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Figure 1: FACM scales effectively to high-resolution text-to-image synthesis with a 14B parameter
model (tops) and achieves state-of-the-art few-step generation on ImageNet 256×256 (bottom).

ABSTRACT

Continuous-time Consistency Models (CMs) promise efficient few-step generation
but face significant challenges with training instability. We argue this instability
stems from a fundamental conflict: Training the network exclusively on a shortcut
objective leads to the catastrophic forgetting of the instantaneous velocity field
that defines the flow. Our solution is to explicitly anchor the model in the un-
derlying flow, ensuring high trajectory fidelity during training. We introduce the
Flow-Anchored Consistency Model (FACM), where a Flow Matching (FM) task
serves as a dynamic anchor for the primary CM shortcut objective. Key to this
Flow-Anchoring approach is a novel expanded time interval strategy that unifies
optimization for a single model while decoupling the two tasks to ensure stable,
architecturally-agnostic training. By distilling a pre-trained LightningDiT model,
our method achieves a state-of-the-art FID of 1.32 with two steps (NFE=2) and
1.70 with just one step (NFE=1) on ImageNet 256×256. To address the challenge
of scalability, we develop a memory-efficient Chain-JVP that resolves key incom-
patibilities with FSDP. This method allows us to scale FACM training on a 14B
parameter model (Wan 2.2), accelerating its Text-to-Image inference from 2×40 to
2-8 steps. Our code and pretrained models will be available to the public.

1 INTRODUCTION

As generative models scale to unprecedented sizes and applications demand real-time synthesis,
the need for efficient, few-step samplers has become paramount. Consistency Models (CMs) have
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emerged as a promising paradigm for few-step generation (Song et al., 2023). Early successful works
were largely based on discrete-time formulations (Song et al., 2023; Song & Dhariwal, 2023; Luo et al.,
2023), which are inherently prone to discretization errors. While their continuous-time counterparts
can circumvent these errors, they have been historically hindered by severe training instability. Recent
approaches, notably sCM (Lu & Song, 2024), have made significant strides in stabilizing continuous-
time training through a combination of regularization techniques and architectural modifications.
Concurrently, Flow Mapping methods (Geng et al., 2025; Sabour et al., 2025; Wang et al., 2025)
exemplify another line of research that has aimed to stabilize training. By reformulating the shortcut
objective itself, these methods either model the “average velocity” to arbitrary endpoints, or introduce
additional self-consistency constraints between multi-timesteps. Although these methods provide
stable few-step sampling, they fail to address the root cause of instability. Their reliance on a single,
over-coupled objective to learn the flow and shortcut simultaneously prevents explicit task decoupling
and compromises perfect trajectory fidelity.

This paper addresses the root cause of instability in the continuous CM objective from a novel
perspective. We posit that the standard continuous CM objective, while powerful for learning a
direct “shortcut” across a probability flow, is inherently unstable when trained in isolation. This is
because the approach implicitly assumes the model has a robust understanding of the underlying flow.
However, training exclusively on the shortcut objective can induce catastrophic forgetting of this flow,
leading to training collapse. Our key insight is that stability can be achieved by explicitly anchoring
the model in the very flow it is shortcutting.

The most direct way to achieve this Flow-Anchoring is to re-introduce the explicit training of the
instantaneous velocity field that defines the flow. We propose that an objective based on Flow Match-
ing (FM) (Lipman et al., 2022) can act as a crucial anchor, enabling the primary shortcut objective to
be trained effectively. Based on this principle, we introduce the Flow-Anchored Consistency Model
(FACM), which employs a simple yet effective training strategy combining two distinct objectives:

• Flow-Anchoring Objective that learns the flow’s velocity field to provide stability.

• Shortcut Objective that learns the efficient one-step consistency mapping.

Our architecturally-agnostic method is stabilized by an innovative expanded time interval strategy
that decouples these objectives into distinct domains, while forming a continuous target that unifies
the optimization for a single model, supporting high-fidelity and stable training. By distilling a pre-
trained LightningDiT model, our approach sets new state-of-the-art FID scores of 1.70 (NFE=1) and
1.32 (NFE=2) on the ImageNet 256×256 benchmark. To enable scalability, we solve a key memory
bottleneck caused by the Jacobian-Vector Product (JVP), which is incompatible with modern training
techniques like Fully Sharded Data Parallel (FSDP). We introduce a memory-efficient Chain-JVP
that computes derivatives sequentially by module, avoiding prohibitive memory spikes. This allows
us to train a 14B parameter model and accelerate its inference from 2×40 to just 2-8 steps.

2 BACKGROUND

Diffusion and Flow Matching. Generative models aim to transform a prior distribution p0 (e.g.,
N (0, I)) to a data distribution p1. A dominant approach is Diffusion Models (Ho et al., 2020; Song
et al., 2020; Karras et al., 2022), which learn to reverse a predefined noising process. Flow Matching
(FM) (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023;
Kingma & Gao, 2024) offers a more direct framework to learn the probability flow ODE by regressing
its output against a target velocity dxt/dt = vθ(xt, t). A common approach uses the OT-FM path
xt = (1 − t)x0 + tx1 between a noise sample x0 and a data sample x1, which has a constant
conditional velocity of x1 − x0. This leads to the practical FM objective:

LFM(θ) = Et,x0,x1
∥vθ(xt, t)− (x1 − x0)∥22 . (1)

Consistency Models. Consistency Models (CMs) (Song et al., 2023) are trained to map any point
xt on an ODE trajectory directly to its endpoint x1 in a single evaluation. While early successful
works were largely based on discrete-time formulations that are prone to discretization errors (Song
& Dhariwal, 2023; Geng et al., 2024; Luo et al., 2023; Zheng et al., 2024), our work focuses on the
continuous-time formulation. This approach requires the total derivative of the model’s output to be
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zero: dfθ(xt,t)
dt = 0. With the standard parameterization fθ(xt, t) = xt + (1− t)Fθ(xt, t) and the

boundary condition fθ(x1, 1) = x1, this implies the network Fθ must satisfy:

Fθ(xt, t) = v + (1− t)
dFθ(xt, t)

dt
. (2)

Here, v represents the conditional velocity x1 − x0 from the underlying flow. In the distillation
paradigm, this velocity is provided by a pre-trained FM teacher. This objective, relying on a Jacobian-
vector product (JVP) for the derivative term, is notoriously unstable to train (Lu & Song, 2024).
Recently, Flow Mapping methods (Zhou et al., 2025; Geng et al., 2025; Sabour et al., 2025; Wang
et al., 2025; Guo et al., 2025) have extended consistency models with a unified objective, but they do
not address the root cause of instability and compromise perfect trajectory fidelity.

3 FLOW-ANCHORED CONSISTENCY MODELS (FACM)

This section first analyzes the core instability of continuous-time Consistency Models (CMs), iden-
tifying the “missing anchor” as the root cause. We then present our solution, the Flow-Anchored
Consistency Model (FACM), detailing its mixed-objective training strategy. Our analysis reframes
the challenge of training continuous-time Consistency Models. We argue that the instability is not an
inherent flaw of the shortcut objective itself, but a consequence of training on it in isolation, which
causes the model to lose its anchor in the flow’s underlying velocity field.

