ON THE THEORETICAL LIMITATIONS OF EMBEDDING-BASED RETRIEVAL

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

016

017

018

019

021

025

026

027 028 029

030

032

033

034

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Vector embeddings have been tasked with an ever-increasing set of retrieval tasks over the years, with a nascent rise in using them for reasoning, instruction-following, coding, and more. These new benchmarks push embeddings to work for any query and any notion of relevance that could be given. While prior works have pointed out theoretical limitations of vector embeddings, there is a common assumption that these difficulties are exclusively due to unrealistic queries, and those that are not can be overcome with better training data and larger models. In this work, we demonstrate that we may encounter these theoretical limitations in realistic settings with extremely simple queries. We connect known results in learning theory, showing that the number of top-k subsets of documents capable of being returned as the result of some query is limited by the dimension of the embedding, and prove the contrapositive. We empirically show that this holds true even if we directly optimize on the test set with free parameterized embeddings. We then create a realistic dataset called LIMIT that stress tests embedding models based on these theoretical results, and observe that even state-of-the-art models fail on this dataset despite the simple nature of the task. Our work shows the limits of embedding models under the existing single vector paradigm and calls for future research to develop new techniques that can resolve this fundamental limitation.

1 Introduction

Over the last two decades, information retrieval (IR) has moved from models dominated by sparse techniques (such as BM25 Robertson et al. (1995)) to those that use neural language models (LM) as their backbones (Lee et al., 2019; Craswell et al., 2020); Izacard et al., 2021; Wang et al., 2022). These neural models are predominantly used in a single vector capacity, where they output a single *embedding* representing the entire input (also known as *dense retrieval*). These embedding models are capable of generalizing to new retrieval datasets and have been tasked with solving increasingly complicated retrieval problems (Thakur et al., 2021; Enevoldsen et al., 2025). Lee et al., 2025).

In recent years this has been pushed even further with the rise of instruction-following retrieval benchmarks, where models are asked to represent **any relevance definition** for **any query** [Weller et al., 2025a] [Song et al., 2025] [Xiao et al., 2024] [Su et al., 2024]. For example, the QUEST dataset (Malaviya et al., 2023) uses logical operators to combine different concepts, studying the difficulty of retrieval for complex queries (e.g., "Moths or Insects or Arthropods of Guadeloupe"). On the other hand, datasets like BRIGHT (Su et al., 2024) explore the challenges stemming from different definitions of relevance by defining relevance in ways that require reasoning. One subtask includes reasoning over a given Leetcode problem (the query) to find other Leetcode problems that share a sub-task (e.g. others problems using dynamic programming). Although models cannot solve these benchmarks yet, the community has proposed these problems in order to push the boundaries of what dense retrievers are capable of—which is now implicitly *every task* that could be defined.

Rather than proposing empirical benchmarks to gauge what embedding models can achieve, we seek to understand at a more fundamental level what the limitations are. Since embedding models use vector representations in geometric space, there exists well-studied fields of mathematical research (Papadimitriou & Sipser, [1982]) that could be used to analyze these representations.

Data and code are available at <removed for anonymity>

Figure 1: A depiction of the LIMIT dataset creation process, based on theoretical limitations. We test **all combinations** of relevance for N documents (i.e. in the figure, all combinations of relevance for three documents with two relevant documents per query) and instantiate it using a simple mapping.

Our work aims to bridge this gap, connecting known theoretical results in geometric algebra with modern advancements in neural information retrieval. We draw upon research in communication complexity theory to provide a lower bound on the embedding dimension needed to represent a given combination of relevant documents and queries. Specifically, we show that for a given embedding dimension d there exists top-k combinations of documents that cannot be returned—no matter the query—highlighting a theoretical and fundamental limit to embedding models.

To show that this theoretical limit is true for any retrieval model or training dataset, we test a setting where the vectors themselves are directly optimized with the test data. This allows us to empirically show how the embedding dimension enables the solving of retrieval tasks. We find there exists a crucial point for each embedding dimension (d) where the number of documents is too large for the embedding dimension to encode all combinations. We then gather these crucial points for a variety of d and show that this relationship can be modeled empirically with a polynomial function.

We also go one step further and construct a realistic but simple dataset based on these theoretical limitations (called LIMIT). Despite the simplicity of the task (e.g., who likes Apples? and Jon likes Apples, ...), we find it is very difficult for even state-of-the-art embedding models (Lee et al., 2025) Zhang et al., 2025) on MTEB (Enevoldsen et al., 2025) due to the theoretical underpinnings, and impossible for models with small embedding dimensions.

Overall, our work contributes: (1) a theoretical basis for the fundamental limitations of embedding models, (2) a best-case empirical analysis showing that this proof holds for any dataset instantiation (by free embedding optimization), and (3) a simple real-world natural language instantiation called LIMIT that even state-of-the-art embedding models cannot solve.

These results imply interesting findings for the community: on one hand we see neural embedding models becoming immensely successful. However, academic benchmarks test only a small amount of the queries that could be issued (and these queries are often overfitted to), hiding these limitations. Our work shows that as the tasks given to embedding models require returning ever-increasing combinations of top-k relevant documents (e.g., through instructions connecting previously unrelated documents with logical operators), we will reach a limit of combinations they cannot represent.

Thus, the community should be aware of these limitations, both when creating evals and also by using alternate architectures—such as cross-encoders / multi-vector / more expressive similarity functions—when trying to handle the full range of instruction queries, i.e. *any query and relevance definition*.

