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ABSTRACT

Vector embeddings have been tasked with an ever-increasing set of retrieval tasks
over the years, with a nascent rise in using them for reasoning, instruction-following,
coding, and more. These new benchmarks push embeddings to work for any query
and any notion of relevance that could be given. While prior works have pointed
out theoretical limitations of vector embeddings, there is a common assumption
that these difficulties are exclusively due to unrealistic queries, and those that are
not can be overcome with better training data and larger models. In this work,
we demonstrate that we may encounter these theoretical limitations in realistic
settings with extremely simple queries. We connect known results in learning
theory, showing that the number of top-k subsets of documents capable of being
returned as the result of some query is limited by the dimension of the embedding,
and prove the contrapositive. We empirically show that this holds true even if we
directly optimize on the test set with free parameterized embeddings. We then
create a realistic dataset called LIMIT that stress tests embedding models based
on these theoretical results, and observe that even state-of-the-art models fail on
this dataset despite the simple nature of the task. Our work shows the limits of
embedding models under the existing single vector paradigm and calls for future
research to develop new techniques that can resolve this fundamental limitation.

1 INTRODUCTION

Over the last two decades, information retrieval (IR) has moved from models dominated by sparse
techniques (such as BM25 Robertson et al. (1995)) to those that use neural language models (LM)
as their backbones (Lee et al., 2019; Craswell et al., 2020; Izacard et al., 2021; Wang et al., 2022).
These neural models are predominantly used in a single vector capacity, where they output a single
embedding representing the entire input (also known as dense retrieval). These embedding models
are capable of generalizing to new retrieval datasets and have been tasked with solving increasingly
complicated retrieval problems (Thakur et al., 2021; Enevoldsen et al., 2025; Lee et al., 2025).

In recent years this has been pushed even further with the rise of instruction-following retrieval
benchmarks, where models are asked to represent any relevance definition for any query (Weller
et al., 2025a;b; Song et al., 2025; Xiao et al., 2024; Su et al., 2024). For example, the QUEST dataset
(Malaviya et al., 2023) uses logical operators to combine different concepts, studying the difficulty
of retrieval for complex queries (e.g., “Moths or Insects or Arthropods of Guadeloupe”). On the
other hand, datasets like BRIGHT (Su et al., 2024) explore the challenges stemming from different
definitions of relevance by defining relevance in ways that require reasoning. One subtask includes
reasoning over a given Leetcode problem (the query) to find other Leetcode problems that share a
sub-task (e.g. others problems using dynamic programming). Although models cannot solve these
benchmarks yet, the community has proposed these problems in order to push the boundaries of what
dense retrievers are capable of—which is now implicitly every task that could be defined.

Rather than proposing empirical benchmarks to gauge what embedding models can achieve, we seek
to understand at a more fundamental level what the limitations are. Since embedding models use
vector representations in geometric space, there exists well-studied fields of mathematical research
(Papadimitriou & Sipser, 1982) that could be used to analyze these representations.

Data and code are available at <removed for anonymity>
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Figure 1: A depiction of the LIMIT dataset creation process, based on theoretical limitations. We test
all combinations of relevance for N documents (i.e. in the figure, all combinations of relevance for
three documents with two relevant documents per query) and instantiate it using a simple mapping.
Our work aims to bridge this gap, connecting known theoretical results in geometric algebra with
modern advancements in neural information retrieval. We draw upon research in communication
complexity theory to provide a lower bound on the embedding dimension needed to represent a given
combination of relevant documents and queries. Specifically, we show that for a given embedding
dimension d there exists top-k combinations of documents that cannot be returned—no matter
the query—highlighting a theoretical and fundamental limit to embedding models.

To show that this theoretical limit is true for any retrieval model or training dataset, we test a setting
where the vectors themselves are directly optimized with the test data. This allows us to empirically
show how the embedding dimension enables the solving of retrieval tasks. We find there exists a
crucial point for each embedding dimension (d) where the number of documents is too large for the
embedding dimension to encode all combinations. We then gather these crucial points for a variety of
d and show that this relationship can be modeled empirically with a polynomial function.

We also go one step further and construct a realistic but simple dataset based on these theoretical
limitations (called LIMIT). Despite the simplicity of the task (e.g., who likes Apples? and
Jon likes Apples, ...), we find it is very difficult for even state-of-the-art embedding
models (Lee et al., 2025; Zhang et al., 2025) on MTEB (Enevoldsen et al., 2025) due to the theoretical
underpinnings, and impossible1 for models with small embedding dimensions.

Overall, our work contributes: (1) a theoretical basis for the fundamental limitations of embedding
models, (2) a best-case empirical analysis showing that this proof holds for any dataset instantiation
(by free embedding optimization), and (3) a simple real-world natural language instantiation called
LIMIT that even state-of-the-art embedding models cannot solve.

These results imply interesting findings for the community: on one hand we see neural embedding
models becoming immensely successful. However, academic benchmarks test only a small amount
of the queries that could be issued (and these queries are often overfitted to), hiding these limitations.
Our work shows that as the tasks given to embedding models require returning ever-increasing
combinations of top-k relevant documents (e.g., through instructions connecting previously unrelated
documents with logical operators), we will reach a limit of combinations they cannot represent.

Thus, the community should be aware of these limitations, both when creating evals and also by using
alternate architectures—such as cross-encoders / multi-vector / more expressive similarity functions
—when trying to handle the full range of instruction queries, i.e. any query and relevance definition.

2 RELATED WORK

2.1 NEURAL EMBEDDING MODELS

There has been immense progress on embedding models in recent years (Lee et al., 2019; Craswell
et al., 2020; BehnamGhader et al., 2024), moving from simple web search (text-only) to advanced
instruction-following and multi-modal representations. These models generally followed advance-

1At least with current optimization techniques for retrieval.
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ments in language models, such as pre-trained LMs (Hoffmann et al., 2022), multi-modal LMs (Li
et al., 2024; Team, 2024), and advancements in instruction-following (Zhou et al., 2023; Ouyang
et al., 2022). Some of the prominent examples in retrieval include CoPali (Faysse et al., 2024) and
DSE (Ma et al., 2024) which focus on multimodal embeddings, Instructor (Su et al., 2022) and
FollowIR (Weller et al., 2024a) for instruction following, and GritLM (Muennighoff et al., 2024) and
Gemini Embeddings (Lee et al., 2025) for pre-trained LMs turned embedders.

