

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON THEORETICAL LIMITATIONS OF EMBEDDING-BASED RETRIEVAL

Anonymous authors

Paper under double-blind review

ABSTRACT

Vector embeddings have been tasked with an ever-increasing set of retrieval tasks over the years, with a nascent rise in using them for reasoning, instruction-following, coding, and more. These new benchmarks push embeddings to work for *any query* and *any notion of relevance* that could be given. While prior works have pointed out theoretical limitations of vector embeddings, there is a common assumption that these difficulties are exclusively due to unrealistic queries, and those that are not can be overcome with better training data and larger models. In this work, we demonstrate that we may encounter these theoretical limitations in realistic settings with extremely simple queries. We connect known results in learning theory, showing that the number of top- k subsets of documents capable of being returned as the result of some query is limited by the dimension of the embedding, and prove the contrapositive. We empirically show that this holds true even if we directly optimize on the test set with free parameterized embeddings. We then create a realistic dataset called LIMIT that stress tests embedding models based on these theoretical results, and observe that even state-of-the-art models fail on this dataset despite the simple nature of the task. Our work shows the limits of embedding models under the existing single vector paradigm and calls for future research to develop new techniques that can resolve this fundamental limitation.

1 INTRODUCTION

Over the last two decades, information retrieval (IR) has moved from models dominated by sparse techniques (such as BM25 Robertson et al. (1995)) to those that use neural language models (LM) as their backbones (Lee et al., 2019; Craswell et al., 2020; Izacard et al., 2021; Wang et al., 2022). These neural models are predominantly used in a single vector capacity, where they output a single *embedding* representing the entire input (also known as *dense retrieval*). These embedding models are capable of generalizing to new retrieval datasets and have been tasked with solving increasingly complicated retrieval problems (Thakur et al., 2021; Enevoldsen et al., 2025; Lee et al., 2025).

In recent years this has been pushed even further with the rise of instruction-following retrieval benchmarks, where models are asked to represent **any relevance definition** for **any query** (Weller et al., 2025a;b; Song et al., 2025; Xiao et al., 2024; Su et al., 2024). For example, the QUEST dataset (Malaviya et al., 2023) uses logical operators to combine different concepts, studying the difficulty of retrieval for complex queries (e.g., “Moths or Insects or Arthropods of Guadeloupe”). On the other hand, datasets like BRIGHT (Su et al., 2024) explore the challenges stemming from different definitions of relevance by defining relevance in ways that require reasoning. One subtask includes reasoning over a given Leetcode problem (the query) to find other Leetcode problems that share a sub-task (e.g. others problems using dynamic programming). Although models cannot solve these benchmarks yet, the community has proposed these problems in order to push the boundaries of what dense retrievers are capable of—which is now implicitly *every task* that could be defined.

Rather than proposing empirical benchmarks to gauge what embedding models can achieve, we seek to understand at a more fundamental level what the limitations are. Since embedding models use vector representations in geometric space, there exists well-studied fields of mathematical research (Papadimitriou & Sipser, 1982) that could be used to analyze these representations.

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

ments in language models, such as pre-trained LMs (Hoffmann et al., 2022), multi-modal LMs (Li et al., 2024; Team, 2024), and advancements in instruction-following (Zhou et al., 2023; Ouyang et al., 2022). Some of the prominent examples in retrieval include CoPali (Faysse et al., 2024) and DSE (Ma et al., 2024) which focus on multimodal embeddings, Instructor (Su et al., 2022) and FollowIR (Weller et al., 2024a) for instruction following, and GritLM (Muennighoff et al., 2024) and Gemini Embeddings (Lee et al., 2025) for pre-trained LMs turned embedders.

Our work, though focused solely on textual representations for simplicity, **applies to all modalities of single vector embeddings for any domain of dataset**. As the space of things to represent grows (through instructions or multi-modality) they will increasingly run into these theoretical limitations.

2.2 EMPIRICAL TASKS PUSHING THE LIMITS OF DENSE RETRIEVAL

Retrieval models have been pushed beyond their initial use cases to handle a broad variety of areas. Notable works include efforts to represent a wide group of domains (Thakur et al., 2021; Lee et al., 2024), a diverse set of instructions (Weller et al., 2024a; Zhou et al., 2024; Oh et al., 2024), and to handle reasoning over the queries (Xiao et al., 2024; Su et al., 2024). This has pushed the focus of embedding models from basic keyword matching to embeddings that can represent the full semantic meaning of language. As such, it is more common than ever to connect what were previously unrelated documents into the top- k relevant set,² increasing the number of combinations that models must be able to represent. This has motivated our interest in understanding the limits of what embeddings can represent, as current work expects it to handle *every* task.

Previous work has explored empirically the limits of models: Reimers & Gurevych (2020) showed that smaller dimension embedding models have more false positives, especially with larger-scale corpora. Ormazabal et al. (2019) showed the empirical limitations of models in the cross-lingual setting and Yin & Shen (2018) showed how embedding dimensions relate to the bias-variance tradeoff. In contrast, our work provides a theoretical connection between the embedding dimension and the sign-rank of the query relevance ($qrel$) matrix, while also showing empirical limitations.

2.3 THEORETICAL LIMITS OF VECTORS IN GEOMETRIC SPACE

Understanding and finding nearest neighbors in semantic space has a long history in mathematics research, with early work such as the Voronoi diagram being studied as far back as 1644 and formalized in 1908 (Voronoi, 1908). The order- k version of the Voronoi diagram (i.e. the Voronoi diagram partitioning the space into regions based on their closest k points) is obviously connected to information retrieval and has been studied for many years (Clarkson, 1988). The number of such regions is equal to the number of unique retrieval sets of size k , however this quantity is notoriously difficult to bound tightly (Bohler et al., 2015; Lee, 1982; Chen et al., 2023).

We approach this problem from another angle, first formalizing the notion of the minimum embedding dimension required in our setting as the *row-wise order-preserving rank*. We show a tight connection between the this row-wise order preserving rank and the *sign-rank* of an associated matrix, a quantity previously explored in learning theory. Computing the sign-rank for a given matrix is NP-hard (Basri et al., 2009), however the existence of simple matrices with arbitrarily-high sign rank implies that for any given embedding dimension there are retrieval tasks incapable of being captured in that dimension (Hatami et al., 2022; Alon et al., 2014; Chierichetti et al., 2017; Chattopadhyay & Mande, 2018; Hatami & Hatami, 2024). The association between sign-rank and minimum embedding dimension also implies that free-embedding optimization can be used to upper-bound the sign-rank (i.e. if we can train d -dimensional free-embeddings to capture the row-wise order relationships, then the associated matrix has sign-rank at most d).

3 REPRESENTATIONAL CAPACITY OF VECTOR EMBEDDINGS

In this section we formally define the minimum embedding dimension which satisfies a given retrieval objective, and draw a connection from known results in communication complexity theory to the setting of vector embeddings.

²You can imagine an easy way to connect any two documents merely by using logical operators, i.e. X and Y.

162
163

3.1 FORMALIZATION

164 We consider a set of m queries and n documents with a ground-truth relevance matrix $A \in \{0, 1\}^{m \times n}$,
 165 where $A_{ij} = 1$ if and only if document j is relevant to query i .³ Vector embedding models map each
 166 query to a vector $u_i \in \mathbb{R}^d$ and each document to a vector $v_j \in \mathbb{R}^d$. Relevance is modeled by the dot
 167 product $u_i^T v_j$, with the goal that relevant documents should score higher than irrelevant ones.

168 Concatenating the vectors for queries in a matrix $U \in \mathbb{R}^{d \times m}$ and those for documents in a matrix
 169 $V \in \mathbb{R}^{d \times n}$, these dot products are the entries of the score matrix $B = U^T V$. The smallest embedding
 170 dimension d that can realize a given score matrix is, by definition, the rank of B . Therefore, our
 171 goal is equivalent to finding the minimum rank of a score matrix B that correctly orders documents
 172 according to the relevance specified in A , which we formalize in the following definition.

