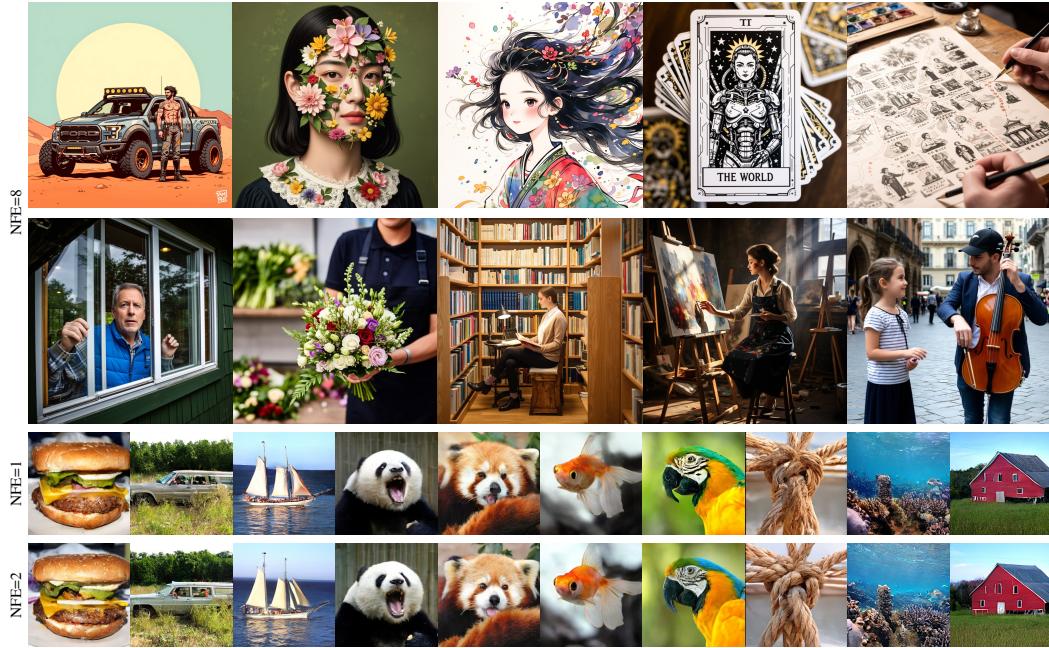


000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 FACM: FLOW-ANCHORED CONSISTENCY MODELS

003 **Anonymous authors**

004 Paper under double-blind review



028 Figure 1: FACM scales effectively to high-resolution text-to-image synthesis with a 14B parameter
029 model (tops) and achieves state-of-the-art few-step generation on ImageNet 256×256 (bottom).
030

031 ABSTRACT

033 Continuous-time Consistency Models (CMs) promise efficient few-step generation
034 but face significant challenges with training instability. We argue this instability
035 stems from a fundamental conflict: Training the network exclusively on a shortcut
036 objective leads to the catastrophic forgetting of the instantaneous velocity field
037 that defines the flow. Our solution is to explicitly anchor the model in the un-
038 derlying flow, ensuring high trajectory fidelity during training. We introduce the
039 Flow-Anchored Consistency Model (FACM), where a Flow Matching (FM) task
040 serves as a dynamic anchor for the primary CM shortcut objective. Key to this
041 **Flow-Anchoring** approach is a novel expanded time interval strategy that unifies
042 optimization for a single model while decoupling the two tasks to ensure stable,
043 architecturally-agnostic training. By distilling a pre-trained LightningDiT model,
044 our method achieves a state-of-the-art FID of 1.32 with two steps (NFE=2) and
045 1.70 with just one step (NFE=1) on ImageNet 256×256. To address the challenge
046 of scalability, we develop a memory-efficient **Chain-JVP** that resolves key incom-
047 patibilities with FSDP. This method allows us to scale FACM training on a 14B
048 parameter model (Wan 2.2), accelerating its Text-to-Image inference from 2×40 to
049 2-8 steps. Our code and pretrained models will be available to the public.

050 1 INTRODUCTION

051 As generative models scale to unprecedented sizes and applications demand real-time synthesis,
052 the need for efficient, few-step samplers has become paramount. Consistency Models (CMs) have

emerged as a promising paradigm for few-step generation (Song et al., 2023). Early successful works were largely based on discrete-time formulations (Song et al., 2023; Song & Dhariwal, 2023; Luo et al., 2023), which are inherently prone to discretization errors. While their continuous-time counterparts can circumvent these errors, they have been historically hindered by severe training instability. Recent approaches, notably sCM (Lu & Song, 2024), have made significant strides in stabilizing continuous-time training through a combination of regularization techniques and architectural modifications. Concurrently, Flow Mapping methods (Geng et al., 2025; Sabour et al., 2025; Wang et al., 2025) exemplify another line of research that has aimed to stabilize training. By reformulating the shortcut objective itself, these methods either model the “average velocity” to arbitrary endpoints, or introduce additional self-consistency constraints between multi-timesteps. Although these methods provide stable few-step sampling, they fail to address the root cause of instability. Their reliance on a single, over-coupled objective to learn the flow and shortcut simultaneously prevents explicit task decoupling and compromises perfect trajectory fidelity.

This paper addresses the root cause of instability in the continuous CM objective from a novel perspective. We posit that the standard continuous CM objective, while powerful for learning a direct “shortcut” across a probability flow, is inherently unstable when trained in isolation. This is because the approach implicitly assumes the model has a robust understanding of the underlying flow. However, training exclusively on the shortcut objective can induce catastrophic forgetting of this flow, leading to training collapse. Our key insight is that stability can be achieved by explicitly anchoring the model in the very flow it is shortcircuiting.

The most direct way to achieve this **Flow-Anchoring** is to re-introduce the explicit training of the **instantaneous velocity field** that defines the flow. We propose that an objective based on Flow Matching (FM) (Lipman et al., 2022) can act as a crucial anchor, enabling the primary shortcut objective to be trained effectively. Based on this principle, we introduce the Flow-Anchored Consistency Model (FACM), which employs a simple yet effective training strategy combining two distinct objectives:

- **Flow-Anchoring Objective** that learns the flow’s velocity field to provide stability.
- **Shortcut Objective** that learns the efficient one-step consistency mapping.

Our architecturally-agnostic method is stabilized by an innovative **expanded time interval** strategy that decouples these objectives into distinct domains, while forming a continuous target that unifies the optimization for a single model, supporting high-fidelity and stable training. By distilling a pre-trained LightningDiT model, our approach sets new state-of-the-art FID scores of 1.70 (NFE=1) and 1.32 (NFE=2) on the ImageNet 256×256 benchmark. To enable scalability, we solve a key memory bottleneck caused by the Jacobian-Vector Product (JVP), which is incompatible with modern training techniques like Fully Sharded Data Parallel (FSDP). We introduce a memory-efficient Chain-JVP that computes derivatives sequentially by module, avoiding prohibitive memory spikes. This allows us to train a 14B parameter model and accelerate its inference from 2×40 to just 2-8 steps.

2 BACKGROUND

Diffusion and Flow Matching. Generative models aim to transform a prior distribution p_0 (e.g., $\mathcal{N}(0, I)$) to a data distribution p_1 . A dominant approach is Diffusion Models (Ho et al., 2020; Song et al., 2020; Karras et al., 2022), which learn to reverse a predefined noising process. Flow Matching (FM) (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023; Kingma & Gao, 2024) offers a more direct framework to learn the probability flow ODE by regressing its output against a target velocity $dx_t/dt = v_\theta(x_t, t)$. A common approach uses the OT-FM path $x_t = (1 - t)x_0 + tx_1$ between a noise sample x_0 and a data sample x_1 , which has a constant conditional velocity of $x_1 - x_0$. This leads to the practical FM objective:

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t, x_0, x_1} \|v_\theta(x_t, t) - (x_1 - x_0)\|_2^2. \quad (1)$$

Consistency Models. Consistency Models (CMs) (Song et al., 2023) are trained to map any point x_t on an ODE trajectory directly to its endpoint x_1 in a single evaluation. While early successful works were largely based on discrete-time formulations that are prone to discretization errors (Song & Dhariwal, 2023; Geng et al., 2024; Luo et al., 2023; Zheng et al., 2024), our work focuses on the continuous-time formulation. This approach requires the total derivative of the model’s output to be

108 zero: $\frac{df_\theta(\mathbf{x}_t, t)}{dt} = 0$. With the standard parameterization $f_\theta(\mathbf{x}_t, t) = \mathbf{x}_t + (1-t)\mathbf{F}_\theta(\mathbf{x}_t, t)$ and the
 109 boundary condition $f_\theta(\mathbf{x}_1, 1) = \mathbf{x}_1$, this implies the network \mathbf{F}_θ must satisfy:
 110

$$111 \quad \mathbf{F}_\theta(\mathbf{x}_t, t) = \mathbf{v} + (1-t)\frac{d\mathbf{F}_\theta(\mathbf{x}_t, t)}{dt}. \quad (2)$$

113 Here, \mathbf{v} represents the conditional velocity $\mathbf{x}_1 - \mathbf{x}_0$ from the underlying flow. In the distillation
 114 paradigm, this velocity is provided by a pre-trained FM teacher. This objective, relying on a Jacobian-
 115 vector product (JVP) for the derivative term, is notoriously unstable to train (Lu & Song, 2024).
 116 Recently, Flow Mapping methods (Zhou et al., 2025; Geng et al., 2025; Sabour et al., 2025; Wang
 117 et al., 2025; Guo et al., 2025) have extended consistency models with a unified objective, but they do
 118 not address the root cause of instability and compromise perfect trajectory fidelity.
 119

120 3 FLOW-ANCHORED CONSISTENCY MODELS (FACM)

122 This section first analyzes the core instability of continuous-time Consistency Models (CMs), iden-
 123 tifying the “missing anchor” as the root cause. We then present our solution, the Flow-Anchored
 124 Consistency Model (FACM), detailing its mixed-objective training strategy. Our analysis reframes
 125 the challenge of training continuous-time Consistency Models. We argue that the instability is not an
 126 inherent flaw of the shortcut objective itself, but a consequence of training on it in isolation, which
 127 causes the model to lose its anchor in the flow’s underlying velocity field.
 128

129 3.1 REVISIT THE SHORTCUT TARGET OF CONSISTENCY MODELS

131 To understand the mechanics of the generative shortcut, we first re-examine the consistency model’s
 132 learning objective. The goal of a consistency function $f_\theta(\mathbf{x}_t, t)$ is to map any point \mathbf{x}_t on an ODE
 133 trajectory to its endpoint \mathbf{x}_1 . Using the OT-FM parameterization $f_\theta(\mathbf{x}_t, t) = \mathbf{x}_t + (1-t)\mathbf{F}_\theta(\mathbf{x}_t, t)$,
 134 the ideal shortcut $f_\theta(\mathbf{x}_t, t) = \mathbf{x}_1$ can only be achieved if the network \mathbf{F}_θ learns to predict a very
 135 specific quantity:

$$136 \quad \mathbf{x}_t + (1-t)\mathbf{F}_\theta(\mathbf{x}_t, t) = \mathbf{x}_1 \Rightarrow \mathbf{F}_\theta(\mathbf{x}_t, t) = \frac{\mathbf{x}_1 - \mathbf{x}_t}{1-t}. \quad (3)$$

138 This term has a clear physical interpretation: it is the average velocity required to travel from point
 139 \mathbf{x}_t to the endpoint \mathbf{x}_1 in the remaining time $1-t$. We denote this quantity as $\bar{\mathbf{v}}(\mathbf{x}_t, t)$. Thus, the task
 140 of learning the one-step shortcut is equivalent to training \mathbf{F}_θ to predict this average velocity.

141 Now, we investigate the properties that this average velocity field must satisfy. From its definition
 142 in Eq. 3, we have $(1-t)\bar{\mathbf{v}}(\mathbf{x}_t, t) = \mathbf{x}_1 - \mathbf{x}_t$. Differentiating both sides with respect to t using the
 143 product rule gives:

$$145 \quad \frac{d}{dt}((1-t)\cdot\bar{\mathbf{v}}(\mathbf{x}_t, t)) = -\frac{d\mathbf{x}_t}{dt} \Rightarrow -\bar{\mathbf{v}}(\mathbf{x}_t, t) + (1-t)\frac{d\bar{\mathbf{v}}(\mathbf{x}_t, t)}{dt} = -\mathbf{v}(\mathbf{x}_t, t). \quad (4)$$

147 Rearranging the terms, we arrive at a key differential identity that the true average velocity field must
 148 satisfy:

$$149 \quad \bar{\mathbf{v}}(\mathbf{x}_t, t) = \mathbf{v}(\mathbf{x}_t, t) + (1-t)\frac{d\bar{\mathbf{v}}(\mathbf{x}_t, t)}{dt}. \quad (5)$$

151 This identity is formally identical to the continuous-time CM learning objective (Eq. 2) and the
 152 Meanflow identity ($r \equiv 1$). This confirms that the CM objective directly forces the network \mathbf{F}_θ to
 153 learn the properties of an average velocity field, thus enabling the one-step generation shortcut.

