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Hematocrit Platelet 
Count

White 
Blood Cells

pCO2

35.4 206 7.2 130

Electrocardiogram (ECG)

Chest X-Ray

Lab Test

Red Blood 
Cells

Phosphate Basophils pH

4.11 3.6 0.4 7.42

<think>From the integration of ECG, CXR, and blood test findings, several confirmed conditions can be inferred:
Acute Renal Failure: Blood test results show severe hyperkalemia and elevated creatine kinase, which suggest 
rhabdomyolysis contributing to metabolic derangements. The metabolic acidosis, high anion gap, and lactate 
elevation indicate hypoperfusion and critical illness, further stressing renal function.
Coronary Artery Disease: The ECG demonstrates acute ST elevation myocardial infarction (MI) with 
anterolateral ST elevations, reflecting significant coronary artery blockage. The presence of an acute infarct 
confirms ischemic damage due to blood flow impairment. Elevated liver enzymes, related to ischemia, reinforce 
cardiac involvement. Elevated lactate corroborates tissue hypoxia from compromised cardiac output.
Hypertension: While no specific blood pressure readings are provided, existing evidence supports systemic 
effects of hypertension. Hyponatremia and organ dysfunction imply chronic vascular strain, and mediastinal 
widening on CXR, possibly linked with an acute vascular event like dissection, suggests longstanding 
hypertensive damage.
Sepsis: Mild leukocytosis from the blood test indicates systemic inflammation, potentially due to infection. The 
CXR findings of right lung field opacity suggest pleural effusion or infection likely contributing to sepsis. Severe 
acidemia and elevated lactate further suggest tissue hypoxia and metabolic derangement typical of sepsis. 
Coagulopathy with prolonged PTT is consistent with disseminated intravascular coagulation, a complication of 
sepsis.
In conclusion, acute renal failure, coronary artery disease, hypertension, and sepsis are supported by the 
diagnostic integration of ECG evidence of myocardial infarction, CXR findings indicating pleural effusion or 
vascular complications, and blood test abnormalities suggestive of multiorgan dysfunction. Immediate 
intervention is warranted for these confirmed conditions.</think>
<answer>Acute Renal Failure; Coronary Artery Disease; Hypertension; Sepsis</answer>

Figure 1: Overview of MedTVT-R1: MedTVT-R1 seamlessly integrates Electrocardiogram (Time Series),
Chest X-ray (Visual Image), and Blood Test (Tabular Data) to deliver comprehensive long-text Medical
reasoning and diagnosis across various diseases.

ABSTRACT

Accurate and interpretable multi-disease diagnosis remains a critical challenge in
medical research, particularly when leveraging heterogeneous multimodal medical
data. Current approaches often rely on single-modal data, limiting their ability
to comprehensively understand complex diseases. To address this, we propose
MedTVT-R1, a novel Multimodal Large Language Model (MLLM) framework de-
signed to integrate clinical multimodal data for reasoning and diagnosing multiple
diseases. We construct MedTVT-QA, a curated instruction dataset that provides
question-answer pairs for physiological-level interpretations and disease-level di-
agnoses with a Chain of Evidence approach. MedTVT-R1 incorporates a modality
perception layer to capture inter-modal dependencies and adaptively weight modal-
ity contributions. Additionally, we employ Group Relative Policy Optimization
(GRPO)-based Reinforcement Fine-Tuning with a Jaccard Reward function to
enhance diagnostic reasoning. Experimental results demonstrate MedTVT-R1’s
superiority in multimodal feature utilization and multi-disease diagnosis, offering
significant potential for clinical applications such as diagnostic report generation
and comorbidity reasoning. The dataset and code will be available on GitHub.

1 INTRODUCTION

The rapid development of artificial intelligence (AI) has profoundly reshaped the landscape of medical
research and clinical practice, especially in demonstrating significant progress and potential in medical
data analysis (Çallı et al., 2021; Liu et al., 2021; Hernandez et al., 2022; Sumon et al., 2025) and
disease diagnosis (Cassar et al., 2009; Ghaffar Nia et al., 2023), with an extensive impact (Elstein,
2004).

At present, most existing studies primarily rely on single-modal medical data to perform disease
diagnosis (Chen et al., 2024b; Hernandez et al., 2022; Yao et al., 2024; Ansari et al., 2023). Although
these single-modal approaches demonstrate certain effectiveness within their respective specific
domains, their perception of physiology is often too limited to offer a holistic and comprehensive
understanding of complex diseases. Taking diabetes as an example, its physiological manifestations
are typically reflected across multiple modalities, such as altered heart rate variability in electrocar-
diograms (ECG), pulmonary complications observable in chest X-rays (CXR), and abnormal glucose
or lipid levels revealed by laboratory blood tests (LAB) (Lin et al., 2021). Therefore, to address
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the risk of incomplete or inaccurate diagnoses resulting from reliance on a single modality, it is
essential to integrate multimodal medical data for comprehensive and in-depth analysis of complex
diseases (Alcaraz & Strodthoff, 2024; Steyaert et al., 2023).

Consequently, there are a number of efforts that have emerged to explore leveraging multimodal
medical data for disease diagnosis (Kline et al., 2022; Steyaert et al., 2023; Venugopalan et al., 2021;
Abdelaziz et al., 2021). Nevertheless, these methods often make only simple and direct determinations
about the presence or absence of a specific disease (Gundapaneni et al., 2024; Kumar, 2022), but
struggle with performing robust long-text diagnostic reasoning and generating interpretable clinical
insights for multiple diseases, which severely hinders their practical application.

Recently, multimodal large language models (MLLMs) (Zhang et al., 2023; Li et al., 2023a; Liu et al.,
2023; 2024c; Tian et al., 2025; Wu et al., 2024) have undergone rapid development and achieved
impressive results in a variety of tasks, such as vision-language and audio-language tasks. They
have demonstrated strong capabilities in integrating, generalizing, and reasoning across diverse
data modalities, offering promising potential for generating interpretable disease diagnosis reports
from medical data. Although several pioneering studies have made preliminary attempts to apply
MLLMs in the medical field, such as for ECG analysis (Zhao et al., 2024; Tian et al., 2024) or
medical image reporting (Shentu & Al Moubayed, 2024; Liu et al., 2024a; Tanno et al., 2025) tasks,
these works are still limited to single modalities (e.g., ECG, CXR) and remain at physiological-
level understanding rather than disease-level reasoning. Therefore, an MLLM that can perceive
and integrate heterogeneous multimodal medical data, thereby enabling interpretable multi-disease
reasoning and diagnosis, remains a significant gap in current research.

From above observations, we propose MedTVT-R1—an MLLM leveraging clinical multimodal
data’s complementarity/corroboration for multi-disease reasoning/diagnosis (advances in Figure 1).
To this end, we construct MedTVT-QA—the first instruction dataset covering three modalities (ECG,
CXR, LAB) with QA pairs. It includes physiological interpretations and disease-level diagnoses via
a Chain of Evidence (CoE) (using cross-modal complementarity/corroboration), laying a foundation
for MLLMs’ progressive multimodal integration for physiological perception/multi-disease diagnosis.
We also add a Modality Perception Layer (MPL) to MedTVT-R1, capturing cross-modal dependencies
and adaptively weighting modality contributions by disease relevance to maximize cross-modal
interaction/information use. Inspired by DeepSeek-R1 (Guo et al., 2025), we adopt Reinforcement
Fine-Tuning (RFT) via Group Relative Policy Optimization (GRPO) for post-training, with a Jaccard
Reward function for multi-disease scenarios—boosting reasoning capability. Extensive experiments
show MedTVT-R1’s superiority in single-modality physiological understanding and multimodal
disease diagnosis, with implications for clinical MLLM applications (e.g., interpretable diagnostic
reports, complex comorbidity reasoning). Our contributions are summarized as follows:

• We introduce MedTVT-QA, the first medical instruction dataset that features heterogeneous
modalities including ECG (Time Series), CXR (Visual Images), and LAB (Tabular Data).

• We propose MedTVT-R1, a novel MLLM framework that fully leverages the complementarity
and mutual corroboration among clinical multimodal data for interpretable diagnosis of
complex comorbidities.

• We employ a Reinforcement Fine-Tuning (RFT) strategy based on Group Relative Policy
Optimization (GRPO) incorporating a dedicated Jaccard reward function to unlock data
potential and enhance the model’s reasoning accuracy.

• Extensive experiments demonstrate that MedTVT-R1 achieves state-of-the-art performance
in physiological representation understanding across various modalities and multimodal
diagnosis and report generation for comorbidity.