173 **Definition 1.** Given a matrix $A \in \mathbb{R}^{m \times n}$, the **row-wise order-preserving rank** of A is the smallest
 174 integer d such that there exists a rank- d matrix B that preserves the relative order of entries in each
 175 row of A . We denote this as

$$177 \text{rank}_{\text{rop}} A = \min\{\text{rank } B \mid B \in \mathbb{R}^{m \times n}, \text{ such that for all } i, j, k, \text{ if } A_{ij} > A_{ik} \text{ then } B_{ij} > B_{ik}\}.$$

178

179 In other words, if A is a binary ground-truth relevance matrix, $\text{rank}_{\text{rop}} A$ is the minimum dimension
 180 necessary for any vector embedding model to return relevant documents before irrelevant ones for
 181 all queries. Alternatively, we might require that the scores of relevant documents can be cleanly
 182 separated from those of irrelevant ones by a threshold.

183

Definition 2. Given a binary matrix $A \in \{0, 1\}^{m \times n}$:

184
185
186
187

- The **row-wise thresholdable rank** of A ($\text{rank}_{\text{rt}} A$) is the minimum rank of a matrix B for which there exist row-specific thresholds $\{\tau_i\}_{i=1}^m$ such that for all i, j , $B_{ij} > \tau_i$ if $A_{ij} = 1$ and $B_{ij} < \tau_i$ if $A_{ij} = 0$.
- The **globally thresholdable rank** of A ($\text{rank}_{\text{gt}} A$) is the minimum rank of a matrix B for which there exists a single threshold τ such that for all i, j , $B_{ij} > \tau$ if $A_{ij} = 1$ and $B_{ij} < \tau$ if $A_{ij} = 0$.

188
189
190
191
192
193

Remark 1. This two-sided separation condition may be seen as slightly stronger than requiring $B_{ij} > \tau_i$ if and only if $A_{ij} = 1$, however since there are only finitely many elements of B_{ij} we could always perturb the latter threshold by a sufficient number such that the two-sided condition holds.⁴

194

3.2 THEORETICAL BOUNDS

195
196
197
198

For binary matrices, row-wise ordering/thresholding are equivalent notions of representation capacity.

Proposition 1. For a binary matrix $A \in \{0, 1\}^{m \times n}$, we have that $\text{rank}_{\text{rop}} A = \text{rank}_{\text{rt}} A$.

199

Proof. (\leq) Suppose B and τ satisfy the row-wise thresholdable rank condition. Since A is a binary matrix $A_{ij} > A_{ik}$ implies $A_{ij} = 1$ and $A_{ik} = 0$, thus $B_{ij} > \tau_i > B_{ik}$, and hence B also satisfies the row-wise order-preserving condition.

200
201
202
203
204
205
206
207

(\geq) Let B satisfy the row-wise order-preserving condition, so $A_{ij} > A_{ik}$ implies $B_{ij} > B_{ik}$. For each row i , let $U_i = \{B_{ij} \mid A_{ij} = 1\}$ and $L_i = \{B_{ij} \mid A_{ij} = 0\}$. The row-wise order-preserving condition implies that every element of U_i is greater than every element of L_i . We can therefore always find a threshold τ_i separating them (e.g. $\tau_i = (\max L_i + \min U_i)/2$ if both are non-empty, trivial otherwise). Thus B is also row-wise thresholdable to A . \square

208
209

The notions we have described so far are closely related to the sign rank of a matrix, which we use in the rest of the paper to establish our main bounds.

210
211
212
213

Definition 3 (Sign Rank). The sign rank of a matrix $M \in \{-1, 1\}^{m \times n}$ is the smallest integer d such that there exists a rank d matrix $B \in \mathbb{R}^{m \times n}$ whose entries have the same sign as those of M , i.e.

$$\text{rank}_{\pm} M = \min\{\text{rank } B \mid B \in \mathbb{R}^{m \times n} \text{ such that for all } i, j \text{ we have } \text{sign } B_{ij} = M_{ij}\}.$$

214
215

³The matrix A is often called the “qrels” (query relevance judgments) matrix in information retrieval.

⁴Without loss of generality, we may assume the thresholds in the above definitions are not equal to any elements of B since we could increase the threshold of τ by a sufficiently small ϵ to preserve the inequality.

216 In what follows, we use $\mathbf{1}_n$ to denote the n -dimensional vector of ones, and $\mathbf{1}_{m \times n}$ to denote an
 217 $m \times n$ matrix of ones.

218 **Proposition 2.** *Let $A \in \{0, 1\}^{m \times n}$ be a binary matrix. Then $2A - \mathbf{1}_{m \times n} \in \{-1, 1\}^{m \times n}$ and*

$$220 \quad \text{rank}_{\pm}(2A - \mathbf{1}_{m \times n}) - 1 \leq \text{rank}_{rop} A = \text{rank}_{rt} A \leq \text{rank}_{gt} A \leq \text{rank}_{\pm}(2A - \mathbf{1}_{m \times n})$$

222 *Proof.* N.b. the equality was already shown in Proposition 1. We prove each inequality separately.

223 **1. $\text{rank}_{rt} A \leq \text{rank}_{gt} A$:** True by definition, since any matrix satisfying the globally thresholdable
 224 condition trivially satisfies a row-wise thresholdable condition with the same threshold for each row.

226 **2. $\text{rank}_{gt} A \leq \text{rank}_{\pm}(2A - \mathbf{1}_{m \times n})$:** Let B be any matrix whose entries have the same sign as
 227 $2A - \mathbf{1}_{m \times n}$, then

$$228 \quad B_{ij} > 0 \iff 2A_{ij} - 1 > 0 \iff A_{ij} = 1.$$

229 Thus B satisfies the globally thresholdable condition with a threshold of 0.

230 **3. $\text{rank}_{\pm}(2A - \mathbf{1}_{m \times n}) - 1 \leq \text{rank}_{rt} A$:** Suppose B satisfies the row-wise thresholdable condition
 231 with minimal rank, so $\text{rank}_{rt} A = \text{rank } B$ and there exists $\tau \in \mathbb{R}^m$ such that $B_{ij} > \tau_i$ if $A_{ij} = 1$
 232 and $B_{ij} < \tau_i$ if $A_{ij} = 0$. Then the entries of $B - \tau \mathbf{1}_n^T$ have the same sign as $2A - \mathbf{1}_{m \times n}$, since
 233 $(B - \tau \mathbf{1}_n^T)_{ij} = B_{ij} - \tau_i$ and

$$235 \quad B_{ij} - \tau_i > 0 \iff A_{ij} = 1 \iff 2A_{ij} - 1 > 0, \text{ and} \quad (1)$$

$$236 \quad B_{ij} - \tau_i < 0 \iff A_{ij} = 0 \iff 2A_{ij} - 1 < 0. \quad (2)$$

237 Thus $\text{rank}_{\pm}(2A - \mathbf{1}_{m \times n}) \leq \text{rank}(B - \tau \mathbf{1}_n^T) \leq \text{rank}(B) + \text{rank}(\tau \mathbf{1}_n^T) = \text{rank}_{rt} A + 1$.

239 Combining these gives the desired chain of inequalities. \square

241 3.3 CONSEQUENCES

243 In the context of a vector embedding model, this provides a lower and upper bound on the dimension of
 244 vectors required to exactly capture a given set of retrieval objectives, in the sense of row-wise ordering,
 245 row-wise thresholding, or global thresholding. In particular, given some binary relevance matrix
 246 $A \in \{0, 1\}^{m \times n}$, we need at least $\text{rank}_{\pm}(2A - \mathbf{1}_{m \times n}) - 1$ dimensions to capture the relationships in
 247 A exactly, and can always accomplish this in at most $\text{rank}_{\pm}(2A - \mathbf{1}_{m \times n})$ dimensions. This means:

- 248 1. For any fixed dimension d , there exists a binary relevance matrix which cannot be captured
 249 via d -dimensional embeddings (as there are matrices with arbitrarily high sign-rank). In
 250 other words, retrieval tasks whose **qrel matrices have higher sign-rank are more difficult**
 251 to capture exactly for embedding models, requiring higher embedding dimensions.
- 252 2. If we are able to embed a given matrix $A \in \{0, 1\}^{m \times n}$ in a row-wise order-preserving
 253 manner in d dimensions, this implies a bound on the sign-rank of $2A - \mathbf{1}_{m \times n}$. In particular,
 254 this suggests a *practical mechanism* for determining an upper-bound on sign-rank for
 255 matrices via gradient descent optimization of free embedding representations.