154 3.2 THE SOURCE OF INSTABILITY: LOSING THE FLOW ANCHOR

156 While Eq. 2 correctly identifies the target, its practical implementation via the training objective
 157 $T = \mathbf{v} + (1-t)\frac{d\mathbf{F}_\theta(\mathbf{x}_t, t)}{dt}$ is notoriously unstable. The core of this instability lies in the target’s
 158 self-referential nature. This dependency creates two fundamental, intertwined problems:

160 **Missing Instantaneous Velocity Field Supervision.** The target T explicitly depends on the instanta-
 161 neous velocity \mathbf{v} . However, the CM objective only enforces a loss on the final prediction \mathbf{F}_θ . There is
 no explicit mechanism to ensure that the model’s learned dynamics remain faithful to the underlying

162 instantaneous velocity field $\mathbf{v}(\mathbf{x}_t, t)$. The model is being asked to learn the integral of a function
 163 (average velocity) without being explicitly taught the function itself (instantaneous velocity).
 164

165 **Self-Referential Derivative Estimation.** This lack of direct supervision on \mathbf{v} makes the derivative
 166 term, $\frac{d\mathbf{F}_{\theta-}}{dt}$, highly unstable. The total derivative, expanded via the chain rule, is:
 167

$$\frac{d\mathbf{F}_{\theta-}(\mathbf{x}_t, t)}{dt} = (\nabla_{\mathbf{x}_t} \mathbf{F}_{\theta-}) \mathbf{v} + \frac{\partial \mathbf{F}_{\theta-}}{\partial t}. \quad (6)$$

168 The network is optimized to estimate its own derivative to satisfy the consistency identity in Eq. 2.
 169 Ideally, this process should facilitate a smooth transition, evolving the model from predicting the
 170 instantaneous velocity field to an average velocity field that satisfies this identity. However, without a
 171 stable anchor in the underlying flow, the model’s output \mathbf{F}_{θ} quickly begins to drift. This drift has a
 172 critical consequence: the derivative term in the identity grows to dominate the ground-truth velocity
 173 \mathbf{v} , effectively diluting its supervisory signal. At this point, satisfying the identity no longer converges
 174 to the boundary condition. The training target thus becomes noisy and erratic, creating a vicious
 175 cycle that rapidly amplifies errors and ultimately leads to training collapse.
 176

177 These two issues stem from the same fundamental problem: the CM objective is ungrounded. It
 178 lacks a stable foundation in the very flow it is supposed to shortcut. The antidote is to re-introduce
 179 the explicit supervision of the instantaneous velocity field \mathbf{v} via a Flow Matching objective. This
 180 provides a stable **anchor** for the model’s internal dynamics, ensuring that the model’s gradient field
 181 is well-behaved, which directly stabilizes the derivative term in the CM objective and allows the
 182 primary shortcut objective to be learned effectively. We term this principle **Flow-Anchoring**.
 183

184 3.3 THE FACM TRAINING STRATEGY

185 Based on our analysis, we introduce the Flow-Anchored Consistency Model (FACM). Instead of
 186 requiring specialized architectures, FACM employs a simple and effective training strategy that mixes
 187 two complementary objectives: one for stability (the anchor) and one for efficiency (the accelerator).
 188

189 3.3.1 THE FACM OBJECTIVE: AN ANCHOR AND AN ACCELERATOR

190 The FACM training approach harnesses the stability of **Flow-Anchoring** (the FM task) and the
 191 efficiency of direct shortcut learning (the CM task) within a single training loop. The overall training
 192 loss, $\mathcal{L}_{\text{FACM}}$, is a sum of two complementary objectives:
 193

$$\mathcal{L}_{\text{FACM}} = \mathcal{L}_{\text{FM}} + \mathcal{L}_{\text{CM}} \quad (7)$$

194 To enable the model to distinguish between the two tasks, each objective uses a distinct conditioning
 195 signal, c_{FM} and c_{CM} , which we detail in Section 3.3.2.
 196

197 **Flow Matching (FM) Loss (The Anchor).** This loss component anchors the model by regressing its
 198 output towards the instantaneous velocity \mathbf{v} . The target \mathbf{v} is constructed with a base velocity \mathbf{v}_{base}
 199 and an optional classifier-free guidance (CFG) (Ho & Salimans, 2022) term:
 200

$$\mathbf{v} = \mathbf{v}_{\text{base}} + w \cdot (\mathbf{v}_{\text{cond}} - \mathbf{v}_{\text{uncond}}), \quad (8)$$

201 where w is the guidance scale. The definitions of these components vary by training paradigm. For
 202 from-scratch training, the base is the conditional velocity, $\mathbf{v}_{\text{base}} = \mathbf{x}_1 - \mathbf{x}_0$, and the guidance term
 203 is derived from the online model \mathbf{F}_{θ} itself. In distillation, the model is initialized with weights
 204 from a pre-trained FM model. A non-trainable copy of these weights, denoted as the “teacher” \mathbf{F}_{δ} ,
 205 provides all velocity components for the target, with $\mathbf{v}_{\text{base}} = \mathbf{v}_{\text{uncond}} = \mathbf{F}_{\delta}(\mathbf{x}_t, \emptyset)$, making the formula
 206 equivalent to standard CFG. Without CFG ($w = 1$), the target simply defaults to \mathbf{v}_{cond} . The FM loss
 207 then combines an L2 term with a cosine similarity term $L_{\text{cos}}(\mathbf{a}, \mathbf{b}) = 1 - (\mathbf{a} \cdot \mathbf{b}) / (\|\mathbf{a}\|_2 \|\mathbf{b}\|_2)$:
 208

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E} [\|\mathbf{F}_{\theta}(\mathbf{x}_t, c_{\text{FM}}) - \mathbf{v}\|_2^2 + L_{\text{cos}}(\mathbf{F}_{\theta}(\mathbf{x}_t, c_{\text{FM}}), \mathbf{v})]. \quad (9)$$

209 **Consistency Model (CM) Loss (The Accelerator).** This component acts as an accelerator, training
 210 the model to learn the generative shortcut. We interpret the consistency condition (Eq. 2) as a
 211 fixed-point problem, $\mathbf{F}_{\theta} = \mathcal{T}(\mathbf{F}_{\theta})$, where the operator is $\mathcal{T}(\mathbf{F}) \triangleq \mathbf{v} + (1 - t) \frac{d\mathbf{F}}{dt}$. The training
 212 objective is designed to solve this problem stably and iteratively. First, we compute the consistency
 213 residual \mathbf{g} of the stop-gradient model $\mathbf{F}_{\theta-}$ ($\mathbf{F}_{\theta-} = \text{sg}(\mathbf{F}_{\theta})$):
 214

$$\mathbf{g} = \mathbf{F}_{\theta-}(\mathbf{x}_t, c_{\text{CM}}) - \mathcal{T}(\mathbf{F}_{\theta-}) = \mathbf{F}_{\theta-}(\mathbf{x}_t, c_{\text{CM}}) - \left(\mathbf{v} + (1 - t) \frac{d\mathbf{F}_{\theta-}(\mathbf{x}_t, c_{\text{CM}})}{dt} \right). \quad (10)$$

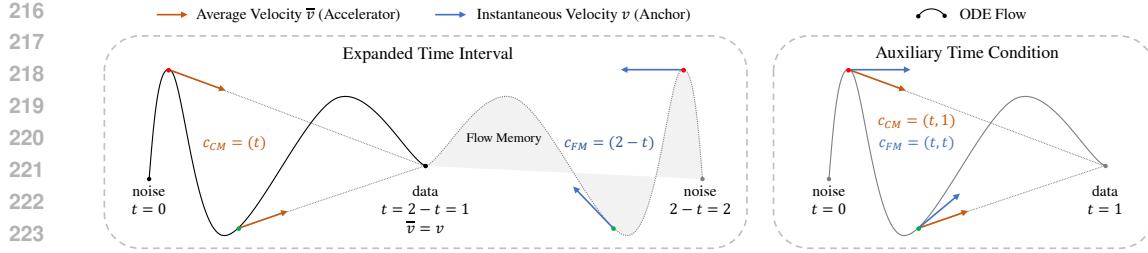


Figure 2: Two implementation strategies for the mixed-objective function in FACM. (A) **Expanded Time Interval** (default): The time domain is conceptually doubled, showing the same ODE flow on two intervals. The CM task is performed on $t \in [0, 1]$. To perform the FM task at a point t on the flow, the model is conditioned on $c_{FM} = 2 - t$, which maps the time to the alternate interval $[1, 2]$ to distinguish the two tasks. (B) **Auxiliary Time Condition**: An additional time condition r is introduced to the model. When $r = 1$, the model learns the CM task (average velocity from t to 1, orange); when $r = t$, it learns the FM task (instantaneous velocity at t , blue).

This residual \mathbf{g} is then clamped to the range $[-1, 1]$ to prevent extreme gradients. A perturbed target is then formed as:

$$\mathbf{v}_{tar} = \mathbf{F}_{\theta-}(\mathbf{x}_t, c_{CM}) - \alpha(t) \cdot \mathbf{g}. \quad (11)$$

Substituting the definition of \mathbf{g} reveals the target’s structure as a relaxation step for the fixed-point iteration:

$$\mathbf{v}_{tar} = (1 - \alpha(t))\mathbf{F}_{\theta-} + \alpha(t)\mathcal{T}(\mathbf{F}_{\theta-}). \quad (12)$$

This formulation provides a stable, interpolated learning target between the current model’s output and the ideal consistency target. The final CM loss component uses a norm L2 loss, L_{norm} , and is modulated by weighting functions $\alpha(t)$ and $\beta(t)$ (detailed in Appendix A.3 and A.4(c)):

$$\mathcal{L}_{CM}(\theta) = \mathbb{E} [\beta(t) \cdot L_{norm}(\mathbf{F}_{\theta}(\mathbf{x}_t, c_{CM}), \mathbf{v}_{tar})]. \quad (13)$$

The combination of the interpolated target \mathbf{v}_{tar} from the CM loss and the stabilizing flow anchor from the FM loss enables effective training. It is important to note that our specific choices for weighting and loss functions are designed to accelerate convergence, not as prerequisites for stability, which is already guaranteed by the Flow-Anchoring principle.

3.3.2 IMPLEMENTATION OF THE MIXED OBJECTIVE

A key design question is how to encode the distinct conditioning signals, c_{FM} for the FM loss and c_{CM} for the CM loss, that tell the model which velocity to predict. While this conditioning can include various information like class labels, for clarity in this section, we focus only on the time-based components. We explore an effective strategy for this (Figure 2):

Expanded Time Interval. We innovatively propose leveraging an expanded time domain to distinguish between the two tasks, a strategy that requires no architectural modifications. The primary CM task operates on the interval $t \in [0, 1]$, using the time directly as the condition: $c_{CM} = t$. To perform the FM task at the same point \mathbf{x}_t (defined by t), we signal this by mapping t to the alternate interval $[1, 2]$. This is done by setting the conditioning input to $c_{FM} = 2 - t$, which makes the two conditions decoupled, symmetric, and easily distinguishable. This mapping also ensures continuity at the boundary $t = 1$, as the CM learning objective from Eq. 2 naturally converges to the FM objective’s target at the boundary:

$$\lim_{t \rightarrow 1^-} \left(\mathbf{v} + (1 - t) \frac{d\mathbf{F}_{\theta}(\mathbf{x}_t, t)}{dt} \right) = \mathbf{v}. \quad (14)$$

This ensures a smooth transition between the two learning regimes.