2 RELATED WORK

MLLM for Medical Diagnosis. The application of Multimodal Large Language Models (MLLMs)
in medical diagnosis has gained significant attention due to their ability to process and integrate
diverse data modalities, such as text (Li et al., 2025; Liévin et al., 2024; Jin et al., 2024; Gallifant et al.,
2025), images (Irvin et al., 2019; Lee et al., 2025; 2023; Lu et al., 2024b), and tabular data (Bisercic
et al., 2023; Huang et al., 2024). Early works focused on single-modal approaches, such as text-based
models for clinical note analysis (Jin et al., 2024; Yuan et al., 2024; Liévin et al., 2024), image-based
models for radiology interpretation (Lee et al., 2025; Irvin et al., 2019), or ECG-based models
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for cardiac status analysis (Zhao et al., 2024; Yu et al., 2023; Lan et al., 2025; Yang et al., 2025).
Although significant advancements have been made, existing research has yet to integrate Time series
data (e.g., Electrocardiograms), Visual data (e.g., chest X-rays), and Tabular data (e.g., lab results)
into a unified framework for comprehensive Medical disease analysis and diagnosis. To bridge this
gap, we introduce MedTVT-R1, a multimodal large language model designed to seamlessly combine
CXR, ECG, and lab data through cross-modal interactions and contribution-aware operator, enabling
accurate and interpretable disease diagnosis.

Reinforcement Learning with Verifiable Rewards. Group Relative Policy Optimization
(GRPO) (Guo et al., 2025), unlike Proximal Policy Optimization (PPO) (Yu et al., 2022; Schul-
man et al., 2017) which estimates advantages through a reward model, approximates advantages
by obtaining multiple samples from the LLM using the same prompt, with the advantage being the
normalized reward for each response within its set of generated responses, achieving notable success
in text-based tasks (Shao et al., 2024; Ramesh et al., 2024; Dao & Vu, 2025) such as summarization
and dialogue generation, as well as vision tasks (Liu et al., 2025; Tan et al., 2025) like image cap-
tioning. Recently, GRPO has been applied to medical image analysis (Lai et al., 2025; Pan et al.,
2025). However, it has not yet been utilized for multimodal tasks in the crucial area of multi-disease
diagnosis, which requires the integration of text, images, time series, and tabular data. In this work,
we are pioneering the application of GRPO with a newly designed reward function, the Jaccard
Reward, to enhance the accuracy of multi-disease prediction.

3 METHODOLOGY
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Figure 2: MedTVT-QA dataset construction and disease distribution. (a) Pipeline of Dataset Construction:
labels are refined to ensure consistency, prompts guide GPT-4o in generating verified physiological-level reports,
which are combined with diagnostic labels to produce disease-level reports. Diagnostic labels are organized
into seven primary categories with detailed subtypes. (b) Disease distribution of MedTVT-QA, with subtypes
classified by ICD-10 codes. More details can be found in Appendix B.

3.1 MEDTVT-QA

To enable MLLMs to perform physiological understanding and disease diagnosis from heterogeneous
multimodal medical data, we curate patient-level ECG readings, blood test results, and chest X-ray
(CXR) images from the MIMIC-IV family of datasets (Johnson et al., 2020; Gow et al., 2023;
Johnson et al., 2019), facilitated by Symile (Saporta et al., 2024). All modalities are acquired
from the same individuals within a clinically proximate period during hospitalization, yielding
8,706 aligned multimodal combinations (8,331 for training, 375 for testing). Additional diagnostic
labels are sourced from MIMIC-IV-ECG-EXT-ICD (Strodthoff et al., 2024). These data underpin
the construction of multimodal question–answer (QA) pairs for both physiological representation
analysis and disease-level diagnostic reasoning, as illustrated in Figure 2(a).

QA Pairs on Physiological-level Representation Analysis. To enable MLLMs to acquire a basic
comprehension of the physiological meanings represented by each modality, i.e., ECG, CXR, and
LAB, and to lay the groundwork for subsequent multi-disease reasoning and diagnosis based on
multimodal data, we first construct QA pairs focused on physiological-level analysis for each modality.
Specifically, taking the ECG modality as an example, we design a rigorous prompt with reference to
physiological-level annotations, which consists of Role Setting, Task Description, Answer Guidance,
and Answer Format to instruct GPT-4o (Achiam et al., 2023), as outlined below:

Role Setting: You are a renowned cardiologist with expertise in interpreting electrocardiograms (ECGs).
Task Description: The ECG analysis has yielded the following labels: {labels}. Based on these labels, please address the question: {question}.
Answer Guidance: Your response should incorporate all relevant labels, excluding any unrelated ones. Provide a synthesis of the labels, focusing on clinical
significance.
Answer Format: Begin with a brief introduction to your analysis. Provide detailed explanations for each specific ECG label. Offer a concise summary.
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Here, {labels} refers to physiological-level annotations for the ECG data, such as Sinus Rhythm
or Left Bundle Branch Block. {question} is randomly sampled from several carefully crafted
question templates, such as ‘What information can be derived from the ECG?’. An example of a
constructed QA pair that summarizes and analyzes the physiological representations encompassed in
ECG is:

Question: What information can be derived from the ECG ¡ecg¿?
Answer: ECG Analysis: Upon evaluating the electrocardiogram (ECG), the following observations can be made:
1. Sinus Rhythm: The heart is under the control of the sinoatrial (SA) node, which is the natural pacemaker. This finding suggests that the electrical activity
of the heart is originating from the SA node and progressing through the normal conduction pathway, leading to a regular rhythm. This is a foundational
indicator of organized cardiac activity.
2. Left Bundle Branch Block (LBBB): There is evidence of delayed or disrupted conduction through the left bundle of the heart’s electrical conduction
system. This results in a characteristic pattern on the ECG, with a widened QRS complex (¿120 ms) and specific morphologies in leads, such as a broad,
notched appearance in V5-V6 and an absence of normal septal depolarization. LBBB may occur in conditions like ischemic heart disease, cardiomyopathy,
or hypertension-induced structural changes, though it can also occasionally be found in asymptomatic individuals.
Summary: The heart demonstrates a sinus rhythm, indicating normal initiation of electrical activity. However, the presence of a left bundle branch block
signifies an abnormality in electrical conduction, often associated with underlying cardiac pathology. As a whole, this ECG is classified as abnormal due to
the conduction disturbance, warranting further investigation to assess structural or functional cardiac issues.

Similar prompts are also applied to CXR and LAB data to organize the corresponding physiological-
level QA pairs for each modality. It is worth noting that, for LAB data, we group 50 common
laboratory indicators into seven categories according to their physiological significance to facilitate
processing. The content generated above for physiological-level representation analysis undergoes
manual review and revision by professionals to ensure its rationality and reliability. More details
on physiological-level annotation and examples of QA pairs for each modality can be found in the
Appendix A to C.

QA Pairs on Disease-level Diagnostic Reasoning. Building upon the aforementioned completed
physiological-level representation analysis for each modality, we further construct QA pairs that
fully integrate information across modalities and conduct disease-level diagnostic reasoning, thereby
enhancing the capability of MLLMs to handle complex multiple diseases. We focus on seven common
and clinically significant diseases for which supporting evidence can be found in ECG, CXR, and
LAB data, including Coronary Artery Disease, Acute Renal Failure, Hypertension, Atrial Fibrillation,
Pneumonia, Diabetes Mellitus, and Sepsis, each of which contains several subtypes, with details
in the Appendix B. The corresponding statistics are presented in Figure 2 (b). We also employ a
four-element prompt with reference to disease-level annotations to instruct GPT-4o, and compel its
response to include a Chain of Evidence (CoE) to fully leverage the complementarity and mutual
corroboration among modalities, thereby thoroughly extracting multimodal evidence for disease
diagnosis, as follows:

Role Setting: You are a renowned diagnostician with expertise in integrating ECG, CXR, and blood test results.
Task Description: The following diagnostics have been provided:
• ECG Analysis: {ecg report}
• CXR Analysis: {cxr report}
• Blood Test Analysis: {blood test report}
• Diseases: {result diseases}
You need to pretend that the ECG, CXR, and blood test analyses are based on your interpretation of the raw data, and the final diagnosis is your synthesis of
these three diagnostic methods, please address the question: {question}
Answer Guidance: Please find definitive evidence from the ECG, CXR, and blood test results, leveraging the complementarity and mutual corroboration of
these three modalities, to robustly prove the reasons why the patient has the diseases I provided. Your response must include every disease I provided, using
the exact wording I provided, and you must not mention any diseases other than those I provided. Please make sure to provide evidence for these diagnoses!
These are confirmed conditions.
Answer Format: <think>{Diagnostic evidence synthesized from the three modalities}</think>\n <answer>{disease1; disease2;
. . .}</answer>

Here, {ecg report}, {cxr report}, and {blood test report} respectively represent the
physiological-level analyses of the three modalities. {result diseases} refers to the disease-
level annotation of the sample. {question} is randomly sampled from several carefully crafted
question templates, such as ‘Can you analyze my ECG, CXR and lab result to determine my probable
conditions?’. The CoE is implemented by ‘Please find definitive evidence...’. The content obtained
in this process is also reviewed by professionals to enhance its trustworthiness. An example of a
QA pair that integrates multimodal information to mine evidence for multi-disease reasoning and
diagnosis is shown in Figure 3, and the complete version is provided in the Appendix E.