2 RELATED WORK

2.1 NEURAL EMBEDDING MODELS

There has been immense progress on embedding models in recent years (Lee et al.) [2019; Craswell] et al., [2020; BehnamGhader et al., [2024]), moving from simple web search (text-only) to advanced instruction-following and multi-modal representations. These models generally followed advance-

¹At least with current optimization techniques for retrieval.

ments in language models, such as pre-trained LMs (Hoffmann et al., 2022), multi-modal LMs (Li et al., 2024; Team, 2024), and advancements in instruction-following (Zhou et al., 2023; Ouyang et al., 2022). Some of the prominent examples in retrieval include CoPali (Faysse et al., 2024) and DSE (Ma et al., 2024) which focus on multimodal embeddings, Instructor (Su et al., 2022) and FollowIR (Weller et al., 2024a) for instruction following, and GritLM (Muennighoff et al., 2024) and Gemini Embeddings (Lee et al., 2025) for pre-trained LMs turned embedders.

Our work, though focused solely on textual representations for simplicity, **applies to all modalities of single vector embeddings for any domain of dataset**. As the space of things to represent grows (through instructions or multi-modality) they will increasingly run into these theoretical limitations.

2.2 Empirical tasks pushing the limits of dense retrieval

Retrieval models have been pushed beyond their initial use cases to handle a broad variety of areas. Notable works include efforts to represent a wide group of domains (Thakur et al., 2021; Lee et al., 2024), a diverse set of instructions (Weller et al., 2024a; Zhou et al., 2024; Oh et al., 2024), and to handle reasoning over the queries (Xiao et al., 2024; Su et al., 2024). This has pushed the focus of embedding models from basic keyword matching to embeddings that can represent the full semantic meaning of language. As such, it is more common than ever to connect what were previously unrelated documents into the top-k relevant set. increasing the number of combinations that models must be able to represent. This has motivated our interest in understanding the limits of what embeddings can represent, as current work expects it to handle every task.

Previous work has explored empirically the limits of models: Reimers & Gurevych (2020) showed that smaller dimension embedding models have more false positives, especially with larger-scale corpora. Ormazabal et al. (2019) showed the empirical limitations of models in the cross-lingual setting and Yin & Shen (2018) showed how embedding dimensions relate to the bias-variance tradeoff. In contrast, our work provides a theoretical connection between the embedding dimension and the sign-rank of the query relevance (*qrel*) matrix, while also showing empirical limitations.

2.3 THEORETICAL LIMITS OF VECTORS IN GEOMETRIC SPACE

Understanding and finding nearest neighbors in semantic space has a long history in mathematics research, with early work such as the Voronoi diagram being studied as far back as 1644 and formalized in 1908 (Voronoi, 1908). The order-k version of the Voronoi diagram (i.e. the Voronoi diagram partitioning the space into regions based on their closest k points) is obviously connected to information retrieval and has been studied for many years (Clarkson, 1988). The number of such regions is equal to the number of unique retrieval sets of size k, however this quantity is notoriously difficult to bound tightly (Bohler et al., 2015; Lee, 1982; Chen et al., 2023).

We approach this problem from another angle, first formalizing the notion of the minimum embedding dimension required in our setting as the *row-wise order-preserving rank*. We show a tight connection between the this row-wise order preserving rank and the *sign-rank* of an associated matrix, a quantity previously explored in learning theory. Computing the sign-rank for a given matrix is NP-hard (Basri et al., 2009), however the existence of simple matrices with arbitrarily-high sign rank implies that for any given embedding dimension there are retrieval tasks incapable of being captured in that dimension (Hatami et al., 2022; Alon et al., 2014; Chierichetti et al., 2017; Chattopadhyay & Mande, 2018; Hatami & Hatami, 2024). The association between sign-rank and minimum embedding dimension also implies that free-embedding optimization can be used to upper-bound the sign-rank (i.e. if we can train *d*-dimensional free-embeddings to capture the row-wise order relationships, then the associated matrix has sign-rank at most *d*).

3 REPRESENTATIONAL CAPACITY OF VECTOR EMBEDDINGS

In this section we formally define the minimum embedding dimension which satisfies a given retrieval objective, and draw a connection from known results in communication complexity theory to the setting of vector embeddings.

²You can imagine an easy way to connect any two documents merely by using logical operators, i.e. X and Y.

3.1 FORMALIZATION

We consider a set of m queries and n documents with a ground-truth relevance matrix $A \in \{0, 1\}^{m \times n}$, where $A_{ij} = 1$ if and only if document j is relevant to query $i^{[3]}$ Vector embedding models map each query to a vector $u_i \in \mathbb{R}^d$ and each document to a vector $v_j \in \mathbb{R}^d$. Relevance is modeled by the dot product $u_i^T v_j$, with the goal that relevant documents should score higher than irrelevant ones.

Concatenating the vectors for queries in a matrix $U \in \mathbb{R}^{d \times m}$ and those for documents in a matrix $V \in \mathbb{R}^{d \times n}$, these dot products are the entries of the score matrix $B = U^T V$. The smallest embedding dimension d that can realize a given score matrix is, by definition, the rank of B. Therefore, our goal is equivalent to finding the minimum rank of a score matrix B that correctly orders documents according to the relevance specified in A, which we formalize in the following definition.

Definition 1. Given a matrix $A \in \mathbb{R}^{m \times n}$, the **row-wise order-preserving rank of** A is the smallest integer d such that there exists a rank-d matrix B that preserves the relative order of entries in each row of A. We denote this as

```
\operatorname{rank}_{\operatorname{rop}} A = \min \{ \operatorname{rank} B \mid B \in \mathbb{R}^{m \times n}, \text{ such that for all } i, j, k, \text{ if } A_{ij} > A_{ik} \text{ then } B_{ij} > B_{ik} \}.
```

In other words, if A is a binary ground-truth relevance matrix, $\operatorname{rank}_{\operatorname{rop}} A$ is the minimum dimension necessary for any vector embedding model to return relevant documents before irrelevant ones for all queries. Alternatively, we might require that the scores of relevant documents can be cleanly separated from those of irrelevant ones by a threshold.