3.1 REVISIT THE SHORTCUT TARGET OF CONSISTENCY MODELS

To understand the mechanics of the generative shortcut, we first re-examine the consistency model’s
learning objective. The goal of a consistency function fθ(xt, t) is to map any point xt on an ODE
trajectory to its endpoint x1. Using the OT-FM parameterization fθ(xt, t) = xt + (1− t)Fθ(xt, t),
the ideal shortcut fθ(xt, t) = x1 can only be achieved if the network Fθ learns to predict a very
specific quantity:

xt + (1− t)Fθ(xt, t) = x1 ⇒ Fθ(xt, t) =
x1 − xt

1− t
. (3)

This term has a clear physical interpretation: it is the average velocity required to travel from point
xt to the endpoint x1 in the remaining time 1− t. We denote this quantity as v(xt, t). Thus, the task
of learning the one-step shortcut is equivalent to training Fθ to predict this average velocity.

Now, we investigate the properties that this average velocity field must satisfy. From its definition
in Eq. 3, we have (1− t)v(xt, t) = x1 − xt. Differentiating both sides with respect to t using the
product rule gives:

d

dt
((1− t) · v(xt, t)) = −

dxt

dt
⇒ −v(xt, t) + (1− t)

dv(xt, t)

dt
= −v(xt, t). (4)

Rearranging the terms, we arrive at a key differential identity that the true average velocity field must
satisfy:

v(xt, t) = v(xt, t) + (1− t)
dv(xt, t)

dt
. (5)

This identity is formally identical to the continuous-time CM learning objective (Eq. 2) and the
Meanflow identity (r ≡ 1). This confirms that the CM objective directly forces the network Fθ to
learn the properties of an average velocity field, thus enabling the one-step generation shortcut.

3.2 THE SOURCE OF INSTABILITY: LOSING THE FLOW ANCHOR

While Eq. 2 correctly identifies the target, its practical implementation via the training objective
T = v + (1 − t)

dFθ− (xt,t)

dt is notoriously unstable. The core of this instability lies in the target’s
self-referential nature. This dependency creates two fundamental, intertwined problems:

Missing Instantaneous Velocity Field Supervision. The target T explicitly depends on the instanta-
neous velocity v. However, the CM objective only enforces a loss on the final prediction Fθ. There is
no explicit mechanism to ensure that the model’s learned dynamics remain faithful to the underlying
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instantaneous velocity field v(xt, t). The model is being asked to learn the integral of a function
(average velocity) without being explicitly taught the function itself (instantaneous velocity).

Self-Referential Derivative Estimation. This lack of direct supervision on v makes the derivative
term, dFθ−

dt , highly unstable. The total derivative, expanded via the chain rule, is:
dFθ−(xt, t)

dt
= (∇xt

Fθ−)v +
∂Fθ−

∂t
. (6)

The network is optimized to estimate its own derivative to satisfy the consistency identity in Eq. 2.
Ideally, this process should facilitate a smooth transition, evolving the model from predicting the
instantaneous velocity field to an average velocity field that satisfies this identity. However, without a
stable anchor in the underlying flow, the model’s output Fθ quickly begins to drift. This drift has a
critical consequence: the derivative term in the identity grows to dominate the ground-truth velocity
v, effectively diluting its supervisory signal. At this point, satisfying the identity no longer converges
to the boundary condition. The training target thus becomes noisy and erratic, creating a vicious
cycle that rapidly amplifies errors and ultimately leads to training collapse.

These two issues stem from the same fundamental problem: the CM objective is ungrounded. It
lacks a stable foundation in the very flow it is supposed to shortcut. The antidote is to re-introduce
the explicit supervision of the instantaneous velocity field v via a Flow Matching objective. This
provides a stable anchor for the model’s internal dynamics, ensuring that the model’s gradient field
is well-behaved, which directly stabilizes the derivative term in the CM objective and allows the
primary shortcut objective to be learned effectively. We term this principle Flow-Anchoring.

3.3 THE FACM TRAINING STRATEGY

Based on our analysis, we introduce the Flow-Anchored Consistency Model (FACM). Instead of
requiring specialized architectures, FACM employs a simple and effective training strategy that mixes
two complementary objectives: one for stability (the anchor) and one for efficiency (the accelerator).

3.3.1 THE FACM OBJECTIVE: AN ANCHOR AND AN ACCELERATOR

The FACM training approach harnesses the stability of Flow-Anchoring (the FM task) and the
efficiency of direct shortcut learning (the CM task) within a single training loop. The overall training
loss, LFACM, is a sum of two complementary objectives:

LFACM = LFM + LCM (7)
To enable the model to distinguish between the two tasks, each objective uses a distinct conditioning
signal, cFM and cCM, which we detail in Section 3.3.2.

Flow Matching (FM) Loss (The Anchor). This loss component anchors the model by regressing its
output towards the instantaneous velocity v. The target v is constructed with a base velocity vbase
and an optional classifier-free guidance (CFG) (Ho & Salimans, 2022) term:

v = vbase + w · (vcond − vuncond), (8)
where w is the guidance scale. The definitions of these components vary by training paradigm. For
from-scratch training, the base is the conditional velocity, vbase = x1 − x0, and the guidance term
is derived from the online model Fθ itself. In distillation, the model is initialized with weights
from a pre-trained FM model. A non-trainable copy of these weights, denoted as the “teacher” Fδ,
provides all velocity components for the target, with vbase = vuncond = Fδ(xt, ∅), making the formula
equivalent to standard CFG. Without CFG (w = 1), the target simply defaults to vcond. The FM loss
then combines an L2 term with a cosine similarity term Lcos(a, b) = 1− (a · b)/(∥a∥2∥b∥2):

LFM(θ) = E
[
∥Fθ(xt, cFM)− v∥22 + Lcos(Fθ(xt, cFM),v)

]
. (9)

Consistency Model (CM) Loss (The Accelerator). This component acts as an accelerator, training
the model to learn the generative shortcut. We interpret the consistency condition (Eq. 2) as a
fixed-point problem, Fθ = T (Fθ), where the operator is T (F ) ≜ v + (1 − t)dFdt . The training
objective is designed to solve this problem stably and iteratively. First, we compute the consistency
residual g of the stop-gradient model Fθ− (Fθ− = sg(Fθ)) :

g = Fθ−(xt, cCM)− T (Fθ−) = Fθ−(xt, cCM)−
(
v + (1− t)

dFθ−(xt, cCM)

dt

)
. (10)
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2 − 𝑡 = 2

Average Velocity 𝑣 (Accelerator) Instantaneous Velocity 𝑣 (Anchor)                                                                      ODE Flow 

Auxiliary Time Condition

data
𝑡 = 1

noise
𝑡 = 0

𝑐𝐹𝑀 = (𝑡, 𝑡)

𝑐𝐶𝑀 = (𝑡, 1)

𝑐𝐹𝑀 = (2 − 𝑡)𝑐𝐶𝑀 = (𝑡)

Expanded Time Interval 

data 
𝑡 = 2 − 𝑡 = 1

𝑣 = 𝑣

noise
𝑡 = 0

Flow Memory

Figure 2: Two implementation strategies for the mixed-objective function in FACM. (A) Expanded
Time Interval (default): The time domain is conceptually doubled, showing the same ODE flow
on two intervals. The CM task is performed on t ∈ [0, 1]. To perform the FM task at a point t on
the flow, the model is conditioned on cFM = 2 − t, which maps the time to the alternate interval
[1, 2] to distinguish the two tasks. (B) Auxiliary Time Condition: An additional time condition r is
introduced to the model. When r = 1, the model learns the CM task (average velocity from t to 1,
orange); when r = t, it learns the FM task (instantaneous velocity at t, blue).