Our work, though focused solely on textual representations for simplicity, applies to all modalities
of single vector embeddings for any domain of dataset. As the space of things to represent grows
(through instructions or multi-modality) they will increasingly run into these theoretical limitations.

2.2 EMPIRICAL TASKS PUSHING THE LIMITS OF DENSE RETRIEVAL

Retrieval models have been pushed beyond their initial use cases to handle a broad variety of areas.
Notable works include efforts to represent a wide group of domains (Thakur et al., 2021; Lee et al.,
2024), a diverse set of instructions (Weller et al., 2024a; Zhou et al., 2024; Oh et al., 2024), and
to handle reasoning over the queries (Xiao et al., 2024; Su et al., 2024). This has pushed the
focus of embedding models from basic keyword matching to embeddings that can represent the
full semantic meaning of language. As such, it is more common than ever to connect what were
previously unrelated documents into the top-k relevant set,2 increasing the number of combinations
that models must be able to represent. This has motivated our interest in understanding the limits of
what embeddings can represent, as current work expects it to handle every task.

Previous work has explored empirically the limits of models: Reimers & Gurevych (2020) showed
that smaller dimension embedding models have more false positives, especially with larger-scale
corpora. Ormazabal et al. (2019) showed the empirical limitations of models in the cross-lingual
setting and Yin & Shen (2018) showed how embedding dimensions relate to the bias-variance tradeoff.
In contrast, our work provides a theoretical connection between the embedding dimension and the
sign-rank of the query relevance (qrel) matrix, while also showing empirical limitations.

2.3 THEORETICAL LIMITS OF VECTORS IN GEOMETRIC SPACE

Understanding and finding nearest neighbors in semantic space has a long history in mathematics
research, with early work such as the Voronoi diagram being studied as far back as 1644 and
formalized in 1908 (Voronoi, 1908). The order-k version of the Voronoi diagram (i.e. the Voronoi
diagram partitioning the space into regions based on their closest k points) is obviously connected to
information retrieval and has been studied for many years (Clarkson, 1988). The number of such
regions is equal to the number of unique retrieval sets of size k, however this quantity is notoriously
difficult to bound tightly (Bohler et al., 2015; Lee, 1982; Chen et al., 2023).

We approach this problem from another angle, first formalizing the notion of the minimum embedding
dimension required in our setting as the row-wise order-preserving rank. We show a tight connection
between the this row-wise order preserving rank and the sign-rank of an associated matrix, a quantity
previously explored in learning theory. Computing the sign-rank for a given matrix is NP-hard (Basri
et al., 2009), however the existence of simple matrices with arbitrarily-high sign rank implies that for
any given embedding dimension there are retrieval tasks incapable of being captured in that dimension
(Hatami et al., 2022; Alon et al., 2014; Chierichetti et al., 2017; Chattopadhyay & Mande, 2018;
Hatami & Hatami, 2024). The association between sign-rank and minimum embedding dimension
also implies that free-embedding optimization can be used to upper-bound the sign-rank (i.e. if
we can train d-dimensional free-embeddings to capture the row-wise order relationships, then the
associated matrix has sign-rank at most d).

3 REPRESENTATIONAL CAPACITY OF VECTOR EMBEDDINGS

In this section we formally define the minimum embedding dimension which satisfies a given retrieval
objective, and draw a connection from known results in communication complexity theory to the
setting of vector embeddings.

2You can imagine an easy way to connect any two documents merely by using logical operators, i.e. X and Y.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 FORMALIZATION

We consider a set of m queries and n documents with a ground-truth relevance matrix A ∈ {0, 1}m×n,
where Aij = 1 if and only if document j is relevant to query i.3 Vector embedding models map each
query to a vector ui ∈ Rd and each document to a vector vj ∈ Rd. Relevance is modeled by the dot
product uT

i vj , with the goal that relevant documents should score higher than irrelevant ones.

Concatenating the vectors for queries in a matrix U ∈ Rd×m and those for documents in a matrix
V ∈ Rd×n, these dot products are the entries of the score matrix B = UTV . The smallest embedding
dimension d that can realize a given score matrix is, by definition, the rank of B. Therefore, our
goal is equivalent to finding the minimum rank of a score matrix B that correctly orders documents
according to the relevance specified in A, which we formalize in the following definition.
Definition 1. Given a matrix A ∈ Rm×n, the row-wise order-preserving rank of A is the smallest
integer d such that there exists a rank-d matrix B that preserves the relative order of entries in each
row of A. We denote this as

rankrop A = min{rankB | B ∈ Rm×n, such that for all i, j, k, if Aij > Aik then Bij > Bik}.

In other words, if A is a binary ground-truth relevance matrix, rankrop A is the minimum dimension
necessary for any vector embedding model to return relevant documents before irrelevant ones for
all queries. Alternatively, we might require that the scores of relevant documents can be cleanly
separated from those of irrelevant ones by a threshold.
Definition 2. Given a binary matrix A ∈ {0, 1}m×n:

• The row-wise thresholdable rank of A (rankrt A) is the minimum rank of a matrix B for which
there exist row-specific thresholds {τi}mi=1 such that for all i, j, Bij > τi if Aij = 1 and Bij < τi
if Aij = 0.

• The globally thresholdable rank of A (rankgt A) is the minimum rank of a matrix B for which
there exists a single threshold τ such that for all i, j, Bij > τ if Aij = 1 and Bij < τ if Aij = 0.

Remark 1. This two-sided separation condition may be seen as slightly stronger than requiring
Bij > τi if and only if Aij = 1, however since there are only finitely many elements of Bij we could
always perturb the latter threshold by a sufficient number such that the two-sided condition holds.4

3.2 THEORETICAL BOUNDS

For binary matrices, row-wise ordering/thresholding are equivalent notions of representation capacity.
Proposition 1. For a binary matrix A ∈ {0, 1}m×n, we have that rankrop A = rankrt A.

Proof. (≤) Suppose B and τ satisfy the row-wise thresholdable rank condition. Since A is a binary
matrix Aij > Aik implies Aij = 1 and Aik = 0, thus Bij > τi > Bik, and hence B also satisfies
the row-wise order-preserving condition.