257 4 EMPIRICAL CONNECTION: BEST CASE OPTIMIZATION

259 Having established a theoretical limitation of embedding models based on a sign-rank related to the
 260 qrel matrix and their embedding dimension d , we seek to show that this holds empirically also.

262 To show the strongest optimization case possible, we design experiments where the vectors themselves
 263 are directly optimizable with gradient descent.⁵ We call this “free embedding” optimization, as the
 264 embeddings are free to be optimized and not constrained by natural language, which imposes
 265 constraints on any realistic embedding model. Thus, this shows whether it is feasible for **any**
 266 **embedding model** to solve this problem: if the free embedding optimization cannot solve the
 267 problem, real retrieval models will not be able to either. It is also worth noting that we do this by
 268 directly optimizing the embeddings over the target qrel matrix (test set). This will not generalize to a
 269 new dataset, but is done to show the highest performance that could possibly occur.

⁵This could also be viewed as an embedding model where each query/doc are a separate vector via lookup.

270 **Experimental Settings** We create a random document matrix (size n) and a random query matrix
 271 with top- k sets (of all combinations, i.e. size $m = \binom{n}{k}$), both with unit vectors. We then directly
 272 optimize for solving the constraints with the Adam optimizer (Kingma & Ba, 2014).⁶ Each gradient
 273 update is a full pass through all correct triples (i.e. full dataset batch-size) with the InfoNCE loss
 274 function (Oord et al., 2018),⁷ with all other documents as in-batch negatives (i.e. full dataset in batch).
 275 As nearly all embedding models use normalized vectors, we do also (via projected gradient descent).
 276 We perform early stopping when there is no improvement in the loss for 1000 iterations. We gradually
 277 increase the number of documents (and thus the binomial amount of queries) until the optimization is
 278 no longer able to solve the problem (i.e. achieve 100% accuracy). We call this the *critical-n* point.

279 We focus on relatively small sizes for n , k , and d due to the combinatorial explosion of combinations
 280 with larger document values (i.e. 50k docs with top- k of 100 gives $7.7e+311$ combinations, which
 281 would be equivalent to the number of query vectors of dimension d in that free embedding experiment).
 282 We use $k = 2$ and increase n by one for each d value until it breaks. We fit a polynomial regression
 283 line to the data so we can model and extrapolate results outwards.

284 **Results** Figure 2 shows that the curve fits a
 285 3rd degree polynomial curve, with formula $y =$
 286 $-10.5322 + 4.0309d + 0.0520d^2 + 0.0037d^3$
 287 ($r^2=0.999$). Extrapolating this curve outward
 288 gives the critical- n values (for embedding size):
 289 500k (512), 1.7m (768), 4m (1024), 107m
 290 (3072), 250m (4096). We note that this is the
 291 best case: a real embedding model cannot di-
 292 rectly optimize the query and document vectors
 293 to match the test qrel matrix (and is constrained
 294 by factors such as “modeling natural language”).
 295 However, these numbers already show that for
 296 web-scale search, even the largest embedding
 297 dimensions with ideal test-set optimization are
 298 not enough to model all combinations.

Figure 2: The critical- n value where the dimensionality is too small to successfully represent all the top-2 combinations. We plot the trend line as a polynomial function.

300 5 EMPIRICAL CONNECTION: REAL-WORLD DATASETS

301 The free embedding experiments provide empirical evidence that our theoretical results hold true.
 302 However, they still are abstract - what does this mean for real embedding models? In this section
 303 we (1) draw connections from this theory to existing datasets and (2) create an trivially simple yet
 304 extremely difficult retrieval task for existing SOTA models.

307 5.1 CONNECTION TO EXISTING DATASETS

309 Existing retrieval datasets typically use a static evaluation set with limited numbers of queries, as
 310 relevance annotation is expensive to do for each query. This means practically that the space of
 311 queries used for evaluation is a very small sample of the number of potential queries. For example, the
 312 QUEST dataset (Malaviya et al., 2023) has 325k documents and queries with 20 relevant documents
 313 per query, with a total of 3357 queries. The number of unique top-20 document sets that could
 314 be returned with the QUEST corpus would be $\binom{325k}{20}$ which is equal to $7.1e+91$ (larger than the
 315 estimate of atoms in the observable universe, 10^{82}). Thus, the 3k queries in QUEST can only cover
 316 an infinitesimally small part of the qrel combination space.

317 Although it is not possible to instantiate all combinations when using large-scale corpora, search
 318 evaluation datasets are a proxy for what any user would ask for and ideally would be designed to test
 319 many combinations, as users will do. In many cases, developers of new evaluations simply choose

320 ⁶We found similar results with SGD, but we use Adam for speed and similarity with existing training methods.
 321 ⁷In preliminary experiments, we found that InfoNCE performed best, beating MSE and Margin. As we are
 322 directly optimizing the vectors with full-dataset batches, this is $\mathcal{L}_{\text{total}} = -\frac{1}{M} \sum_{i=1}^M \log \frac{\sum_{d_r \in R_i} \exp(\text{sim}(q_i, d_r)/\tau)}{\sum_{d_k \in D} \exp(\text{sim}(q_i, d_k)/\tau)}$
 323 where D is all docs, d_r is the relevant documents for query q_i and d_k are the non-relevant documents.

324 to use fewer queries due to cost or computational expense of evaluation. For example, QUEST’s
 325 query “Novels from 1849 or George Sand novels” combines two categories of novels with the “OR”
 326 operator – one could instantiate new queries to relate concepts through OR’ing other categories
 327 together. Similarly, with the rise of search agents, we see greater usage of hyper-specific queries:
 328 BrowseComp (Wei et al., 2025) has 5+ conditions per query, including range operators. With these
 329 tools, it is possible to sub-select any top- k relevant set with the right operators if the documents are
 330 sufficiently expressive (i.e. non-trivial). Thus, that existing datasets choose to only instantiate some
 331 of these combinations is mainly for practical reasons and not because of a lack of existence.

332 In contrast to these previous works, we seek to build a dataset that evaluates all combinations of
 333 top- k sets for a small number of documents. Rather than using difficult query operators like QUEST,
 334 BrowseComp, etc. (which are already difficult for reasons outside of the qrel matrix) we choose very
 335 simple queries and documents to highlight the difficulty of representing all top- k sets themselves.

337 5.2 THE LIMIT DATASET

339 **Dataset Construction** In order to have a natural language version of this dataset, we need some
 340 way to map combinations of documents into something that could be retrieved with a query. One
 341 simple⁸ way to do this is to create a synthetic version with latent variables for queries and documents
 342 and then instantiate it with natural language. For this mapping, we choose to use attributes that
 343 someone could like (i.e. Jon likes Hawaiian pizza, sports cars, etc.) as they are plentiful and don’t
 344 present issues w.r.t. other items: one can like Hawaiian pizza but dislike pepperoni, all preferences
 345 are valid. We then enforce two constraints for realism: (1) users shouldn’t have too many attributes,
 346 thus keeping the documents short (less than 50 per user) and (2) each query should only ask for one
 347 item to keep the task simple (i.e. “who likes X”). We gather a list of attributes a person could like
 348 through prompting Gemini 2.5 Pro. We then clean it to a final 1850 items by iteratively asking it to
 349 remove duplicates/hypernyms, while also checking the top failures with BM25 to ensure no overlap.

350 We choose to use 50k documents in order to have a hard but relatively small corpus and 1000 queries
 351 to maintain statistical significance while still being fast to evaluate. For each query, we choose to use
 352 two relevant documents (i.e. $k=2$), both for simplicity in instantiating and to mirror previous work
 353 (i.e. NQ, HotpotQA, etc. (Kwiatkowski et al., 2019; Yang et al., 2018)).

354 Our last step is to choose a qrel matrix to instantiate these attributes. Although we could not prove the
 355 hardest qrel matrix definitively with theory (as the sign rank is notoriously hard to prove), we intuit
 356 that our theoretical results imply that the more interconnected the qrel matrix is (e.g. dense with all
 357 combinations) the harder it would be for models to represent (Appendix C for more). Following this,
 358 we use the qrel matrix with the highest number of documents for which all combinations would be
 359 just above 1000 queries for a top- k of 2 (46 docs, since $\binom{46}{2}$ is 1035, the smallest above 1k).