This residual g is then clamped to the range [−1, 1] to prevent extreme gradients. A perturbed target
is then formed as:

vtar = Fθ−(xt, cCM)− α(t) · g. (11)

Substituting the definition of g reveals the target’s structure as a relaxation step for the fixed-point
iteration:

vtar = (1− α(t))Fθ− + α(t)T (Fθ−). (12)

This formulation provides a stable, interpolated learning target between the current model’s output
and the ideal consistency target. The final CM loss component uses a norm L2 loss, Lnorm, and is
modulated by weighting functions α(t) and β(t) (detailed in Appendix A.3 and A.4(c)):

LCM(θ) = E [β(t) · Lnorm(Fθ(xt, cCM),vtar)] . (13)

The combination of the interpolated target vtar from the CM loss and the stabilizing flow anchor from
the FM loss enables effective training. It is important to note that our specific choices for weighting
and loss functions are designed to accelerate convergence, not as prerequisites for stability, which is
already guaranteed by the Flow-Anchoring principle.

3.3.2 IMPLEMENTATION OF THE MIXED OBJECTIVE

A key design question is how to encode the distinct conditioning signals, cFM for the FM loss and cCM
for the CM loss, that tell the model which velocity to predict. While this conditioning can include
various information like class labels, for clarity in this section, we focus only on the time-based
components. We explore an effective strategy for this (Figure 2):

Expanded Time Interval. We innovatively propose leveraging an expanded time domain to distin-
guish between the two tasks, a strategy that requires no architectural modifications. The primary
CM task operates on the interval t ∈ [0, 1], using the time directly as the condition: cCM = t. To
perform the FM task at the same point xt (defined by t), we signal this by mapping t to the alternate
interval [1, 2]. This is done by setting the conditioning input to cFM = 2− t, which makes the two
conditions decoupled, symmetric, and easily distinguishable. This mapping also ensures continuity
at the boundary t = 1, as the CM learning objective from Eq. 2 naturally converges to the FM
objective’s target at the boundary:

lim
t→1−

(
v + (1− t)

dFθ(xt, t)

dt

)
= v. (14)

This ensures a smooth transition between the two learning regimes.

Auxiliary Condition with a Second Timestamp. Alternatively, another intuitive approach is to
introduce a second time variable, r, to the model, making its full conditioning a tuple of (t, r). We
then define cCM = (t, 1) and cFM = (t, t). This means the model signature is effectively Fθ(xt, t, r).
When r = 1, the model is trained on the CM task (predicting average velocity from t to 1). When
r = t, the model is trained on the FM task (predicting instantaneous velocity at t, or from t to t). We
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Algorithm 1 FACM Training

Require: Online model Fθ, pretrained teacher Fδ , metrics LFM,LCM

1: Sample x0,x1, t

2: Define cCM, cFM based on t (see Sec 3.3.2)
3: xt ← (1− t)x0 + tx1

4: v ← Fδ(xt, cFM) ▷ For training from scratch, use x1 − x0 instead
5: FFM ← Fθ(xt, cFM)

6: FCM,∇tFθ ← JVP(Fθ, (xt, cCM), (v, 1)) ▷ Simultaneous forward pass and JVP
7: v ← v + (1− t) · sg(∇tFθ)

8: vtar ← (1− α(t)) · sg(FCM) + α(t) · v ▷ Compute relaxation target
9: LTotal ← LFM(FFM,v) + LCM(FCM,vtar)

can provide this auxiliary condition r to the model through a zero-initialized time embedder, which
does not alter its original structure or initial output.

As shown in our ablations (Table 3), while both methods effectively stabilize training, the Expanded
Time Interval strategy consistently yields the best performance. We attribute this to its use of highly
distinct time domains ([0, 1] vs. [1, 2]), which provide clearer, more separable conditioning signals
for the two tasks compared to the subtler differences in the Auxiliary Time Condition (e.g., (t, 1) vs.
(t, t)). For clarity, if t = 0 represents the data distribution (i.e., xt = tx0+(1− t)x1), the conditions
for the two strategies would be t vs. −t and (t, 0) vs. (t, t), respectively.

3.3.3 TRAINING ALGORITHM AND SCALABLE CHAIN-JVP IMPLEMENTATION

With the objective functions and conditioning signals defined, we present the complete FACM training
strategy in Algorithm 1. A key component of this algorithm is the computation of the total derivative
∇tFθ in the CM loss (Line 7), performed using a Jacobian-vector product (JVP).

The JVP computation, however, presents critical bottlenecks when using modern acceleration tech-
niques. While its incompatibility with components like Flash Attention 2 (Dao, 2024) can be resolved
using methods from sCM (Lu & Song, 2024), a more fundamental memory bottleneck emerges
from its conflict with Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023). Standard JVP im-
plementations require the model’s full parameters θ to be materialized on the device, forcing an
all gather operation in an FSDP setup. This reconstructs the entire parameter set on each GPU,
causing a prohibitive memory spike that makes training models with over ten billion (10B) parameters
impossible. To overcome this, we leverage the chain rule. For a network composed of modules
Fθ = fL ◦ · · · ◦ f1, the JVP can be computed sequentially:

JFθ
(z) · v = JfL(zL−1) · (· · · · (Jf2(z1) · (Jf1(z0) · v)) . . . ) (15)

where zi = fi(zi−1) is the intermediate output. Our approach computes the JVP for each module
sequentially, embedding this operation within the FSDP logic. Its speed is consistent with a standalone
JVP pass, adding only standard FSDP overhead. This ensures that only one module’s parameters are
materialized at a time. Consequently, peak memory depends on the largest module, not the entire
model, and the resulting memory savings grow with the model’s parameter count.

In summary, the principle of Flow-Anchoring offers a robust and fundamental solution. While
other methods achieve stability, they do so with certain limitations. For instance, sCM (Lu & Song,
2024) requires architectural modifications to its normalization layers, limiting its adaptability to
large, pre-trained models. Other approaches like MeanFlow (Geng et al., 2025), while clever, present
a trade-off: by treating the instantaneous velocity as merely an edge case (r = t) of the primary
average velocity objective, the learning tasks become over-coupled. As a result, the supervisory
signal for the underlying flow is often diluted, which we have observed can lead to training collapses
and underfitting. In contrast, FACM provides a more direct and principled solution. Through
our innovative expanded time interval strategy, the anchoring and shortcut tasks are functionally
decoupled into distinct domains. This ensures the flow anchor receives a clear, undiluted supervisory
signal at all times, forcing the model to maintain a stable and high-fidelity representation of the flow.
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Table 1: Few-step generation on CIFAR-10 and ImageNet 256×256. “×2” indicates that CFG
doubles the NFE per step. Our method sets a new state-of-the-art on both datasets.