Auxiliary Condition with a Second Timestamp. Alternatively, another intuitive approach is to introduce a second time variable, r , to the model, making its full conditioning a tuple of (t, r) . We then define $c_{CM} = (t, 1)$ and $c_{FM} = (t, t)$. This means the model signature is effectively $\mathbf{F}_{\theta}(\mathbf{x}_t, t, r)$. When $r = 1$, the model is trained on the CM task (predicting average velocity from t to 1). When $r = t$, the model is trained on the FM task (predicting instantaneous velocity at t , or from t to t). We

270 **Algorithm 1** FACM Training

271 **Require:** Online model F_θ , pretrained teacher F_δ , metrics $\mathcal{L}_{\text{FM}}, \mathcal{L}_{\text{CM}}$

272 1: Sample $\mathbf{x}_0, \mathbf{x}_1, t$

273 2: Define $c_{\text{CM}}, c_{\text{FM}}$ based on t (see Sec 3.3.2)

274 3: $\mathbf{x}_t \leftarrow (1 - t)\mathbf{x}_0 + t\mathbf{x}_1$

275 4: $\mathbf{v} \leftarrow F_\delta(\mathbf{x}_t, c_{\text{FM}})$ ▷ For training from scratch, use $\mathbf{x}_1 - \mathbf{x}_0$ instead

276 5: $F_{\text{FM}} \leftarrow F_\theta(\mathbf{x}_t, c_{\text{FM}})$

277 6: $F_{\text{CM}}, \nabla_t F_\theta \leftarrow \text{JVP}(F_\theta, (\mathbf{x}_t, c_{\text{CM}}), (\mathbf{v}, 1))$ ▷ Simultaneous forward pass and JVP

278 7: $\bar{\mathbf{v}} \leftarrow \mathbf{v} + (1 - t) \cdot \text{sg}(\nabla_t F_\theta)$

279 8: $\mathbf{v}_{\text{tar}} \leftarrow (1 - \alpha(t)) \cdot \text{sg}(F_{\text{CM}}) + \alpha(t) \cdot \bar{\mathbf{v}}$ ▷ Compute relaxation target

280 9: $\mathcal{L}_{\text{Total}} \leftarrow \mathcal{L}_{\text{FM}}(F_{\text{FM}}, \mathbf{v}) + \mathcal{L}_{\text{CM}}(F_{\text{CM}}, \mathbf{v}_{\text{tar}})$

285 can provide this auxiliary condition r to the model through a zero-initialized time embedder, which
 286 does not alter its original structure or initial output.

287 As shown in our ablations (Table 3), while both methods effectively stabilize training, the **Expanded**
 288 **Time Interval** strategy consistently yields the best performance. We attribute this to its use of highly
 289 distinct time domains ($[0, 1]$ vs. $[1, 2]$), which provide clearer, more separable conditioning signals
 290 for the two tasks compared to the subtler differences in the Auxiliary Time Condition (e.g., $(t, 1)$ vs.
 291 (t, t)). For clarity, if $t = 0$ represents the data distribution (i.e., $\mathbf{x}_t = t\mathbf{x}_0 + (1 - t)\mathbf{x}_1$), the conditions
 292 for the two strategies would be t vs. $-t$ and $(t, 0)$ vs. (t, t) , respectively.

294 3.3.3 TRAINING ALGORITHM AND SCALABLE CHAIN-JVP IMPLEMENTATION

295 With the objective functions and conditioning signals defined, we present the complete FACM training
 296 strategy in Algorithm 1. A key component of this algorithm is the computation of the total derivative
 297 $\nabla_t F_\theta$ in the CM loss (Line 7), performed using a Jacobian-vector product (JVP).

298 The JVP computation, however, presents critical bottlenecks when using modern acceleration tech-
 299 niques. While its incompatibility with components like Flash Attention 2 (Dao, 2024) can be resolved
 300 using methods from sCM (Lu & Song, 2024), a more fundamental memory bottleneck emerges
 301 from its conflict with Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023). Standard JVP im-
 302 plementations require the model’s full parameters θ to be materialized on the device, forcing an
 303 `all_gather` operation in an FSDP setup. This reconstructs the entire parameter set on each GPU,
 304 causing a prohibitive memory spike that makes training models with over ten billion (10B) parameters
 305 impossible. To overcome this, we leverage the chain rule. For a network composed of modules
 306 $F_\theta = f_L \circ \dots \circ f_1$, the JVP can be computed sequentially:

307
$$J_{F_\theta}(\mathbf{z}) \cdot \mathbf{v} = J_{f_L}(\mathbf{z}_{L-1}) \cdot (\dots \cdot (J_{f_2}(\mathbf{z}_1) \cdot (J_{f_1}(\mathbf{z}_0) \cdot \mathbf{v})) \dots) \quad (15)$$

308 where $\mathbf{z}_i = f_i(\mathbf{z}_{i-1})$ is the intermediate output. Our approach computes the JVP for each module
 309 sequentially, embedding this operation within the FSDP logic. Its speed is consistent with a standalone
 310 JVP pass, adding only standard FSDP overhead. This ensures that only one module’s parameters are
 311 materialized at a time. Consequently, peak memory depends on the largest module, not the entire
 312 model, and the resulting memory savings grow with the model’s parameter count.

313 In summary, the principle of **Flow-Anchoring** offers a robust and fundamental solution. While
 314 other methods achieve stability, they do so with certain limitations. For instance, sCM (Lu & Song,
 315 2024) requires architectural modifications to its normalization layers, limiting its adaptability to
 316 large, pre-trained models. Other approaches like MeanFlow (Geng et al., 2025), while clever, present
 317 a trade-off: by treating the instantaneous velocity as merely an edge case ($r = t$) of the primary
 318 average velocity objective, the learning tasks become over-coupled. As a result, the supervisory
 319 signal for the underlying flow is often diluted, which we have observed can lead to training collapses
 320 and underfitting. In contrast, FACM provides a more direct and principled solution. Through
 321 our innovative expanded time interval strategy, the anchoring and shortcut tasks are functionally
 322 decoupled into distinct domains. This ensures the flow anchor receives a clear, undiluted supervisory
 323 signal at all times, forcing the model to maintain a stable and high-fidelity representation of the flow.

324
 325 **Table 1: Few-step generation on CIFAR-10 and ImageNet 256×256.** “ $\times 2$ ” indicates that CFG
 326 doubles the NFE per step. Our method sets a new state-of-the-art on both datasets.

327 Unconditional CIFAR-10			328 Class-Conditional ImageNet 256×256					
329 Method	330 NFE	331 FID (↓)	332 Method	333 Params	334 NFE			
Multi-NFE Baselines								
DPM-Solver++ (Lu et al., 2022)	10	2.91	SIT-XL/2 (Ma et al., 2024)	675M	250×2			
EDM (Karras et al., 2022)	35	2.01	DiT-XL/2 (Peebles & Xie, 2023)	675M	250×2			
Few-NFE Methods (NFE=1)								
iCT (Song & Dhariwal, 2023)	1	<u>2.83</u>	REPA (Yu et al., 2025)	675M	250×2			
eCT (Geng et al., 2024)	1	<u>3.60</u>	LightningDiT (Yao et al., 2025)	675M	250×2			
sCM (sCT) (Lu & Song, 2024)	1	2.85	Few-NFE Methods (NFE=1)					
IMM (Zhou et al., 2025)	1	3.20	iCT (Song & Dhariwal, 2023)	675M	1	34.24		
MeanFlow (Geng et al., 2025)	1	2.92	Shortcut (Frans et al., 2025)	675M	1	10.60		
FACM (Ours)	1	<u>2.69</u>	MeanFlow (Geng et al., 2025)	676M	1	<u>3.43</u>		
Few-NFE Methods (NFE=2)								
TRACT (Berthelot et al., 2023)	2	3.32	FACM (Ours)	675M	1	1.70		
CD (LPIPS) (Song et al., 2023)	2	2.93	Few-NFE Methods (NFE=2)					
iCT-deep (Song & Dhariwal, 2023)	2	2.24	iCT (Song & Dhariwal, 2023)	675M	2	20.30		
ECT (Geng et al., 2024)	2	2.11	IMM (Zhou et al., 2025)	675M	1×2	7.77		
sCM (sCT) (Lu & Song, 2024)	2	2.06	MeanFlow (Geng et al., 2025)	676M	2	2.20		
IMM (Zhou et al., 2025)	2	<u>1.98</u>	FACM (Ours)	675M	2	1.32		
FACM (Ours)	2	<u>1.87</u>						

343
 344 This robust theoretical foundation, combined with our scalable **Chain-JVP** implementation, makes
 345 FACM not only stable but also highly practical for training models at an unprecedented scale.
 346

347 4 EXPERIMENTS

350 4.1 EXPERIMENTAL SETUP

352 We empirically validate FACM on image generation benchmarks, including CIFAR-10 (Krizhevsky
 353 & Hinton, 2009) and ImageNet 256×256 (Deng et al., 2009). We evaluate models based on Fréchet
 354 Inception Distance (FID) (Heusel et al., 2017) and the Number of Function Evaluations (NFE).
 355 FACM can be trained from scratch or by distilling a pre-trained model. Our default experimental
 356 setup involves a two-stage process. We first pre-train a FM model, incorporating our mixed-objective
 357 conditioning as detailed in Appendix A.4 (a) to accelerate the subsequent distillation. We then distill
 358 this teacher using the FACM strategy. For few-step inference, we follow the standard multi-step
 359 sampling procedure for CMs as described in Appendix A.4 (b). Further details on our experimental
 360 settings are provided in Appendix A.4. To demonstrate scalability, we also distill a 14B parameter
 361 model (Wan2.2) on the text-to-image (T2I) task, achieving high-fidelity generation in just 2-8 steps.
 362

363 4.2 MAIN RESULTS

364 4.2.1 COMPARISON WITH STATE-OF-THE-ART

366 As shown in Table 1, FACM achieves state-of-the-art results on both CIFAR-10 and ImageNet
 367 256×256. Specifically, our method achieves FIDs of 1.70 (NFE=1) and 1.32 (NFE=2) on ImageNet
 368 256×256 by training a LightningDiT model in latent-space, and 2.69 (NFE=1) and 1.87 (NFE=2) on
 369 CIFAR-10 by training a DDPM++ model (Ho et al., 2020) in pixel-space, significantly outperforming
 370 previous methods on both benchmarks. Remarkably, our few-step model even surpasses some
 371 multi-step baselines that require hundreds of function evaluations.
 372

373 4.3 ABLATION STUDY ON THE TRAINING STRATEGY

375 We conduct ablation studies to validate our claims regarding the training strategy. We test on the
 376 ImageNet 256×256 dataset by distilling a pre-trained LightningDiT model. The results provide
 377 strong evidence for our central claim: the presence of the FM objective is the critical stabilizing
 anchor.
 378

378 Table 2: FID scores (NFE=2) on ImageNet 256×256 for different few-step methods applied to
 379 various backbone architectures. \dagger indicates our reproduction.
 380

381 Backbone	382 Baseline (NFE=250×2)	383 sCM\dagger	384 MeanFlow\dagger	385 FACM (Ours)
SiT-XL/2	2.06	2.83	2.27	2.07
REPA	1.42	2.25	1.88	1.52
DiT-XL/2	2.27	2.91	2.62	2.31
LightningDiT	1.35	1.94	1.74	1.32

386
 387 Table 3: Ablation on stabilization strategies. All methods are distilled from the same LightningDiT
 388 teacher. \dagger : Our reproduction. $*$: For sCM, more epochs yield worse results.
 389

390 Method	391 Params	392 FM epochs	393 CM epochs	394 FID (NFE=1, \downarrow)	395 Stable
sCM (w/o pixel norm.)	675M	800	-	-	\times
sCM (w/ pixel norm.) \dagger	676M	600	30*	3.04	\checkmark
MeanFlow \dagger	676M	800	200	2.75	\checkmark
FACM (Auxiliary Condition)	676M	800	200	<u>1.97</u>	\checkmark
FACM (Expanded Interval)	675M	800	200	1.81	\checkmark
Training from scratch methods					
MeanFlow \dagger	676M	0	1120	2.65	\checkmark
FACM (Expanded Interval)	675M	0	800	2.27	\checkmark

400 **Different Architectures.** To demonstrate the architectural agnosticism of our approach, we apply
 401 FACM, sCM, and MeanFlow to a range of state-of-the-art architectures, including SiT-XL/2, REPA,
 402 DiT-XL/2, and LightningDiT. All methods are distilled from their respective multi-step FM models.
 403 As shown in Table 2, FACM consistently achieves the lowest FID scores across all tested backbones.
 404 This highlights that Flow-Anchoring is a fundamental principle for stabilizing consistency training
 405 that is not limited to a specific model design.

406 **Stabilization Strategy.** To ensure a fair comparison, we distill sCM, MeanFlow, and FACM
 407 from an identical LightningDiT teacher (reproduction details in Appendix A.4 (c)). As shown in
 408 Table 3, FACM achieves superior results due to its principled approach to stability without requiring
 409 architectural changes. In contrast, sCM’s stability is limited, depending on architectural modifications
 410 (pixel normalization) and sensitive hyperparameter tuning. MeanFlow achieves robustness but at
 411 the cost of an over-coupled objective ($u(z, t, t) = v(z, t)$) that hinders optimization by diluting the
 412 essential path modeling task. FACM’s explicit task separation proves more effective, as it allows the
 413 model to stably learn the shortcut while remaining anchored to the teacher’s flow.