360 We then assign random natural language attributes to the queries, adding these attributes to their
 361 respective relevant documents (c.f. Figure 1). We give each document a random first and last name
 362 from open-source lists of names. Finally, we randomly sample new attributes for each document until
 363 all documents have the same number of attributes. As this setup has many more documents than
 364 those that are relevant to any query (46 relevant documents, 49.95k non-relevant to any query) we
 365 also create a “small” version with only the 46 documents that are relevant to one of the 1000 queries.

366 **Models** We evaluate the state-of-the-art embedding models including GritLM (Muennighoff et al.,
 367 2024), Qwen 3 Embeddings (Zhang et al., 2025), Promptretriever (Weller et al., 2024b), Gemini
 368 Embeddings (Lee et al., 2025), Snowflake’s Arctic Embed Large v2.0 (Yu et al., 2024), and E5-
 369 Mistral Instruct (Wang et al., 2022; 2023). These models range in embedding dimension (1024 to
 370 4096) as well as in training style (instruction-based, hard negative optimized, etc.). We also evaluate
 371 three non-single vector models to show the distinction: BM25 (Robertson et al., 1995; Lü, 2024),
 372 gte-ModernColBERT (Chaffin, 2025a; Chaffin & Sourty, 2024), and a token-wise TF-IDF.⁹

373 We show results at the full embedding dimension and also with truncated embedding dimension
 374 (typically used with matryoshka learning, aka MRL (Kusupati et al., 2022)). For models not trained

375 ⁸This is just one way, designed to be realistic and simple. However, our framework allows for any way of
 376 instantiation while creating high sign-rank qrel matrices – not stuck to the arbitrary natural language design.

377 ⁹This model turns each unique item into a token and then does TF-IDF. We build it to show that it gets 100%
 378 on all tasks (as it reverse engineers our dataset construction) and thus we do not include it in future charts.

Figure 3: Scores on the LIMIT task. Despite the simplicity of the task we see that SOTA models struggle. We also see that the dimensionality of the model is a limiting factor and that as the dimension increases, so does performance. Even multi-vector models struggle. Lexical models like BM25 do very well due to their higher dimensionality. Stars indicate models trained with MRL.

with MRL this will result in sub-par scores, thus, models trained with MRL are indicated with stars in the plots. However, as there are no LLMs with an embedding dimension smaller than 384, we include MRL for all models to small dimensions (32) to show the impact of embedding dimensionality.

Results Figure 3 shows the results on the full LIMIT while Figure 5 shows the results on the small (46 document) version. **The results are surprising - models severely struggle even though the task is trivially simple.** For example, in the full setting models struggle to reach even 20% recall@100 and in the 46 document version models cannot solve the task even with recall@20.

We see that model performance depends crucially on the embedding dimensionality (better performance with bigger dimensions). Interestingly, models trained with more diverse instruction, such as Promptriever, perform better, perhaps because their training allows them to use more of their embedding space (compared to models which are trained with MRL and on a smaller range of tasks that can perhaps be consolidated into a smaller embedding manifold).

For alternative architectures, GTE-ModernColBERT does significantly better than single-vector models (although still far from solving the task) while BM25 comes close to perfect scores. Both of these alternative architectures (sparse and multi-vector) offer various trade-offs, see §5.3 for analysis.

Is this Domain Shift? Although our queries look similar to standard web search queries, we wondered whether there could be some domain shift causing the low performance. If so, we would expect that training on a training set of similar examples would significantly improve performance. On the other hand, if the task was intrinsically hard, training on the training set would provide little help whereas training on the test set would allow the model to overfit to those tokens (similar to the free embed exps).

To test this we take an off-the-shelf embedding model and train it on either the training set (created synthetically using non-test set attributes) or the official test set of LIMIT. We use `lightonai/modernbert-embed-large` (Chaffin, 2025c) and fine-tune it on these splits, using the full dataset for in batch negatives (excluding positives) using SentenceTransformers (Reimers & Gurevych, 2019). We show a range of dimensions by projecting the hidden layer down to the specified size during training (rather than using MRL).

Figure 4 shows the model trained on the training set cannot solve the problem, although it does see very minor improvement from near zero recall@10 to up to 2.8 recall@10. The lack of performance

Figure 4: Training on LIMIT train does not significantly help, indicating the issue is not domain shift. But models can solve it if they overfit to the test set.

432 gains when training in-domain indicate that poor performance is not due to domain shift. By training
 433 the model on the test set we see it can learn the task, overfitting on the tokens in the test queries. This
 434 aligns with our free embedding results, that it is possible to overfit to the $N = 46$ version with only
 435 12 dimensions. However, it is notable that the real models with 64 dimensions still cannot completely
 436 solve the task, implying **real models perform significantly worse than the bounds shown in §4**.

437 **Implications** Single-vector models are fundamentally limited by their embedding dimension, based
 438 on a sign-rank related to the query relevance (qrel) matrices. The LIMIT dataset is a particular
 439 instantiation, with very simple queries and documents, designed to highlight this property. This
 440 version of LIMIT can be embedded in just 12 dimensions, yet all models fail to perform well,
 441 suggesting other architectural weaknesses. Irrespective of the architecture involved, however, our
 442 framework can scale the dataset’s difficulty to consistently demonstrate this fundamental limitation.
 443

444 5.3 ALTERNATIVES TO EMBEDDING MODELS

445 Our previous results show both theoretically and empirically that embedding models cannot represent
 446 all combinations of documents in their top- k sets, making them unable to represent and solve some
 447 retrieval tasks. As current embedding models have grown larger (e.g. up to 4096), this has helped
 448 reduce negative effects for smaller dataset sizes. However, with enough combinations of top- k sets
 449 the dimensionality would have to increase to an infeasible size for non-toy datasets. Thus, although
 450 they are useful for first stage results, more expressive retriever architectures will be needed.
 451

452 **Cross-Encoders** Although not suitable for first stage retrieval at scale, they are already typically
 453 used to improve first stage results. Is LIMIT challenging for rerankers also? We evaluate a long
 454 context reranker, Gemini-2.5-Pro (Comanici et al., 2025) on the small setting as a comparison. We
 455 give Gemini all 46 documents and all 1000 queries at once, asking it to output the relevant documents
 456 for each query with one generation. We find that it can successfully solve (100%) all 1000 queries in
 457 one forward pass. This is in contrast to even the best embedding models with a recall@2 of less than
 458 60% (Figure 5). Thus we can see that LIMIT is easy for state-of-the-art reranker models, which do
 459 not have the same limitations based on embedding dimension.
 460

461 **Multi-vector models** Multi-vector models are more expressive through the use of multiple vectors
 462 per sequence combined with the MaxSim operator (Khattab & Zaharia, 2020). These models show
 463 promise on the LIMIT dataset, with scores greatly above the single-vector models despite using a
 464 smaller backbone (ModernBERT, Warner et al. (2024)). However, these models are not generally
 465 used for instruction-following or reasoning-based tasks (see Chaffin (2025b) as one of the few that
 466 exist), leaving it an open question to how well multi-vector techniques will transfer to these tasks.
 467

468 **Sparse models** Sparse models (both lexical and neural) can be thought of as single vectors but
 469 with very high dimensionality. This dimensionality helps BM25 avoid the problems of the neural
 470 embedding models as seen in Figure 3. Since the d of their vectors is high, they can scale to many
 471 more combinations than their dense vector counterparts. However, it is less clear how to apply
 472 sparse models to instruction-following and reasoning-based tasks where there is no lexical or even
 473 paraphrase-like overlap. We leave this direction (and hybrid sparse/dense solutions) to future work.
 474

475 We note that all of these options have various trade-offs and none provide a clear path to solving this
 476 problem as-is. We leave it to future work to develop new techniques to mitigate these issues: perhaps
 477 through one of these alternative categories or through new ideas around single-vector models that
 478 can resolve the underlying issue (potentially through techniques such as hyperencoders (Killingback
 479 et al., 2025) or other future work on single vector architectures yet to be developed).