(≥) Let B satisfy the row-wise order-preserving condition, so Aij > Aik implies Bij > Bik. For
each row i, let Ui = {Bij | Aij = 1} and Li = {Bij | Aij = 0}. The row-wise order-preserving
condition implies that every element of Ui is greater than every element of Li. We can therefore
always find a threshold τi separating them (e.g. τi = (maxLi +minUi)/2 if both are non-empty,
trivial otherwise). Thus B is also row-wise thresholdable to A.

The notions we have described so far are closely related to the sign rank of a matrix, which we use in
the rest of the paper to establish our main bounds.
Definition 3 (Sign Rank). The sign rank of a matrix M ∈ {−1, 1}m×n is the smallest integer d such
that there exists a rank d matrix B ∈ Rm×n whose entries have the same sign as those of M , i.e.

rank± M = min{rankB | B ∈ Rm×n such that for all i, j we have signBij = Mij}.
3The matrix A is often called the “qrels” (query relevance judgments) matrix in information retrieval.
4Without loss of generality, we may assume the thresholds in the above definitions are not equal to any

elements of B since we could increase the threshold of τ by a sufficiently small ϵ to preserve the inequality.
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In what follows, we use 1n to denote the n-dimensional vector of ones, and 1m×n to denote an
m× n matrix of ones.
Proposition 2. Let A ∈ {0, 1}m×n be a binary matrix. Then 2A− 1m×n ∈ {−1, 1}m×n and

rank±(2A− 1m×n)− 1 ≤ rankrop A = rankrt A ≤ rankgt A ≤ rank±(2A− 1m×n)

Proof. N.b. the equality was already shown in Proposition 1. We prove each inequality separately.

1. rankrt A ≤ rankgt A: True by definition, since any matrix satisfying the globally thresholdable
condition trivially satisfies a row-wise thresholdable condition with the same threshold for each row.

2. rankgt A ≤ rank±(2A − 1m×n): Let B be any matrix whose entries have the same sign as
2A− 1m×n, then

Bij > 0 ⇐⇒ 2Aij − 1 > 0 ⇐⇒ Aij = 1.

Thus B satisfies the globally thresholdable condition with a threshold of 0.

3. rank±(2A− 1m×n)− 1 ≤ rankrt A: Suppose B satisfies the row-wise thresholdable condition
with minimal rank, so rankrt A = rankB and there exists τ ∈ Rm such that Bij > τi if Aij = 1
and Bij < τi if Aij = 0. Then the entries of B − τ1T

n have the same sign as 2A − 1m×n, since
(B − τ1T

n )ij = Bij − τi and

Bij − τi > 0 ⇐⇒ Aij = 1 ⇐⇒ 2Aij − 1 > 0, and (1)
Bij − τi < 0 ⇐⇒ Aij = 0 ⇐⇒ 2Aij − 1 < 0. (2)

Thus rank±(2A− 1m×n) ≤ rank(B − τ1T
n ) ≤ rank(B) + rank(τ1T

n ) = rankrt A+ 1.

Combining these gives the desired chain of inequalities.

3.3 CONSEQUENCES

In the context of a vector embedding model, this provides a lower and upper bound on the dimension of
vectors required to exactly capture a given set of retrieval objectives, in the sense of row-wise ordering,
row-wise thresholding, or global thresholding. In particular, given some binary relevance matrix
A ∈ {0, 1}m×n, we need at least rank±(2A− 1m×n)− 1 dimensions to capture the relationships in
A exactly, and can always accomplish this in at most rank±(2A− 1m×n) dimensions. This means:

1. For any fixed dimension d, there exists a binary relevance matrix which cannot be captured
via d-dimensional embeddings (as there are matrices with arbitrarily high sign-rank). In
other words, retrieval tasks whose qrel matrices have higher sign-rank are more difficult
to capture exactly for embedding models, requiring higher embedding dimensions.

2. If we are able to embed a given matrix A ∈ {0, 1}m×n in a row-wise order-preserving
manner in d dimensions, this implies a bound on the sign-rank of 2A− 1m×n. In particular,
this suggests a practical mechanism for determining an upper-bound on sign-rank for
matrices via gradient descent optimization of free embedding representations.

4 EMPIRICAL CONNECTION: BEST CASE OPTIMIZATION

Having established a theoretical limitation of embedding models based on a sign-rank related to the
qrel matrix and their embedding dimension d, we seek to show that this holds empirically also.

To show the strongest optimization case possible, we design experiments where the vectors themselves
are directly optimizable with gradient descent.5 We call this “free embedding” optimization, as the
embeddings are free to be optimized and not constrained by natural language, which imposes
constraints on any realistic embedding model. Thus, this shows whether it is feasible for any
embedding model to solve this problem: if the free embedding optimization cannot solve the
problem, real retrieval models will not be able to either. It is also worth noting that we do this by
directly optimizing the embeddings over the target qrel matrix (test set). This will not generalize to a
new dataset, but is done to show the highest performance that could possibly occur.

5This could also be viewed as an embedding model where each query/doc are a separate vector via lookup.
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Experimental Settings We create a random document matrix (size n) and a random query matrix
with top-k sets (of all combinations, i.e. size m =

(
n
k

)
), both with unit vectors. We then directly

optimize for solving the constraints with the Adam optimizer (Kingma & Ba, 2014).6 Each gradient
update is a full pass through all correct triples (i.e. full dataset batch-size) with the InfoNCE loss
function (Oord et al., 2018),7 with all other documents as in-batch negatives (i.e. full dataset in batch).
As nearly all embedding models use normalized vectors, we do also (via projected gradient descent).
We perform early stopping when there is no improvement in the loss for 1000 iterations. We gradually
increase the number of documents (and thus the binomial amount of queries) until the optimization is
no longer able to solve the problem (i.e. achieve 100% accuracy). We call this the critical-n point.

We focus on relatively small sizes for n, k, and d due to the combinatorial explosion of combinations
with larger document values (i.e. 50k docs with top-k of 100 gives 7.7e+311 combinations, which
would be equivalent to the number of query vectors of dimension d in that free embedding experiment).
We use k = 2 and increase n by one for each d value until it breaks. We fit a polynomial regression
line to the data so we can model and extrapolate results outwards.

