0.143954
1.00 0.798800 ± 0.002080 0.140173 ± 0.032955
50.00 186.105140 ± 120.592723 0.195000 ±0.066063

Table 12: RMSE and KS Difference with standard deviations for 5 runs KFFL with IID for the Law School
Dataset.Optimal points are those with lower RMSE (for accuracy) and KS (for fairness)

Fairness weight λ RMSE ↓ KS Difference ↓
0.00 0.485100 ± 0.005092 0.410600 ± 0.031681
0.01 0.485100 ± 0.005260 0.410833 ± 0.026668
0.10 0.484967 ± 0.005424 0.408967 ± 0.013403
1.00 0.484767 ± 0.004964 0.381000 ± 0.009752
5.00 0.483967 ± 0.004944 0.282967 ± 0.010901

Table 13: RMSE and KS Difference with standard deviations for 5 runs KFFL-TD with IID for the Adult
Dataset

Fairness weight λ RMSE ↓ KS Difference ↓
0.00 0.491523 ± 0.006695 0.345782 ± 0.082513
0.01 0.493383 ± 0.008737 0.350317 ± 0.111856
0.10 0.493500 ± 0.008616 0.361175 ± 0.080166
1.00 0.493492 ± 0.008715 0.371725 ± 0.040675
5.00 0.493467 ± 0.009102 0.348567 ± 0.034269
50.00 0.494740 ± 0.009975 0.130180 ± 0.050417
100.00 0.498000 ± 0.011371 0.118580 ± 0.100111
200.00 0.589080 ± 0.194744 0.286860 ± 0.115417
500.00 4.510640 ± 5.096420 0.351200 ± 0.110467

Table 14: RMSE and KS Difference with standard deviations for 5 runs KFFL with Non-IID for the Adult
Dataset

Fairness weight λ RMSE ↓ KS Difference ↓
0.00 0.49088 ± 0.009294 0.38293 ± 0.016433
0.01 0.49101 ± 0.009303 0.39744 ± 0.027059
0.10 0.49053 ± 0.009130 0.37377 ± 0.030239
1.00 0.49071 ± 0.009039 0.38429 ± 0.053008
5.00 0.49068 ± 0.009474 0.26067 ± 0.027564
50.00 0.52160 ± 0.013804 0.06012 ± 0.018358
100.00 0.83521 ± 0.015799 0.34421 ± 0.018229
120.00 1.10238 ± 0.014253 0.43006 ± 0.019893
500.00 40.32616 ± 48.938383 0.27088 ± 0.139738

Table 15: RMSE and KS Difference with standard deviations for 5 runs KFFL with IID for the Adult
Dataset
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G Communication-Efficient Kernel Regularized Fair Learning

In this section, we address the computational and communication challenges of incorporating kernel-based
fairness regularizers into federated learning. Specifically, we leverage Random Feature Maps (RFMs) to
approximate kernel functions efficiently, reducing both computational complexity and communication over-
head.

G.1 Random Feature Maps for Kernel Approximation

Kernel methods are powerful tools in machine learning but often suffer from high computational complexity,
especially when dealing with large datasets. Computing kernel matrices requires O(n2) memory and O(n3)
computational time, which is impractical for large n.

To overcome this, Rahimi & Recht (2007) introduced Random Feature Maps (RFMs) to approximate shift-
invariant kernel functions. A shift-invariant kernel κ(x,y) = κ(x − y) can be represented using the Fourier
transform via Bochner’s theorem. Specifically, the kernel can be expressed as:

κ(x,y) =
∫
Rd

p(ω)ejω⊤(x−y)dω, (29)

where p(ω) is the spectral density function of the kernel κ.

Constructing Random Feature Maps To approximate κ(x,y), we draw D random samples {ωk}D
k=1

from p(ω) and define the random feature map ϕ : Rd → RD as:

ϕ(x) =
√

2
D

[
cos(ω⊤

1 x + b1), . . . , cos(ω⊤
Dx + bD)

]
, (30)

where {bk}D
k=1 are drawn uniformly from [0, 2π].

With this mapping, the kernel function can be approximated as:

κ(x,y) ≈ ϕ(x)⊤ϕ(y). (31)

Frequency of Drawing Random Features In our implementation, the random features are drawn once
at the beginning of global training round and are fixed throughout the optimization process. This ensures
consistency across iterations and clients, and avoids the overhead of regenerating random features at each
iteration.

G.2 Computing Zs and Zf

In the context of our fairness regularizer, we need to compute feature maps for both the sensitive attributes
S and the model outputs fω(X). Specifically:

• Sensitive Attributes Feature Map (Zs): For each data point i, we compute ϕ(si), where si is
the sensitive attribute of the i-th sample. The matrix Zs ∈ Rn×D has rows ϕ(si)⊤.

• Model Outputs Feature Map (Zf ): For each data point i, we compute ϕ(fω(xi)), where fω(xi)
is the model output (e.g., logits) for the i-th sample. The matrix Zf ∈ Rn×D has rows ϕ(fω(xi))⊤.

Example: Gaussian Kernel Approximation As an example, consider the Gaussian (RBF) kernel:

κ(x,y) = exp
(
−∥x− y∥2

2
2σ2

)
. (32)
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The spectral density of the Gaussian kernel is p(ω) = N (ω; 0, σ−2I). Therefore, to approximate the Gaussian
kernel, we draw ωk ∼ N (0, σ−2I) and compute the feature maps as:

ϕ(x) =
√

2
D

[
cos(ω⊤

1 x + b1), . . . , cos(ω⊤
Dx + bD)

]
. (33)

Orthogonal Random Features To improve the quality of the approximation and reduce variance, we
employ Orthogonal Random Features (ORF) as proposed by Yu et al. (2016). Instead of sampling ωk

independently, we construct them to be orthogonal, which can lead to better kernel approximations with
fewer features.
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