480 6 CONCLUSION

481 We introduce the LIMIT dataset, which highlights a fundamental limitation of embedding models.
 482 We provide a theoretical connection to sign-rank which shows that, for a fixed embedding dimension
 483 there are always some set of documents such that certain sets are unattainable as top- k sets. We show
 484 these theoretical results hold empirically, through best case optimization of the vectors themselves,
 485 and make a practical connection to existing state-of-the-art models by creating a realistic and simple
 486 instantiation of the theory, called LIMIT, that these models cannot solve. Our results imply that the
 487 community should reconsider how instruction-based retrieval will impact future retrievers.
 488

486 REFERENCES
487

- 488 Noga Alon, Shay Moran, and Amir Yehudayoff. Sign rank, vc dimension and spectral gaps. In
489 *Electronic Colloquium on Computational Complexity (ECCC)*, volume 21, pp. 10, 2014.
- 490 Ronen Basri, Pedro F Felzenszwalb, Ross B Girshick, David W Jacobs, and Caroline J Klivans.
491 Visibility constraints on features of 3d objects. In *2009 IEEE Conference on Computer Vision and*
492 *Pattern Recognition*, pp. 1231–1238. IEEE, 2009.
- 493 Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados,
494 and Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. *arXiv*
495 *preprint arXiv:2404.05961*, 2024.
- 496 Shai Ben-David, Nadav Eiron, and Hans Ulrich Simon. Limitations of learning via embeddings in
497 euclidean half spaces. *Journal of Machine Learning Research*, 3(Nov):441–461, 2002.
- 498 Cecilia Bohler, Panagiotis Cheilaris, Rolf Klein, Chih-Hung Liu, Evangelia Papadopoulou, and
499 Maksym Zavershynskyi. On the complexity of higher order abstract voronoi diagrams. *Computational*
500 *Geometry*, 48(8):539–551, 2015. ISSN 0925-7721. doi: <https://doi.org/10.1016/j.comgeo.2015.04.008>. URL <https://www.sciencedirect.com/science/article/pii/S0925772115000346>.
- 501 Antoine Chaffin. Gte-moderncolbert, 2025a. URL <https://huggingface.co/lightonai/GTE-ModernColBERT-v1>.
- 502 Antoine Chaffin. Reason-moderncolbert, 2025b. URL <https://huggingface.co/lightonai/Reason-ModernColBERT>.
- 503 Antoine Chaffin. Modernbert-embed-large, 2025c. URL <https://huggingface.co/lightonai/modernbert-embed-large>.
- 504 Antoine Chaffin and Raphaël Sourty. Pylate: Flexible training and retrieval for late interaction models,
505 2024. URL <https://github.com/lightonai/pylate>.
- 506 Arkadev Chatopadhyay and Nikhil Mande. A short list of equalities induces large sign rank. In *2018*
507 *IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS)*, pp. 47–58. IEEE,
508 2018.
- 509 Bi Yu Chen, Huihuang Huang, Hui-Ping Chen, Wenxuan Liu, Xuan-Yan Chen, and Tao Jia. Efficient
510 algorithm for constructing order k voronoi diagrams in road networks. *ISPRS International Journal*
511 *of Geo-Information*, 12(4):172, 2023.
- 512 Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina Panigrahy, and David P
513 Woodruff. Algorithms for ℓ_p low-rank approximation. In *International Conference on Machine*
514 *Learning*, pp. 806–814. PMLR, 2017.
- 515 Kenneth L Clarkson. Applications of random sampling in computational geometry, ii. In *Proceedings*
516 *of the fourth annual symposium on Computational geometry*, pp. 1–11, 1988.
- 517 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
518 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
519 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
520 *arXiv preprint arXiv:2507.06261*, 2025.
- 521 Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M Voorhees. Overview of
522 the trec 2019 deep learning track. *arXiv preprint arXiv:2003.07820*, 2020.
- 523 Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Márton Kardos, Ashwin Mathur, David Stap,
524 Jay Gala, Wissam Siblini, Dominik Krzeminski, Genta Indra Winata, et al. Mmteb: Massive
525 multilingual text embedding benchmark. *arXiv preprint arXiv:2502.13595*, 2025.
- 526 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, and Pierre
527 Colombo. Colpali: Efficient document retrieval with vision language models. *arXiv preprint*
528 *arXiv:2407.01449*, 2024.

- 540 Hamed Hatami and Pooya Hatami. Structure in communication complexity and constant-cost
 541 complexity classes. *arXiv preprint arXiv:2401.14623*, 2024.
- 542
- 543 Hamed Hatami, Pooya Hatami, William Pires, Ran Tao, and Rosie Zhao. Lower bound methods for
 544 sign-rank and their limitations. In *Approximation, Randomization, and Combinatorial Optimization.
 545 Algorithms and Techniques (APPROX/RANDOM 2022)*, pp. 22–1. Schloss Dagstuhl–Leibniz-
 546 Zentrum für Informatik, 2022.
- 547 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 548 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 549 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.
- 550
- 551 Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
 552 Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
 553 *arXiv preprint arXiv:2112.09118*, 2021.
- 554 Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized
 555 late interaction over bert. In *Proceedings of the 43rd International ACM SIGIR conference on
 556 research and development in Information Retrieval*, pp. 39–48, 2020.
- 557 Julian Killingsback, Hansi Zeng, and Hamed Zamani. Hypencoder: Hypernetworks for information
 558 retrieval. In *Proceedings of the 48th International ACM SIGIR Conference on Research and
 559 Development in Information Retrieval*, pp. 2372–2383, 2025.
- 560
- 561 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 562 arXiv:1412.6980*, 2014.
- 563
- 564 Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
 565 manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
 566 representation learning. *Advances in Neural Information Processing Systems*, 35:30233–30249,
 567 2022.
- 568
- 569 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 570 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
 571 benchmark for question answering research. *Transactions of the Association for Computational
 572 Linguistics*, 7:453–466, 2019.
- 573
- 574 Der-Tsai Lee. On k-nearest neighbor voronoi diagrams in the plane. *IEEE transactions on computers*,
 100(6):478–487, 1982.
- 575
- 576 Jinyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole, Kai Hui, Michael
 577 Boratko, Rajvi Kapadia, Wen Ding, et al. Gecko: Versatile text embeddings distilled from large
 578 language models. *arXiv preprint arXiv:2403.20327*, 2024.
- 579
- 580 Jinyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim, Gustavo
 581 Hernández Ábrego, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, et al. Gemini embedding:
 582 Generalizable embeddings from gemini. *arXiv preprint arXiv:2503.07891*, 2025.
- 583
- 584 Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised
 585 open domain question answering. In Anna Korhonen, David Traum, and Lluís Márquez (eds.),
 586 *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 587 6086–6096, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
 588 v1/P19-1612. URL <https://aclanthology.org/P19-1612/>.
- 589
- 590 Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, Jianfeng Gao, et al.
 591 Multimodal foundation models: From specialists to general-purpose assistants. *Foundations and
 592 Trends® in Computer Graphics and Vision*, 16(1-2):1–214, 2024.
- 593
- 594 Xueguang Ma, Sheng-Chieh Lin, Minghan Li, Wenhui Chen, and Jimmy Lin. Unifying multimodal
 595 retrieval via document screenshot embedding. *arXiv preprint arXiv:2406.11251*, 2024.