414 **Sensitivity to Teacher Model Quality.** As shown in Figure 4(a), FACM’s performance monotonically
 415 improves with teacher quality. This demonstrates that by explicitly anchoring the teacher’s complex
 416 flow, our method can consistently benefit from stronger teachers. This confirms FACM acts as a
 417 high-fidelity trajectory compression rather than a lossy compromise on the pre-trained flow.

418 **Ablation on Key Components.** As shown in Table 4, introducing Flow-Anchoring with our *Expanded*
 419 *Time Interval* decouples the FM and CM tasks, yielding faster convergence. Fidelity is further
 420 improved as shortcut interpolation (α) and beta weighting (β) ensure a smooth transition to FM
 421 supervision as $t \rightarrow 1$, while residual clamping suppresses gradient spikes. Together, these components
 422 stably guide the learning dynamic via the FM anchor, leading to significantly better trajectory fidelity.

423
 424 Table 4: Ablation study on key techniques on ImageNet 256x256.
 425

426 Configuration	427 FID@Epochs 10 (NFE=1, \downarrow)	428 Collapse
MeanFlow / Fixed $r = 1$ MeanFlow (0% FM)	372.3-391.5	Yes
MeanFlow (75% FM)	43.03	No
Fixed $r = 1$ MeanFlow (75% FM)	15.54	No
w/ Flow Anchoring (Expanded Time Interval)	4.31	No
w/ Interpolation ($\alpha(t) = 1$)	3.42	No
w/ Residual Clamping	2.86	No
w/ Beta Weighting ($\beta(t) = 1$) (FACM)	2.51	No

Sensitivity to FM Loss Weight. The FM loss is a prerequisite for stability, but the minimum required weight λ_{FM} depends on the model’s initialization. Our investigation reveals a nuanced picture that strongly supports a simple default choice (e.g., $\lambda_{\text{FM}} = 1.0$). As summarized in Table 5 (left vs. right), the non-finetuned setting requires at least $\lambda_{\text{FM}} \geq 0.1$ to avoid collapse, whereas the finetuned setting remains stable with λ_{FM} as low as 10^{-8} . These results lead to a key conclusion: while a non-zero FM weight is essential, FACM is highly robust to the specific weight across several orders of magnitude once stability is achieved. This robustness, which stems from our decoupled design, makes a direct summation a simple, effective, and reliable choice that avoids costly hyperparameter tuning.

Table 5: Sensitivity to λ_{FM} under two settings. Left: model **not** pre-finetuned on $1 < t < 2$. Right: model **is** pre-finetuned on $1 < t < 2$.

FM Loss Weight (λ_{FM})	FID (NFE=1, \downarrow)	FM Loss Weight (λ_{FM})	FID (NFE=1, \downarrow)
0.0–0.1	Collapse	0.0-1e-8	Collapse
0.1–10.0	3.17–3.22	1e-8–1e-4	2.90–5.88
10.0–64.0	3.32–4.97	1e-4–10.0	2.90–3.02
		10.0–64.0	3.02–4.58

4.3.1 TRAINING DYNAMICS OF FACM

We analyze the training dynamics by plotting the total gradient norm under different configurations in Figure 3. Figure 3(a) clearly shows that removing the FM objective leads to catastrophic gradient spikes, after which the model’s output immediately degenerates into pure noise (mode collapse). This confirms our hypothesis that a pure consistency gradient can trap the model in a local optimum where it sacrifices endpoint fidelity in pursuit of global consistency. Figure 3(b) further illustrates the effect of our auxiliary techniques. While each individually helps to suppress the gradient norm compared to removing them all, their combined use in our baseline model achieves the lowest and most stable gradient profile, demonstrating their synergistic effect in stabilizing the training process.

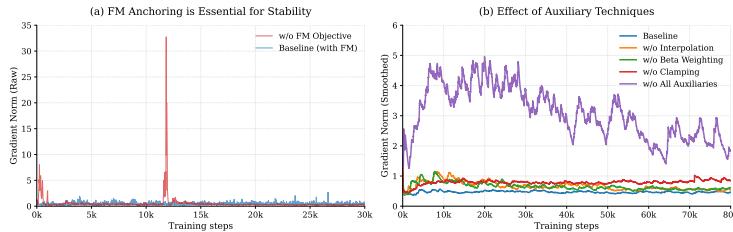


Figure 3: (a) The raw gradient norm for a pure CM (w/o FM Objective) shows an instantaneous spike leading to collapse, while our baseline remains stable. (b) The smoothed gradient norm for ablations of auxiliary techniques. Removing any single technique increases instability.

4.3.2 SCALABILITY ON A 14B TEXT-TO-IMAGE MODEL

Scaling continuous-time consistency models to billion-parameter scales presents a significant challenge due to the Jacobian-vector product (JVP) computation. While recent Differential Derivation Equation (DDE) Sun et al. (2025); Wang et al. (2025), can yield results comparable to JVP on models up to 1B parameters, we observe that they exhibit significant deviation on larger models like our 14B setup. In such cases, their computed derivatives become nearly orthogonal or even opposed to the JVP result, indicating an inherent error accumulation that hinders further scalability. To address this, our memory-efficient **Chain-JVP** provides an accurate and scalable solution. To demonstrate its effectiveness, we applied FACM to distill the 14B parameter Wan 2.2 model. This process successfully accelerated inference from 2×40 steps to just 2–8 steps. For the experiment, we used a pre-trained Wan 2.2 Text-to-Video (T2V) model (Wan et al., 2025) as a teacher on an in-house Text-to-Image (T2I) dataset (Despite being a T2V model, Wan 2.2 has strong image generation capability from mixed image-video pre-training.). Furthermore, we adapt the model’s self-attention and cross-attention mechanisms to be compatible with JVP computation, following the formulation of (Lu & Song, 2024). This adaptation also addresses the correctness of differentiation for variable-length

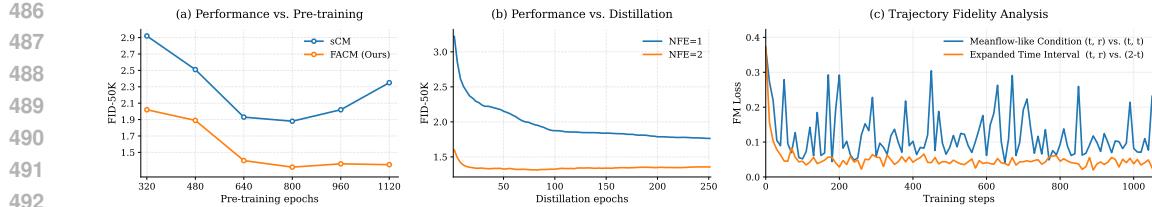


Figure 4: (a) Performance of student models (NFE=2) vs. teacher FM model pre-training epochs. (b) Performance vs. distillation epochs. (c) Trajectory fidelity analysis of 14B Wan2.2 model via flow matching loss. Apart from the conditioning method, all other settings were the same.

sequences and with bf16 precision. Our visualizations for this experiment are provided in Figure 1 and Appendix A.10, including comparison against the baseline model, as well as the FLUX.1-Dev (Labs, 2024a) and the FLUX.1-Schnell models (Labs, 2024b).

4.4 FROM CONSISTENCY MODELS TO FLOW MAPPING MODELS

Recent work has increasingly emphasized the advantages of Flow Mapping, where the model learns to predict the average velocity from an arbitrary time t to another time r . (Sabour et al., 2025; Wang et al., 2025; Geng et al., 2025; Boffi et al., 2025). Flow Mapping requires the model to ensure that the derivative of $f_\theta(x_t, t, r) = x_t + (r - t)F_\theta(x_t, t, r)$ is zero. This formulation is an extension of consistency models along the trajectory, demanding that the model’s prediction, $f_\theta(x_t, t, r)$, remains consistent over any time interval $[0, r]$ (detailed in Appendix A.6). We found through experiments on Wan2.2 that FACM can be easily adapted to be compatible with the Flow Mapping formulation. This is achieved simply by changing c_{CM} from (t) to (t, r) through zero-initialized time embedder and projection modules, while c_{FM} is maintained in the separate, expanded time domain. As illustrated in Figure 4(c), the Expanded Time Interval strategy allows the Flow Mapping to be more stably anchored to the teacher’s trajectory. If the prediction of the instantaneous velocity field is treated merely as a marginal case of the Auxiliary Time Condition (e.g., $r = t$), the FM loss becomes highly unstable, even when increasing the sampling proportion of $t = r$ as is done in MeanFlow. The consistently lower FM loss for the FACM condition demonstrates the superior trajectory fidelity achieved by our decoupled training strategy.

5 LIMITATIONS AND FUTURE WORK

Our work highlights two primary areas for future research. First, on large-scale models, a performance gap persists between samples generated in minimal steps (e.g., 1-2) and those requiring more steps (e.g., 8). Bridging this gap by enhancing the model’s expressiveness in the ultra-few-step regime is a key challenge. Second, while our Chain-JVP method successfully mitigates the memory bottleneck of the Jacobian-vector product, its computational overhead remains a concern. Optimizing its efficiency is crucial for improving training throughput. Additionally, we found that our acceleration model, even when fine-tuned exclusively on T2I data, can directly accelerate T2V synthesis by targeting only the low-noise diffusion steps ($\text{SNR} \leq \frac{\text{SNR}_{\min}}{2}$), all without introducing flickering or detail loss. This could inform future work on efficient, high-fidelity video synthesis.

6 CONCLUSION

In this work, we introduce the FACM, a strategy that addresses the instability of continuous-time CMs by anchoring the network to the underlying instantaneous velocity field with a Flow Matching loss. The core of this **Flow-Anchoring** approach is an expanded time interval strategy that unifies optimization for a single model via a continuous target, while functionally decoupling the anchoring and shortcut tasks to ensure high-fidelity and stability. Our method achieves new state-of-the-art FIDs on both ImageNet 256×256 (1.70 at NFE=1 and 1.32 at NFE=2) and CIFAR-10 (2.69 at NFE=1 and 1.87 at NFE=2). Furthermore, our **Chain-JVP** overcomes FSDP scalability bottlenecks, enabling us to accelerate a 14B model’s inference from 2×40 to 2-8 steps.

540 REFERENCES
541

542 Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
543 *arXiv preprint arXiv:2209.15571*, 2022.

544 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
545 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

546 David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
547 Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
548 time-distillation. *arXiv preprint arXiv:2303.04248*, 2023.

549 Nicholas M. Boffi, Michael S. Albergo, and Eric Vanden-Eijnden. Flow map matching with stochastic
550 interpolants: A mathematical framework for consistency models, 2025.

551 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
552 *International Conference on Learning Representations (ICLR)*, 2024.

553 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
554 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
555 pp. 248–255, 2009.

556 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
557 models. In *International Conference on Learning Representations (ICLR)*, 2025.

558 Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
559 made easy. *arXiv preprint arXiv:2406.14548*, 2024.

560 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J. Zico Kolter, and Kaiming He. Mean flows for
561 one-step generative modeling, 2025.

562 Yi Guo, Wei Wang, Zhihang Yuan, Rong Cao, Kuan Chen, Zhengyang Chen, Yuanyuan Huo, Yang
563 Zhang, Yuping Wang, Shouda Liu, and Yuxuan Wang. Splitmeanflow: Interval splitting consistency
564 in few-step generative modeling, 2025.

565 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
566 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural
567 information processing systems*, 30, 2017.

568 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
569 2022.

570 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
571 neural information processing systems*, 33:6840–6851, 2020.

572 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
573 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
574 2022.

575 Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
576 augmentation. *Advances in Neural Information Processing Systems*, 36, 2024.

577 A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. *Master's thesis,
578 Department of Computer Science, University of Toronto*, 2009.