Definition 2. Given a binary matrix $A \in \{0,1\}^{m \times n}$:

- The row-wise thresholdable rank of A (rank_{rt} A) is the minimum rank of a matrix B for which there exist row-specific thresholds $\{\tau_i\}_{i=1}^m$ such that for all $i, j, B_{ij} > \tau_i$ if $A_{ij} = 1$ and $B_{ij} < \tau_i$ if $A_{ij} = 0$.
- The globally thresholdable rank of A (rank_{gt} A) is the minimum rank of a matrix B for which there exists a single threshold τ such that for all $i, j, B_{ij} > \tau$ if $A_{ij} = 1$ and $B_{ij} < \tau$ if $A_{ij} = 0$.

Remark 1. This two-sided separation condition may be seen as slightly stronger than requiring $B_{ij} > \tau_i$ if and only if $A_{ij} = 1$, however since there are only finitely many elements of B_{ij} we could always perturb the latter threshold by a sufficient number such that the two-sided condition holds.

3.2 THEORETICAL BOUNDS

For binary matrices, row-wise ordering/thresholding are equivalent notions of representation capacity. **Proposition 1.** For a binary matrix $A \in \{0,1\}^{m \times n}$, we have that $\operatorname{rank}_{rop} A = \operatorname{rank}_{rt} A$.

Proof. (\leq) Suppose B and τ satisfy the row-wise thresholdable rank condition. Since A is a binary matrix $A_{ij} > A_{ik}$ implies $A_{ij} = 1$ and $A_{ik} = 0$, thus $B_{ij} > \tau_i > B_{ik}$, and hence B also satisfies the row-wise order-preserving condition.

(\geq) Let B satisfy the row-wise order-preserving condition, so $A_{ij} > A_{ik}$ implies $B_{ij} > B_{ik}$. For each row i, let $U_i = \{B_{ij} \mid A_{ij} = 1\}$ and $L_i = \{B_{ij} \mid A_{ij} = 0\}$. The row-wise order-preserving condition implies that every element of U_i is greater than every element of L_i . We can therefore always find a threshold τ_i separating them $(e.g. \ \tau_i = (\max L_i + \min U_i)/2$ if both are non-empty, trivial otherwise). Thus B is also row-wise thresholdable to A.

The notions we have described so far are closely related to the sign rank of a matrix, which we use in the rest of the paper to establish our main bounds.

Definition 3 (Sign Rank). The sign rank of a matrix $M \in \{-1,1\}^{m \times n}$ is the smallest integer d such that there exists a rank d matrix $B \in \mathbb{R}^{m \times n}$ whose entries have the same sign as those of M, i.e.

```
\operatorname{rank}_{\pm} M = \min \{ \operatorname{rank} B \mid B \in \mathbb{R}^{m \times n} \text{ such that for all } i, j \text{ we have } \operatorname{sign} B_{ij} = M_{ij} \}.
```

 $^{^{3}}$ The matrix A is often called the "qrels" (query relevance judgments) matrix in information retrieval.

⁴Without loss of generality, we may assume the thresholds in the above definitions are not equal to any elements of B since we could increase the threshold of τ by a sufficiently small ϵ to preserve the inequality.

In what follows, we use $\mathbf{1}_n$ to denote the *n*-dimensional vector of ones, and $\mathbf{1}_{m \times n}$ to denote an $m \times n$ matrix of ones.

Proposition 2. Let $A \in \{0,1\}^{m \times n}$ be a binary matrix. Then $2A - \mathbf{1}_{m \times n} \in \{-1,1\}^{m \times n}$ and

$$\operatorname{rank}_{\pm}(2A - \mathbf{1}_{m \times n}) - 1 \le \operatorname{rank}_{rop} A = \operatorname{rank}_{rt} A \le \operatorname{rank}_{gt} A \le \operatorname{rank}_{\pm}(2A - \mathbf{1}_{m \times n})$$

Proof. N.b. the equality was already shown in Proposition [1]. We prove each inequality separately.

- 1. $\operatorname{rank}_{\mathsf{rt}} A \leq \operatorname{rank}_{\mathsf{gt}} A$: True by definition, since any matrix satisfying the globally thresholdable condition trivially satisfies a row-wise thresholdable condition with the same threshold for each row.
- **2.** $\operatorname{rank}_{\operatorname{gt}} A \leq \operatorname{rank}_{\pm}(2A \mathbf{1}_{m \times n})$: Let B be any matrix whose entries have the same sign as $2A \mathbf{1}_{m \times n}$, then

$$B_{ij} > 0 \iff 2A_{ij} - 1 > 0 \iff A_{ij} = 1.$$

Thus B satisfies the globally thresholdable condition with a threshold of 0.

3. $\operatorname{rank}_{\pm}(2A-\mathbf{1}_{m\times n})-1\leq \operatorname{rank}_{\mathbf{rt}}A$: Suppose B satisfies the row-wise thresholdable condition with minimal rank, so $\operatorname{rank}_{\mathbf{rt}}A=\operatorname{rank}B$ and there exists $\tau\in\mathbb{R}^m$ such that $B_{ij}>\tau_i$ if $A_{ij}=1$ and $B_{ij}<\tau_i$ if $A_{ij}=0$. Then the entries of $B-\tau\mathbf{1}_n^T$ have the same sign as $2A-\mathbf{1}_{m\times n}$, since $(B-\tau\mathbf{1}_n^T)_{ij}=B_{ij}-\tau_i$ and

$$B_{ij} - \tau_i > 0 \iff A_{ij} = 1 \iff 2A_{ij} - 1 > 0$$
, and (1)

$$B_{ij} - \tau_i < 0 \iff A_{ij} = 0 \iff 2A_{ij} - 1 < 0. \tag{2}$$

Thus $\operatorname{rank}_{\pm}(2A - \mathbf{1}_{m \times n}) \leq \operatorname{rank}(B - \tau \mathbf{1}_n^T) \leq \operatorname{rank}(B) + \operatorname{rank}(\tau \mathbf{1}_n^T) = \operatorname{rank}_{\mathsf{rt}} A + 1.$

Combining these gives the desired chain of inequalities.