- 594 Chaitanya Malaviya, Peter Shaw, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Quest:
 595 A retrieval dataset of entity-seeking queries with implicit set operations. *arXiv preprint*
 596 *arXiv:2305.11694*, 2023.
- 597
- 598 Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding
 599 benchmark. *arXiv preprint arXiv:2210.07316*, 2022.
- 600 Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
 601 Douwe Kiela. Generative representational instruction tuning. In *ICLR 2024 Workshop: How Far*
 602 *Are We From AGI*, 2024.
- 603
- 604 Hanseok Oh, Hyunji Lee, Seonghyeon Ye, Haebin Shin, Hansol Jang, Changwook Jun, and Minjoon
 605 Seo. Instructir: A benchmark for instruction following of information retrieval models. *arXiv*
 606 *preprint arXiv:2402.14334*, 2024.
- 607 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 608 coding. *arXiv preprint arXiv:1807.03748*, 2018.
- 609
- 610 Aitor Ormazabal, Mikel Artetxe, Gorka Labaka, Aitor Soroa, and Eneko Agirre. Analyzing the
 611 limitations of cross-lingual word embedding mappings. *arXiv preprint arXiv:1906.05407*, 2019.
- 612
- 613 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 614 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 615 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 616 27744, 2022.
- 617
- 618 Christos H Papadimitriou and Michael Sipser. Communication complexity. In *Proceedings of the*
fourteenth annual ACM symposium on Theory of computing, pp. 196–200, 1982.
- 619
- 620 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 621 In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*.
 622 Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.
- 623
- 624 Nils Reimers and Iryna Gurevych. The curse of dense low-dimensional information retrieval for large
 625 index sizes. *arXiv preprint arXiv:2012.14210*, 2020.
- 626
- 627 Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford,
 628 et al. Okapi at trec-3. *Nist Special Publication Sp*, 109:109, 1995.
- 629
- 630 Tingyu Song, Guo Gan, Mingsheng Shang, and Yilun Zhao. Ifir: A comprehensive benchmark
 631 for evaluating instruction-following in expert-domain information retrieval. *arXiv preprint*
arXiv:2503.04644, 2025.
- 632
- 633 Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih,
 634 Noah A Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned text
 635 embeddings. *arXiv preprint arXiv:2212.09741*, 2022.
- 636
- 637 Hongjin Su, Howard Yen, Mengzhou Xia, Weijia Shi, Niklas Muennighoff, Han-yu Wang, Haisu Liu,
 638 Quan Shi, Zachary S Siegel, Michael Tang, et al. Bright: A realistic and challenging benchmark
 639 for reasoning-intensive retrieval. *arXiv preprint arXiv:2407.12883*, 2024.
- 640
- 641 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint*
arXiv:2405.09818, 2024.
- 642
- 643 Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A
 644 heterogenous benchmark for zero-shot evaluation of information retrieval models. *arXiv preprint*
arXiv:2104.08663, 2021.
- 645
- 646 Nandan Thakur, Jimmy Lin, Sam Havens, Michael Carbin, Omar Khattab, and Andrew Drozdov.
 647 Freshstack: Building realistic benchmarks for evaluating retrieval on technical documents. *arXiv*
preprint arXiv:2504.13128, 2025.

- 648 Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadra-
 649 tiques. deuxième mémoire. recherches sur les paralléloèdres primitifs. *Journal für die reine und*
 650 *angewandte Mathematik (Crelles Journal)*, 1908(134):198–287, 1908.
- 651
- 652 David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman Cohan, and
 653 Hannaneh Hajishirzi. Fact or fiction: Verifying scientific claims. *arXiv preprint arXiv:2004.14974*,
 654 2020.
- 655 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Majumder,
 656 and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv preprint*
 657 *arXiv:2212.03533*, 2022.
- 658
- 659 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
 660 text embeddings with large language models. *arXiv preprint arXiv:2401.00368*, 2023.
- 661 Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said
 662 Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. Smarter, bet-
 663 ter, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context
 664 finetuning and inference. *arXiv preprint arXiv:2412.13663*, 2024.
- 665
- 666 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 667 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 668 challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.
- 669
- 670 Orion Weller, Benjamin Chang, Sean MacAvaney, Kyle Lo, Arman Cohan, Benjamin Van Durme,
 671 Dawn Lawrie, and Luca Soldaini. Followir: Evaluating and teaching information retrieval models
 672 to follow instructions. *arXiv preprint arXiv:2403.15246*, 2024a.
- 673
- 674 Orion Weller, Benjamin Van Durme, Dawn Lawrie, Ashwin Paranjape, Yuhao Zhang, and Jack
 675 Hessel. Promptriever: Instruction-trained retrievers can be prompted like language models. *arXiv*
 676 *preprint arXiv:2409.11136*, 2024b.
- 677
- 678 Orion Weller, Benjamin Chang, Eugene Yang, Mahsa Yarmohammadi, Sam Barham, Sean MacA-
 679 vaney, Arman Cohan, Luca Soldaini, Benjamin Van Durme, and Dawn Lawrie. mfollowir: a
 680 multilingual benchmark for instruction following in retrieval. *arXiv preprint arXiv:2501.19264*,
 681 2025a.
- 682
- 683 Orion Weller, Kathryn Ricci, Eugene Yang, Andrew Yates, Dawn Lawrie, and Benjamin Van Durme.
 684 Rank1: Test-time compute for reranking in information retrieval. *arXiv preprint arXiv:2502.18418*,
 685 2025b.
- 686
- 687 Chenghao Xiao, G Thomas Hudson, and Noura Al Moubayed. Rar-b: Reasoning as retrieval
 688 benchmark. *arXiv preprint arXiv:2404.06347*, 2024.
- 689
- 690 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 691 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 692 answering. *arXiv preprint arXiv:1809.09600*, 2018.
- 693
- 694 Zi Yin and Yuanyuan Shen. On the dimensionality of word embedding. *Advances in neural*
 695 *information processing systems*, 31, 2018.
- 696
- 697 Puxuan Yu, Luke Merrick, Gaurav Nuti, and Daniel Campos. Arctic-embed 2.0: Multilingual retrieval
 698 without compromise. *arXiv preprint arXiv:2412.04506*, 2024.
- 699
- 700 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 701 An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
 702 ing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*,
 703 2025.
- 704
- 705 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
 706 Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint*
 707 *arXiv:2311.07911*, 2023.

702 Jianqun Zhou, Yuanlei Zheng, Wei Chen, Qianqian Zheng, Zeyuan Shang, Wei Zhang, Rui Meng,
703 and Xiaoyu Shen. Beyond content relevance: Evaluating instruction following in retrieval models.
704 *ArXiv*, abs/2410.23841, 2024. URL <https://api.semanticscholar.org/CorpusID:273707185>.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Figure 5: Scores on the LIMIT small task ($N=46$) over embedding dimensions. Despite having just 46 documents, model struggle even with recall@10 and cannot solve the task even with recall@20.

A RELATIONSHIP TO ORDER-K VORONOI REGIONS

We also provide an explanation for how our results compare to Clarkson (1988) which put bounds on the number of regions in the order- k Voronoi graph. The order- k Voronoi graph is defined as the set of points having a particular set of n points in S as its n nearest neighbors. This maps nicely to retrieval, as each order- k region is equivalent to one retrieved set of top- k results. Then the count of unique regions in the Voronoi graph is the total number of combinations that could be returned for those points. However, creating an empirical order- k Voronoi graph is computationally infeasible for $d > 3$, and theoretically it is hard to bound tightly. Thus we use a different approach for showing the limitations of embedding models, through the use of the sign-rank.

B HYPERPARAMETER AND COMPUTE DETAILS

Inference We use the default length settings for evaluating models using the MTEB framework (Enevoldsen et al., 2025). As our dataset has relatively short documents (around 100 tokens), this does not cause an issue.

Training For training on the LIMIT training and test set we use the SentenceTransformers library (Reimers & Gurevych, 2019) using the MultipleNegativesRankingLoss. We use a full dataset batch size and employ the no duplicates sampler to ensure that no in-batch negatives are duplicates of the positive docs. We use a learning rate of 5e-5. We train for 5 epochs and limit the training set slightly to the size of the test set (from 2.5k to 2k examples, matching test).

Compute Inference and training for LIMIT is done with A100 GPUs on Google Colab Pro. The free embedding experiments are done mainly on H100 GPUs and TPU v5's for larger size N to accommodate higher VRAM for full-dataset batch vector optimization.

C EFFECTS OF QREL PATTERNS

As mentioned in previous sections, one of the main differences that makes LIMIT hard is the qrel matrices are designed to have higher sign ranks, through testing models on more combinations of documents than typically used. This is mostly clearly seen when training on the test data (as in the free embeddings) where these constraints cause more difficulties in optimization. However, even for zero-shot models we ablate this decision and show that methods that do not test as many combinations (i.e. when the qrels are represented as a graph, have lower graph density) are easier empirically.