579 Black Forest Labs. Flux.1-dev. <https://github.com/black-forest-labs/flux>,
580 2024a.

581 Black Forest Labs. Flux.1-schnell. <https://github.com/black-forest-labs/flux>,
582 2024b.

583 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
584 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

594 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 595 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.
 596

597 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
 598 *arXiv preprint arXiv:2410.11081*, 2024.
 599

600 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 601 solver for guided sampling of diffusion probabilistic models. *arXiv preprint arXiv:2211.01095*,
 602 2022.
 603

604 Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
 605 Synthesizing high-resolution images with few-step inference, 2023.
 606

607 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
 608 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 609 transformers. *arXiv preprint arXiv:2401.08740*, 2024.
 610

611 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 612 the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.
 613

614 Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your flow: Scaling continuous-time
 615 flow map distillation, 2025.
 616

617 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 618 preprint arXiv:2010.02502*, 2020.
 619

620 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv
 621 preprint arXiv:2310.14189*, 2023.
 622

623 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *arXiv preprint
 624 arXiv:2303.01469*, 2023.
 625

626 Peng Sun, Yi Jiang, and Tao Lin. Unified continuous generative models. *arXiv preprint
 627 arXiv:2505.07447*, 2025. URL <https://arxiv.org/abs/2505.07447>.
 628

629 Team Wan et al. Wan: Open and advanced large-scale video generative models. *arXiv preprint
 630 arXiv:2503.20314*, 2025.
 631

632 Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, and Lei Bai.
 633 Transition models: Rethinking the generative learning objective, 2025.
 634

635 Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization
 636 dilemma in latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer
 637 Vision and Pattern Recognition*, 2025.
 638

639 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
 640 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
 641 than you think. In *International Conference on Learning Representations*, 2025.
 642

643 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
 644 Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balooglu, Pritam Damania, Bernard
 645 Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experiences on
 646 scaling fully sharded data parallel, 2023.
 647

648 Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao, and
 649 Tat-Jen Cham. Trajectory consistency distillation, 2024.
 650

651 Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching, 2025.
 652

653

654

655

656

657

658

659

648 **A APPENDIX**
649650
651
652 **A.1 THEORETICAL ANALYSIS: STABILITY AND CONVERGENCE OF FACM**
653654 This section provides a detailed mathematical derivation of the stability and convergence properties
655 of FACM, complementing the intuitive discussion in Section 3.656 We use the same notation as in the main text:
657658

- Student network (online model): $\mathbf{F}_\theta(\mathbf{x}_t, t)$
- Stop-gradient copy: $\mathbf{F}_{\theta-}(\mathbf{x}_t, t) = \text{sg}(\mathbf{F}_\theta(\mathbf{x}_t, t))$
- Instantaneous velocity field (FM anchor): $\mathbf{v}(\mathbf{x}_t, t)$
- CM operator (Consistency target): $\mathcal{T}[\mathbf{F}] = \mathbf{v} + (1-t)\frac{d\mathbf{F}}{dt}$

663
664665 **A.1.1 STABILITY ANALYSIS: PREVENTION OF GRADIENT EXPLOSION**
666667 **Step 1.1: Structural form of the CM gradient.** The CM loss is

668
$$\mathcal{L}_{\text{CM}}(\theta) = \mathbb{E}_{\mathbf{x}_t, t} \left[\frac{1}{2} \|\mathbf{F}_\theta(\mathbf{x}_t, t) - \mathbf{v}_{\text{tar}}(\mathbf{x}_t, t)\|^2 \right], \quad (16)$$

669

670 where \mathbf{v}_{tar} is the CM target derived from the operator \mathcal{T} (Eq. 13 and Eq. 2 in the main text).671 Differentiating w.r.t. θ yields the gradient in compact form:
672

673
$$\begin{aligned} \nabla_\theta \mathcal{L}_{\text{CM}} &= \nabla_\theta \mathbb{E}_{\mathbf{x}_t, t} \left[\frac{1}{2} \|\mathbf{F}_\theta(\mathbf{x}_t, t) - \mathbf{v}_{\text{tar}}(\mathbf{x}_t, t)\|^2 \right] \\ &= \mathbb{E}_{\mathbf{x}_t, t} \left[\nabla_\theta \left(\frac{1}{2} (\mathbf{F}_\theta - \mathbf{v}_{\text{tar}})^\top (\mathbf{F}_\theta - \mathbf{v}_{\text{tar}}) \right) \right] \\ &= \mathbb{E}_{\mathbf{x}_t, t} \left[(\nabla_\theta \mathbf{F}_\theta - \nabla_\theta \mathbf{v}_{\text{tar}})^\top (\mathbf{F}_\theta - \mathbf{v}_{\text{tar}}) \right] \quad (17) \end{aligned}$$

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

(Since \mathbf{v}_{tar} is a stop-gradient target, $\nabla_\theta \mathbf{v}_{\text{tar}} = 0$)

$$= \mathbb{E}_{\mathbf{x}_t, t} \left[\underbrace{\nabla_\theta \mathbf{F}_\theta(\mathbf{x}_t, t)^\top}_{\text{parameter sensitivity}} \cdot \underbrace{(\mathbf{F}_\theta(\mathbf{x}_t, t) - \mathbf{v}_{\text{tar}}(\mathbf{x}_t, t))}_{\text{prediction error } \mathbf{e}} \right],$$

where $\nabla_\theta \mathbf{F}_\theta$ denotes the Jacobian of \mathbf{F}_θ w.r.t. the parameters θ , and we write

$$\mathbf{e}(\mathbf{x}_t, t; \theta) := \mathbf{F}_\theta(\mathbf{x}_t, t) - \mathbf{v}_{\text{tar}}(\mathbf{x}_t, t). \quad (18)$$

Taking norms and using $\|A^\top b\| \leq \|A\|_{\text{op}} \|b\|$, we obtain

$$\|\nabla_\theta \mathcal{L}_{\text{CM}}\| \leq \mathbb{E}_{\mathbf{x}_t, t} \left[\|\nabla_\theta \mathbf{F}_\theta(\mathbf{x}_t, t)\|_{\text{op}} \cdot \|\mathbf{e}(\mathbf{x}_t, t; \theta)\| \right]. \quad (19)$$

Thus, the CM gradient norm is governed by two independent factors:

690

- the *prediction error* \mathbf{e} , which determines the basic scale and direction of the gradient;
- the *parameter sensitivity* $\nabla_\theta \mathbf{F}_\theta$, which acts as a multiplicative amplifier.

693 **Step 1.2: Decomposition of the error term.** Recall that the CM operator for a general field \mathbf{F} is
694

695
$$\mathbf{v}_{\text{tar}}(\mathbf{x}_t, t) = \mathbf{v}(\mathbf{x}_t, t) + (1-t) \left(\partial_t \mathbf{F}_{\theta-}(\mathbf{x}_t, t) + \nabla_{\mathbf{x}_t} \mathbf{F}_{\theta-}(\mathbf{x}_t, t) \cdot \mathbf{v}(\mathbf{x}_t, t) \right). \quad (20)$$

696

697 The error of the online model \mathbf{F}_θ relative to this target then decomposes as
698

699
$$\mathbf{e} = \underbrace{(\mathbf{F}_\theta - \mathbf{v})}_{\text{function deviation}} - \underbrace{(1-t) \frac{\partial \mathbf{F}_{\theta-}}{\partial t}}_{\text{time derivative term}} - \underbrace{(1-t) \nabla_{\mathbf{x}_t} \mathbf{F}_{\theta-} \cdot \mathbf{v}}_{\text{JVP (spatial Jacobian)}}. \quad (21)$$

700

701 Hence, the size of \mathbf{e} is governed by the first-order spatio-temporal derivatives of the (stop-gradient)
702 network $\mathbf{F}_{\theta-}$.

702 **Step 1.3: FACM’s stabilization mechanism.** FACM combines Flow Matching (FM) with the CM
 703 objective, using shared parameters θ , and thereby stabilizes both factors in Eq. (19).

704 **(1) Lipschitz supervision via Flow Matching.** The FM loss (Eq. 9) trains $\mathbf{F}_\theta(\mathbf{x}_t, c_{\text{FM}})$ to match
 705 the instantaneous velocity field $\mathbf{v}(\mathbf{x}_t, t)$, which is a bounded ground-truth function that does not
 706 depend on θ and is Lipschitz in (\mathbf{x}_t, t) . For standard architectures, the Lipschitz constant of \mathbf{F}_θ with
 707 respect to its inputs is determined only by the spectral norms of the weight matrices and the activation
 708 Lipschitz constants, all of which are shared across time conditions t and $2 - t$. Minimizing the FM
 709 loss therefore keeps these spectral norms in a moderate range and induces a *global* Lipschitz bound
 710

$$711 \quad \|\nabla_\theta \mathbf{F}_\theta(\mathbf{x}_t, c)\|_{\text{op}} \leq L_{\text{net}} \quad (22)$$

712 for all (\mathbf{x}_t, c) in the training domain, including both the FM branch ($c = 2 - t$) and the CM branch
 713 ($c = t$). Here, L_{net} represents the Lipschitz constant of the network, and $\|\cdot\|_{\text{op}}$ denotes the spectral
 714 norm (operator norm). In contrast, pure CM supervises \mathbf{F}_θ with a self-referential target. To satisfy
 715 the consistency boundary condition (i.e., mapping \mathbf{x}_t to \mathbf{x}_1 as $t \rightarrow 1$) under the parameterization
 716 $\mathbf{x}_t + (1 - t)\mathbf{F}_\theta(\mathbf{x}_t, t)$, the network output \mathbf{F}_θ is implicitly forced to approximate the average velocity
 717 $(\mathbf{x}_1 - \mathbf{x}_t)/(1 - t)$, which blows up as $t \rightarrow 1$. The CM target is therefore a dynamic, potentially
 718 unbounded prediction, whereas FM always provides a bounded ground-truth target.

719 **(2) Bounding the error via FM-anchored supervision.** Next, we show that the prediction error
 720 term e in the gradient (Eq. 19) remains bounded under FACM. For clarity, we focus on the deviation
 721 between the online model and the FM anchor, $\mathbf{F}_\theta(\mathbf{x}_t, t)$ vs. $\mathbf{v}(\mathbf{x}_t, t)$, and make explicit use of the
 722 *expanded time interval* strategy (Figure 2), where FM uses the condition $c_{\text{FM}} = 2 - t$ but predicts the
 723 same physical velocity $\mathbf{v}(\mathbf{x}_t, t)$.

724 We begin with the triangle inequality:

$$726 \quad \|\mathbf{F}_\theta(\mathbf{x}_t, t) - \mathbf{v}(\mathbf{x}_t, t)\| \leq \underbrace{\|\mathbf{F}_\theta(\mathbf{x}_t, t) - \mathbf{F}_\theta(\mathbf{x}_t, 2 - t)\|}_{\text{temporal smoothness of } \mathbf{F}_\theta} \\ 727 \quad + \underbrace{\|\mathbf{F}_\theta(\mathbf{x}_t, 2 - t) - \mathbf{v}(\mathbf{x}_t, t)\|}_{\text{FM error}}. \quad (23)$$

731 The first term measures how much the network output changes when the (time-related) condition
 732 goes from t to $2 - t$ for the same spatial point \mathbf{x}_t . Using the fundamental theorem of calculus for the
 733 time coordinate, we write

$$735 \quad \mathbf{F}_\theta(\mathbf{x}_t, t) - \mathbf{F}_\theta(\mathbf{x}_t, 2 - t) = \int_{2-t}^t \frac{\partial}{\partial \tau} \mathbf{F}_\theta(\mathbf{x}_t, \tau, \tilde{c}(\tau)) d\tau, \quad (24)$$

737 where $\tilde{c}(\tau)$ interpolates between the CM and FM conditions as τ varies. Taking norms and applying
 738 the triangle inequality gives

$$740 \quad \|\mathbf{F}_\theta(\mathbf{x}_t, t) - \mathbf{F}_\theta(\mathbf{x}_t, 2 - t)\| \leq \left| \int_{2-t}^t \left\| \frac{\partial}{\partial \tau} \mathbf{F}_\theta(\mathbf{x}_t, \tau, \tilde{c}(\tau)) \right\| d\tau \right|. \quad (25)$$

743 Since FM constrains the spectral norms of the weights, the partial time derivative $\|\partial_\tau \mathbf{F}_\theta(\cdot)\|$ is
 744 bounded by a constant (of order L_{net}) over the training domain. The integration interval has length at
 745 most 2, so

$$746 \quad \|\mathbf{F}_\theta(\mathbf{x}_t, t) - \mathbf{F}_\theta(\mathbf{x}_t, 2 - t)\| \leq 2L_{\text{net}}. \quad (26)$$

747 The second term in Eq. (23) is precisely the FM error

$$748 \quad \varepsilon_{\text{FM}}(\mathbf{x}_t, t) := \mathbf{F}_\theta(\mathbf{x}_t, 2 - t) - \mathbf{v}(\mathbf{x}_t, t), \quad (27)$$

750 whose squared norm is minimized by \mathcal{L}_{FM} and thus has bounded variance. Combining these bounds,
 751 we obtain a uniform control of the function deviation:

$$752 \quad \|\mathbf{F}_\theta(\mathbf{x}_t, t) - \mathbf{v}(\mathbf{x}_t, t)\| \leq 2L_{\text{net}} + \|\varepsilon_{\text{FM}}(\mathbf{x}_t, t)\|. \quad (28)$$

754 Finally, because the same spectral-norm constraints apply to all weight matrices, the spatial Jacobian
 755 $\nabla_{\mathbf{x}_t} \mathbf{F}_{\theta-}$ and time derivative $\partial_t \mathbf{F}_{\theta-}$ in Eq. (21) are also uniformly bounded by constants of order
 L_{net} . Hence, all components of e remain bounded.