10 20 30 40
d

0

200

400

600
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Critical Points
Regression (Degree 3)

Figure 2: The critical-n value where the
dimensionality is too small to successfully
represent all the top-2 combinations. We plot the
trend line as a polynomial function.

Results Figure 2 shows that the curve fits a
3rd degree polynomial curve, with formula y =
−10.5322 + 4.0309d + 0.0520d2 + 0.0037d3

(r2=0.999). Extrapolating this curve outward
gives the critical-n values (for embedding size):
500k (512), 1.7m (768), 4m (1024), 107m
(3072), 250m (4096). We note that this is the
best case: a real embedding model cannot di-
rectly optimize the query and document vectors
to match the test qrel matrix (and is constrained
by factors such as “modeling natural language”).
However, these numbers already show that for
web-scale search, even the largest embedding
dimensions with ideal test-set optimization are
not enough to model all combinations.

5 EMPIRICAL CONNECTION: REAL-WORLD DATASETS

The free embedding experiments provide empirical evidence that our theoretical results hold true.
However, they still are abstract - what does this mean for real embedding models? In this section
we (1) draw connections from this theory to existing datasets and (2) create an trivially simple yet
extremely difficult retrieval task for existing SOTA models.

5.1 CONNECTION TO EXISTING DATASETS

Existing retrieval datasets typically use a static evaluation set with limited numbers of queries, as
relevance annotation is expensive to do for each query. This means practically that the space of
queries used for evaluation is a very small sample of the number of potential queries. For example, the
QUEST dataset (Malaviya et al., 2023) has 325k documents and queries with 20 relevant documents
per query, with a total of 3357 queries. The number of unique top-20 document sets that could
be returned with the QUEST corpus would be

(
325k
20

)
which is equal to 7.1e+91 (larger than the

estimate of atoms in the observable universe, 1082). Thus, the 3k queries in QUEST can only cover
an infinitesimally small part of the qrel combination space.

Although it not possible to instantiate all combinations when using large-scale corpora, search
evaluation datasets are a proxy for what any user would ask for and ideally would be designed to test
many combinations, as users will do. In many cases, developers of new evaluations simply choose

6We found similar results with SGD, but we use Adam for speed and similarity with existing training methods.
7In preliminary experiments, we found that InfoNCE performed best, beating MSE and Margin. As we are

directly optimizing the vectors with full-dataset batches, this is Ltotal = − 1
M

∑M
i=1 log

∑
dr∈Ri

exp(sim(qi,dr)/τ)∑
dk∈D exp(sim(qi,dk)/τ)

where D is all docs, dr is the relevant documents for query qi and dk are the non-relevant documents.

6
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to use fewer queries due to cost or computational expense of evaluation. For example, QUEST’s
query “Novels from 1849 or George Sand novels” combines two categories of novels with the “OR”
operator – one could instantiate new queries to relate concepts through OR’ing other categories
together. Similarly, with the rise of search agents, we see greater usage of hyper-specific queries:
BrowseComp (Wei et al., 2025) has 5+ conditions per query, including range operators. With these
tools, it is possible to sub-select any top-k relevant set with the right operators if the documents are
sufficiently expressive (i.e. non-trivial). Thus, that existing datasets choose to only instantiate some
of these combinations is mainly for practical reasons and not because of a lack of existence.

In contrast to these previous works, we seek to build a dataset that evaluates all combinations of
top-k sets for a small number of documents. Rather than using difficult query operators like QUEST,
BrowseComp, etc. (which are already difficult for reasons outside of the qrel matrix) we choose very
simple queries and documents to highlight the difficulty of representing all top-k sets themselves.

5.2 THE LIMIT DATASET

Dataset Construction In order to have a natural language version of this dataset, we need some
way to map combinations of documents into something that could be retrieved with a query. One
simple8 way to do this is to create a synthetic version with latent variables for queries and documents
and then instantiate it with natural language. For this mapping, we choose to use attributes that
someone could like (i.e. Jon likes Hawaiian pizza, sports cars, etc. ) as they are plentiful and don’t
present issues w.r.t. other items: one can like Hawaiian pizza but dislike pepperoni, all preferences
are valid. We then enforce two constraints for realism: (1) users shouldn’t have too many attributes,
thus keeping the documents short (less than 50 per user) and (2) each query should only ask for one
item to keep the task simple (i.e. “who likes X”). We gather a list of attributes a person could like
through prompting Gemini 2.5 Pro. We then clean it to a final 1850 items by iteratively asking it to
remove duplicates/hypernyms, while also checking the top failures with BM25 to ensure no overlap.

We choose to use 50k documents in order to have a hard but relatively small corpus and 1000 queries
to maintain statistical significance while still being fast to evaluate. For each query, we choose to use
two relevant documents (i.e. k=2), both for simplicity in instantiating and to mirror previous work
(i.e. NQ, HotpotQA, etc. (Kwiatkowski et al., 2019; Yang et al., 2018)).

Our last step is to choose a qrel matrix to instantiate these attributes. Although we could not prove the
hardest qrel matrix definitively with theory (as the sign rank is notoriously hard to prove), we intuit
that our theoretical results imply that the more interconnected the qrel matrix is (e.g. dense with all
combinations) the harder it would be for models to represent (Appendix C for more). Following this,
we use the qrel matrix with the highest number of documents for which all combinations would be
just above 1000 queries for a top-k of 2 (46 docs, since

(
46
2

)
is 1035, the smallest above 1k).

We then assign random natural language attributes to the queries, adding these attributes to their
respective relevant documents (c.f. Figure 1). We give each document a random first and last name
from open-source lists of names. Finally, we randomly sample new attributes for each document until
all documents have the same number of attributes. As this setup has many more documents than
those that are relevant to any query (46 relevant documents, 49.95k non-relevant to any query) we
also create a “small” version with only the 46 documents that are relevant to one of the 1000 queries.