3.2 MEDTVT-R1

Based on the meticulously constructed MedTVT-QA dataset described above, we propose MedTVT-
R1, an MLLM framework capable of fully exploiting the complementarity and mutual corroboration
of multimodal medical data for interpretable multi-disease reasoning and clinical diagnosis. In the
following, we will introduce the model architecture and training strategy of MedTVT-R1 in detail.

4
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Figure 3: Pipeline of MedTVT-R1. Pretraining processes ECG, CXR, and LAB data through encoders
and projectors, combined with prompts, to train projectors and LLM’s LoRA for enhanced physiological
understanding. The SFT stage adds a Modality Perception Layer for interaction and integration, refining disease
analysis. The RFT stage applies GRPO, using the SFT-trained model for policy and inference, optimizing KL
divergence and reward loss.

3.2.1 ARCHITECTURE

The proposed MedTVT-R1 mainly consists of modality-specific encoders and projectors, a Modality
Perception Layer (MPL), and a Large Language Model (LLM), with its overall architecture illustrated
on the left side of Figure 3. Given the raw data of ECG signals XE ∈ RN×L, CXR images
XC ∈ RC×H×W , and LAB tables XL ∈ RN ′

, they are first processed by their respective modality-
specific encoders for feature extraction, and then the encoded features are fed into modality-specific
projectors to a shared dimension d for alignment and compatibility with the textual embedding space
of the LLM, facilitating seamless integration between multimodal features and textual tokens; this
process can be formulated as follows:

ZE = gE(fE(XE)) ∈ Rd, ZC = gC(fC(XC)) ∈ Rd, ZL = gL(fL(XL)) ∈ Rd, (1)

where ZE/C/L denotes the projected multimodal features, and fE/C/L and gE/C/L represent the modality-
specific encoders and projectors, respectively.

Subsequently, to enable efficient interaction and fusion among modalities, we introduce a Modality
Perception Layer (MPL), which comprises a Cyclic Multi-Head Attention (CMHA) mechanism and
a Contribution-Aware Operator (CAO). Specifically, the projected features ZE, ZC, and ZL are first
processed by the CMHA mechanism, in which each modality feature cyclically serves as the Query,
Key, and Value to compute multi-head attention, enabling comprehensive capture of cross-modal
dependencies and facilitating in-depth information exchange among ECG, CXR, and LAB features.
After one round of cycling, the outputs are fused through average pooling, while a residual connection
is employed to preserve modality-specific information. This process can be formulated as follows:

F = AveragePooling(CMHA(ZE,ZC,ZL)), ME/C/L = ZE/C/L + F, (2)

where ME/C/L denotes the updated features of each modality, which encapsulate both modality-
specific and modality-shared information. Recognizing that each modality contributes in varying
degrees to the reasoning and diagnosis of various diseases, for example, ECG features are relatively
more important for detecting Coronary Artery Disease, we design a Contribution-Aware Operator that
adaptively assigns weights to the features of each modality based on the diagnostic context, which
can be formulated as follows:

TE,TC,TL = σ(h[ME : MC : ML])⊗ (ME,MC,ML), (3)

where [:] denotes the concatenation operation, h is a learnable transformation matrix, σ represents
the Sigmoid activation, and ⊗ denotes element-wise multiplication. The final multimodal features
TE, TC, and TL are used to replace the placeholders <ecg>, <cxr>, and <lab> in the text
tokens, which are obtained by processing the input prompt through the tokenizer and embedding
layer. An example input prompt could be: ‘What illnesses might be indicated by the findings
from my ECG <ecg>, CXR <cxr>, and blood work <lab>?’. The resulting sequence Tinput =
{TQ,TE,TC,TL,TA} is then fed into the LLM, where TQ and TA are derived from the QA pairs
in the MedTVT-QA dataset.
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3.2.2 TRAINING STRATEGY

We employ a three-stage training strategy for MedTVT-R1, which includes Pre-training (PT), Super-
vised Fine-Tuning (SFT), and Reinforcement Fine-Tuning (RFT), to progressively enhance its ability
to perceive the physiological representations of each modality and integrate multimodal information
for interpretable multi-disease reasoning and diagnosis.

Pre-training. With the aim of helping the model form an initial understanding and awareness of the
physiological significance across all modalities, we first perform pre-training using physiological-
level QA pairs from the MedTVT-QA dataset. During this stage, the projectors and the Low-Rank
Adaptation (LoRA) modules embedded in the LLM are set as trainable, while the other components
remain frozen. Notably, the MPL module is absent at this stage as no cross-modal interaction is
involved. The optimization objective is to maximize the likelihood of generating the target response
tokens, formalized as:

LPT = −E(TQ,TE/C/L,TA)∼D

T∑
t=1

log πθ(yt | TQ,TE/C/L, y<t), (4)

where πθ(yt | ·) denotes the conditional probability of generating the t-th token yt, given the prompt,
modality features, and the previously generated tokens y<t.

Supervised Fine-Tuning. With the pretrained model that already demonstrates a solid understanding
of the physiological significance of each modality, we further conduct SFT based on disease-level
QA pairs with CoE logic from the MedTVT-QA dataset to equip the model with the capability to
synthesize multimodal representations and uncover the complementarity and mutual corroboration
among modalities for multi-disease reasoning and diagnosis. During this stage, the MPL and the
LoRA modules embedded in the LLM are set to be trainable while the other components remain
frozen, and the optimization objective is similar to that of the pre-training stage, namely:

LSFT = −E(TQ,TE,TC,TL,TA)∼D

T∑
t=1

log πθ(yt | TQ,TE,TC,TL, y<t). (5)

Reinforcement Fine-Tuning. To unlock the potential of the constructed dataset and boost the model’s
reasoning performance, inspired by the advancements of DeepSeek-R1, we perform RFT using Group
Relative Policy Optimization (GRPO) under the Reinforcement Learning with Verifiable Rewards
(RLVR) framework. The training corpus and trainable components remain consistent with those in
the SFT stage. The optimization objective can be formulated as:

max
πθ

EA∼πθ(Q) [RRLVR(Q,A)] = [R(Q,A)− βKL [πθ(A | Q) ∥πref(A | Q)]] , (6)

where πθ and πref are the policy model and the reference model, respectively. R is the verifiable
reward function. KL [πθ(A | Q) ∥πref(A | Q)] penalizes divergence from the reference policy πref,
ensuring both correctness and alignment with prior knowledge. The hyperparameter β controls the
trade-off between reward maximization and policy regularization.

GRPO directly compares the relative quality of responses within a group without requiring an
additional critic model. Specifically, given a question Q, GRPO first generates G candidate re-
sponses {o1, o2, . . . , oG} according to the current policy πθold , which are then assigned rewards
{r1, r2, . . . , rG}. The relative quality of these responses is calculated by normalizing the rewards
using their mean and standard deviation. GRPO encourages the model to prioritize responses with
higher relative rewards, fostering improved performance without requiring a separate critic.

The verifiable reward function R consists of the Format Reward and the Jaccard Reward, i.e.,
R = RF+RJ, ensuring both prediction accuracy and structural consistency. In line with DeepSeek-R1,
the Format Reward RF is used to enforce the model’s compliance with predefined formatting rules for
the <think> and <answer> tags. The Jaccard Reward RJ is a novel, meticulously designed reward
function tailored for multi-disease diagnosis, which evaluates the alignment between the model’s
predictions and the ground truth by leveraging the Jaccard similarity coefficient, thereby quantifying
the overlap between the predicted and actual disease sets. Specifically, for each model completion
and its corresponding ground truth, the disease sets within the <answer> tags are first extracted
using regular expressions and denoted as LC = {lc1 , lc2 , . . . , lcm} and LG = {lg1 , lg2 , . . . , lgn},
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Method LLM NLG CE

BLEU METEOR ROUGE BERT PRECISION RECALL F1 SCORE AUC

General-purpose MLLMs
InternVL3-1B (Zhu et al., 2025) InternVL3-1B 0.0178 0.1884 0.1265 0.8188 0.3333 0.1333 0.1904 0.5053
LLaVA-1.5-7B (Liu et al., 2024b) Vicuna-7B 0.0029 0.0809 0.0681 0.7796 0.2495 0.1279 0.1691 0.5004
LLaVA-One-Vision-7B (Li et al., 2024b) Qwen2-7B 0.0144 0.1618 0.1168 0.8016 0.3120 0.1247 0.1782 0.4975
Qwen2.5-VL-3B-Instruct (Bai et al., 2025) Qwen2.5-3B-Instruct 0.0218 0.2031 0.1331 0.8181 0.3493 0.1397 0.1995 0.5000
Mini-InternVL-Chat-2B-V1-5 (Bai et al., 2025) InternLM2-Chat-1.8B 0.0092 0.1347 0.0959 0.8008 0.2176 0.1343 0.1661 0.5015
Molmo-7B-O-0924 (Deitke et al., 2024) OLMo-7B 0.0155 0.1456 0.1070 0.8028 0.0295 0.0608 0.0398 0.5001
Deepseek-VL-1.3B-Chat (Lu et al., 2024a) Deepseek-1.3B-Chat 0.0341 0.1756 0.1435 0.8128 0.2510 0.1278 0.1694 0.5021
LLaVA-NeXT-8B (Li et al., 2024a) LLaMA3-8B 0.0145 0.1532 0.1067 0.8145 0.2674 0.1294 0.1744 0.4987