756 **Conclusion (Stability).** Putting these results together, we see that under FACM:
 757

- 758 • the parameter sensitivity is bounded: $\|\nabla_{\theta} \mathbf{F}_{\theta}\|_{\text{op}} \leq L_{\text{net}}$;
- 759 • the prediction error e is uniformly bounded in norm by a constant depending on L_{net} and
 760 the FM error statistics.

761 Therefore, the CM gradient norm satisfies
 762

$$763 \|\nabla_{\theta} \mathcal{L}_{\text{CM}}\| \leq C L_{\text{net}}^2, \quad (29)$$

764 eliminating the gradient explosion observed in pure CM training.
 765
 766

767 A.1.2 CONVERGENCE PROOF

768 We provide a concise analysis showing that FACM ensures convergence by eliminating target
 769 singularities, bounding gradient variance, and enforcing alignment through shared parameters.
 770

771 **Step 2.1: Mechanism of Variance Reduction.** The pure consistency target implies predicting the
 772 average velocity

$$773 \bar{v}(\mathbf{x}_t, t) = \frac{\mathbf{x}_1 - \mathbf{x}_t}{1 - t}. \quad (30)$$

775 As $t \rightarrow 1$, any variance σ^2 in the endpoint estimate \mathbf{x}_1 is amplified by $(1 - t)^{-2}$, so
 776

$$777 \text{Var}[\bar{v}(\mathbf{x}_t, t) \mid t] = \frac{\sigma^2}{(1 - t)^2}, \quad (31)$$

778 which makes the pure-CM shortcut objective ill conditioned near the data endpoint. FACM mitigates
 779 this by using a relaxed target

$$780 \mathbf{v}_{\text{tar}}(\mathbf{x}_t, t) = (1 - \alpha(t)) \mathbf{F}_{\theta-}(\mathbf{x}_t, t) + \alpha(t) \bar{v}(\mathbf{x}_t, t). \quad (32)$$

781 In practice we use the schedule $\alpha(t) = 1 - t^{0.5}$ (Sec. 3). Writing $t = 1 - \varepsilon$ with $0 < \varepsilon \ll 1$ and
 782 using the Taylor expansion

$$783 t^{0.5} = (1 - \varepsilon)^{0.5} = 1 - \frac{1}{2}\varepsilon + \mathcal{O}(\varepsilon^2), \quad (33)$$

785 we obtain

$$786 \alpha(t) = 1 - t^{0.5} = \frac{1}{2}\varepsilon + \mathcal{O}(\varepsilon^2) = \frac{1}{2}(1 - t) + \mathcal{O}((1 - t)^2). \quad (34)$$

787 Hence $\alpha(t)$ is asymptotically proportional to $(1 - t)$ and

$$788 \lim_{t \rightarrow 1} \frac{\alpha(t)}{1 - t} = \frac{1}{2}, \quad (35)$$

790 so the factor $\alpha(t)$ cancels the $(1 - t)^{-1}$ singularity in the average-velocity term up to a constant.
 791 Consequently $\text{Var}[\mathbf{v}_{\text{tar}}(\mathbf{x}_t, t) \mid t]$ remains uniformly bounded over $t \in [0, 1]$, providing the core
 792 mechanism for variance reduction in FACM.
 793

794 **Step 2.2: Bounded and Reduced Gradient Variance.** Locally, L_{norm} behaves like a rescaled
 795 squared ℓ_2 loss, so the CM gradient for one sample (\mathbf{x}_t, t) satisfies

$$796 \|\nabla_{\theta} \ell_{\text{CM}}(\theta; \mathbf{x}_t, t)\| \lesssim \beta(t) \|\nabla_{\theta} \mathbf{F}_{\theta}(\mathbf{x}_t, t)\|_{\text{op}} \|\mathbf{F}_{\theta}(\mathbf{x}_t, t) - \mathbf{v}_{\text{tar}}(\mathbf{x}_t, t)\|^2. \quad (36)$$

797 Using the stability bound $\|\nabla_{\theta} \mathbf{F}_{\theta}\|_{\text{op}} \leq L_{\text{net}}$ and the uniform boundedness of \mathbf{v}_{tar} , we obtain a finite
 798 second-moment (and hence variance) bound

$$799 \mathbb{E}[\|\widehat{\nabla}_{\theta} \mathcal{L}_{\text{CM}}\|^2] \lesssim L_{\text{net}}^2 \mathbb{E}_t [\beta(t)^2 \mathbb{E}_{\mathbf{x}_t} [\|\mathbf{F}_{\theta}(\mathbf{x}_t, t) - \mathbf{v}_{\text{tar}}(\mathbf{x}_t, t)\|^2 \mid t]]. \quad (37)$$

800 Here the *boundedness* follows from the variance-reduction mechanism in the previous paragraph,
 801 which shows that $\text{Var}[\mathbf{v}_{\text{tar}}(\mathbf{x}_t, t) \mid t]$ is uniformly bounded in t , together with the global Lipschitz
 802 bound $\|\nabla_{\theta} \mathbf{F}_{\theta}\|_{\text{op}} \leq L_{\text{net}}$ from Step 1.4: even if $\beta(t) \equiv 1$, the right-hand side is finite because both
 803 the Jacobian norm and the target variance are controlled. The role of $\beta(t) \in [0, 1]$ is to *further reduce*
 804 the integrated variance: for any non-negative function $q(t)$,

$$805 \mathbb{E}_t [\beta(t)^2 q(t)] \leq \mathbb{E}_t [q(t)], \quad (38)$$

806 with strict inequality whenever $\beta(t) < 1$ on a set of non-zero measure. Since $q(t) = \mathbb{E}_{\mathbf{x}_t} \|\mathbf{F}_{\theta}(\mathbf{x}_t, t) -$
 807 $\mathbf{v}_{\text{tar}}(\mathbf{x}_t, t)\|^2 \mid t$ is typically largest near the data endpoint $t \approx 1$, choosing a decaying schedule (e.g.,
 808 cosine) for $\beta(t)$ suppresses precisely those high-variance contributions, yielding a strictly lower
 809 integrated gradient variance than the pure-CM case.

810 **Step 2.3: Alignment via Shared Parameters.** The expanded time interval $[0, 2]$ creates a natural
 811 synchronization mechanism between the FM and CM tasks. In the high-SNR region ($t \approx 1$), the
 812 schedules $\alpha(t)$ and $\beta(t)$ suppress the CM gradients, so parameter updates there are dominated by the
 813 FM branch, which supervises $\mathbf{F}_\theta(\mathbf{x}_t, 2-t)$ to match the instantaneous velocity field $\mathbf{v}(\mathbf{x}_t, t)$. Because
 814 both branches share the same parameters and the stability analysis above bounds the discrepancy
 815 between $\mathbf{F}_\theta(\mathbf{x}_t, t)$ and $\mathbf{F}_\theta(\mathbf{x}_t, 2-t)$, this FM supervision implicitly guides $\mathbf{F}_\theta(\mathbf{x}_t, t)$ to align with
 816 the underlying velocity field. Combined with the reduced gradient variance from Step 2.2, this
 817 shared-parameter coupling explains the empirically faster and more stable convergence of FACM
 818 compared to pure CM training.

819 A.2 ON TOTAL DERIVATIVES

820 In this paper, for a network $N(\mathbf{x}_t, \mathcal{C}(t))$ (e.g., \mathbf{F}_θ), its total derivative along the trajectory $\mathbf{x}_t(t) =$
 821 $(1-t)\mathbf{x}_0 + t\mathbf{x}_1$ (with $\mathbf{v} = \frac{d\mathbf{x}_t}{dt} = \mathbf{x}_1 - \mathbf{x}_0$) with respect to t is given by the chain rule:

$$822 \quad \frac{dN(\mathbf{x}_t, \mathcal{C}(t))}{dt} = \frac{\partial N}{\partial \mathbf{x}_t} \mathbf{v} + \nabla_{\mathcal{C}N} \cdot \frac{d\mathcal{C}(t)}{dt}. \quad (39)$$

823 The term $\frac{d\mathbf{F}_\theta - (\mathbf{x}_t, c_{CM})}{dt}$ is computed for the CM task. Depending on the implementation strategy
 824 (Sec. 3.3.2), the conditioning c_{CM} can be t or a tuple $(t, 1)$. In both cases, its derivative with respect
 825 to t is effectively 1 for the time-dependent component and 0 for any constant component. Therefore,
 826 the calculation simplifies to:

$$827 \quad \frac{dN(\mathbf{x}_t, c_{CM})}{dt} \approx \frac{\partial N}{\partial \mathbf{x}_t} \mathbf{v} + \frac{\partial N}{\partial t}, \quad (40)$$

828 where $\frac{\partial N}{\partial t}$ denotes the partial derivative with respect to the explicit time argument(s) encoded in
 829 the conditioning.

830 A.3 NORM L2 LOSS

831 The CM loss component uses a norm L2 loss to improve stability against outliers. For a model
 832 prediction \mathbf{p} and a target \mathbf{y} , let the per-sample squared error be $e = \|\mathbf{p} - \mathbf{y}\|_2^2$. The loss is then
 833 calculated as:

$$834 \quad L_{\text{norm}}(\mathbf{p}, \mathbf{y}) = \frac{e}{\sqrt{e + c^2}} \quad (41)$$

835 where c is a small constant. This formulation is equivalent to the adaptive L2 loss proposed in
 836 MeanFlow (Geng et al., 2025) with $p = 0.5$, and behaves similarly to a Huber loss, being robust to
 837 large errors.

838 A.4 EXPERIMENTAL DETAILS

839 **(a) Pre-training Strategy.** Our teacher models are standard Flow Matching models. While FACM
 840 distillation works perfectly with a standard, single-condition pre-trained teacher, we find that con-
 841 vergence can be accelerated by first familiarizing the teacher with our dual-task conditioning. This
 842 optional adaptation can be achieved either by pre-training from scratch with a mixed-conditioning
 843 objective (i.e., replacing the standard time conditioning with our FM-specific formats for 50% of
 844 samples) or by briefly fine-tuning a pre-trained FM model with this objective for a few epochs. Fur-
 845 thermore, to prevent sporadic Nan losses during pre-training, all our LightningDiT implementations
 846 incorporate Query-Key Normalization (QKNorm), following updates in the official repository.

847 **(b) Sampling Strategy.** Our multi-step sampling ($NFE \geq 2$) follows a standard iterative refinement
 848 process. For an N -step generation, we use a simple schedule of N equally spaced timesteps
 849 $t_i = (i-1)/N$ for $i = 1, \dots, N$. The process starts with pure noise \mathbf{x}_0 . At each step i , we first
 850 compute a one-step prediction $\hat{\mathbf{x}}_1$ using the model's output \mathbf{F}_θ : $\hat{\mathbf{x}}_1 = \mathbf{x}_{t_i} + (1-t_i)\mathbf{F}_\theta(\mathbf{x}_{t_i}, c_{CM})$. If
 851 it is not the final step, we generate the input for the next step, $\mathbf{x}_{t_{i+1}}$, by linearly interpolating between
 852 the predicted endpoint and a new noise sample, consistent with the OT-FM framework:

$$853 \quad \mathbf{x}_{t_{i+1}} = t_{i+1}\hat{\mathbf{x}}_1 + (1-t_{i+1})\mathbf{z}_i, \quad \text{where } \mathbf{z}_i \sim \mathcal{N}(0, I). \quad (42)$$

854 The final output is the prediction from the last timestep, t_N .

(c) **Reproduction Details.** At the time of our main ablations, the official codebases for MeanFlow (Geng et al., 2025) and sCM (Lu & Song, 2024) were not yet available. A JAX implementation of MeanFlow was later released, but without a reproducible configuration for its SOTA results. For a controlled and fair comparison, we therefore implemented PyTorch reproductions under the exact same environment, teacher, and hyperparameters across methods. Our MeanFlow reproduction follows its two-time-variable conditioning and log-normal time sampling; following the from-scratch regime, we set $t = r$ with a 75% probability for optimal performance. In the distillation setting, this configuration struggled to converge and was therefore not used. For sCM, we incorporated all necessary techniques described in their work, including pixel normalization, tangent warmup, tangent normalization, and adaptive weighting, to ensure stable training. We did not use the TrigFlow proposed in sCM, as we believe the specific flow construction is orthogonal to building continuous-time consistency models. We will release our reproductions alongside our code to ensure full reproducibility.