Models We evaluate the state-of-the-art embedding models including GritLM (Muennighoff et al.,
2024), Qwen 3 Embeddings (Zhang et al., 2025), Promptriever (Weller et al., 2024b), Gemini
Embeddings (Lee et al., 2025), Snowflake’s Arctic Embed Large v2.0 (Yu et al., 2024), and E5-
Mistral Instruct (Wang et al., 2022; 2023). These models range in embedding dimension (1024 to
4096) as well as in training style (instruction-based, hard negative optimized, etc.). We also evaluate
three non-single vector models to show the distinction: BM25 (Robertson et al., 1995; Lù, 2024),
gte-ModernColBERT (Chaffin, 2025a; Chaffin & Sourty, 2024), and a token-wise TF-IDF.9

We show results at the full embedding dimension and also with truncated embedding dimension
(typically used with matryoshka learning, aka MRL (Kusupati et al., 2022)). For models not trained

8This is just one way, designed to be realistic and simple. However, our framework allows for any way of
instantiation while creating high sign-rank qrel matrices – not stuck to the arbitrary natural language design.

9This model turns each unique item into a token and then does TF-IDF. We build it to show that it gets 100%
on all tasks (as it reverse engineers our dataset construction) and thus we do not include it in future charts.
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Figure 3: Scores on the LIMIT task. Despite the simplicity of the task we see that SOTA models
struggle. We also see that the dimensionality of the model is a limiting factor and that as the
dimension increases, so does performance. Even multi-vector models struggle. Lexical models like
BM25 do very well due to their higher dimensionality. Stars indicate models trained with MRL.

with MRL this will result in sub-par scores, thus, models trained with MRL are indicating with stars in
the plots. However, as there are no LLMs with an embedding dimension smaller than 384, we include
MRL for all models to small dimensions (32) to show the impact of embedding dimensionality.

Results Figure 3 shows the results on the full LIMIT while Figure 5 shows the results on the small
(46 document) version. The results are surprising - models severely struggle even though the task
is trivially simple. For example, in the full setting models struggle to reach even 20% recall@100
and in the 46 document version models cannot solve the task even with recall@20.

We see that model performance depends crucially on the embedding dimensionality (better perfor-
mance with bigger dimensions). Interestingly, models trained with more diverse instruction, such
as Promptriever, perform better, perhaps because their training allows them to use more of their
embedding space (compared to models which are trained with MRL and on a smaller range of tasks
that can perhaps be consolidated into a smaller embedding manifold).

For alternative architectures, GTE-ModernColBERT does significantly better than single-vector
models (although still far from solving the task) while BM25 comes close to perfect scores. Both of
these alterative architectures (sparse and multi-vector) offer various trade-offs, see §5.3 for analysis.
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Figure 4: Training on LIMIT train does
not significantly help, indicating the
issue is not domain shift. But models
can solve it if they overfit to the test set.

Is this Domain Shift? Although our queries look sim-
ilar to standard web search queries, we wondered whether
there could be some domain shift causing the low perfor-
mance. If so, we would expect that training on a training
set of similar examples would significantly improve per-
formance. On the other hand, if the task was intrinsically
hard, training on the training set would provide little help
whereas training on the test set would allow the model to
overfit to those tokens (similar to the free embed exps).

To test this we take an off-the-shelf embedding model and
train it on either the training set (created synthetically us-
ing non-test set attributes) or the official test set of LIMIT.
We use lightonai/modernbert-embed-large
(Chaffin, 2025c) and fine-tune it on these splits, using
the full dataset for in batch negatives (excluding positives)
using SentenceTransformers (Reimers & Gurevych, 2019). We show a range of dimensions by
projecting the hidden layer down to the specified size during training (rather than using MRL).

Figure 4 shows the model trained on the training set cannot solve the problem, although it does see
very minor improvement from near zero recall@10 to up to 2.8 recall@10. The lack of performance
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gains when training in-domain indicate that poor performance is not due to domain shift. By training
the model on the test set we see it can learn the task, overfitting on the tokens in the test queries. This
aligns with our free embedding results, that it is possible to overfit to the N = 46 version with only
12 dimensions. However, it is notable that the real models with 64 dimensions still cannot completely
solve the task, implying real models perform significantly worse than the bounds shown in §4.

Implications Single-vector models are fundamentally limited by their embedding dimension, based
on a sign-rank related to the query relevance (qrel) matrices. The LIMIT dataset is a particular
instantiation, with very simple queries and documents, designed to highlight this property. This
version of LIMIT can be embedded in just 12 dimensions, yet all models fail to perform well,
suggesting other architectural weaknesses. Irrespective of the architecture involved, however, our
framework can scale the dataset’s difficulty to consistently demonstrate this fundamental limitation.

5.3 ALTERNATIVES TO EMBEDDING MODELS

Our previous results show both theoretically and empirically that embedding models cannot represent
all combinations of documents in their top-k sets, making them unable to represent and solve some
retrieval tasks. As current embedding models have grown larger (e.g. up to 4096), this has helped
reduce negative effects for smaller dataset sizes. However, with enough combinations of top-k sets
the dimensionality would have to increase to an infeasible size for non-toy datasets. Thus, although
they are useful for first stage results, more expressive retriever architectures will be needed.

Cross-Encoders Although not suitable for first stage retrieval at scale, they are already typically
used to improve first stage results. Is LIMIT challenging for rerankers also? We evaluate a long
context reranker, Gemini-2.5-Pro (Comanici et al., 2025) on the small setting as a comparison. We
give Gemini all 46 documents and all 1000 queries at once, asking it to output the relevant documents
for each query with one generation. We find that it can successfully solve (100%) all 1000 queries in
one forward pass. This is in contrast to even the best embedding models with a recall@2 of less than
60% (Figure 5). Thus we can see that LIMIT is easy for state-of-the-art reranker models, which do
not have the same limitations based on embedding dimension.

Multi-vector models Multi-vector models are more expressive through the use of multiple vectors
per sequence combined with the MaxSim operator (Khattab & Zaharia, 2020). These models show
promise on the LIMIT dataset, with scores greatly above the single-vector models despite using a
smaller backbone (ModernBERT, Warner et al. (2024)). However, these models are not generally
used for instruction-following or reasoning-based tasks (see Chaffin (2025b) as one of the few that
exist), leaving it an open question to how well multi-vector techniques will transfer to these tasks.

Sparse models Sparse models (both lexical and neural) can be thought of as single vectors but
with very high dimensionality. This dimensionality helps BM25 avoid the problems of the neural
embedding models as seen in Figure 3. Since the d of their vectors is high, they can scale to many
more combinations than their dense vector counterparts. However, it is less clear how to apply
sparse models to instruction-following and reasoning-based tasks where there is no lexical or even
paraphrase-like overlap. We leave this direction (and hybrid sparse/dense solutions) to future work.