3.3 Consequences

In the context of a vector embedding model, this provides a lower and upper bound on the dimension of vectors required to exactly capture a given set of retrieval objectives, in the sense of row-wise ordering, row-wise thresholding, or global thresholding. In particular, given some binary relevance matrix $A \in \{0,1\}^{m \times n}$, we need at least $\mathrm{rank}_{\pm}(2A - \mathbf{1}_{m \times n}) - 1$ dimensions to capture the relationships in A exactly, and can always accomplish this in at most $\mathrm{rank}_{\pm}(2A - \mathbf{1}_{m \times n})$ dimensions. This means:

- 1. For any fixed dimension d, there exists a binary relevance matrix which cannot be captured via d-dimensional embeddings (as there are matrices with arbitrarily high sign-rank). In other words, retrieval tasks whose **qrel matrices have higher sign-rank are more difficult** to capture exactly for embedding models, requiring higher embedding dimensions.
- 2. If we are able to embed a given matrix $A \in \{0,1\}^{m \times n}$ in a row-wise order-preserving manner in d dimensions, this implies a bound on the sign-rank of $2A \mathbf{1}_{m \times n}$. In particular, this suggests a *practical mechanism* for determining an upper-bound on sign-rank for matrices via gradient descent optimization of free embedding representations.

4 EMPIRICAL CONNECTION: BEST CASE OPTIMIZATION

Having established a theoretical limitation of embedding models based on a sign-rank related to the qrel matrix and their embedding dimension d, we seek to show that this holds empirically also.

To show the strongest optimization case possible, we design experiments where the vectors themselves are directly optimizable with gradient descent. We call this "free embedding" optimization, as the embeddings are free to be optimized and not constrained by natural language, which imposes constraints on any realistic embedding model. Thus, this shows whether it is feasible for any embedding model to solve this problem: if the free embedding optimization cannot solve the problem, real retrieval models will not be able to either. It is also worth noting that we do this by directly optimizing the embeddings over the target qrel matrix (test set). This will not generalize to a new dataset, but is done to show the highest performance that could possibly occur.

⁵This could also be viewed as an embedding model where each query/doc are a separate vector via lookup.

 Experimental Settings We create a random document matrix (size n) and a random query matrix with top-k sets (of all combinations, i.e. size $m = \binom{n}{k}$), both with unit vectors. We then directly optimize for solving the constraints with the Adam optimizer (Kingma & Ba) 2014) [6] Each gradient update is a full pass through all correct triples (i.e. full dataset batch-size) with the InfoNCE loss function (Oord et al.) 2018) [7] with all other documents as in-batch negatives (i.e. full dataset in batch). As nearly all embedding models use normalized vectors, we do also (via projected gradient descent). We perform early stopping when there is no improvement in the loss for 1000 iterations. We gradually increase the number of documents (and thus the binomial amount of queries) until the optimization is no longer able to solve the problem (i.e. achieve 100% accuracy). We call this the *critical-n* point.

We focus on relatively small sizes for n, k, and d due to the combinatorial explosion of combinations with larger document values (i.e. 50k docs with top-k of 100 gives 7.7e+311 combinations, which would be equivalent to the number of query vectors of dimension d in that free embedding experiment). We use k=2 and increase n by one for each d value until it breaks. We fit a polynomial regression line to the data so we can model and extrapolate results outwards.

Results Figure 2 shows that the curve fits a 3rd degree polynomial curve, with formula $y = -10.5322 + 4.0309d + 0.0520d^2 + 0.0037d^3$ (r^2 =0.999). Extrapolating this curve outward gives the critical-n values (for embedding size): 500k (512), 1.7m (768), 4m (1024), 107m (3072), 250m (4096). We note that this is the best case: a real embedding model cannot directly optimize the query and document vectors to match the test qrel matrix (and is constrained by factors such as "modeling natural language"). However, these numbers already show that for web-scale search, even the largest embedding dimensions with ideal test-set optimization are not enough to model all combinations.

Figure 2: The critical-n value where the dimensionality is too small to successfully represent all the top-2 combinations. We plot the trend line as a polynomial function.

5 EMPIRICAL CONNECTION: REAL-WORLD DATASETS

The free embedding experiments provide empirical evidence that our theoretical results hold true. However, they still are abstract - what does this mean for real embedding models? In this section we (1) draw connections from this theory to existing datasets and (2) create an trivially simple yet extremely difficult retrieval task for existing SOTA models.

5.1 Connection to Existing Datasets

Existing retrieval datasets typically use a static evaluation set with limited numbers of queries, as relevance annotation is expensive to do for each query. This means practically that the space of queries used for evaluation is a very small sample of the number of potential queries. For example, the QUEST dataset (Malaviya et al., 2023) has 325k documents and queries with 20 relevant documents per query, with a total of 3357 queries. The number of unique top-20 document sets that could be returned with the QUEST corpus would be $\binom{325k}{20}$ which is equal to 7.1e+91 (larger than the estimate of atoms in the observable universe, 10^{82}). Thus, the 3k queries in QUEST can only cover an infinitesimally small part of the grel combination space.