810 **Experiment Setup** We instantiate four new LIMITs from different qrel patterns (using the open-
 811 sourced code, which differs slightly from the original LIMIT due to changes in random seeds/document
 812 names): (1) *random* sampling from all combinations (2) a *cycle*-based setup where the next
 813 query is relevant to one document from the previous query and the following next document, (3) a
 814 *disjoint* pattern where each query is relevant to two new documents and (4) the pattern that maximizes
 815 the number of connections (n choose k) for the largest number of documents that fit in the query set
 816 (*dense*, our standard setup). For all configurations, we use the same setup as the main LIMIT (50k
 817 docs, 1k queries, $k=2$, 45 entities per doc, etc)

818 Table 1: Recall@1000 (%) for Qwen3 8B and GritLM 7B across different Qrel patterns for LIMIT.
 819

Model	Embed Dim	Dense	Random	Cycle	Disjoint
Qwen3 8B	4096	13.8	14.8	14.7	15.4
GritLM 7B	4096	32.9	35.5	34.9	35.1

824 **Results** We see in Table 1 dense shows worse performance, even in the zero-shot setting. However,
 825 as there is no training being done, the constraints provide a smaller impact on the models.
 826

827 C.1 CORRELATION WITH MTEB

828 BEIR (used in MTEB v1) (Thakur et al., 2021; Muennighoff
 829 et al., 2022) has frequently been cited as something that
 830 embedding models have overfit to (Weller et al., 2025b; Thakur
 831 et al., 2025). We compare performance on LIMIT to BEIR
 832 in Figure 6. We see that performance is generally not corre-
 833 lated and that smaller models (like Arctic Embed) do worse on
 834 both, likely due to embedding dimension and pre-trained model
 835 knowledge.
 836

837 Figure 6: No obvious correlation
 838 between BEIR vs LIMIT.
 839

840 D LIMITATIONS

841 Although our experiments provide theoretical insight for the most common type of embedding model
 842 (single vector) they do not hold necessarily for other architectures, such as multi-vector models.
 843 Although we showed initial empirical results with non-single vector models, we leave it to future
 844 work to extend our theoretical connections to these settings.
 845

846 We also did not show theoretical results for the setting where the user allows some mistakes, e.g.
 847 capturing only the majority of the combinations. We leave putting a bound on this scenario to future
 848 work and would invite the reader to examine works like Ben-David et al. (2002).
 849

850 We have showed the theoretical connection that proves that some combinations cannot be represented
 851 by embedding models, however, we cannot prove *apriori* which *types* of combinations they will fail
 852 on. Thus, it is possible that there are some instruction-following or reasoning tasks they can solve
 853 perfectly, however, *we do know* that there exists some tasks that they will never be able to solve.
 854

855 E LLM USAGE

856 LLMs were not used for any paper writing, only for coding help and title brainstorming.
 857

859 F METRICS MEASURING QREL GRAPH DENSITY

860 We show two metrics that treat the qrel matrix as a graph and show that LIMIT has unique properties
 861 compared to standard IR datasets (Table 2). We call these metrics Graph Density and Average Query
 862 Strength and describe them below.
 863

864 **Graph Density** We use the qrel matrix to construct the graph, where nodes are documents and an
 865 edge exists between two documents if they are both relevant to at least one common query.
 866

867 For a given graph $G = (V, E)$ with V being the set of nodes and E being the set of edges, the graph
 868 density is defined as the ratio of the number of edges in the graph to the maximum possible number
 869 of edges. For an undirected graph, the maximum possible number of edges is $\frac{|V|(|V|-1)}{2}$. Thus, the
 870 density ρ is calculated as:

$$\rho = \frac{|E|}{\frac{|V|(|V|-1)}{2}} = \frac{2|E|}{|V|(|V|-1)}$$

871 This metric indicates how connected the graph is; a density of 1 signifies a complete graph (all
 872 possible edges exist), while a density close to 0 indicates a sparse graph. For a qrel dataset, the
 873

874 **Average Query Strength** In a query-query graph where nodes are queries and edges represent
 875 similarity between queries (e.g., Jaccard similarity of their relevant documents), the *strength* of a
 876 query node i , denoted s_i , is defined as the sum of the weights of all edges incident to it. If w_{ij} is the
 877 weight of the edge between query i and query j , and $N(i)$ is the set of neighbors of query i , then the
 878 strength is:

$$s_i = \sum_{j \in N(i)} w_{ij}$$

879 The Average Query Strength \bar{s} is the mean of these strengths across all query nodes in the graph:
 880

$$\bar{s} = \frac{1}{|V_Q|} \sum_{i \in V_Q} s_i$$

881 where V_Q is the set of all query nodes in the graph. This metric provides an overall measure of how
 882 strongly connected queries are to each other on average within the dataset, based on their shared
 883 relevant documents.
 884

885 **Comparisons to other datasets** We compare with standard IR Datasets such as NQ (Kwiatkowski
 886 et al., 2019), HotpotQA (Yang et al., 2018), and SciFact (Wadden et al., 2020). We also show an
 887 instruction-following dataset, FollowIR Core17 (Weller et al., 2024a). For all datasets, we use the
 888 test set only. The results in Table 2 show that LIMIT has significantly higher values for both of these
 889 metrics (i.e. 28 for query similarity compared to 0.6 or lower for the others).
 890

901 Table 2: Metrics measuring the density of the qrel matrix. We see that LIMIT is significantly higher
 902 than other datasets, but that the closest are instruction-following datasets such as Core17 from
 903 FollowIR. Our empirical ablations suggest (although cannot definitively prove) that datasets with
 904 higher values here will be harder for retrieval models to represent.
 905

906 Dataset Name	907 Graph Density	908 Average Query Strength
909 NQ	910 0	911 0
912 HotPotQA	913 0.000037	914 0.1104
915 SciFact	916 0.001449	917 0.4222
918 FollowIR Core17	919 0.025641	920 0.5912
921 LIMIT	922 0.085481	923 28.4653

924 G TABLE FORMS OF FIGURES

925 In this section we show the table form of various figures. For Figure 3 it is Table 5, Figure 5 in
 926 Table 4, Figure 2 in Table 6, and Figure 4 in Table 3.
 927

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935

936	Split	Dim	Recall@2	Recall@10	Recall@100
937	Test	32	85.5	98.4	100.0
938	Test	64	90.4	98.7	100.0
939	Test	128	93.1	99.5	99.9
940	Test	256	94.2	99.7	100.0
941	Test	384	95.6	99.6	100.0
942	Test	512	94.0	99.5	99.9
943	Test	768	96.1	99.8	100.0
944	Test	1024	96.5	99.8	100.0
945	Train	32	0.0	0.0	0.0
946	Train	64	0.1	0.3	2.2
947	Train	128	0.2	0.7	3.1
948	Train	256	0.0	0.0	0.4
949	Train	384	1.1	2.7	8.3
950	Train	512	0.7	2.3	9.8
951	Train	768	0.7	2.4	9.9
952	Train	1024	1.0	2.8	11.2

953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

Table 3: Fine-tuning results in table form. See Figure 4 for the comparable plot.