Medical domain-specific MLLMs
Med-Flamingo (Moor et al., 2023) LLaMA2-7B 0.0567 0.2134 0.1568 0.8328 0.3255 0.1427 0.1984 0.5201
LLaVA-Med (Li et al., 2023b) LLaVA-7B 0.0735 0.2358 0.1637 0.8321 0.3028 0.1578 0.2075 0.5318
HuatuoGPT-Vision (Chen et al., 2024a) LLaVA-v1.6-34B 0.0624 0.2017 0.1389 0.8048 0.2867 0.1622 0.2072 0.5038

MedTVT-R1 w/o PT LLaMA3.2-1B 0.1131 0.3280 0.2043 0.8599 0.4980 0.5208 0.4672 0.5851
MedTVT-R1 w/o RFT LLaMA3.2-1B 0.1325 0.3499 0.2261 0.8660 0.5237 0.5783 0.4992 0.6242
MedTVT-R1 LLaMA3.2-1B 0.1353 0.3536 0.2295 0.8652 0.5407 0.5908 0.5190 0.6554

Table 1: Comparison of MedTVT-R1 with various MLLMs and its variants on disease-level reasoning
and diagnostic capabilities. The table is divided into general-purpose MLLMs and medical domain-
specific MLLMs. The proposed MedTVT-R1 highlighted in gray.

where lci and lgj represent individual diseases in the predicted and ground truth sets, respectively.
The Jaccard Reward RJ is then computed as:

RJ(LC , LG) =

{
|LC∩LG|
|LC∪LG| , if |LC ∪ LG| > 0,

0, if |LC ∪ LG| = 0.
(7)

When the union of the sets is not empty, the RJ is determined by the ratio of the intersection size to
the union size, thereby capturing the degree of overlap between the prediction and ground truth. If
the union is empty, the RJ is set to zero to ensure robustness against invalid or incomplete outputs.
Therefore, the Jaccard reward encourages the model to generate outputs that are highly consistent
with the ground truth labels, which effectively helps improve both the accuracy and reliability in
multi-disease diagnosis scenarios.

4 EXPERIMENTS

4.1 TRAINING DETAILS AND METRICS

Training Details. We conduct all experiments on a server equipped with eight NVIDIA A800 80GB
GPUs. For the LLM, we choose LLaMA 3.2-1B (Grattafiori et al., 2024) and integrate the LoRA
modules (Hu et al., 2022) with a rank of 8 for fine-tuning. For the modality-specific encoders, we
use the pre-trained weights from ECGFM-KED (Tian et al., 2024), ViT-B/16 (Dosovitskiy et al.,
2020), and Symile (Saporta et al., 2024) for ECG, CXR, and LAB, respectively. All modality-specific
projectors adopt the Dense block architecture from MuMu-LLaMA (Liu et al., 2024c), with the
embedding dimension d set to 2048. During training, the PT and SFT stages are each trained for 20
epochs, while the RFT stage is trained for 500 iterations using the open-source Trainer framework,
with G in GRPO set to 8. Metrics. The effectiveness of multi-disease reasoning and diagnosis was
evaluated from two perspectives. First, the descriptive accuracy of the generated diagnostic text was
assessed using natural language generation (NLG) metrics, including BLEU, METEOR, ROUGE,
and BERTScore. Second, the classification accuracy of multi-label disease categories in the responses
was evaluated using clinical efficacy (CE) metrics, such as PRECISION, RECALL, F1 SCORE, and
AUC.

4.2 QUANTITATIVE ANALYSIS

Disease-level Diagnostic Reasoning Results. Since no existing multimodal large model can jointly
process ECG signals, medical images, and tabular data, we convert ECG signals into images and LAB
data into text for a fair comparison. Table 1 reports results for our MedTVT-R1 against two categories
of state-of-the-art MLLMs: (i) General-purpose — InternVL3-1B (Zhu et al., 2025), LLaVA-1.5-
7B (Liu et al., 2024b), LLaVA-One-Vision-7B (Li et al., 2024b), Qwen2.5-VL-3B-Instruct (Bai et al.,
2025), Mini-InternVL-Chat-2B-V1-5 (Bai et al., 2025), Molmo-7B-O-0924 (Deitke et al., 2024),
Deepseek-VL-1.3B-Chat (Lu et al., 2024a), and LLaVA-NeXT-8B (Li et al., 2024a); (ii) Medical-
specific — Med-Flamingo (Moor et al., 2023), LLaVA-Med (Li et al., 2023b), and HuatuoGPT-
Vision (Chen et al., 2024a). These models span 1B–8B parameters and various backbones (InternVL,
Vicuna, Qwen, OLMo, Deepseek, LLaMA3), with some incorporating RL or domain-specific
pre-training. All inference results were obtained using ModelScope SWIFT (Zhao et al., 2025).
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Method ECG-QA CXR-QA LAB-QA

BLEU METEOR ROUGE BERT BLEU METEOR ROUGE BERT BLEU METEOR ROUGE BERT

General-purpose MLLMs
InternVL3-1B (Zhu et al., 2025) 0.0186 0.1795 0.1379 0.8282 0.0239 0.1827 0.1273 0.8309 0.0083 0.1234 0.0750 0.7750
LLaVA-1.5-7B (Liu et al., 2024b) 0.0055 0.1084 0.0866 0.8100 0.0034 0.0967 0.0812 0.8012 0.0170 0.1402 0.1133 0.7937
LLaVA-One-Vision-7B (Li et al., 2024b) 0.0313 0.2263 0.1545 0.8322 0.0260 0.1877 0.1325 0.8214 0.0088 0.1362 0.0967 0.7883
Qwen2.5-VL-3B-Instruct (Bai et al., 2025) 0.0304 0.2483 0.1687 0.8418 0.0310 0.1798 0.1261 0.8230 0.0081 0.1129 0.0764 0.7832
Mini-InternVL-Chat-2B-V1-5 (Bai et al., 2025) 0.0102 0.1336 0.0984 0.8112 0.0088 0.1082 0.0825 0.8044 0.0085 0.1286 0.1118 0.7781
Molmo-7B-O-0924 (Deitke et al., 2024) 0.0233 0.1949 0.1341 0.8305 0.0211 0.1813 0.1255 0.8231 0.0091 0.1102 0.1120 0.7587
Deepseek-VL-1.3B-Chat (Lu et al., 2024a) 0.0240 0.1708 0.1162 0.8205 0.0298 0.1510 0.1312 0.8215 0.0118 0.0975 0.1184 0.7675
LLaVA-NeXT-8B (Li et al., 2024a) 0.0091 0.1412 0.1064 0.8009 0.0107 0.1305 0.1307 0.8199 0.0102 0.1057 0.1091 0.7623

Medical domain-specific MLLMs
Med-Flamingo (Moor et al., 2023) 0.0526 0.2016 0.1728 0.8517 0.0527 0.1978 0.1567 0.8326 0.0190 0.1178 0.1236 0.7768
LLaVA-Med (Li et al., 2023b) 0.0728 0.2218 0.1829 0.8328 0.0618 0.2119 0.1418 0.8418 0.0256 0.1327 0.1318 0.7826
HuatuoGPT-Vision (Chen et al., 2024a) 0.0758 0.2518 0.1910 0.8529 0.0719 0.2249 0.1528 0.8518 0.0211 0.1411 0.1419 0.7736

MedTVT-R1 0.0831 0.3044 0.2202 0.8650 0.0931 0.3073 0.2121 0.8673 0.1807 0.3827 0.3081 0.8855

Table 2: Comparison of MedTVT-R1 with various MLLMs on physiological-level understanding and
analysis capabilities. The table is divided into general-purpose MLLMs and medical domain-specific
MLLMs. The proposed MedTVT-R1 highlighted in gray.

MedTVT-R1 surpasses both general-purpose and medical-specific baselines in natural language
generation and clinical evaluation, demonstrating superior descriptive and diagnostic reasoning for
multi-disease scenarios. Table 1 also includes ablations: removing physiological-level pre-training
or GRPO-based RFT post-training degrades performance, confirming that 1) physiological-level
pre-training endows the model with cross-modal physiological representation capabilities, facilitating
more effective multimodal integration during SFT; and 2) GRPO-based RFT leverages the available
training data to refine and strengthen multi-disease diagnostic reasoning.

Physiological-level Understanding Results. Following the setup in Disease-level Diagnostic Rea-
soning, we evaluated MedTVT-R1 on single-modality physiological-level understanding against
two categories of state-of-the-art MLLMs. Results in Table 2 show MedTVT-R1 outperforms all
competitors. Notably, the designed Physiological-level representation analysis is a challenging
long-text generation task (≥ 300 words per instance); MedTVT-R1 still delivers outstanding results,
highlighting its strength in handling lengthy, detailed outputs. These findings confirm MedTVT-R1’s
exceptional performance in long-text generation, effective comprehension of cross-modal physiologi-
cal data, and robustness in both single-modality perception and multimodal reasoning, establishing it
as a leading solution for complex medical data analysis.