Unconditional CIFAR-10
Method NFE FID (↓)
Multi-NFE Baselines
DPM-Solver++ (Lu et al., 2022) 10 2.91
EDM (Karras et al., 2022) 35 2.01

Few-NFE Methods (NFE=1)
iCT (Song & Dhariwal, 2023) 1 2.83
eCT (Geng et al., 2024) 1 3.60
sCM (sCT) (Lu & Song, 2024) 1 2.85
IMM (Zhou et al., 2025) 1 3.20
MeanFlow (Geng et al., 2025) 1 2.92
FACM (Ours) 1 2.69
Few-NFE Methods (NFE=2)
TRACT (Berthelot et al., 2023) 2 3.32
CD (LPIPS) (Song et al., 2023) 2 2.93
iCT-deep (Song & Dhariwal, 2023) 2 2.24
ECT (Geng et al., 2024) 2 2.11
sCM (sCT) (Lu & Song, 2024) 2 2.06
IMM (Zhou et al., 2025) 2 1.98
FACM (Ours) 2 1.87

Class-Conditional ImageNet 256×256
Method Params NFE FID (↓)
Multi-NFE Baselines
SiT-XL/2 (Ma et al., 2024) 675M 250×2 2.06
DiT-XL/2 (Peebles & Xie, 2023) 675M 250×2 2.27
REPA (Yu et al., 2025) 675M 250×2 1.42
LightningDiT (Yao et al., 2025) 675M 250×2 1.35

Few-NFE Methods (NFE=1)
iCT (Song & Dhariwal, 2023) 675M 1 34.24
Shortcut (Frans et al., 2025) 675M 1 10.60
MeanFlow (Geng et al., 2025) 676M 1 3.43
FACM (Ours) 675M 1 1.70
Few-NFE Methods (NFE=2)
iCT (Song & Dhariwal, 2023) 675M 2 20.30
IMM (Zhou et al., 2025) 675M 1×2 7.77
MeanFlow (Geng et al., 2025) 676M 2 2.20
FACM (Ours) 675M 2 1.32

This robust theoretical foundation, combined with our scalable Chain-JVP implementation, makes
FACM not only stable but also highly practical for training models at an unprecedented scale.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We empirically validate FACM on image generation benchmarks, including CIFAR-10 (Krizhevsky
& Hinton, 2009) and ImageNet 256×256 (Deng et al., 2009). We evaluate models based on Fréchet
Inception Distance (FID) (Heusel et al., 2017) and the Number of Function Evaluations (NFE).
FACM can be trained from scratch or by distilling a pre-trained model. Our default experimental
setup involves a two-stage process. We first pre-train a FM model, incorporating our mixed-objective
conditioning as detailed in Appendix A.4 (a) to accelerate the subsequent distillation. We then distill
this teacher using the FACM strategy. For few-step inference, we follow the standard multi-step
sampling procedure for CMs as described in Appendix A.4 (b). Further details on our experimental
settings are provided in Appendix A.4. To demonstrate scalability, we also distill a 14B parameter
model (Wan2.2) on the text-to-image (T2I) task, achieving high-fidelity generation in just 2-8 steps.

4.2 MAIN RESULTS

4.2.1 COMPARISON WITH STATE-OF-THE-ART

As shown in Table 1, FACM achieves state-of-the-art results on both CIFAR-10 and ImageNet
256×256. Specifically, our method achieves FIDs of 1.70 (NFE=1) and 1.32 (NFE=2) on ImageNet
256×256 by training a LightningDiT model in latent-space, and 2.69 (NFE=1) and 1.87 (NFE=2) on
CIFAR-10 by training a DDPM++ model (Ho et al., 2020) in pixel-space, significantly outperforming
previous methods on both benchmarks. Remarkably, our few-step model even surpasses some
multi-step baselines that require hundreds of function evaluations.

4.3 ABLATION STUDY ON THE TRAINING STRATEGY

We conduct ablation studies to validate our claims regarding the training strategy. We test on the
ImageNet 256×256 dataset by distilling a pre-trained LightningDiT model. The results provide
strong evidence for our central claim: the presence of the FM objective is the critical stabilizing
anchor.

7
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Table 2: FID scores (NFE=2) on ImageNet 256×256 for different few-step methods applied to
various backbone architectures. † indicates our reproduction.

Backbone Baseline (NFE=250×2) sCM† MeanFlow† FACM (Ours)
SiT-XL/2 2.06 2.83 2.27 2.07
REPA 1.42 2.25 1.88 1.52
DiT-XL/2 2.27 2.91 2.62 2.31
LightningDiT 1.35 1.94 1.74 1.32

Table 3: Ablation on stabilization strategies. All methods are distilled from the same LightningDiT
teacher. †: Our reproduction. ∗: For sCM, more epochs yield worse results.

Method Params FM epochs CM epochs FID (NFE=1, ↓) Stable
sCM (w/o pixel norm.) 675M 800 - - ×
sCM (w/ pixel norm.)† 676M 600 30∗ 3.04 ✓
MeanFlow † 676M 800 200 2.75 ✓
FACM (Auxiliary Condition) 676M 800 200 1.97 ✓
FACM (Expanded Interval) 675M 800 200 1.81 ✓

Training from scratch methods

MeanFlow † 676M 0 1120 2.65 ✓
FACM (Expanded Interval) 675M 0 800 2.27 ✓

Different Architectures. To demonstrate the architectural agnosticism of our approach, we apply
FACM, sCM, and MeanFlow to a range of state-of-the-art architectures, including SiT-XL/2, REPA,
DiT-XL/2, and LightningDiT. All methods are distilled from their respective multi-step FM models.
As shown in Table 2, FACM consistently achieves the lowest FID scores across all tested backbones.
This highlights that Flow-Anchoring is a fundamental principle for stabilizing consistency training
that is not limited to a specific model design.

Stabilization Strategy. To ensure a fair comparison, we distill sCM, MeanFlow, and FACM
from an identical LightningDiT teacher (reproduction details in Appendix A.4 (c)). As shown in
Table 3, FACM achieves superior results due to its principled approach to stability without requiring
architectural changes. In contrast, sCM’s stability is limited, depending on architectural modifications
(pixel normalization) and sensitive hyperparameter tuning. MeanFlow achieves robustness but at
the cost of an over-coupled objective (u(z, t, t) = v(z, t)) that hinders optimization by diluting the
essential path modeling task. FACM’s explicit task separation proves more effective, as it allows the
model to stably learn the shortcut while remaining anchored to the teacher’s flow.

Sensitivity to Teacher Model Quality. As shown in Figure 4(a), FACM’s performance monotonically
improves with teacher quality. This demonstrates that by explicitly anchoring the teacher’s complex
flow, our method can consistently benefit from stronger teachers. This confirms FACM acts as a
high-fidelity trajectory compression rather than a lossy compromise on the pre-trained flow.

Ablation on Key Components. As shown in Table 4, introducing Flow-Anchoring with our Expanded
Time Interval decouples the FM and CM tasks, yielding faster convergence. Fidelity is further
improved as shortcut interpolation (α) and beta weighting (β) ensure a smooth transition to FM
supervision as t→ 1, while residual clamping suppresses gradient spikes. Together, these components
stably guide the learning dynamic via the FM anchor, leading to significantly better trajectory fidelity.

Table 4: Ablation study on key techniques on ImageNet 256x256.

Configuration FID@Epochs 10 (NFE=1, ↓) Collapse
MeanFlow / Fixed r = 1 MeanFlow (0% FM) 372.3-391.5 Yes
MeanFlow (75% FM) 43.03 No
Fixed r = 1 MeanFlow (75% FM) 15.54 No
w/ Flow Anchoring (Expanded Time Interval) 4.31 No
w/ Interpolation (α(t) = 1) 3.42 No
w/ Residual Clamping 2.86 No
w/ Beta Weighting (β(t) = 1) (FACM) 2.51 No

8
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Sensitivity to FM Loss Weight. The FM loss is a prerequisite for stability, but the minimum required
weight λFM depends on the model’s initialization. Our investigation reveals a nuanced picture that
strongly supports a simple default choice (e.g., λFM = 1.0). As summarized in Table 5 (left vs. right),
the non-finetuned setting requires at least λFM ≥ 0.1 to avoid collapse, whereas the finetuned setting
remains stable with λFM as low as 10−8. These results lead to a key conclusion: while a non-zero FM
weight is essential, FACM is highly robust to the specific weight across several orders of magnitude
once stability is achieved. This robustness, which stems from our decoupled design, makes a direct
summation a simple, effective, and reliable choice that avoids costly hyperparameter tuning.