972
973
974
975

976	Model	Dim	Recall@2	Recall@10	Recall@20
977	BM25	default	97.8	100.0	100.0
978	E5-Mistral 7B	32	7.9	32.6	56.2
979	E5-Mistral 7B	64	10.2	37.0	60.3
980	E5-Mistral 7B	128	14.5	41.9	65.9
981	E5-Mistral 7B	256	15.3	45.9	69.7
982	E5-Mistral 7B	512	22.2	54.7	74.8
983	E5-Mistral 7B	768	21.6	57.5	79.2
984	E5-Mistral 7B	1024	24.5	60.5	80.0
985	E5-Mistral 7B	2048	28.9	66.3	83.2
986	E5-Mistral 7B	3072	29.9	67.8	85.3
987	E5-Mistral 7B	4096	29.5	68.1	85.2
988	GTE-ModernColBERT	default	83.5	97.6	99.1
989	GritLM 7B	32	7.8	33.5	56.3
990	GritLM 7B	64	9.4	35.9	59.6
991	GritLM 7B	128	14.2	42.7	64.9
992	GritLM 7B	256	17.3	46.2	68.3
993	GritLM 7B	512	21.8	55.6	76.7
994	GritLM 7B	768	23.8	58.1	80.1
995	GritLM 7B	1024	26.2	61.4	80.1
996	GritLM 7B	2048	33.0	69.1	86.2
997	GritLM 7B	3072	36.3	72.9	89.9
998	GritLM 7B	4096	38.4	75.4	90.5
999	Promptriever Llama3 8B	32	6.1	31.4	56.0
1000	Promptriever Llama3 8B	64	8.9	35.8	62.3
1001	Promptriever Llama3 8B	128	13.7	44.5	67.6
1002	Promptriever Llama3 8B	256	18.5	52.1	74.1
1003	Promptriever Llama3 8B	512	27.0	61.8	81.7
1004	Promptriever Llama3 8B	768	35.5	69.0	84.7
1005	Promptriever Llama3 8B	1024	38.0	73.5	89.1
1006	Promptriever Llama3 8B	2048	46.2	83.6	94.2
1007	Promptriever Llama3 8B	3072	49.2	87.3	96.6
1008	Promptriever Llama3 8B	4096	54.3	90.0	97.7
1009	Qwen3 Embed	32	8.3	30.6	53.9
1010	Qwen3 Embed	64	9.4	35.5	57.6
1011	Qwen3 Embed	128	11.6	38.3	60.8
1012	Qwen3 Embed	256	14.3	41.6	63.8
1013	Qwen3 Embed	512	16.1	43.7	66.0
1014	Qwen3 Embed	768	17.2	45.3	69.3
1015	Qwen3 Embed	1024	17.8	48.7	70.3
1016	Qwen3 Embed	2048	19.5	51.5	72.4
1017	Qwen3 Embed	3072	19.3	52.8	73.3
1018	Qwen3 Embed	4096	19.0	52.3	73.8
1019	Gemini Embed	2	4.2	23.0	45.5
1020	Gemini Embed	4	4.2	21.9	46.0
1021	Gemini Embed	8	4.9	23.2	47.0
1022	Gemini Embed	16	5.2	24.7	47.5
1023	Gemini Embed	32	6.3	25.2	50.6
1024	Gemini Embed	64	6.9	30.6	55.0
1025	Gemini Embed	128	7.7	37.0	62.9
1026	Gemini Embed	256	14.6	46.9	69.7
1027	Gemini Embed	512	23.3	58.4	77.9
1028	Gemini Embed	768	28.8	67.5	84.5
1029	Gemini Embed	1024	31.8	69.9	86.1
1030	Gemini Embed	2048	31.9	70.3	87.1
1031	Gemini Embed	3072	33.7	72.4	87.9
1032	Snowflake Arctic L	32	8.3	30.3	53.8
1033	Snowflake Arctic L	64	9.0	35.4	58.5
1034	Snowflake Arctic L	128	12.7	41.3	65.1
1035	Snowflake Arctic L	256	16.0	48.2	72.6
1036	Snowflake Arctic L	512	16.7	51.3	74.1
1037	Snowflake Arctic L	768	17.9	53.5	74.6
1038	Snowflake Arctic L	1024	19.4	54.9	76.0
1039	Snowflake Arctic L	2048	19.4	54.9	76.0
1040	Snowflake Arctic L	3072	19.4	54.9	76.0
1041	Snowflake Arctic L	4096	19.4	54.9	76.0

Table 4: Results for the LIMIT small version. See comparable Figure 5.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Model	Dim	Recall@2	Recall@10	Recall@100
E5-Mistral 7B	32	0.0	0.0	0.5
E5-Mistral 7B	64	0.0	0.1	0.4
E5-Mistral 7B	128	0.1	0.3	1.0
E5-Mistral 7B	256	0.4	0.9	1.9
E5-Mistral 7B	512	0.7	1.3	3.8
E5-Mistral 7B	768	0.9	1.7	4.3
E5-Mistral 7B	1024	0.9	1.8	5.9
E5-Mistral 7B	2048	1.0	1.9	6.8
E5-Mistral 7B	3072	1.3	2.0	7.7
E5-Mistral 7B	4096	1.3	2.2	8.3
Snowflake Arctic L	32	0.0	0.1	0.6
Snowflake Arctic L	64	0.2	0.4	1.7
Snowflake Arctic L	128	0.1	0.3	1.8
Snowflake Arctic L	256	0.2	0.8	2.5
Snowflake Arctic L	512	0.3	1.0	2.5
Snowflake Arctic L	768	0.4	1.1	3.1
Snowflake Arctic L	1024	0.4	0.8	3.3
Snowflake Arctic L	2048	0.4	0.8	3.3
Snowflake Arctic L	3072	0.4	0.8	3.3
Snowflake Arctic L	4096	0.4	0.8	3.3
GritLM 7B	32	0.0	0.0	0.8
GritLM 7B	64	0.0	0.1	0.3
GritLM 7B	128	0.1	0.3	1.3
GritLM 7B	256	0.1	0.4	2.8
GritLM 7B	512	0.6	1.8	6.5
GritLM 7B	768	1.5	3.1	8.7
GritLM 7B	1024	1.8	3.5	10.6
GritLM 7B	2048	2.3	4.3	11.8
GritLM 7B	3072	2.0	4.3	12.9
GritLM 7B	4096	2.4	4.1	12.9
Promptrever Llama3 8B	32	0.0	0.0	0.1
Promptrever Llama3 8B	64	0.0	0.0	0.3
Promptrever Llama3 8B	128	0.0	0.1	0.6
Promptrever Llama3 8B	256	0.2	0.4	1.8
Promptrever Llama3 8B	512	0.6	1.4	5.4
Promptrever Llama3 8B	768	1.3	3.1	8.7
Promptrever Llama3 8B	1024	2.1	4.4	12.8
Promptrever Llama3 8B	2048	3.2	6.5	18.1
Promptrever Llama3 8B	3072	2.9	6.3	17.8
Promptrever Llama3 8B	4096	3.0	6.8	18.9
Qwen3 Embed	32	0.0	0.1	1.1
Qwen3 Embed	64	0.0	0.2	1.0
Qwen3 Embed	128	0.3	0.4	1.8
Qwen3 Embed	256	0.4	0.8	3.2
Qwen3 Embed	512	0.6	1.3	3.3
Qwen3 Embed	768	0.7	1.5	3.8
Qwen3 Embed	1024	0.7	1.6	4.6
Qwen3 Embed	2048	0.9	1.7	4.7
Qwen3 Embed	3072	0.8	1.6	4.8
Qwen3 Embed	4096	0.8	1.8	4.8
Gemini Embed	2	0.0	0.0	0.1
Gemini Embed	4	0.0	0.0	0.0
Gemini Embed	8	0.0	0.0	0.0
Gemini Embed	16	0.0	0.0	0.0
Gemini Embed	32	0.0	0.0	0.0
Gemini Embed	64	0.0	0.0	0.3
Gemini Embed	128	0.0	0.1	0.3
Gemini Embed	256	0.0	0.1	1.2
Gemini Embed	512	0.2	1.1	3.6
Gemini Embed	768	0.9	2.5	7.6
Gemini Embed	1024	1.3	2.7	8.1
Gemini Embed	2048	1.5	3.1	8.5
Gemini Embed	3072	1.6	3.5	10.0
GTE-ModernColBERT	default	23.1	34.6	54.8
BM25	default	85.7	90.4	93.6

Table 5: Results on LIMIT. See comparable Figure 3.

	<i>d</i>	Critical- <i>n</i>
1080	4	10
1081	5	14
1082	6	19
1083	7	24
1084	8	28
1085	9	32
1086	10	36
1087	11	42
1088	12	47
1089	13	54
1090	14	62
1091	15	70
1092	16	79
1093	17	89
1094	18	99
1095	19	109
1096	20	120
1097	21	132
1098	22	144
1099	23	157
1100	24	170
1101	25	184
1102	26	198
1103	27	213
1104	28	229
1105	29	245
1106	30	261
1107	31	278
1108	32	296
1109	33	314
1110	34	333
1111	35	352
1112	36	372
1113	37	392
1114	38	413
1115	39	434
1116	40	460
1117	41	484
1118	42	505
1119	43	545
1120	44	605
1121	45	626

Table 6: Critical Values of *n* for different *d* values in the Free Embedding optimization experiments.
See Figure 2 for the corresponding figure.

Model	BEIR	LIMIT R@100
Snowflake Arctic	55.22	3.3
Promptrever	56.40	18.9
E5-Mistral	57.07	8.3
GritLM	57.40	12.9
Gemini Embed	62.65	10.0
Qwen3 Embed	62.76	4.8

Table 7: BEIR vs LIMIT results. See Figure 6 for the comparable plot.