We note that all of these options have various trade-offs and none provide a clear path to solving this
problem as-is. We leave it to future work to develop new techniques to mitigate these issues: perhaps
through one of these alterative categories or through new ideas around single-vector models that
can resolve the underlying issue (potentially through techniques such as hyperencoders (Killingback
et al., 2025) or other future work on single vector architectures yet to be developed).

6 CONCLUSION

We introduce the LIMIT dataset, which highlights a fundamental limitation of embedding models.
We provide a theoretical connection to sign-rank which shows that, for a fixed embedding dimension
there are always some set of documents such that certain sets are unattainable as top-k sets. We show
these theoretical results hold empirically, through best case optimization of the vectors themselves,
and make a practical connection to existing state-of-the-art models by creating a realistic and simple
instantiation of the theory, called LIMIT, that these models cannot solve. Our results imply that the
community should reconsider how instruction-based retrieval will impact future retrievers.
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Figure 5: Scores on the LIMIT small task (N=46) over embedding dimensions. Despite having just
46 documents, model struggle even with recall@10 and cannot solve the task even with recall@20.

A RELATIONSHIP TO ORDER-K VORONOI REGIONS

We also provide an explanation for how our results compare to Clarkson (1988) which put bounds
on the number of regions in the order-k Voronoi graph. The order-k Voronoi graph is defined as the
set of points having a particular set of n points in S as its n nearest neighbors. This maps nicely to
retrieval, as each order-k region is equivalent to one retrieved set of top-k results. Then the count of
unique regions in the Voronoi graph is the total number of combinations that could be returned for
those points. However, creating an empirical order-k Voronoi graph is computationally infeasible for
d > 3, and theoretically it is hard to bound tightly. Thus we use a different approach for showing the
limitations of embedding models, through the use of the sign-rank.

B HYPERPARAMETER AND COMPUTE DETAILS

Inference We use the default length settings for evaluating models using the MTEB framework
(Enevoldsen et al., 2025). As our dataset has relatively short documents (around 100 tokens), this
does not cause an issue.

Training For training on the LIMIT training and test set we use the SentenceTransformers library
(Reimers & Gurevych, 2019) using the MultipleNegativesRankingLoss. We use a full dataset batch
size and employ the no duplicates sampler to ensure that no in-batch negatives are duplicates of the
positive docs. We use a learning rate of 5e-5. We train for 5 epochs and limit the training set slightly
to the size of the test set (from 2.5k to 2k examples, matching test).

Compute Inference and training for LIMIT is done with A100 GPUs on Google Colab Pro. The
free embedding experiments are done mainly on H100 GPUs and TPU v5’s for larger size N to
accommodate higher VRAM for full-dataset batch vector optimization.

C EFFECTS OF QREL PATTERNS

As mentioned in previous sections, one of the main differences that makes LIMIT hard is the qrel
matrices are designed to have higher sign ranks, through testing models on more combinations of
documents than typically used. This is mostly clearly seen when training on the test data (as in the
free embeddings) where these constraints cause more difficulties in optimization. However, even for
zero-shot models we ablate this decision and show that methods that do not test as many combinations
(i.e. when the qrels are represented as a graph, have lower graph density) are easier empirically.
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Experiment Setup We instantiate four new LIMITs from different qrel patterns (using the open-
sourced code, which differs slightly from the original LIMIT due to changes in random seeds/docu-
ment names): (1) random sampling from all combinations (2) a cycle-based setup where the next
query is relevant to one document from the previous query and the following next document, (3) a
disjoint pattern where each query is relevant to two new documents and (4) the pattern that maximizes
the number of connections (n choose k) for the largest number of documents that fit in the query set
(dense, our standard setup). For all configurations, we use the same setup as the main LIMIT (50k
docs, 1k queries, k=2, 45 entities per doc, etc)

Table 1: Recall@1000 (%) for Qwen3 8B and GritLM 7B across different Qrel patterns for LIMIT.

Model Embed Dim Dense Random Cycle Disjoint

Qwen3 8B 4096 13.8 14.8 14.7 15.4
GritLM 7B 4096 32.9 35.5 34.9 35.1

Results We see in Table 1 dense shows worse performance, even in the zero-shot setting. However,
as there is no training being done, the constraints provide a smaller impact on the models.

C.1 CORRELATION WITH MTEB

0.0 0.1 0.2
Limit Recall@100

56

58

60

62

B
E

IR

Qwen3 E. Gemini Emb.

GritLME5-Mistral
Promptriever

Snowflake Arctic Emb.

Figure 6: No obvious correlation
between BEIR vs LIMIT.

BEIR (used in MTEB v1) (Thakur et al., 2021; Muennighoff
et al., 2022) has frequently been cited as something that em-
bedding models have overfit to (Weller et al., 2025b; Thakur
et al., 2025). We compare performance on LIMIT to BEIR
in Figure 6. We see that performance is generally not corre-
lated and that smaller models (like Arctic Embed) do worse on
both, likely due to embedding dimension and pre-trained model
knowledge.

D LIMITATIONS

Although our experiments provide theoretical insight for the most common type of embedding model
(single vector) they do not hold necessarily for other architectures, such as multi-vector models.
Although we showed initial empirical results with non-single vector models, we leave it to future
work to extend our theoretical connections to these settings.

We also did not show theoretical results for the setting where the user allows some mistakes, e.g.
capturing only the majority of the combinations. We leave putting a bound on this scenario to future
work and would invite the reader to examine works like Ben-David et al. (2002).

We have showed the theoretical connection that proves that some combinations cannot be represented
by embedding models, however, we cannot prove apriori which types of combinations they will fail
on. Thus, it is possible that there are some instruction-following or reasoning tasks they can solve
perfectly, however, we do know that there exists some tasks that they will never be able to solve.

E LLM USAGE

LLMs were not used for any paper writing, only for coding help and title brainstorming.

F METRICS MEASURING QREL GRAPH DENSITY

We show two metrics that treat the qrel matrix as a graph and show that LIMIT has unique properties
compared to standard IR datasets (Table 2). We call these metrics Graph Density and Average Query
Strength and describe them below.
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Graph Density We use the qrel matrix to construct the graph, where nodes are documents and an
edge exists between two documents if they are both relevant to at least one common query.