Although it not possible to instantiate all combinations when using large-scale corpora, search evaluation datasets are a proxy for what any user would ask for and ideally would be designed to test many combinations, as users will do. In many cases, developers of new evaluations simply choose

⁶We found similar results with SGD, but we use Adam for speed and similarity with existing training methods.
⁷In preliminary experiments, we found that InfoNCE performed best, beating MSE and Margin. As we are directly optimizing the vectors with full-dataset batches, this is $\mathcal{L}_{\text{total}} = -\frac{1}{M} \sum_{i=1}^{M} \log \frac{\sum_{d_r \in R_i} \exp(\sin(q_i, d_r)/\tau)}{\sum_{d_k \in D} \exp(\sin(q_i, d_k)/\tau)}$ where D is all docs, d_r is the relevant documents for query q_i and d_k are the non-relevant documents.

to use fewer queries due to cost or computational expense of evaluation. For example, QUEST's query "Novels from 1849 or George Sand novels" combines two categories of novels with the "OR" operator – one could instantiate new queries to relate concepts through OR'ing other categories together. Similarly, with the rise of search agents, we see greater usage of hyper-specific queries: BrowseComp (Wei et al.) 2025) has 5+ conditions per query, including range operators. With these tools, it is possible to sub-select any top-k relevant set with the right operators if the documents are sufficiently expressive (i.e. non-trivial). Thus, that existing datasets choose to only instantiate some of these combinations is mainly for practical reasons and not because of a lack of existence.

In contrast to these previous works, we seek to build a dataset that evaluates all combinations of top-k sets for a small number of documents. Rather than using difficult query operators like QUEST, BrowseComp, etc. (which are already difficult for reasons outside of the qrel matrix) we choose very simple queries and documents to highlight the difficulty of representing all top-k sets themselves.

5.2 THE LIMIT DATASET

Dataset Construction In order to have a natural language version of this dataset, we need some way to map combinations of documents into something that could be retrieved with a query. One simple way to do this is to create a synthetic version with latent variables for queries and documents and then instantiate it with natural language. For this mapping, we choose to use attributes that someone could like (i.e. Jon likes Hawaiian pizza, sports cars, etc.) as they are plentiful and don't present issues w.r.t. other items: one can like Hawaiian pizza but dislike pepperoni, all preferences are valid. We then enforce two constraints for realism: (1) users shouldn't have too many attributes, thus keeping the documents short (less than 50 per user) and (2) each query should only ask for one item to keep the task simple (i.e. "who likes X"). We gather a list of attributes a person could like through prompting Gemini 2.5 Pro. We then clean it to a final 1850 items by iteratively asking it to remove duplicates/hypernyms, while also checking the top failures with BM25 to ensure no overlap.

We choose to use 50k documents in order to have a hard but relatively small corpus and 1000 queries to maintain statistical significance while still being fast to evaluate. For each query, we choose to use two relevant documents (i.e. k=2), both for simplicity in instantiating and to mirror previous work (i.e. NQ, HotpotQA, etc. (Kwiatkowski et al.) 2019; Yang et al., 2018).

Our last step is to choose a qrel matrix to instantiate these attributes. Although we could not prove the hardest qrel matrix definitively with theory (as the sign rank is notoriously hard to prove), we intuit that our theoretical results imply that the more interconnected the qrel matrix is (e.g. dense with all combinations) the harder it would be for models to represent (Appendix \mathbb{C} for more). Following this, we use the qrel matrix with the highest number of documents for which all combinations would be just above 1000 queries for a top-k of 2 (46 docs, since $\binom{46}{2}$) is 1035, the smallest above 1k).

We then assign random natural language attributes to the queries, adding these attributes to their respective relevant documents (c.f. Figure [I]). We give each document a random first and last name from open-source lists of names. Finally, we randomly sample new attributes for each document until all documents have the same number of attributes. As this setup has many more documents than those that are relevant to any query (46 relevant documents, 49.95k non-relevant to any query) we also create a "small" version with only the 46 documents that are relevant to one of the 1000 queries.

Models We evaluate the state-of-the-art embedding models including GritLM (Muennighoff et al., 2024), Qwen 3 Embeddings (Zhang et al., 2025), Promptriever (Weller et al., 2024b), Gemini Embeddings (Lee et al., 2025), Snowflake's Arctic Embed Large v2.0 (Yu et al., 2024), and E5-Mistral Instruct (Wang et al., 2022) 2023). These models range in embedding dimension (1024 to 4096) as well as in training style (instruction-based, hard negative optimized, etc.). We also evaluate three non-single vector models to show the distinction: BM25 (Robertson et al., 1995; Lù, 2024), gte-ModernColBERT (Chaffin, 2025a; Chaffin & Sourty, 2024), and a token-wise TF-IDF.

We show results at the full embedding dimension and also with truncated embedding dimension (typically used with matryoshka learning, aka MRL (Kusupati et al., 2022)). For models not trained

⁸This is just one way, designed to be realistic and simple. However, our framework allows for any way of instantiation while creating high sign-rank qrel matrices – not stuck to the arbitrary natural language design.

⁹This model turns each unique item into a token and then does TF-IDF. We build it to show that it gets 100% on all tasks (as it reverse engineers our dataset construction) and thus we do not include it in future charts.

Figure 3: Scores on the LIMIT task. Despite the simplicity of the task we see that SOTA models struggle. We also see that the dimensionality of the model is a limiting factor and that as the dimension increases, so does performance. Even multi-vector models struggle. Lexical models like BM25 do very well due to their higher dimensionality. Stars indicate models trained with MRL.

with MRL this will result in sub-par scores, thus, models trained with MRL are indicating with stars in the plots. However, as there are no LLMs with an embedding dimension smaller than 384, we include MRL for all models to small dimensions (32) to show the impact of embedding dimensionality.