Table 5: Sensitivity to λFM under two settings. Left: model not pre-finetuned on 1 < t < 2. Right:
model is pre-finetuned on 1 < t < 2.

FM Loss Weight (λFM) FID (NFE=1, ↓)
0.0–0.1 Collapse
0.1–10.0 3.17–3.22
10.0–64.0 3.32–4.97

FM Loss Weight (λFM) FID (NFE=1, ↓)
0.0-1e-8 Collapse
1e-8–1e-4 2.90-5.88
1e-4–10.0 2.90–3.02
10.0–64.0 3.02–4.58

4.3.1 TRAINING DYNAMICS OF FACM

We analyze the training dynamics by plotting the total gradient norm under different configurations
in Figure 3. Figure 3(a) clearly shows that removing the FM objective leads to catastrophic gradient
spikes, after which the model’s output immediately degenerates into pure noise (mode collapse). This
confirms our hypothesis that a pure consistency gradient can trap the model in a local optimum where
it sacrifices endpoint fidelity in pursuit of global consistency. Figure 3(b) further illustrates the effect
of our auxiliary techniques. While each individually helps to suppress the gradient norm compared to
removing them all, their combined use in our baseline model achieves the lowest and most stable
gradient profile, demonstrating their synergistic effect in stabilizing the training process.
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(a) FM Anchoring is Essential for Stability
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(b) Effect of Auxiliary Techniques
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w/o Clamping
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Figure 3: (a) The raw gradient norm for a pure CM (w/o FM Objective) shows an instantaneous spike
leading to collapse, while our baseline remains stable. (b) The smoothed gradient norm for ablations
of auxiliary techniques. Removing any single technique increases instability.

4.3.2 SCALABILITY ON A 14B TEXT-TO-IMAGE MODEL

Scaling continuous-time consistency models to billion-parameter scales presents a significant chal-
lenge due to the Jacobian-vector product (JVP) computation. While recent Differential Derivation
Equation (DDE) Sun et al. (2025); Wang et al. (2025), can yield results comparable to JVP on
models up to 1B parameters, we observe that they exhibit significant deviation on larger models
like our 14B setup. In such cases, their computed derivatives become nearly orthogonal or even
opposed to the JVP result, indicating an inherent error accumulation that hinders further scalability.
To address this, our memory-efficient Chain-JVP provides an accurate and scalable solution. To
demonstrate its effectiveness, we applied FACM to distill the 14B parameter Wan 2.2 model. This
process successfully accelerated inference from 2× 40 steps to just 2-8 steps. For the experiment, we
used a pre-trained Wan 2.2 Text-to-Video (T2V) model (Wan et al., 2025) as a teacher on an in-house
Text-to-Image (T2I) dataset (Despite being a T2V model, Wan 2.2 has strong image generation capa-
bility from mixed image-video pre-training.). Furthermore, we adapt the model’s self-attention and
cross-attention mechanisms to be compatible with JVP computation, following the formulation of (Lu
& Song, 2024). This adaptation also addresses the correctness of differentiation for variable-length

9
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Figure 4: (a) Performance of student models (NFE=2) vs. teacher FM model pre-training epochs. (b)
Performance vs. distillation epochs. (c) Trajectory fidelity analysis of 14B Wan2.2 model via flow
matching loss. Apart from the conditioning method, all other settings were the same.

sequences and with bf16 precision. Our visualizations for this experiment are provided in Figure 1 and
Appendix A.10, including comparison against the baseline model, as well as the FLUX.1-Dev (Labs,
2024a) and the FLUX.1-Schnell models (Labs, 2024b).

4.4 FROM CONSISTENCY MODELS TO FLOW MAPPING MODELS

Recent work has increasingly emphasized the advantages of Flow Mapping, where the model learns
to predict the average velocity from an arbitrary time t to another time r. (Sabour et al., 2025; Wang
et al., 2025; Geng et al., 2025; Boffi et al., 2025). Flow Mapping requires the model to ensure that
the derivative of fθ(xt, t, r) = xt + (r − t)Fθ(xt, t, r) is zero. This formulation is an extension of
consistency models along the trajectory, demanding that the model’s prediction, fθ(xt, t, r), remains
consistent over any time interval [0, r] (detailed in Appendix A.6). We found through experiments on
Wan2.2 that FACM can be easily adapted to be compatible with the Flow Mapping formulation. This
is achieved simply by changing cCM from (t) to (t, r) through zero-initialized time embedder and
projection modules, while cFM is maintained in the separate, expanded time domain. As illustrated
in Figure 4(c), the Expanded Time Interval strategy allows the Flow Mapping to be more stably
anchored to the teacher’s trajectory. If the prediction of the instantaneous velocity field is treated
merely as a marginal case of the Auxiliary Time Condition (e.g., r = t), the FM loss becomes highly
unstable, even when increasing the sampling proportion of t = r as is done in MeanFlow. The
consistently lower FM loss for the FACM condition demonstrates the superior trajectory fidelity
achieved by our decoupled training strategy.

5 LIMITATIONS AND FUTURE WORK

Our work highlights two primary areas for future research. First, on large-scale models, a performance
gap persists between samples generated in minimal steps (e.g., 1-2) and those requiring more steps
(e.g., 8). Bridging this gap by enhancing the model’s expressiveness in the ultra-few-step regime is a
key challenge. Second, while our Chain-JVP method successfully mitigates the memory bottleneck of
the Jacobian-vector product, its computational overhead remains a concern. Optimizing its efficiency
is crucial for improving training throughput. Additionally, we found that our acceleration model,
even when fine-tuned exclusively on T2I data, can directly accelerate T2V synthesis by targeting only
the low-noise diffusion steps (SNR ≤ SNRmin

2 ), all without introducing flickering or detail loss. This
could inform future work on efficient, high-fidelity video synthesis.

6 CONCLUSION

In this work, we introduce the FACM, a strategy that addresses the instability of continuous-time
CMs by anchoring the network to the underlying instantaneous velocity field with a Flow Matching
loss. The core of this Flow-Anchoring approach is an expanded time interval strategy that unifies
optimization for a single model via a continuous target, while functionally decoupling the anchoring
and shortcut tasks to ensure high-fidelity and stability. Our method achieves new state-of-the-art FIDs
on both ImageNet 256×256 (1.70 at NFE=1 and 1.32 at NFE=2) and CIFAR-10 (2.69 at NFE=1 and
1.87 at NFE=2). Furthermore, our Chain-JVP overcomes FSDP scalability bottlenecks, enabling us
to accelerate a 14B model’s inference from 2×40 to 2-8 steps.
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A APPENDIX

A.1 THEORETICAL ANALYSIS: STABILITY AND CONVERGENCE OF FACM

This section provides a detailed mathematical derivation of the stability and convergence properties
of FACM, complementing the intuitive discussion in Section 3.

We use the same notation as in the main text:

• Student network (online model): Fθ(xt, t)

• Stop-gradient copy: Fθ−(xt, t) = sg(Fθ(xt, t))

• Instantaneous velocity field (FM anchor): v(xt, t)

• CM operator (Consistency target): T [F ] = v + (1− t)dFdt

A.1.1 STABILITY ANALYSIS: PREVENTION OF GRADIENT EXPLOSION

Step 1.1: Structural form of the CM gradient. The CM loss is

LCM(θ) = Ext,t

[
1

2

∥∥Fθ(xt, t)− vtar(xt, t)
∥∥2] , (16)

where vtar is the CM target derived from the operator T (Eq. 13 and Eq. 2 in the main text).