For a given graph G = (V,E) with V being the set of nodes and E being the set of edges, the graph
density is defined as the ratio of the number of edges in the graph to the maximum possible number
of edges. For an undirected graph, the maximum possible number of edges is |V |(|V |−1)

2 . Thus, the
density ρ is calculated as:

ρ =
|E|

|V |(|V |−1)
2

=
2|E|

|V |(|V | − 1)

This metric indicates how connected the graph is; a density of 1 signifies a complete graph (all
possible edges exist), while a density close to 0 indicates a sparse graph. For a qrel dataset, the

Average Query Strength In a query-query graph where nodes are queries and edges represent
similarity between queries (e.g., Jaccard similarity of their relevant documents), the strength of a
query node i, denoted si, is defined as the sum of the weights of all edges incident to it. If wij is the
weight of the edge between query i and query j, and N(i) is the set of neighbors of query i, then the
strength is:

si =
∑

j∈N(i)

wij

The Average Query Strength s̄ is the mean of these strengths across all query nodes in the graph:

s̄ =
1

|VQ|
∑
i∈VQ

si

where VQ is the set of all query nodes in the graph. This metric provides an overall measure of how
strongly connected queries are to each other on average within the dataset, based on their shared
relevant documents.

Comparisons to other datasets We compare with standard IR Datasets such as NQ (Kwiatkowski
et al., 2019), HotpotQA (Yang et al., 2018), and SciFact (Wadden et al., 2020). We also show an
instruction-following dataset, FollowIR Core17 (Weller et al., 2024a). For all datasets, we use the
test set only. The results in Table 2 show that LIMIT has significantly higher values for both of these
metrics (i.e. 28 for query similarity compared to 0.6 or lower for the others).

Table 2: Metrics measuring the density of the qrel matrix. We see that LIMIT is significantly higher
than other datasets, but that the closest are instruction-following datasets such as Core17 from
FollowIR. Our empirical ablations suggest (although cannot definitively prove) that datasets with
higher values here will be harder for retrieval models to represent.

Dataset Name Graph Density Average Query Strength
NQ 0 0
HotPotQA 0.000037 0.1104
SciFact 0.001449 0.4222
FollowIR Core17 0.025641 0.5912
LIMIT 0.085481 28.4653

G TABLE FORMS OF FIGURES

In this section we show the table form of various figures. For Figure 3 it is Table 5, Figure 5 in
Table 4, Figure 2 in Table 6, and Figure 4 in Table 3.
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Split Dim Recall@2 Recall@10 Recall@100

Test 32 85.5 98.4 100.0
Test 64 90.4 98.7 100.0
Test 128 93.1 99.5 99.9
Test 256 94.2 99.7 100.0
Test 384 95.6 99.6 100.0
Test 512 94.0 99.5 99.9
Test 768 96.1 99.8 100.0
Test 1024 96.5 99.8 100.0

Train 32 0.0 0.0 0.0
Train 64 0.1 0.3 2.2
Train 128 0.2 0.7 3.1
Train 256 0.0 0.0 0.4
Train 384 1.1 2.7 8.3
Train 512 0.7 2.3 9.8
Train 768 0.7 2.4 9.9
Train 1024 1.0 2.8 11.2

Table 3: Fine-tuning results in table form. See Figure 4 for the comparable plot.
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Model Dim Recall@2 Recall@10 Recall@20

BM25 default 97.8 100.0 100.0
E5-Mistral 7B 32 7.9 32.6 56.2
E5-Mistral 7B 64 10.2 37.0 60.3
E5-Mistral 7B 128 14.5 41.9 65.9
E5-Mistral 7B 256 15.3 45.9 69.7
E5-Mistral 7B 512 22.2 54.7 74.8
E5-Mistral 7B 768 21.6 57.5 79.2
E5-Mistral 7B 1024 24.5 60.5 80.0
E5-Mistral 7B 2048 28.9 66.3 83.2
E5-Mistral 7B 3072 29.9 67.8 85.3
E5-Mistral 7B 4096 29.5 68.1 85.2
GTE-ModernColBERT default 83.5 97.6 99.1
GritLM 7B 32 7.8 33.5 56.3
GritLM 7B 64 9.4 35.9 59.6
GritLM 7B 128 14.2 42.7 64.9
GritLM 7B 256 17.3 46.2 68.3
GritLM 7B 512 21.8 55.6 76.7
GritLM 7B 768 23.8 58.1 80.1
GritLM 7B 1024 26.2 61.4 80.1
GritLM 7B 2048 33.0 69.1 86.2
GritLM 7B 3072 36.3 72.9 89.9
GritLM 7B 4096 38.4 75.4 90.5
Promptriever Llama3 8B 32 6.1 31.4 56.0
Promptriever Llama3 8B 64 8.9 35.8 62.3
Promptriever Llama3 8B 128 13.7 44.5 67.6
Promptriever Llama3 8B 256 18.5 52.1 74.1
Promptriever Llama3 8B 512 27.0 61.8 81.7
Promptriever Llama3 8B 768 35.5 69.0 84.7
Promptriever Llama3 8B 1024 38.0 73.5 89.1
Promptriever Llama3 8B 2048 46.2 83.6 94.2
Promptriever Llama3 8B 3072 49.2 87.3 96.6
Promptriever Llama3 8B 4096 54.3 90.0 97.7
Qwen3 Embed 32 8.3 30.6 53.9
Qwen3 Embed 64 9.4 35.5 57.6
Qwen3 Embed 128 11.6 38.3 60.8
Qwen3 Embed 256 14.3 41.6 63.8
Qwen3 Embed 512 16.1 43.7 66.0
Qwen3 Embed 768 17.2 45.3 69.3
Qwen3 Embed 1024 17.8 48.7 70.3
Qwen3 Embed 2048 19.5 51.5 72.4
Qwen3 Embed 3072 19.3 52.8 73.3
Qwen3 Embed 4096 19.0 52.3 73.8
Gemini Embed 2 4.2 23.0 45.5
Gemini Embed 4 4.2 21.9 46.0
Gemini Embed 8 4.9 23.2 47.0
Gemini Embed 16 5.2 24.7 47.5
Gemini Embed 32 6.3 25.2 50.6
Gemini Embed 64 6.9 30.6 55.0
Gemini Embed 128 7.7 37.0 62.9
Gemini Embed 256 14.6 46.9 69.7
Gemini Embed 512 23.3 58.4 77.9
Gemini Embed 768 28.8 67.5 84.5
Gemini Embed 1024 31.8 69.9 86.1
Gemini Embed 2048 31.9 70.3 87.1
Gemini Embed 3072 33.7 72.4 87.9
Snowflake Arctic L 32 8.3 30.3 53.8
Snowflake Arctic L 64 9.0 35.4 58.5
Snowflake Arctic L 128 12.7 41.3 65.1
Snowflake Arctic L 256 16.0 48.2 72.6
Snowflake Arctic L 512 16.7 51.3 74.1
Snowflake Arctic L 768 17.9 53.5 74.6
Snowflake Arctic L 1024 19.4 54.9 76.0
Snowflake Arctic L 2048 19.4 54.9 76.0
Snowflake Arctic L 3072 19.4 54.9 76.0
Snowflake Arctic L 4096 19.4 54.9 76.0