Results Figure 3 shows the results on the full LIMIT while Figure 5 shows the results on the small (46 document) version. **The results are surprising - models severely struggle even though the task is trivially simple.** For example, in the full setting models struggle to reach even 20% recall@100 and in the 46 document version models cannot solve the task even with recall@20.

We see that model performance depends crucially on the embedding dimensionality (better performance with bigger dimensions). Interestingly, models trained with more diverse instruction, such as Promptriever, perform better, perhaps because their training allows them to use more of their embedding space (compared to models which are trained with MRL and on a smaller range of tasks that can perhaps be consolidated into a smaller embedding manifold).

For alternative architectures, GTE-ModernColBERT does significantly better than single-vector models (although still far from solving the task) while BM25 comes close to perfect scores. Both of these alterative architectures (sparse and multi-vector) offer various trade-offs, see §5.3 for analysis.

Is this Domain Shift? Although our queries look similar to standard web search queries, we wondered whether there could be some domain shift causing the low performance. If so, we would expect that training on a training set of similar examples would significantly improve performance. On the other hand, if the task was intrinsically hard, training on the training set would provide little help whereas training on the test set would allow the model to overfit to those tokens (similar to the free embed exps).

To test this we take an off-the-shelf embedding model and train it on either the training set (created synthetically using non-test set attributes) or the official test set of LIMIT. We use <code>lightonai/modernbert-embed-large</code> (Chaffin, 2025c) and fine-tune it on these splits, using the full dataset for in batch negatives (excluding positives)

Figure 4: Training on LIMIT train does not significantly help, indicating the issue is not domain shift. But models can solve it if they overfit to the test set.

using SentenceTransformers (Reimers & Gurevych, 2019). We show a range of dimensions by projecting the hidden layer down to the specified size during training (rather than using MRL).

Figure 4 shows the model trained on the training set cannot solve the problem, although it does see very minor improvement from near zero recall@10 to up to 2.8 recall@10. The lack of performance

gains when training in-domain indicate that poor performance is not due to domain shift. By training the model on the test set we see it can learn the task, overfitting on the tokens in the test queries. This aligns with our free embedding results, that it is possible to overfit to the N=46 version with only 12 dimensions. However, it is notable that the real models with 64 dimensions still cannot completely solve the task, implying **real models perform significantly worse than the bounds shown in §4**

Implications Single-vector models are fundamentally limited by their embedding dimension, based on a sign-rank related to the query relevance (qrel) matrices. The LIMIT dataset is a particular instantiation, with very simple queries and documents, designed to highlight this property. This version of LIMIT can be embedded in just 12 dimensions, yet all models fail to perform well, suggesting other architectural weaknesses. Irrespective of the architecture involved, however, our framework can scale the dataset's difficulty to consistently demonstrate this fundamental limitation.

5.3 ALTERNATIVES TO EMBEDDING MODELS

Our previous results show both theoretically and empirically that embedding models cannot represent all combinations of documents in their top-k sets, making them unable to represent and solve some retrieval tasks. As current embedding models have grown larger (e.g. up to 4096), this has helped reduce negative effects for smaller dataset sizes. However, with enough combinations of top-k sets the dimensionality would have to increase to an infeasible size for non-toy datasets. Thus, although they are useful for first stage results, more expressive retriever architectures will be needed.

Cross-Encoders Although not suitable for first stage retrieval at scale, they are already typically used to improve first stage results. Is LIMIT challenging for rerankers also? We evaluate a long context reranker, Gemini-2.5-Pro (Comanici et al.) 2025) on the small setting as a comparison. We give Gemini all 46 documents and all 1000 queries at once, asking it to output the relevant documents for each query with one generation. We find that it can successfully solve (100%) all 1000 queries in one forward pass. This is in contrast to even the best embedding models with a recall@2 of less than 60% (Figure 5). Thus we can see that LIMIT is easy for state-of-the-art reranker models, which do not have the same limitations based on embedding dimension.

Multi-vector models Multi-vector models are more expressive through the use of multiple vectors per sequence combined with the MaxSim operator (Khattab & Zaharia, 2020). These models show promise on the LIMIT dataset, with scores greatly above the single-vector models despite using a smaller backbone (ModernBERT, Warner et al. (2024)). However, these models are not generally used for instruction-following or reasoning-based tasks (see Chaffin (2025b) as one of the few that exist), leaving it an open question to how well multi-vector techniques will transfer to these tasks.

Sparse models Sparse models (both lexical and neural) can be thought of as single vectors but with very high dimensionality. This dimensionality helps BM25 avoid the problems of the neural embedding models as seen in Figure $\boxed{3}$. Since the d of their vectors is high, they can scale to many more combinations than their dense vector counterparts. However, it is less clear how to apply sparse models to instruction-following and reasoning-based tasks where there is no lexical or even paraphrase-like overlap. We leave this direction (and hybrid sparse/dense solutions) to future work.

We note that all of these options have various trade-offs and none provide a clear path to solving this problem as-is. We leave it to future work to develop new techniques to mitigate these issues: perhaps through one of these alterative categories or through new ideas around single-vector models that can resolve the underlying issue (potentially through techniques such as hyperencoders (Killingback et al., 2025) or other future work on single vector architectures yet to be developed).

6 CONCLUSION

We introduce the LIMIT dataset, which highlights a fundamental limitation of embedding models. We provide a theoretical connection to sign-rank which shows that, for a fixed embedding dimension there are always some set of documents such that certain sets are unattainable as top-k sets. We show these theoretical results hold empirically, through best case optimization of the vectors themselves, and make a practical connection to existing state-of-the-art models by creating a realistic and simple instantiation of the theory, called LIMIT, that these models cannot solve. Our results imply that the community should reconsider how instruction-based retrieval will impact future retrievers.