Table 3: Performance comparison un-
der different modality combinations.
The values in parentheses indicate the
relative performance drop (%) com-
pared to the full three-modality setting.

Modalities Micro F1 Macro F1 Jaccard

Full 0.519 0.457 0.389
NoLab 0.488 (-6.0%) 0.374 (-18.2%) 0.352 (-9.5%)
NoCXR 0.482 (-7.1%) 0.409 (-10.5%) 0.320 (-17.7%)
NoECG 0.484 (-6.7%) 0.415 (-9.2%) 0.322 (-17.2%)
ECGOnly 0.460 (-11.4%) 0.351 (-23.2%) 0.327 (-15.9%)
CXROnly 0.470 (-9.4%) 0.353 (-22.7%) 0.333 (-14.4%)
LabOnly 0.482 (-7.1%) 0.413 (-9.6%) 0.328 (-15.7%)

Synergistic Advantage of Multi-Modal Integration. To
quantify the performance gains derived from the joint utiliza-
tion of ECG, CXR, and laboratory test data in multi-disease
diagnosis, we conducted a modality ablation study. The
model was evaluated under seven input configurations: (1)
all three modalities, (2–4) pairwise modality combinations,
and (5–7) single-modality inputs. For absent modalities, the
corresponding input tensor was substituted with zero-valued
tensors of matching dimensionality to preserve architectural
consistency and isolate the impact of modality exclusion. As
reported in Table 3, the full tri-modal configuration attained
the highest Micro F1 (0.519), Macro F1 (0.457), and Jaccard (0.389) scores. Excluding any modality
led to measurable performance degradation, with the most pronounced declines in Macro F1 observed
when CXR or laboratory data were omitted—indicating that specific disease categories derive sub-
stantial discriminative benefit from particular modalities. Single-modality inputs yielded markedly
inferior results, especially in Macro F1, evidencing the complementary representational strengths
of ECG, CXR, and laboratory data. Collectively, these findings substantiate that tri-modal fusion
confers a synergistic representational advantage, facilitating more balanced and resilient diagnostic
performance across heterogeneous disease categories.

Effect of MPL Design and Modality Completeness. Table 4 ablation results confirm the effec-
tiveness of Cyclic Multi-Head Attention (CMHA) and Contribution-Aware Operator (CAO) in the
Modality Perception Layer (MPL), plus the criticality of full modality integration in pre-training.
CMHA/CAO incorporation boosts performance, validating designs for enhanced modality fusion and
adaptive modality weighting across diseases. For modality composition, fusing all three modalities
(ECG, CXR, LAB) yields the best results; removing any degrades performance, with ECG exclusion
causing the sharpest METEOR/ROUGE drops (attributed to strong disease-cardiac activity associa-
tions). These findings emphasize that advanced fusion mechanisms and full modality integration are
both essential for optimal diagnostic reasoning.
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Table 4: The ablation of the Cyclic Multi-Head Attention (CMHA) and Contribution-Aware Operator
(CAO) in the Modality Perception Layer (MPL), and the impact of modal missingness during
pre-training. Metrics: METEOR, ROUGE, RECALL, F1. Default settings are highlighted.

(a) Ablation study of MPL.
MPL NLG CE

CMHA CAO MET. ROU. REC. F1

✗ ✓ 0.3455 0.2013 0.5733 0.4977
✓ ✗ 0.3378 0.2145 0.5826 0.4867
✓ ✓ 0.3536 0.2295 0.5908 0.5190

(b) Ablation study of modalities.
Modality NLG CE

ECG CXR LAB MET. ROU. REC. F1

✗ ✓ ✓ 0.3245 0.2058 0.5320 0.4739
✓ ✗ ✓ 0.3267 0.2019 0.5739 0.4869
✓ ✓ ✗ 0.3455 0.2218 0.5845 0.5023
✓ ✓ ✓ 0.3536 0.2295 0.5908 0.5190

Figure 4: Inference examples of MedTVT-R1. Left: successful case with accurate multimodal
diagnosis; Right: failure case where coexisting cardiac, renal, and metabolic abnormalities led the
model to prioritize atrial fibrillation and miss sepsis.

4.3 QUALITATIVE ANALYSIS

MedTVT-R1 integrates chest X-rays (CXR), electrocardiograms (ECG), and laboratory (LAB) data
into coherent, evidence-supported diagnostic conclusions (Figure 4). We illustrate its behavior through
one high-performing case and one complex multi-disease case from two perspectives: Multimodal
Integration and Evidence-Based Reasoning. 1) Multimodal Integration. In a high-performing
case (Coronary Artery Disease, Hypertension), complementary ECG, CXR, and LAB findings
align to reinforce diagnoses, with cross-modal evidence yielding precise and clinically consistent
results. The right panel illustrates a complex failure case under interference from multiple coexisting
diseases: when cardiac, renal, and metabolic abnormalities occur simultaneously, the model tends
to prioritize high-confidence conditions and overlook acute or subtle ones. Here, ECG findings of
“irregular rhythm” and absent P waves led to an atrial fibrillation diagnosis, resulting in a missed
sepsis diagnosis. Such situations, arising from limited supporting modality evidence, may benefit
from incorporating additional modalities to strengthen the evidence chain. 2) Evidence-Based
Reasoning. In the high-performing case, the model explicitly links features across modalities—e.g.,
ECG-derived left ventricular hypertrophy with CXR cardiac enlargement—to justify conclusions. In
the complex case, reasoning is dominated by strong single-modality cues, underscoring the potential
of expanded multimodal inputs to improve cross-modal reasoning consistency. These examples
highlight MedTVT-R1’s strength in synthesizing heterogeneous clinical evidence, while complex
scenarios reveal opportunities to enhance diagnostic coverage through richer multimodal evidence.

5 CONCLUSION

In conclusion, the proposed MedTVT-R1 framework represents a significant advancement in the
application of multimodal large language models (MLLMs) for medical diagnosis. By integrating
the complementary strengths of ECG, CXR, and LAB data, MedTVT-R1 addresses the limitations
of single-modal approaches and provides a more holistic understanding of complex diseases. The
innovative MedTVT-QA dataset facilitates physiological perception and multi-disease diagnosis by
leveraging a Chain of Evidence strategy. Additionally, the modality perception layer enhances cross-
modal interactions, while Reinforcement Fine-Tuning with Group Relative Policy Optimization and
the Jaccard Reward boosts precision and reliability in diagnosis capabilities. Extensive experiments
validate MedTVT-R1’s superior performance in both physiological-level understanding and disease-
level diagnosis, highlighting its potential for practical clinical applications, such as interpretable
diagnostic report generation and complex comorbidity reasoning.
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APPENDIX

A DETAILS ABOUT THE PROMPTS OF MEDTVT-QA’S CONSTRUCTION

This section presents the detailed prompts used in constructing the MedTVT-QA dataset.

ECG-QA Prompt

Role Setting: You are a renowned cardiologist with expertise in interpreting electrocardiograms (ECGs).
Task Description: The ECG analysis has yielded the following labels: {labels}. Based on these labels, please address the
question: {question}.
Answer Guidance: Your response should incorporate all relevant labels, excluding any unrelated ones. Provide a synthesis of the
labels, focusing on clinical significance.
Answer Format: Begin with a brief introduction to your analysis. Provide detailed explanations for each specific ECG label. Offer a
concise summary.

CXR-QA Prompt

Role Setting: You are a radiology expert with expertise in interpreting chest X-ray image.
Task Description: The chest X-ray report is given {report} Base on the given chest X-ray report, answer the question
{question}
Answer Guidance: Describe the overall condition of the lungs, heart, and chest cavity in the image. Identify and explain any
abnormal findings such as shadows, opacities, effusions, or masses. Provide possible diagnoses.