Table 4: Results for the LIMIT small version. See comparable Figure 5.
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Model Dim Recall@2 Recall@10 Recall@100

E5-Mistral 7B 32 0.0 0.0 0.5
E5-Mistral 7B 64 0.0 0.1 0.4
E5-Mistral 7B 128 0.1 0.3 1.0
E5-Mistral 7B 256 0.4 0.9 1.9
E5-Mistral 7B 512 0.7 1.3 3.8
E5-Mistral 7B 768 0.9 1.7 4.3
E5-Mistral 7B 1024 0.9 1.8 5.9
E5-Mistral 7B 2048 1.0 1.9 6.8
E5-Mistral 7B 3072 1.3 2.0 7.7
E5-Mistral 7B 4096 1.3 2.2 8.3
Snowflake Arctic L 32 0.0 0.1 0.6
Snowflake Arctic L 64 0.2 0.4 1.7
Snowflake Arctic L 128 0.1 0.3 1.8
Snowflake Arctic L 256 0.2 0.8 2.5
Snowflake Arctic L 512 0.3 1.0 2.5
Snowflake Arctic L 768 0.4 1.1 3.1
Snowflake Arctic L 1024 0.4 0.8 3.3
Snowflake Arctic L 2048 0.4 0.8 3.3
Snowflake Arctic L 3072 0.4 0.8 3.3
Snowflake Arctic L 4096 0.4 0.8 3.3
GritLM 7B 32 0.0 0.0 0.8
GritLM 7B 64 0.0 0.1 0.3
GritLM 7B 128 0.1 0.3 1.3
GritLM 7B 256 0.1 0.4 2.8
GritLM 7B 512 0.6 1.8 6.5
GritLM 7B 768 1.5 3.1 8.7
GritLM 7B 1024 1.8 3.5 10.6
GritLM 7B 2048 2.3 4.3 11.8
GritLM 7B 3072 2.0 4.3 12.9
GritLM 7B 4096 2.4 4.1 12.9
Promptriever Llama3 8B 32 0.0 0.0 0.1
Promptriever Llama3 8B 64 0.0 0.0 0.3
Promptriever Llama3 8B 128 0.0 0.1 0.6
Promptriever Llama3 8B 256 0.2 0.4 1.8
Promptriever Llama3 8B 512 0.6 1.4 5.4
Promptriever Llama3 8B 768 1.3 3.1 8.7
Promptriever Llama3 8B 1024 2.1 4.4 12.8
Promptriever Llama3 8B 2048 3.2 6.5 18.1
Promptriever Llama3 8B 3072 2.9 6.3 17.8
Promptriever Llama3 8B 4096 3.0 6.8 18.9
Qwen3 Embed 32 0.0 0.1 1.1
Qwen3 Embed 64 0.0 0.2 1.0
Qwen3 Embed 128 0.3 0.4 1.8
Qwen3 Embed 256 0.4 0.8 3.2
Qwen3 Embed 512 0.6 1.3 3.3
Qwen3 Embed 768 0.7 1.5 3.8
Qwen3 Embed 1024 0.7 1.6 4.6
Qwen3 Embed 2048 0.9 1.7 4.7
Qwen3 Embed 3072 0.8 1.6 4.8
Qwen3 Embed 4096 0.8 1.8 4.8
Gemini Embed 2 0.0 0.0 0.1
Gemini Embed 4 0.0 0.0 0.0
Gemini Embed 8 0.0 0.0 0.0
Gemini Embed 16 0.0 0.0 0.0
Gemini Embed 32 0.0 0.0 0.0
Gemini Embed 64 0.0 0.0 0.3
Gemini Embed 128 0.0 0.1 0.3
Gemini Embed 256 0.0 0.1 1.2
Gemini Embed 512 0.2 1.1 3.6
Gemini Embed 768 0.9 2.5 7.6
Gemini Embed 1024 1.3 2.7 8.1
Gemini Embed 2048 1.5 3.1 8.5
Gemini Embed 3072 1.6 3.5 10.0
GTE-ModernColBERT default 23.1 34.6 54.8
BM25 default 85.7 90.4 93.6

Table 5: Results on LIMIT. See comparable Figure 3.
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d Critical-n

4 10
5 14
6 19
7 24
8 28
9 32

10 36
11 42
12 47
13 54
14 62
15 70
16 79
17 89
18 99
19 109
20 120
21 132
22 144
23 157
24 170
25 184
26 198
27 213
28 229
29 245
30 261
31 278
32 296
33 314
34 333
35 352
36 372
37 392
38 413
39 434
40 460
41 484
42 505
43 545
44 605
45 626

Table 6: Critical Values of n for different d values in the Free Embedding optimization experiments.
See Figure 2 for the corresponding figure.

Model BEIR LIMIT R@100

Snowflake Arctic 55.22 3.3
Promptriever 56.40 18.9
E5-Mistral 57.07 8.3
GritLM 57.40 12.9
Gemini Embed 62.65 10.0
Qwen3 Embed 62.76 4.8

Table 7: BEIR vs LIMIT results. See Figure 6 for the comparable plot.
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