REFERENCES

- Noga Alon, Shay Moran, and Amir Yehudayoff. Sign rank, vc dimension and spectral gaps. In *Electronic Colloquium on Computational Complexity (ECCC)*, volume 21, pp. 10, 2014.
- Ronen Basri, Pedro F Felzenszwalb, Ross B Girshick, David W Jacobs, and Caroline J Klivans. Visibility constraints on features of 3d objects. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1231–1238. IEEE, 2009.
- Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. *arXiv* preprint arXiv:2404.05961, 2024.
- Shai Ben-David, Nadav Eiron, and Hans Ulrich Simon. Limitations of learning via embeddings in euclidean half spaces. *Journal of Machine Learning Research*, 3(Nov):441–461, 2002.
- Cecilia Bohler, Panagiotis Cheilaris, Rolf Klein, Chih-Hung Liu, Evanthia Papadopoulou, and Maksym Zavershynskyi. On the complexity of higher order abstract voronoi diagrams. *Computational Geometry*, 48(8):539–551, 2015. ISSN 0925-7721. doi: https://doi.org/10.1016/j.comgeo.2015.04.008. URL https://www.sciencedirect.com/science/article/pii/S0925772115000346.
- Antoine Chaffin. Gte-moderncolbert, 2025a. URL https://huggingface.co/lightonai/GTE-ModernColBERT-v1.
- Antoine Chaffin. Reason-moderncolbert, 2025b. URL https://huggingface.co/lightonai/Reason-ModernColBERT.
- Antoine Chaffin. Modernbert-embed-large, 2025c. URL https://huggingface.co/lightonai/modernbert-embed-large.
- Antoine Chaffin and Raphaël Sourty. Pylate: Flexible training and retrieval for late interaction models, 2024. URL https://github.com/lightonai/pylate.
- Arkadev Chattopadhyay and Nikhil Mande. A short list of equalities induces large sign rank. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 47–58. IEEE, 2018.
- Bi Yu Chen, Huihuang Huang, Hui-Ping Chen, Wenxuan Liu, Xuan-Yan Chen, and Tao Jia. Efficient algorithm for constructing order k voronoi diagrams in road networks. *ISPRS International Journal of Geo-Information*, 12(4):172, 2023.
- Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina Panigrahy, and David P Woodruff. Algorithms for $\setminus \ell_p$ low-rank approximation. In *International Conference on Machine Learning*, pp. 806–814. PMLR, 2017.
- Kenneth L Clarkson. Applications of random sampling in computational geometry, ii. In *Proceedings* of the fourth annual symposium on Computational geometry, pp. 1–11, 1988.
- Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. arXiv preprint arXiv:2507.06261, 2025.
- Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M Voorhees. Overview of the trec 2019 deep learning track. *arXiv preprint arXiv:2003.07820*, 2020.
- Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Márton Kardos, Ashwin Mathur, David Stap, Jay Gala, Wissam Siblini, Dominik Krzemiński, Genta Indra Winata, et al. Mmteb: Massive multilingual text embedding benchmark. *arXiv preprint arXiv:2502.13595*, 2025.
- Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, and Pierre Colombo. Colpali: Efficient document retrieval with vision language models. *arXiv preprint arXiv:2407.01449*, 2024.

- Hamed Hatami and Pooya Hatami. Structure in communication complexity and constant-cost complexity classes. *arXiv preprint arXiv:2401.14623*, 2024.
 - Hamed Hatami, Pooya Hatami, William Pires, Ran Tao, and Rosie Zhao. Lower bound methods for sign-rank and their limitations. In *Approximation, Randomization, and Combinatorial Optimization*. *Algorithms and Techniques (APPROX/RANDOM 2022)*, pp. 22–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2022.
 - Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.
 - Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning. *arXiv* preprint arXiv:2112.09118, 2021.
 - Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized late interaction over bert. In *Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval*, pp. 39–48, 2020.
 - Julian Killingback, Hansi Zeng, and Hamed Zamani. Hypencoder: Hypernetworks for information retrieval. In *Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2372–2383, 2025.
 - Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
 - Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ramanujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka representation learning. *Advances in Neural Information Processing Systems*, 35:30233–30249, 2022.
 - Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a benchmark for question answering research. *Transactions of the Association for Computational Linguistics*, 7:453–466, 2019.
 - Der-Tsai Lee. On k-nearest neighbor voronoi diagrams in the plane. *IEEE transactions on computers*, 100(6):478–487, 1982.
 - Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole, Kai Hui, Michael Boratko, Rajvi Kapadia, Wen Ding, et al. Gecko: Versatile text embeddings distilled from large language models. *arXiv preprint arXiv:2403.20327*, 2024.
 - Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim, Gustavo Hernández Ábrego, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, et al. Gemini embedding: Generalizable embeddings from gemini. *arXiv preprint arXiv:2503.07891*, 2025.
 - Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open domain question answering. In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 6086–6096, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1612. URL https://aclanthology.org/P19-1612/
 - Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, Jianfeng Gao, et al. Multimodal foundation models: From specialists to general-purpose assistants. *Foundations and Trends® in Computer Graphics and Vision*, 16(1-2):1–214, 2024.
 - Xing Han Lù. Bm25s: Orders of magnitude faster lexical search via eager sparse scoring. *arXiv* preprint arXiv:2407.03618, 2024.
 - Xueguang Ma, Sheng-Chieh Lin, Minghan Li, Wenhu Chen, and Jimmy Lin. Unifying multimodal retrieval via document screenshot embedding. *arXiv preprint arXiv:2406.11251*, 2024.