Differentiating w.r.t. θ yields the gradient in compact form:

∇θLCM = ∇θExt,t

[
1

2

∥∥Fθ(xt, t)− vtar(xt, t)
∥∥2]

= Ext,t

[
∇θ

(
1

2
(Fθ − vtar)

⊤(Fθ − vtar)

)]
= Ext,t

[
(∇θFθ −∇θvtar)

⊤
(Fθ − vtar)

]
(Since vtar is a stop-gradient target, ∇θvtar = 0)

= Ext,t

[
∇θFθ(xt, t)

⊤︸ ︷︷ ︸
parameter sensitivity

·
(
Fθ(xt, t)− vtar(xt, t)

)︸ ︷︷ ︸
prediction error e

]
,

(17)

where ∇θFθ denotes the Jacobian of Fθ w.r.t. the parameters θ, and we write
e(xt, t; θ) := Fθ(xt, t)− vtar(xt, t). (18)

Taking norms and using ∥A⊤b∥ ≤ ∥A∥op ∥b∥, we obtain∥∥∇θLCM
∥∥ ≤ Ext,t

[∥∥∇θFθ(xt, t)
∥∥

op · ∥e(xt, t; θ)∥
]
. (19)

Thus, the CM gradient norm is governed by two independent factors:

• the prediction error e, which determines the basic scale and direction of the gradient;
• the parameter sensitivity∇θFθ, which acts as a multiplicative amplifier.

Step 1.2: Decomposition of the error term. Recall that the CM operator for a general field F is

vtar(xt, t) = v(xt, t) + (1− t)
(
∂tFθ−(xt, t) +∇xt

Fθ−(xt, t) · v(xt, t)
)
. (20)

The error of the online model Fθ relative to this target then decomposes as

e =
(
Fθ − v

)︸ ︷︷ ︸
function deviation

− (1− t)
∂Fθ−

∂t︸ ︷︷ ︸
time derivative term

− (1− t)∇xt
Fθ− · v︸ ︷︷ ︸

JVP (spatial Jacobian)

. (21)

Hence, the size of e is governed by the first-order spatio-temporal derivatives of the (stop-gradient)
network Fθ− .
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Step 1.3: FACM’s stabilization mechanism. FACM combines Flow Matching (FM) with the CM
objective, using shared parameters θ, and thereby stabilizes both factors in Eq. (19).

(1) Lipschitz supervision via Flow Matching. The FM loss (Eq. 9) trains Fθ(xt, cFM) to match
the instantaneous velocity field v(xt, t), which is a bounded ground-truth function that does not
depend on θ and is Lipschitz in (xt, t). For standard architectures, the Lipschitz constant of Fθ with
respect to its inputs is determined only by the spectral norms of the weight matrices and the activation
Lipschitz constants, all of which are shared across time conditions t and 2− t. Minimizing the FM
loss therefore keeps these spectral norms in a moderate range and induces a global Lipschitz bound∥∥∇θFθ(xt, c)

∥∥
op ≤ Lnet (22)

for all (xt, c) in the training domain, including both the FM branch (c = 2− t) and the CM branch
(c = t). Here, Lnet represents the Lipschitz constant of the network, and ∥ · ∥op denotes the spectral
norm (operator norm). In contrast, pure CM supervises Fθ with a self-referential target. To satisfy
the consistency boundary condition (i.e., mapping xt to x1 as t → 1) under the parameterization
xt + (1− t)Fθ(xt, t), the network output Fθ is implicitly forced to approximate the average velocity
(x1 − xt)/(1 − t), which blows up as t → 1. The CM target is therefore a dynamic, potentially
unbounded prediction, whereas FM always provides a bounded ground-truth target.

(2) Bounding the error via FM-anchored supervision. Next, we show that the prediction error
term e in the gradient (Eq. 19) remains bounded under FACM. For clarity, we focus on the deviation
between the online model and the FM anchor, Fθ(xt, t) vs. v(xt, t), and make explicit use of the
expanded time interval strategy (Figure 2), where FM uses the condition cFM = 2− t but predicts the
same physical velocity v(xt, t).

We begin with the triangle inequality:∥∥Fθ(xt, t)− v(xt, t)
∥∥ ≤ ∥∥Fθ(xt, t)− Fθ(xt, 2− t)

∥∥︸ ︷︷ ︸
temporal smoothness of Fθ

+
∥∥Fθ(xt, 2− t)− v(xt, t)

∥∥︸ ︷︷ ︸
FM error

.
(23)

The first term measures how much the network output changes when the (time-related) condition
goes from t to 2− t for the same spatial point xt. Using the fundamental theorem of calculus for the
time coordinate, we write

Fθ(xt, t)− Fθ(xt, 2− t) =

∫ t

2−t

∂

∂τ
Fθ(xt, τ, c̃(τ)) dτ, (24)

where c̃(τ) interpolates between the CM and FM conditions as τ varies. Taking norms and applying
the triangle inequality gives∥∥Fθ(xt, t)− Fθ(xt, 2− t)

∥∥ ≤ ∣∣∣∣∫ t

2−t

∥∥∥ ∂

∂τ
Fθ(xt, τ, c̃(τ))

∥∥∥dτ ∣∣∣∣ . (25)

Since FM constrains the spectral norms of the weights, the partial time derivative
∥∥∂τFθ(·)

∥∥ is
bounded by a constant (of order Lnet) over the training domain. The integration interval has length at
most 2, so ∥∥Fθ(xt, t)− Fθ(xt, 2− t)

∥∥ ≤ 2Lnet. (26)

The second term in Eq. (23) is precisely the FM error

εFM(xt, t) := Fθ(xt, 2− t)− v(xt, t), (27)

whose squared norm is minimized by LFM and thus has bounded variance. Combining these bounds,
we obtain a uniform control of the function deviation:∥∥Fθ(xt, t)− v(xt, t)

∥∥ ≤ 2Lnet + ∥εFM(xt, t)∥. (28)

Finally, because the same spectral-norm constraints apply to all weight matrices, the spatial Jacobian
∇xt

Fθ− and time derivative ∂tFθ− in Eq. (21) are also uniformly bounded by constants of order
Lnet. Hence, all components of e remain bounded.
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Conclusion (Stability). Putting these results together, we see that under FACM:

• the parameter sensitivity is bounded: ∥∇θFθ∥op ≤ Lnet;
• the prediction error e is uniformly bounded in norm by a constant depending on Lnet and

the FM error statistics.

Therefore, the CM gradient norm satisfies∥∥∇θLCM
∥∥ ≤ C L2

net, (29)
eliminating the gradient explosion observed in pure CM training.

A.1.2 CONVERGENCE PROOF

We provide a concise analysis showing that FACM ensures convergence by eliminating target
singularities, bounding gradient variance, and enforcing alignment through shared parameters.