(d) **Classifier-Free Guidance in Distillation.** When distilling a teacher model that supports classifier-free guidance (CFG), we compute both the conditional velocity \mathbf{v}_{cond} and unconditional velocity $\mathbf{v}_{\text{uncond}}$ from the teacher, and construct the target as

$$\mathbf{v} = \mathbf{v}_{\text{uncond}} + w \cdot (\mathbf{v}_{\text{cond}} - \mathbf{v}_{\text{uncond}}), \quad (43)$$

where w is the guidance weight. During training, the unconditional forward is computed with `torch.no_grad()`, adding less than 5% overhead, which is consistent with sCM and MeanFlow. To stabilize the high-noise region, we set a time threshold t_{low} and disable guidance for $t < t_{\text{low}}$ (we use $t_{\text{low}}=0.05$ in our experiments). During pre-training, the null-token probability is 10%, and the condition is not dropped during distillation. At inference, FACM uses a single timestamp; even under CFG, each step requires only **one** NFE.

(e) **Time Sampling Schedule.** Following sCM (Lu & Song, 2024), the time $t \in [0, 1]$ is sampled according to a schedule that concentrates samples near the data endpoint ($t = 1$). We first sample a value σ from a log-normal distribution, i.e., $\ln(\sigma) \sim \mathcal{N}(P_{\text{mean}}, P_{\text{std}}^2)$, and then compute t as:

$$t = 1 - \frac{2}{\pi} \arctan(\sigma). \quad (44)$$

(f) **Weighting Functions.** For the CM loss component (Eq. 13), we find that the weighting functions $\alpha(t) = 1 - t^{0.5}$ and $\beta(t) = \cos(t \cdot \pi/2)$ provide an effective general solution. These functions are crucial for navigating the trade-off between ensuring endpoint quality (in high-SNR regions) and satisfying global consistency (in low-SNR regions).

A.5 DISCUSSION: FROM-SCRATCH TRAINING VS. DISTILLATION

While our method can be trained from scratch and achieves a competitive result (See Table 3), we identify the two-stage distillation paradigm as the more principled and practically superior approach. Attempting to learn both the anchor and the shortcut simultaneously from scratch introduces a “chicken-and-egg” problem, as the model must learn a shortcut based on a trajectory it has not yet accurately modeled. This creates an unstable “moving target” for optimization and incurs higher computational costs. In contrast, distillation from a pre-trained FM teacher provides a fixed, high-quality velocity field, offering a much more stable and well-defined learning objective. MeanFlow (Geng et al., 2025) also encounters this problem in the from-scratch setting, achieving its optimal performance only by having its objective degenerate to a Flow Matching task for a large portion of samples (e.g., 75%), which further validates our core thesis that a robust foundation in the velocity field is a prerequisite for learning stable shortcuts.

918 A.6 FLOW MAPPING EQUIVALENCE DERIVATION
919920 Let the Flow Mapping function be $f_\theta(\mathbf{x}_t, t, r) = \mathbf{x}_t + (r - t)\mathbf{F}_\theta(\mathbf{x}_t, t, r)$. The consistency condition
921 $\frac{d}{dt}f_\theta(\mathbf{x}_t, t, r) = 0$ is equivalent to the learning objective for \mathbf{F}_θ :

922
$$\begin{aligned} \frac{d}{dt}f_\theta(\mathbf{x}_t, t, r) = 0 &\iff \mathbf{v} - \mathbf{F}_\theta(\mathbf{x}_t, t, r) + (r - t)\frac{d\mathbf{F}_\theta}{dt} = 0 \\ &\iff \mathbf{F}_\theta(\mathbf{x}_t, t, r) = \mathbf{v} + (r - t)\frac{d\mathbf{F}_\theta}{dt} \end{aligned}$$

923
924
925
926

927 Enforcing this for $t \in [0, r]$ implies that f_θ is constant over the interval, thus mapping any point \mathbf{x}_t to
928 the endpoint \mathbf{x}_r :

929
$$f_\theta(\mathbf{x}_t, t, r) \stackrel{t \in [0, r]}{=} f_\theta(\mathbf{x}_r, r, r) = \mathbf{x}_r$$

930

931 A.7 HYPERPARAMETERS
932933 Table 6: Key hyperparameters for our experiments.
934

Hyperparameter	Value	Hyperparameter	Value	Cifar-10 Value
Optimizer	AdamW	Batch Size	1024	128
Learning Rate	1e-4	Time Sampling ($P_{\text{mean}}, P_{\text{std}}$)	(-0.8, 1.6)	(-1.0, 1.4)
Weight Decay	0	CFG Scale (w)	1.75	1.0
EMA Length (σ_{rel})	0.2	Flow Schedule	OT-FM	Simple-EDM
Norm L2 Loss c	1e-3	Dropout	0	0.2
CFG t_{low}	0.05	AdamW Betas (β_1, β_2)	(0.9, 0.999)	(0.9, 0.99)

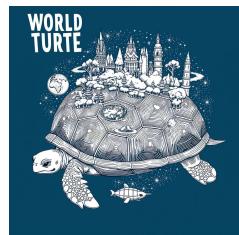
945 A.8 ABLATION ON THE COSINE SIMILARITY TERM
946947 The FM loss in Eq. 9 includes a cosine similarity term, which we found to be beneficial for aligning
948 with pre-trained VAE/DiT teachers whose features are trained with representation supervision. Across
949 our ImageNet 256×256 experiments (NFE=1), removing this term consistently degrades FID by
950 0.1–0.2. We therefore keep it as a default component of the FM loss.953 A.9 COMPUTATIONAL COST AND RESOURCES
954955 **Generation Latency.** On a single A100 GPU, our 2-step FACM sampler takes approximately 70.2
956 ms per image (including VAE decoding), versus 7062.9 ms for a standard 250-step Euler sampler,
957 translating to roughly $\sim 100 \times$ speed-up in wall-clock time.958 **JVP Memory and Throughput.** Our Chain-JVP introduces no bias to the derivative and is embedded
959 within the FSDP backend, so its speed matches a standard FSDP forward with differentiation. It
960 reduces peak memory from an OOM error to ~ 72 GB for a 14B-parameter model on 80GB A100s.
961 For a 5B model, Chain-JVP with FlashAttention2 reduces peak memory from ~ 76 GB to ~ 38 GB.963 **14B Distillation Resources.** We distilled the 14B model using $64 \times$ A100 GPUs. The NFE=8 results
964 reported in the paper were obtained after 5000 steps with a batch size of 512, taking 73 hours. The
965 same setting is reproducible on fewer GPUs via gradient accumulation and FSDP CPU Offload.

972 A.10 ADDITIONAL VISUALIZATION
973

974 FACM (Ours) 14B NFE=8



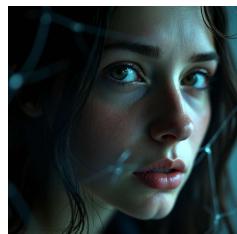
975 Wan2.2 A14B NFE=40x2



976 FLUX.1-Schnell 12B NFE=8

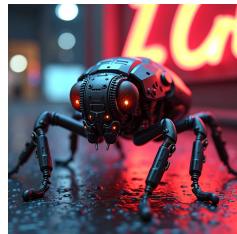
977 FLUX.1-Dev 12B NFE=50x2

978 979 980 981 982 A detailed illustration of a "world turtle," a giant turtle carrying a whole fantasy world on its back, swimming through space.



983 984 985 986 987 988 989 990 991 A close-up selfie in a cracked mirror, the flash highlighting the cracks and the subject's face, moody and introspective.

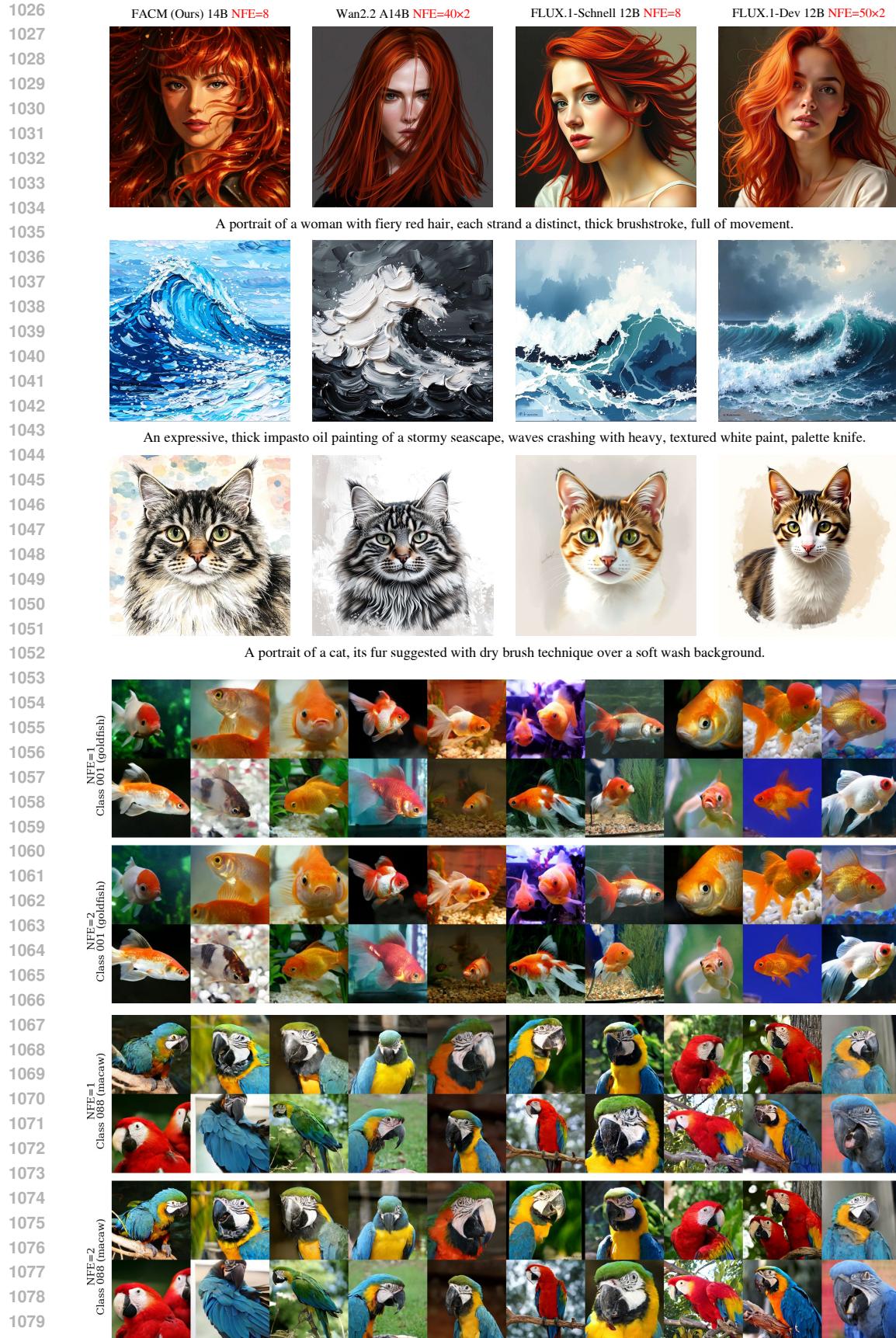
992 993 994 995 996 997 998 999 A tiny tree frog clinging to a vibrant red leaf, its skin glistening with moisture, rich jungle background bokeh.