LAB-QA Prompt

Role Setting: Please analyze this set of blood test data as a medical professional.
Task Description: This is the question: {question} The following are the lab data: ”Hematocrit”: {data[0]}; ”Platelet
Count”: {data[1]}; ”Creatinine”: {data[2]}; ”Potassium”: {data[3]}; ”Hemoglobin”: {data[4]}; ”White
Blood Cells”: {data[5]}; ”MCHC”: {data[6]}; ”Red Blood Cells”: {data[7]}; ”MCV”: {data[8]}; ”MCH”:
{data[9]}; ”RDW”: {data[10]}; ”Urea Nitrogen”: {data[11]}; ”Sodium”: {data[12]}; ”Chloride”: {data[13]};
”Bicarbonate”: {data[14]}; ”Anion Gap”: {data[15]}; ”Glucose”: {data[16]}; ”Magnesium”: {data[17]};
”Calcium, Total”: {data[18]}; ”Phosphate”: {data[19]}; ”INR(PT)”: {data[20]}; ”PT”: {data[21]}; ”PTT”:
{data[22]}; ”Basophils”: {data[23]}; ”Neutrophils”: {data[24]}; ”Monocytes”: {data[25]}; ”Eosinophils”:
{data[26]}; ”Lymphocytes”: {data[27]}; ”RDW-SD”: {data[28]}; ”H”: {data[29]}; ”L”: {data[30]}; ”I”:
{data[31]}; ”Alanine Aminotransferase (ALT)”: {data[32]}; ”Asparate Aminotransferase (AST)”: {data[33]};
”Lactate”: {data[34]}; ”Alkaline Phosphatase”: {data[35]}; ”Bilirubin, Total”: {data[36]}; ”pH”: {data[37]};
”Albumin”: {data[38]}; ”Base Excess”: {data[39]}; ”pO2”: {data[40]} ”Calculated Total CO2”: {data[41]};
”pCO2”: {data[42]}; ”Absolute Neutrophil Count”: {data[43]}; ”Absolute Eosinophil Count”: {data[44]}; ”Absolute
Monocyte Count”: {data[45]}; ”Absolute Basophil Count”: {data[46]}; ”Absolute Lymphocyte Count”: {data[47]};
”Creatine Kinase (CK)”: {data[48]} ”Immature Granulocytes”: {data[49]}
Answer Guidance: These data comprise 50 different indicators, categorized into seven main classes: routine blood indicators,
electrolyte and metabolic indicators, renal function indicators, liver function indicators, acid-base balance and gas exchange,
coagulation function indicators, and other indicators.
Answer Format: Begin with a brief introduction to your analysis.
routine blood indicators: explanation
electrolyte and metabolic indicators: explanation
renal function indicators: explanation
liver function indicators: explanation
acid-base balance and gas exchange: explanation
coagulation function indicators: explanation
other indicators: explanation
Finally, offer a concise summary.
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Disease-QA Prompt

Role Setting: You are a renowned diagnostician with expertise in integrating ECG, CXR, and blood test results.
Task Description: The following diagnostics have been provided:
• ECG Analysis: {ecg report}
• CXR Analysis: {cxr report}
• Blood Test Analysis: {blood test report}
• Diseases: {result diseases}
You need to pretend that the ECG, CXR, and blood test analyses are based on your interpretation of the raw data, and the final
diagnosis is your synthesis of these three diagnostic methods, please address the question: {question}
Answer Guidance: Please find definitive evidence from the ECG, CXR, and blood test results, leveraging the complementarity
and mutual corroboration of these three modalities, to robustly prove the reasons why the patient has the diseases I provided. Your
response must include every disease I provided, using the exact wording I provided, and you must not mention any diseases other
than those I provided. Please make sure to provide evidence for these diagnoses! These are confirmed conditions.
Answer Format: <think>{Diagnostic evidence synthesized from the three modalities}</think>\n <answer>{disease1;
disease2; . . .}</answer>

B LABEL DISTRIBUTION OF MEDTVT-QA

When constructing the physiology-level ECG-QA dataset, we filtered out invalid ECG labels to
ensure that the final labels align with morphology descriptions at the physiological level. Additionally,
we conducted a detailed statistical analysis of the labels in the ECG-QA training data. As shown in
Table 5, it presents ECG labels with occurrences greater than 100 along with their respective counts.

Table 5: ECG Labels and Counts (¿100) in ECG-QA.

Label Count
sinus rhythm with 1st degree a-v block 140
sinus rhythm 4033
atrial fibrillation 761
sinus tachycardia 1565
consider acute st elevation mi 161
atrial fibrillation with rapid ventricular response 224
age not entered, assumed to be 50 years old for purpose of ecg interpretation 328
sinus bradycardia 402
sinus rhythm with pac(s) 132
sinus rhythm with borderline 1st degree a-v block 121
pacemaker rhythm - no further analysis 160
leftward axis 435
possible left anterior fascicular block 138
rightward axis 164
probable left atrial enlargement 224
low qrs voltages in precordial leads 540
st junctional depression is nonspecific 149
possible inferior infarct - age undetermined 425
lateral t wave changes are nonspecific 328
short pr interval 167
inferior t wave changes are nonspecific 312
left ventricular hypertrophy 428
lvh with secondary repolarization abnormality 285
left axis deviation 1067
poor r wave progression - probable normal variant 538
indeterminate axis 108
possible anterior infarct - age undetermined 511
anterior t wave changes are nonspecific 182
possible left atrial abnormality 271
inferior/lateral st-t changes are nonspecific 240
prolonged qt interval 618
possible anteroseptal infarct - age undetermined 254
septal t wave changes are nonspecific 134
right bundle branch block 517
lateral st-t changes are nonspecific 289
anteroseptal infarct - age undetermined 129
left anterior fascicular block 202
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Label Count
extensive st-t changes are nonspecific 111
inferior infarct - age undetermined 550
rsr’(v1) - probable normal variant 199
left bundle branch block 354
low qrs voltages in limb leads 395
extensive st-t changes may be due to myocardial ischemia 143
possible left ventricular hypertrophy 150
abnormal r-wave progression, early transition 102
inferior infarct, old 123
ventricular premature complex 119
possible septal infarct - age undetermined 188
right axis deviation 141
lateral st-t changes may be due to myocardial ischemia 227
inferior/lateral st-t changes may be due to myocardial ischemia 167
iv conduction defect 376
generalized low qrs voltages 161
qrs changes v3/v4 may be due to lvh but cannot rule out anterior infarct 103
lateral t wave changes may be due to myocardial ischemia 106
rbbb with left anterior fascicular block 314
extensive st-t changes may be due to hypertrophy and/or ischemia 135
normal ecg 753
normal ecg except for rate 334
abnormal ecg 4761
borderline ecg 2074
inferior/lateral st-t changes may be due to hypertrophy and/or ischemia 116
lateral st-t changes may be due to hypertrophy and/or ischemia 112

Figure 5 presents an example report from the MIMIC-IV-CXR dataset, used in constructing CXR-QA.
The report contains some unclear and unrelated content to the CXR image description. By applying
the previously described CXR prompts, we transformed the report into a more organized and focused
description centered on CXR.

Figure 5: An CXR report example from MIMIX-IV-CXR-report dataset.
FINAL REPORT

EXAMINATION: CHEST (PA AND LAT)
INDICATION: F with new onset asciteps // eval for infection

TECHNIQUE: Chest PA and lateral

COMPARISON: None.

FINDINGS: There is no focal consolidation, pleural effusion or pneumothorax. Bilateral nodular opacities that most likely represent nipple shadows.

The cardiomediastinal silhouette is normal. Clips project over the left lung, potentially within the breast. The imaged upper abdomen is unremarkable.
Chronic deformity of the posterior left sixth and seventh ribs are noted.
IMPRESSION: No acute cardiopulmonary process.

Disease-level labels are derived from the MIMIC-IV-ECG-EXT-ICD (Strodthoff et al., 2024) dataset,
with these labels stored as ICD-10 codes. Each sample may correspond to multiple disease categories.
We filtered out diseases for which evidence could not be found in ECG, CXR, or LAB data. Ultimately,
we identified seven main categories: Coronary Artery Disease, Acute Renal Failure, Hypertension,
Atrial Fibrillation, Pneumonia, Diabetes Mellitus, and Sepsis, along with some subclasses within
these categories. Details are provided in Table 6.

Table 6: ICD-10 Disease Statistics with Corresponding Counts.

Disease Category ICD-10 Code Count
Coronary Artery Disease
Coronary Artery Disease I2510 2680
Chronic ischemic heart disease, unspecified I252 936
Atherosclerotic heart disease of native coronary artery I259 190
Other forms of chronic ischemic heart disease I253 8
Ischemic cardiomyopathy I255 79
Acute Renal Failure
Acute kidney failure, unspecified N179 2379
Acute kidney failure with tubular necrosis N170 689
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Disease Category ICD-10 Code Count
Acute kidney failure with other specified morphologic lesions N178 12
Acute kidney failure with acute cortical necrosis N171 1
Hypertension
Essential (primary) hypertension I10 4155
Hypertensive heart and chronic kidney disease, unspecified I129 1536
Hypertensive heart disease with heart failure I120 515
Hypertensive heart and chronic kidney disease with heart failure I130 119
Hypertensive heart disease without heart failure I110 77
Hypertensive heart and chronic kidney disease with heart failure and stage 5 CKD or ESRD I132 37
Hypertensive heart disease, unspecified I119 8
Other secondary hypertension I159 1
Renovascular hypertension I150 7
Other specified secondary hypertension I158 1
Atrial Fibrillation
Persistent atrial fibrillation I4891 2623
Permanent atrial fibrillation I4892 317
Paroxysmal atrial fibrillation I480 237
Other specified atrial fibrillation I482 104
Atrial flutter, unspecified I481 15
Typical atrial flutter I483 1
Atypical atrial flutter I484 1
Pneumonia
Pneumonia, unspecified organism J189 1442
Pneumonia due to other specified bacteria J181 25
Pneumonia due to Haemophilus influenzae J188 18
Pneumonia due to Klebsiella pneumoniae J180 5
Diabetes Mellitus
Type 2 diabetes mellitus without complications E119 1752
Type 2 diabetes mellitus with unspecified complications E1129 217
Type 2 diabetes mellitus with hyperglycemia E11319 296
Type 2 diabetes mellitus with renal complications E1140 348
Type 2 diabetes mellitus with circulatory complications E1165 360
Type 2 diabetes mellitus with other specified complications E118 29
Type 2 diabetes mellitus with unspecified complications E139 29
Type 1 diabetes mellitus without complications E109 27
Type 1 diabetes mellitus with unspecified complications E138 2
Type 1 diabetes mellitus with other specified complications E108 3
Sepsis
Sepsis, unspecified organism A419 1088
Severe sepsis without septic shock R6520 939
Severe sepsis with septic shock R6521 873
Sepsis due to Streptococcus pneumoniae A403 26
Sepsis due to Escherichia coli A412 2
Sepsis due to other Gram-negative organisms A409 69
Sepsis due to anaerobes A414 28
Sepsis due to other specified bacteria A411 26
Sepsis due to Staphylococcus aureus A401 3
Sepsis due to other specified Staphylococcus A408 4
Sepsis due to other specified bacteria A413 1
Sepsis due to unspecified Staphylococcus A400 2