Step 2.1: Mechanism of Variance Reduction. The pure consistency target implies predicting the
average velocity

v(xt, t) =
x1 − xt

1− t
. (30)

As t→ 1, any variance σ2 in the endpoint estimate x1 is amplified by (1− t)−2, so

Var[v(xt, t) | t] =
σ2

(1− t)2
, (31)

which makes the pure-CM shortcut objective ill conditioned near the data endpoint. FACM mitigates
this by using a relaxed target

vtar(xt, t) = (1− α(t))Fθ−(xt, t) + α(t)v(xt, t). (32)
In practice we use the schedule α(t) = 1 − t0.5 (Sec. 3). Writing t = 1 − ε with 0 < ε ≪ 1 and
using the Taylor expansion

t0.5 = (1− ε)0.5 = 1− 1
2ε+O(ε

2), (33)
we obtain

α(t) = 1− t0.5 = 1
2ε+O(ε

2) = 1
2 (1− t) +O

(
(1− t)2

)
. (34)

Hence α(t) is asymptotically proportional to (1− t) and

lim
t→1

α(t)

1− t
= 1

2 , (35)

so the factor α(t) cancels the (1 − t)−1 singularity in the average-velocity term up to a constant.
Consequently Var[vtar(xt, t) | t] remains uniformly bounded over t ∈ [0, 1], providing the core
mechanism for variance reduction in FACM.

Step 2.2: Bounded and Reduced Gradient Variance. Locally, Lnorm behaves like a rescaled
squared ℓ2 loss, so the CM gradient for one sample (xt, t) satisfies∥∥∇θℓCM(θ;xt, t)

∥∥ ≲ β(t) ∥∇θFθ(xt, t)∥op ∥Fθ(xt, t)− vtar(xt, t)∥2. (36)
Using the stability bound ∥∇θFθ∥op ≤ Lnet and the uniform boundedness of vtar, we obtain a finite
second-moment (and hence variance) bound

E
[
∥∇̂θLCM∥2

]
≲ L2

net Et

[
β(t)2 Ext

[
∥Fθ(xt, t)− vtar(xt, t)∥2 | t

]]
. (37)

Here the boundedness follows from the variance-reduction mechanism in the previous paragraph,
which shows that Var[vtar(xt, t) | t] is uniformly bounded in t, together with the global Lipschitz
bound ∥∇θFθ∥op ≤ Lnet from Step 1.4: even if β(t) ≡ 1, the right-hand side is finite because both
the Jacobian norm and the target variance are controlled. The role of β(t) ∈ [0, 1] is to further reduce
the integrated variance: for any non-negative function q(t),

Et[β(t)
2q(t)] ≤ Et[q(t)], (38)

with strict inequality whenever β(t) < 1 on a set of non-zero measure. Since q(t) = Ext
∥Fθ(xt, t)−

vtar(xt, t)∥2 | t is typically largest near the data endpoint t ≈ 1, choosing a decaying schedule (e.g.,
cosine) for β(t) suppresses precisely those high-variance contributions, yielding a strictly lower
integrated gradient variance than the pure-CM case.
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Step 2.3: Alignment via Shared Parameters. The expanded time interval [0, 2] creates a natural
synchronization mechanism between the FM and CM tasks. In the high-SNR region (t ≈ 1), the
schedules α(t) and β(t) suppress the CM gradients, so parameter updates there are dominated by the
FM branch, which supervises Fθ(xt, 2−t) to match the instantaneous velocity field v(xt, t). Because
both branches share the same parameters and the stability analysis above bounds the discrepancy
between Fθ(xt, t) and Fθ(xt, 2− t), this FM supervision implicitly guides Fθ(xt, t) to align with
the underlying velocity field. Combined with the reduced gradient variance from Step 2.2, this
shared-parameter coupling explains the empirically faster and more stable convergence of FACM
compared to pure CM training.

A.2 ON TOTAL DERIVATIVES

In this paper, for a network N(xt, C(t)) (e.g., Fθ), its total derivative along the trajectory xt(t) =
(1− t)x0 + tx1 (with v = dxt

dt = x1 − x0) with respect to t is given by the chain rule:

dN(xt, C(t))
dt

=
∂N

∂xt
v +∇CN ·

dC(t)
dt

. (39)

The term dFθ− (xt,cCM)

dt is computed for the CM task. Depending on the implementation strategy
(Sec. 3.3.2), the conditioning cCM can be t or a tuple (t, 1). In both cases, its derivative with respect
to t is effectively 1 for the time-dependent component and 0 for any constant component. Therefore,
the calculation simplifies to:

dN(xt, cCM)

dt
≈ ∂N

∂xt
v +

∂N

∂t
, (40)

where ∂N
∂t denotes the partial derivative with respect to the explicit time argument(s) encoded in

the conditioning.

A.3 NORM L2 LOSS

The CM loss component uses a norm L2 loss to improve stability against outliers. For a model
prediction p and a target y, let the per-sample squared error be e = ∥p − y∥22. The loss is then
calculated as:

Lnorm(p,y) =
e√

e+ c2
(41)

where c is a small constant. This formulation is equivalent to the adaptive L2 loss proposed in
MeanFlow (Geng et al., 2025) with p = 0.5, and behaves similarly to a Huber loss, being robust to
large errors.

A.4 EXPERIMENTAL DETAILS

(a) Pre-training Strategy. Our teacher models are standard Flow Matching models. While FACM
distillation works perfectly with a standard, single-condition pre-trained teacher, we find that con-
vergence can be accelerated by first familiarizing the teacher with our dual-task conditioning. This
optional adaptation can be achieved either by pre-training from scratch with a mixed-conditioning
objective (i.e., replacing the standard time conditioning with our FM-specific formats for 50% of
samples) or by briefly fine-tuning a pre-trained FM model with this objective for a few epochs. Fur-
thermore, to prevent sporadic NaN losses during pre-training, all our LightningDiT implementations
incorporate Query-Key Normalization (QKNorm), following updates in the official repository.

(b) Sampling Strategy. Our multi-step sampling (NFE ≥ 2) follows a standard iterative refinement
process. For an N -step generation, we use a simple schedule of N equally spaced timesteps
ti = (i − 1)/N for i = 1, . . . , N . The process starts with pure noise x0. At each step i, we first
compute a one-step prediction x̂1 using the model’s output Fθ: x̂1 = xti + (1− ti)Fθ(xti , cCM). If
it is not the final step, we generate the input for the next step, xti+1 , by linearly interpolating between
the predicted endpoint and a new noise sample, consistent with the OT-FM framework:

xti+1 = ti+1x̂1 + (1− ti+1)zi, where zi ∼ N (0, I). (42)

The final output is the prediction from the last timestep, tN .
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(c) Reproduction Details. At the time of our main ablations, the official codebases for Mean-
Flow (Geng et al., 2025) and sCM (Lu & Song, 2024) were not yet available. A JAX implementation
of MeanFlow was later released, but without a reproducible configuration for its SOTA results. For a
controlled and fair comparison, we therefore implemented PyTorch reproductions under the exact
same environment, teacher, and hyperparameters across methods. Our MeanFlow reproduction
follows its two-time-variable conditioning and log-normal time sampling; following the from-scratch
regime, we set t = r with a 75% probability for optimal performance. In the distillation setting,
this configuration struggled to converge and was therefore not used. For sCM, we incorporated
all necessary techniques described in their work, including pixel normalization, tangent warmup,
tangent normalization, and adaptive weighting, to ensure stable training. We did not use the TrigFlow
proposed in sCM, as we believe the specific flow construction is orthogonal to building continuous-
time consistency models. We will release our reproductions alongside our code to ensure full
reproducibility.

(d) Classifier-Free Guidance in Distillation. When distilling a teacher model that supports classifier-
free guidance (CFG), we compute both the conditional velocity vcond and unconditional velocity
vuncond from the teacher, and construct the target as

v = vuncond + w · (vcond − vuncond), (43)

where w is the guidance weight. During training, the unconditional forward is computed with
torch.no grad(), adding less than 5% overhead, which is consistent with sCM and MeanFlow.
To stabilize the high-noise region, we set a time threshold tlow and disable guidance for t < tlow (we
use tlow=0.05 in our experiments). During pre-training, the null-token probability is 10%, and the
condition is not dropped during distillation. At inference, FACM uses a single timestamp; even under
CFG, each step requires only one NFE.