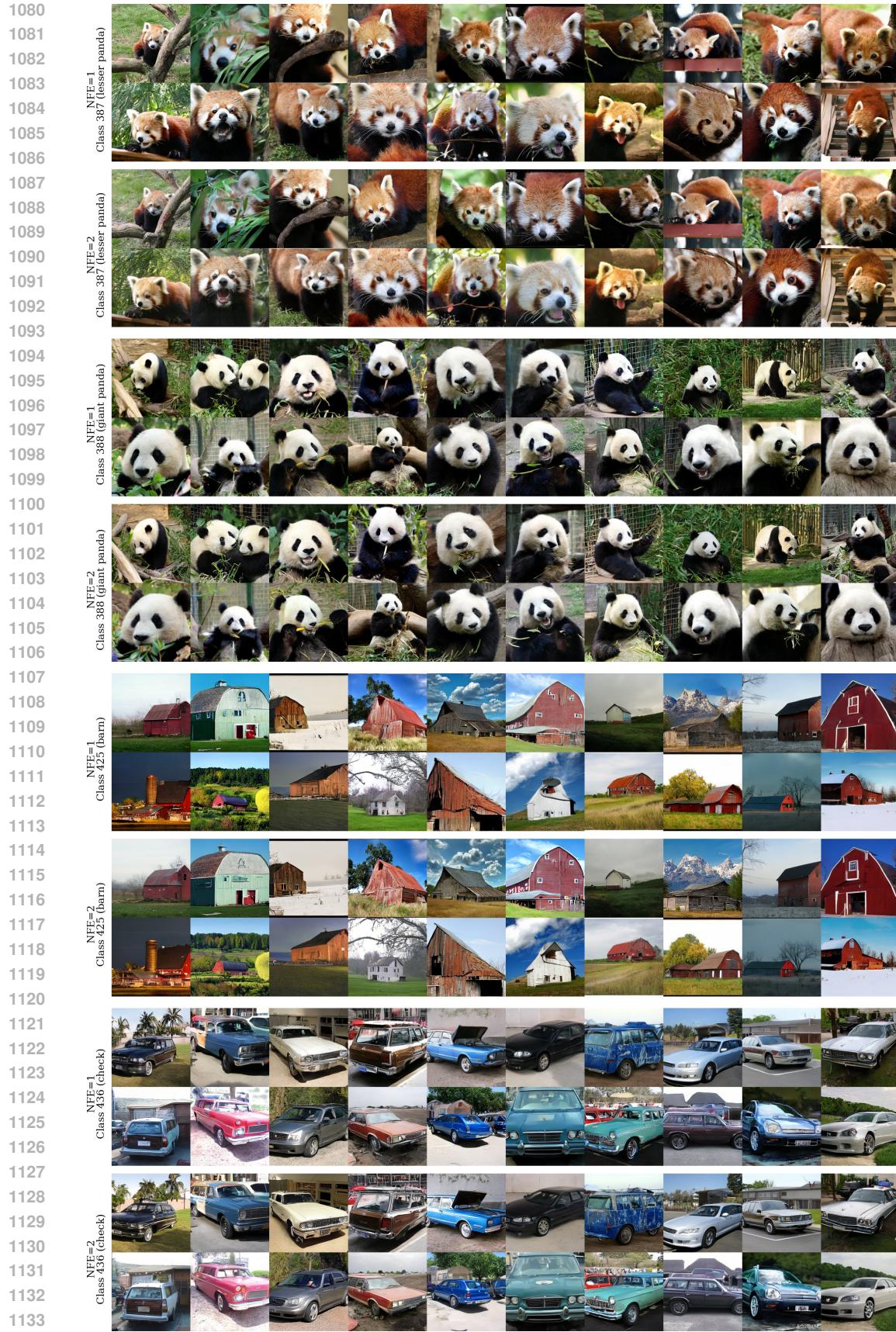


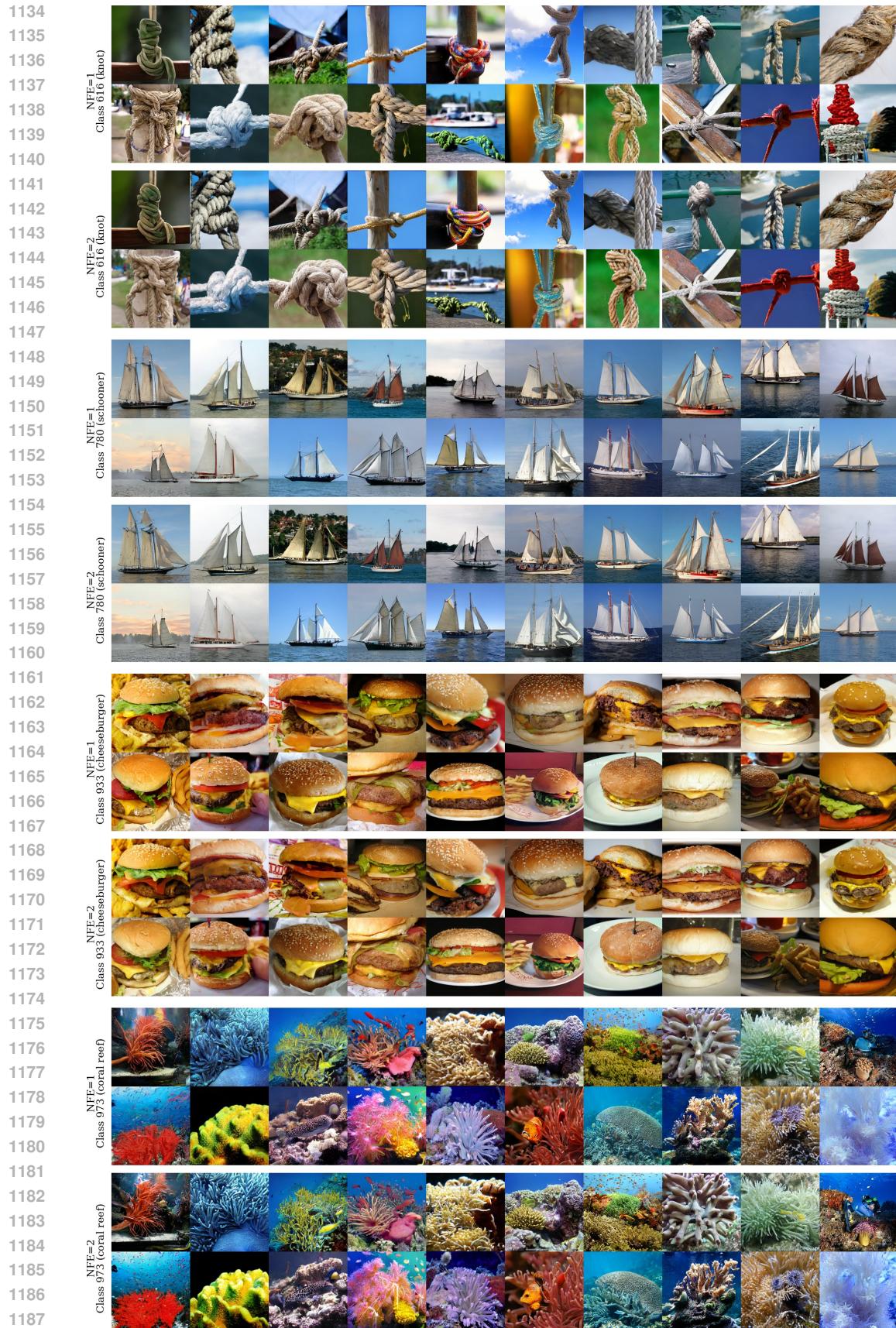
1000 1001 1002 1003 1004 1005 1006 1007 1008 Intricate close-up of a mechanical insect drone, detailed gears and sensors, near a neon sign.

1009 1010 1011 1012 1013 1014 1015 1016 1017 A musician playing a guitar in a New York City subway station, motion blur of the passing train in the background, authentic moment.

1018 1019 1020 1021 1022 1023 1024 1025 A cyberpunk city street at night, painted with thick, swirling impasto brushstrokes, in the style of Vincent van Gogh.

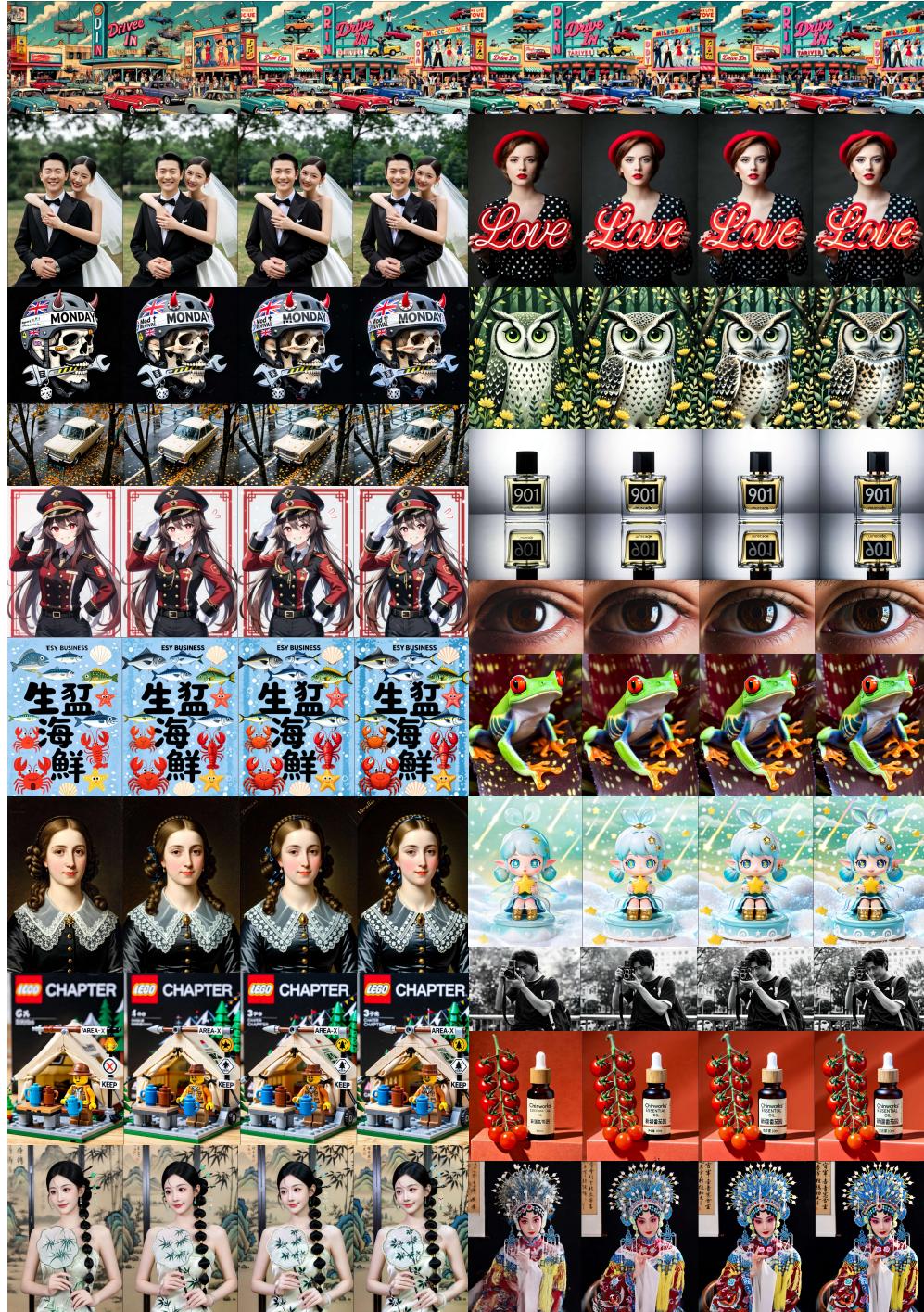






1188

1189 Uncurated T2I generation results of FACM 14B. The generations are based on a batch of randomly sampled
 1190 prompts. The images from left to right are generated with different NFE: 2, 4, 6, and 8, respectively



1235

1236

1237

1238

1239

1240

1241

1242
1243

A.11 PROMPTS FOR TEASER VISUALIZATIONS

1244
1245

The following are the text prompts used for the text-to-image synthesis examples shown in the top two rows of Figure 1.

1246

- A soldier in tactical gear standing next to a modified desert-runner muscle car in a vast desert under a bright sun, digital art.
- A surrealist portrait where the person’s face is a composite of various flowers and leaves.
- A portrait of a girl whose hair is made of flowing, colorful ink, watercolor style.
- Close-up of a tarot card, “The World”, depicting a cyborg wreathed in stars.
- A painting of a time traveler’s footprints through history, each print leading to a different era.
- A man with a worried expression looking out through the window, overcast lighting.
- A florist arranging a bouquet of fresh flowers, a beautiful combination of colors and scents.
- A woman in a corner of the library, surrounded by books, studying quietly.
- An artist in her studio, splattered with paint, staring intently at a large canvas, dramatic lighting, Rembrandt lighting.
- A street musician playing the cello in a European city square, a little girl stops to listen, touching moment.

1260

1261

A.12 THE USE OF LARGE LANGUAGE MODELS (LLMs)

1262

1263

In accordance with ICLR 2026 policy, we report the use of a Large Language Model (LLM) during the preparation of this manuscript. We used a large language model as a writing assistant to help improve the grammar and clarity of our prose. Its role was strictly limited to proofreading; all scientific ideas, analyses, and conclusions presented are our own. The authors have reviewed the final text and take full responsibility for its content.

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295