C EXAMPLES OF QA PAIRS CORRESPONDING TO EACH MODALITY

This section provides examples of question-answer pairs corresponding to each modality (e.g., ECG,
CXR, LAB) in the MedTVT-QA dataset.

ECG-QA Example

Question: What information can be derived from the ECG ¡ecg¿?
Answer: ECG Analysis: Upon evaluating the electrocardiogram (ECG), the following observations can be made:
1.Sinus Rhythm: The heart is under the control of the sinoatrial (SA) node, which is the natural pacemaker. This finding suggests that
the electrical activity of the heart is originating from the SA node and progressing through the normal conduction pathway, leading to
a regular rhythm. This is a foundational indicator of organized cardiac activity.
2. Left Bundle Branch Block (LBBB): There is evidence of delayed or disrupted conduction through the left bundle of the heart’s
electrical conduction system. This results in a characteristic pattern on the ECG, with a widened QRS complex (¿120 ms) and
specific morphologies in leads, such as a broad, notched appearance in V5-V6 and an absence of normal septal depolarization. LBBB
may occur in conditions like ischemic heart disease, cardiomyopathy, or hypertension-induced structural changes, though it can also
occasionally be found in asymptomatic individuals.
Summary: The heart demonstrates a sinus rhythm, indicating normal initiation of electrical activity. However, the presence of a left
bundle branch block signifies an abnormality in electrical conduction, often associated with underlying cardiac pathology. As a
whole, this ECG is classified as abnormal due to the conduction disturbance, warranting further investigation to assess structural or
functional cardiac issues.
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CXR-QA Example

Question: Would you mind explaining the findings on my chest X-ray ¡cxr¿?
Answer: Based on the evaluation of your chest X-ray image, the lungs appear overall unchanged from prior assessments, indicating
no new substantial developments. There is no evidence of acute cardiopulmonary disease, which means there are no significant new
concerns regarding your heart or lungs. Specifically, there are no signs of pneumonia, which would typically appear as clouded or
consolidated areas in the lung fields. Similarly, there is no vascular congestion; this would generally be associated with heart-related
problems affecting the lung’s blood vessels and is absent in this image. Additionally, there is no pleural effusion, which would be
fluid accumulation in the space between the lungs and chest wall.
However, there is a notable finding of a dense streak of atelectasis at the left base of the lung, which is a condition where a part of the
lung collapses or does not inflate properly, resulting in that portion not being fully functional. This streak appears denser than usual
tissue, indicating that a segment of the lung at the left base may not be fully expanded or aerated. Atelectasis can result from various
causes, such as mucus blocking an airway, external pressure on the lung, or post-surgical changes.
Despite this abnormality, the absence of acute cardiopulmonary disease indicators is reassuring. The streak of atelectasis should
be monitored, and clinical correlation with your symptoms is important. Continuous observation or additional imaging might be
recommended to ensure there are no underlying issues contributing to this finding. Always consult with your healthcare provider to
discuss the implications of these findings based on your clinical history and symptoms.

LAB-QA Example

Question: Would you be able to undertake a comprehensive examination of this patient’s blood panel ¡lab¿, including the reference
ranges and clinical implications associated with all abnormal values?
Answer: Comprehensive Blood Panel Analysis:This blood test reflects multiple systemic functions. I will analyze the provided
values across seven categories, indicating normal findings and clinical implications for abnormal or missing data.
Routine Blood Indicators: Hematocrit, hemoglobin, red blood cells, MCV, and MCHC fall within normal ranges, suggesting typical
oxygen-carrying capacity and erythrocyte health. RDW is borderline high, which could indicate subtle variability in red cell size,
potentially pointing toward early nutritional deficiencies or mild anemia. Platelet count and white blood cells are normal, showing
adequate clotting potential and immune activity. All differential leukocyte percentages are within normal ranges, reflecting balanced
immunity.
Electrolyte and Metabolic Indicators: Potassium, sodium, magnesium, bicarbonate, and phosphate are within normal ranges,
indicating balanced electrolytes and acid-base homeostasis. However, chloride is mildly low (97.0), potentially reflecting minor
electrolyte imbalance or compensatory metabolic alkalosis. Glucose is significantly elevated (185.0), possibly suggesting poorly
controlled diabetes mellitus or acute hyperglycemia. Lactate is elevated (4.6), which could suggest tissue hypoxia or metabolic
distress. Calcium is borderline low (8.5), potentially indicating subtle hypocalcemia warranting further evaluation.
Renal Function Indicators: Creatinine is within the high-normal range, which might raise concerns for early renal insufficiency
depending on age/gender. Urea nitrogen is elevated, possibly indicating dehydration, increased protein metabolism, or mild renal
dysfunction.
Liver Function Indicators: ALT, AST, bilirubin, and alkaline phosphatase values are missing and assumed normal, precluding further
analysis.
Acid-Base Balance and Gas Exchange: With missing pH and gas exchange values, bicarbonate is normal but anion gap is elevated
(22.0), potentially indicating metabolic acidosis from lactate accumulation or unmeasured ions.
Coagulation Function Indicators: INR, PT, and PTT are missing and presumed normal, suggesting no overt coagulation abnormalities.
Other Indicators: Data gaps in albumin, base excess, and other parameters limit full metabolic insight.
Summary: Elevated glucose and lactate suggest metabolic dysregulation. Elevated urea nitrogen and borderline creatinine warrant
renal assessment. Mild hypocalcemia and low chloride need further exploration. Elevated anion gap hints at underlying acidosis.
Follow-up tests are recommended for confirmation and diagnosis refinement.

D FURTHER ANALYSIS

Disease Co-occurrence Structure and Error Patterns. As shown in Figure 6, the predicted co-
occurrence matrix largely preserves the topology of the ground truth, recovering clinically plausible
comorbidity clusters (e.g., hypertension–diabetes–coronary artery disease and hypertension–atrial
fibrillation). Pairwise counts are modestly inflated in prediction, suggesting that the model leverages
co-occurrence priors and tends to overproduce multi-label sets. The error profile in Figure 6 indicates
systematic difficulty on lab-driven conditions. Diabetes mellitus and acute renal failure exhibit
both high false positives and false negatives, pointing to unstable evidence due to missing labs, or
heterogeneous diagnostic criteria. Sepsis also shows elevated false negatives, consistent with episodic
onset and sparse specific biomarkers. In contrast, atrial fibrillation skews toward false negatives more
than false positives, hinting at a conservative decision boundary or sensitivity to ECG noise/quality.
Overall, the model learns a clinically meaningful dependency structure but occasionally substitutes
co-occurrence priors for modality-specific evidence.

Dynamic Modality Weights and Disease-level Performance. To assess the behavior of the proposed
dynamic modality-weighting mechanism, we visualized the learned weights for the three modalities
using violin plots, as shown in Fig 7. The model assigns a broad range of weights across samples
rather than converging to fixed or uniform values, indicating that reliance on each modality adapts on
a per-case basis. The distributions are non-symmetric and, in some cases, multi-modal, suggesting
the model can switch between modality-dominant decision modes depending on available evidence.
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Figure 6: Disease co-occurrence and error profile. Left: Ground-truth vs. predicted co-occurrence
matrices show similar structure with hypertension as a hub. Right: Top false negatives/positives
highlight diabetes mellitus and acute renal failure as major sources of confusion.

Figure 7: Dynamic modality weights and per-disease metrics. Left: Violin plots of learned weights
for CXR, ECG, and Lab (median/IQR); ECG is highest and more stable, CXR lower, Lab most
variable. Right: Per-label precision/recall/F1, showing alignment between higher ECG reliance and
stronger cardiovascular performance, with pneumonia remaining weaker.