- Chaitanya Malaviya, Peter Shaw, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Quest: A retrieval dataset of entity-seeking queries with implicit set operations. *arXiv preprint arXiv:2305.11694*, 2023.
 - Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding benchmark. *arXiv preprint arXiv:2210.07316*, 2022.
 - Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and Douwe Kiela. Generative representational instruction tuning. In *ICLR 2024 Workshop: How Far Are We From AGI*, 2024.
 - Hanseok Oh, Hyunji Lee, Seonghyeon Ye, Haebin Shin, Hansol Jang, Changwook Jun, and Minjoon Seo. Instructir: A benchmark for instruction following of information retrieval models. *arXiv* preprint arXiv:2402.14334, 2024.
 - Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.
 - Aitor Ormazabal, Mikel Artetxe, Gorka Labaka, Aitor Soroa, and Eneko Agirre. Analyzing the limitations of cross-lingual word embedding mappings. *arXiv* preprint arXiv:1906.05407, 2019.
 - Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.
 - Christos H Papadimitriou and Michael Sipser. Communication complexity. In *Proceedings of the fourteenth annual ACM symposium on Theory of computing*, pp. 196–200, 1982.
 - Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.10084.
 - Nils Reimers and Iryna Gurevych. The curse of dense low-dimensional information retrieval for large index sizes. *arXiv preprint arXiv:2012.14210*, 2020.
 - Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford, et al. Okapi at trec-3. *Nist Special Publication Sp*, 109:109, 1995.
 - Tingyu Song, Guo Gan, Mingsheng Shang, and Yilun Zhao. Ifir: A comprehensive benchmark for evaluating instruction-following in expert-domain information retrieval. *arXiv preprint arXiv:2503.04644*, 2025.
 - Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned text embeddings. *arXiv preprint arXiv:2212.09741*, 2022.
 - Hongjin Su, Howard Yen, Mengzhou Xia, Weijia Shi, Niklas Muennighoff, Han-yu Wang, Haisu Liu, Quan Shi, Zachary S Siegel, Michael Tang, et al. Bright: A realistic and challenging benchmark for reasoning-intensive retrieval. *arXiv* preprint arXiv:2407.12883, 2024.
 - Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint arXiv:2405.09818*, 2024.
 - Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A heterogenous benchmark for zero-shot evaluation of information retrieval models. *arXiv preprint arXiv:2104.08663*, 2021.
 - Nandan Thakur, Jimmy Lin, Sam Havens, Michael Carbin, Omar Khattab, and Andrew Drozdov. Freshstack: Building realistic benchmarks for evaluating retrieval on technical documents. *arXiv* preprint arXiv:2504.13128, 2025.

- Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques, deuxième mémoire, recherches sur les parallélloèdres primitifs. *Journal für die reine und angewandte Mathematik (Crelles Journal)*, 1908(134):198–287, 1908.
 - David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman Cohan, and Hannaneh Hajishirzi. Fact or fiction: Verifying scientific claims. *arXiv preprint arXiv:2004.14974*, 2020.
 - Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv* preprint *arXiv*:2212.03533, 2022.
 - Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving text embeddings with large language models. *arXiv preprint arXiv:2401.00368*, 2023.
 - Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. Smarter, better, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context finetuning and inference. *arXiv* preprint arXiv:2412.13663, 2024.
 - Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.
 - Orion Weller, Benjamin Chang, Sean MacAvaney, Kyle Lo, Arman Cohan, Benjamin Van Durme, Dawn Lawrie, and Luca Soldaini. Followir: Evaluating and teaching information retrieval models to follow instructions. *arXiv preprint arXiv:2403.15246*, 2024a.
 - Orion Weller, Benjamin Van Durme, Dawn Lawrie, Ashwin Paranjape, Yuhao Zhang, and Jack Hessel. Promptriever: Instruction-trained retrievers can be prompted like language models. *arXiv* preprint arXiv:2409.11136, 2024b.
 - Orion Weller, Benjamin Chang, Eugene Yang, Mahsa Yarmohammadi, Sam Barham, Sean MacAvaney, Arman Cohan, Luca Soldaini, Benjamin Van Durme, and Dawn Lawrie. mfollowir: a multilingual benchmark for instruction following in retrieval. *arXiv preprint arXiv:2501.19264*, 2025a.
 - Orion Weller, Kathryn Ricci, Eugene Yang, Andrew Yates, Dawn Lawrie, and Benjamin Van Durme. Rank1: Test-time compute for reranking in information retrieval. *arXiv preprint arXiv:2502.18418*, 2025b.
 - Chenghao Xiao, G Thomas Hudson, and Noura Al Moubayed. Rar-b: Reasoning as retrieval benchmark. *arXiv preprint arXiv:2404.06347*, 2024.
 - Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. *arXiv preprint arXiv:1809.09600*, 2018.
 - Zi Yin and Yuanyuan Shen. On the dimensionality of word embedding. *Advances in neural information processing systems*, 31, 2018.
 - Puxuan Yu, Luke Merrick, Gaurav Nuti, and Daniel Campos. Arctic-embed 2.0: Multilingual retrieval without compromise. *arXiv preprint arXiv:2412.04506*, 2024.
 - Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advancing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025.
 - Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv* preprint *arXiv*:2311.07911, 2023.

Jianqun Zhou, Yuanlei Zheng, Wei Chen, Qianqian Zheng, Zeyuan Shang, Wei Zhang, Rui Meng, and Xiaoyu Shen. Beyond content relevance: Evaluating instruction following in retrieval models. *ArXiv*, abs/2410.23841, 2024. URL https://api.semanticscholar.org/CorpusID: 273707185.