(e) Time Sampling Schedule. Following sCM (Lu & Song, 2024), the time t ∈ [0, 1] is sampled
according to a schedule that concentrates samples near the data endpoint (t = 1). We first sample a
value σ from a log-normal distribution, i.e., ln(σ) ∼ N (Pmean, P

2
std), and then compute t as:

t = 1− 2

π
arctan(σ). (44)

(f) Weighting Functions. For the CM loss component (Eq. 13), we find that the weighting functions
α(t) = 1− t0.5 and β(t) = cos(t · π/2) provide an effective general solution. These functions are
crucial for navigating the trade-off between ensuring endpoint quality (in high-SNR regions) and
satisfying global consistency (in low-SNR regions).

A.5 DISCUSSION: FROM-SCRATCH TRAINING VS. DISTILLATION

While our method can be trained from scratch and achieves a competitive result (See Table 3), we
identify the two-stage distillation paradigm as the more principled and practically superior approach.
Attempting to learn both the anchor and the shortcut simultaneously from scratch introduces a
“chicken-and-egg” problem, as the model must learn a shortcut based on a trajectory it has not
yet accurately modeled. This creates an unstable “moving target” for optimization and incurs
higher computational costs. In contrast, distillation from a pre-trained FM teacher provides a
fixed, high-quality velocity field, offering a much more stable and well-defined learning objective.
MeanFlow (Geng et al., 2025) also encounters this problem in the from-scratch setting, achieving
its optimal performance only by having its objective degenerate to a Flow Matching task for a large
portion of samples (e.g., 75%), which further validates our core thesis that a robust foundation in the
velocity field is a prerequisite for learning stable shortcuts.
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A.6 FLOW MAPPING EQUIVALENCE DERIVATION

Let the Flow Mapping function be fθ(xt, t, r) = xt +(r− t)Fθ(xt, t, r). The consistency condition
d
dtfθ(xt, t, r) = 0 is equivalent to the learning objective for Fθ:

d

dt
fθ(xt, t, r) = 0 ⇐⇒ v − Fθ(xt, t, r) + (r − t)

dFθ

dt
= 0

⇐⇒ Fθ(xt, t, r) = v + (r − t)
dFθ

dt

Enforcing this for t ∈ [0, r] implies that fθ is constant over the interval, thus mapping any point xt to
the endpoint xr:

fθ(xt, t, r)
t∈[0,r]
= fθ(xr, r, r) = xr

A.7 HYPERPARAMETERS

Table 6: Key hyperparameters for our experiments.

Hyperparameter Value Hyperparameter Value Cifar-10 Value
Optimizer AdamW Batch Size 1024 128
Learning Rate 1e-4 Time Sampling (Pmean, Pstd) (-0.8, 1.6) (-1.0, 1.4)
Weight Decay 0 CFG Scale (w) 1.75 1.0
EMA Length (σrel) 0.2 Flow Schedule OT-FM Simple-EDM
Norm L2 Loss c 1e-3 Dropout 0 0.2
CFG tlow 0.05 AdamW Betas (β1, β2) (0.9, 0.999) (0.9, 0.99)

A.8 ABLATION ON THE COSINE SIMILARITY TERM

The FM loss in Eq. 9 includes a cosine similarity term, which we found to be beneficial for aligning
with pre-trained VAE/DiT teachers whose features are trained with representation supervision. Across
our ImageNet 256×256 experiments (NFE=1), removing this term consistently degrades FID by
0.1–0.2. We therefore keep it as a default component of the FM loss.

A.9 COMPUTATIONAL COST AND RESOURCES

Generation Latency. On a single A100 GPU, our 2-step FACM sampler takes approximately 70.2
ms per image (including VAE decoding), versus 7062.9 ms for a standard 250-step Euler sampler,
translating to roughly ∼100× speed-up in wall-clock time.

JVP Memory and Throughput. Our Chain-JVP introduces no bias to the derivative and is embedded
within the FSDP backend, so its speed matches a standard FSDP forward with differentiation. It
reduces peak memory from an OOM error to ∼72GB for a 14B-parameter model on 80GB A100s.
For a 5B model, Chain-JVP with FlashAttention2 reduces peak memory from ∼76GB to ∼38GB.

14B Distillation Resources. We distilled the 14B model using 64×A100 GPUs. The NFE=8 results
reported in the paper were obtained after 5000 steps with a batch size of 512, taking 73 hours. The
same setting is reproducible on fewer GPUs via gradient accumulation and FSDP CPU Offload.
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A.10 ADDITIONAL VISUALIZATION

FLUX.1-Schnell 12B NFE=8 FLUX.1-Dev 12B NFE=50×2 Wan2.2 A14B NFE=40×2FACM (Ours) 14B NFE=8 

A close-up selfie in a cracked mirror, the flash highlighting the cracks and the subject's face, moody and introspective.

A detailed illustration of a "world turtle," a giant turtle carrying a whole fantasy world on its back, swimming through space.

A tiny tree frog clinging to a vibrant red leaf, its skin glistening with moisture, rich jungle background bokeh.

Intricate close-up of a mechanical insect drone, detailed gears and sensors, near a neon sign.

A musician playing a guitar in a New York City subway station, motion blur of the passing train in the background, authentic moment.

A cyberpunk city street at night, painted with thick, swirling impasto brushstrokes, in the style of Vincent van Gogh.
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FLUX.1-Schnell 12B NFE=8 FLUX.1-Dev 12B NFE=50×2 Wan2.2 A14B NFE=40×2FACM (Ours) 14B NFE=8 

A portrait of a woman with fiery red hair, each strand a distinct, thick brushstroke, full of movement.

An expressive, thick impasto oil painting of a stormy seascape, waves crashing with heavy, textured white paint, palette knife.

A portrait of a cat, its fur suggested with dry brush technique over a soft wash background.
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Uncurated T2I generation results of FACM 14B. The generations are based on a batch of randomly sampled 
prompts. The images from left to right are generated with different NFE: 2, 4, 6, and 8, respectively
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A.11 PROMPTS FOR TEASER VISUALIZATIONS

The following are the text prompts used for the text-to-image synthesis examples shown in the top
two rows of Figure 1.

• A soldier in tactical gear standing next to a modified desert-runner muscle car in a vast desert under a
bright sun, digital art.

• A surrealist portrait where the person’s face is a composite of various flowers and leaves.

• A portrait of a girl whose hair is made of flowing, colorful ink, watercolor style.

• Close-up of a tarot card, “The World”, depicting a cyborg wreathed in stars.

• A painting of a time traveler’s footprints through history, each print leading to a different era.

• A man with a worried expression looking out through the window, overcast lighting.

• A florist arranging a bouquet of fresh flowers, a beautiful combination of colors and scents.

• A woman in a corner of the library, surrounded by books, studying quietly.

• An artist in her studio, splattered with paint, staring intently at a large canvas, dramatic lighting,
Rembrandt lighting.

• A street musician playing the cello in a European city square, a little girl stops to listen, touching
moment.

A.12 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR 2026 policy, we report the use of a Large Language Model (LLM) during
the preparation of this manuscript. We used a large language model as a writing assistant to help
improve the grammar and clarity of our prose. Its role was strictly limited to proofreading; all
scientific ideas, analyses, and conclusions presented are our own. The authors have reviewed the final
text and take full responsibility for its content.
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