Linking weights to per-disease performance, the consistently higher ECG weights align with the
stronger results on cardiovascular labels (e.g., hypertension and atrial fibrillation), reflecting the
stable discriminative value of ECG for such conditions. CXR receives lower and less variable
weights, which is consistent with the relatively weaker performance on pneumonia in our current
setup—pointing to either under-exploitation of CXR features or label imbalance/noise. Lab shows
the widest spread, consistent with its context-dependent value: it is more informative for organ-
function–related conditions (e.g., acute renal failure) but contributes unevenly to others (e.g., sepsis,
diabetes), likely due to missing tests and asynchrony.

E PERFORMANCE OF VARIOUS MLLMS IN HANDLING MEDICAL REASONING
AND DIAGNOSIS

Here, we present an example of medical analysis and diagnosis among various MLLMs and MedTVT-
R1, as shown in Figure 8.

F LIMITATION

Although our proposed MedTVT-R1 successfully integrates CXR, ECG, and LAB data for joint
multi-disease diagnosis, there are still some limitations. First, precise disease diagnosis often requires
a larger volume of multimodal data collected from the same patient within a similar timeframe.
However, in the short term, it is challenging to gather such large-scale data, which limits the model’s
generalization ability and diagnostic accuracy. Second, while our work incorporates three modali-
ties—CXR, ECG, and LAB—more accurate disease analysis and diagnosis may rely on additional
modalities, such as patient medical history, genomic data, or other biomarkers. Unfortunately, the
current open-source datasets lack richer multimodal information, making such extensions difficult
to achieve. Future research could aim to address these challenges to further enhance the model’s
diagnostic capabilities and practical applicability.
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What illnesses might be indicated by the findings from my ECG <ecg>, CXR <cxr>, and blood work <lab>?

<think>Based on the ECG, CXR, and blood test analyses, the findings collec�vely support the presence of Diabetes Mellitus and Hypertension.
The diagnosis of Diabetes Mellitus is substan�ated by blood test results. The markedly elevated glucose levels indicate hyperglycemia, a hallmark of diabetes.
Although this blood test result suggests persistent elevated glucose levels, acute complica�ons such as low glucose levels are characteris�c of diabetes. Addi�onally, 
mild anemia and low albumin could reflect chronic disease-related nutri�onal deficits or underlying inflammatory processes o�en associated with diabetes. The low-
normal albumin level may further suggest chronic systemic effects o�en seen in diabetes-related complica�ons.
The diagnosis of Hypertension is supported by findings from all three diagnos�c modali�es. The ECG demonstrates a sinus rhythm with borderline findings, which
can be associated with increased cardiac workload o�en seen in hypertensive pa�ents. The presence of a small le�-sided pleural effusion and mild pulmonary
edema on the CXR aligns with fluid reten�on o�en seen in hypertensive heart disease or postopera�ve states . While the heart size is not detailed here, the pleural
effusions seen on imaging may indirectly support hypertensive fluid shi�s or cardiovascular strain. Elevated crea�nine and urea nitrogen on the blood test suggest
possible hypertensive nephropathy or reduced renal filtra�on rates.Hyperglycemia may further exacerbate vascular strain linked to hypertension.
In conclusion, the evidence points to Diabetes Mellitus through hyperglycemia, and Hypertension through cardiac strain and renal involvement clearly through
indirect ECG and CXR findings. Both condi�ons require further management to mi�gate systemic and cardiovascular risks.</think>
<answer>Diabetes Mellitus; Hypertension</answer>

MedTVT-R1

The provided ECG and chest X-ray images can be analyzed together to iden�fy poten�al health issues. Here’s a step-by-step analysis:
ECG Analysis:1. P Waves: The P waves appear normal in all leads (I, II, III, aVR, aVL, aVF, V1-V6). This suggests that the atrial ac�vity is normal.
2. QRS Complexes: The QRS complexes are wide and have a dura�on of approximately 120ms , which is indica�ve of le� ventricular hypertrophy (LVH).
3. T Waves: The T waves are not significantly abnormal in any lead.
4. ST Segments: The ST segments are within normal limits.
Chest X-Ray Analysis:
1. Cardiac Size: The cardiac silhoue�e appears enlarged, which could be due to LVH or other cardiomegaly causes.
2. Lung Fields: The lung fields appear clear with no signs of consolida�on, effusion, or other abnormali�es.
3. Heart Posi�on: The heart posi�on is normal, with no evidence of cardiomegaly or pericardial effusion.
Blood Test Results:
Crea�nine: 0.2264026403427124 mg/dL (normal range: 0.6–1.2 mg/dL)
BUN: 0.2870349884033203 mg/dL (normal range: 7–20 mg/dL)
Calcium: 0.6595468521118164 mg/dL (normal range: 8.5–10.5 mg/dL)
Magnesium: 0.345366507768631 mg/dL (normal range: 1.7–2.6 mg/dL)
Potassium: 0.4424666166305542mEq /L (normal range: 3.5–5.0mEq/L)
Sodium: 0.524380087852478mEq /L (normal range: 135–145 mEq/L)
Chloride: 0.5399884581

Qwen2.5-VL-
3B-Instruct

Based on the ECG and chest X-ray provided, the possible health concerns could include:
1. Arrhythmias: These include abnormal heart rhythms such as bradycardia, tachycardia, or atrial fibrilla�on, indicated by the presence of irregular QRS complexes.
2. Cardiomyopathy: Structural changes in the heart muscle, which might be visible on the ECG with abnormal heart rhythm pa�erns.
3. Valvular Aor�c Stenosis: The semi-erect portable chest X-ray suggests possible pulmonary hypertension as the vascular structures seen suggest dila�on in
pulmonary valve and possibly aor�c root shadow sugges�ng valve involvement.
4. Coronary Artery Disease: Though less likely in this chest X-ray alone, subtle changes could indicate coronary artery disease.
5. Electrolyte Imbalance: Such as hyperkalemia, which could be visible on an abnormal heart rhythm from changes in heart rhythmpa�erns.
These are general possibili�es and specific diagnoses would need further clinical evalua�on and possibly addi�onal inves�gations such as Holter monitoring, CT 
angiography, a cardiac MRI, or a stress test.

InternVL3-1B

The image you've provided appears to show medical test results and an X-ray. However, since I am an AI and not a licensed medical professional, I cannot diagnose or 
provide a medical opinion based on these images. If you are concerned about your health or test results, you should consult with a licensed healthcare provider for a
proper interpreta�on and advice. They would be able to evaluate the test results and the associated X-ray in the context of your symptoms and medical history,
which is essen�al for an accurate diagnosis.

LLaVA-One-
Vision-7B

<think>Based on the integrated analysis of the ECG, chest X-ray (CXR), and blood test results, the findings align with the provided diagnoses of Diabetes Mellitus and
Hypertension.
Diabetes Mellitus: The elevated blood glucose level, while not defini�vely diagnos�c on its own, suggests poten�al impaired fas�ng glucose. This could indicate
underlying diabetes or prediabetes, par�cularly in the absence of detailed glucose tolerance or HbA1c data. Addi�onally, the mild metabolic acidosis evidenced by the
low bicarbonate and elevated anion gap may point to incomplete buffering of acids, a finding consistent with diabe�c ketoacidosis in uncontrolled diabetes. Though
no renal dysfunc�on is apparent, the possibility of early metabolic derangements related to diabetes warrants considera�on given these findings.
Hypertension: While the ECG reveals a sinus rhythm with no overt electrical abnormali�es, prolonged hypertension can result in adverse structural or func�onal
changes not immediately evident on ECG. However, CXR findings suggest some correla�on with hypertensive pathology. The stable heart and medias�nal contours,
coupled with the noted small le� pleural effusion, may reflect subtle signs of longstanding hypertension poten�ally leading to vascular or cardiac strain over �me.
Addi�onally, the subtle branching opaci�es in the right lower lobe may represent conges�on secondary to hypertensive changes, though more defini�ve evidence of
heart failure is absent. Furthermore, the normal kidney-related parameters (crea�nine, urea nitrogen) on the blood test suggest preserved renal func�on, which is
crucial in chronic hypertension management.
In summary, elevated glucose and metabolic abnormali�es strongly support Diabetes Mellitus, while combined CXR and blood test data suggest secondary effects or
subtle complica�ons associated with Hypertension. Careful monitoring and targeted interven�ons for both condi�ons are warranted.</think>
<answer>Diabetes Mellitus; Hypertension</answer>

Ground-Truth

Figure 8: Performance of various MLLMs in handling medical reasoning and diagnosis. MedTVT-R1
approaches from the perspective of illness, tracing and identifying evidence of related diseases using
the provided ECG, CXR, and LAB information. Qwen2.5-VL-3B-Instruct can analyze different
modalities but lacks accuracy and cannot summarize diseases. InternVL3-1B combines modality
information to determine disease types, though its accuracy is lacking. LLaVA-One-Vision-7B
refuses to answer questions.

G THE USE OF LLMS

LLMs were utilized in this work for grammar checking and sentence refinement, aiming to enhance
the clarity and readability of the text.
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