
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DETECTING DISTILLATION DATA FROM REASONING
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning distillation has emerged as an efficient and powerful paradigm for en-
hancing the reasoning capabilities of large language models. However, reason-
ing distillation may inadvertently cause benchmark contamination, where eval-
uation data included in distillation datasets can inflate performance metrics of
distilled models. In this work, we formally define the task of distillation data
detection, which is uniquely challenging due to the partial availability of distil-
lation data. Then, we propose a novel and effective method Token Probability
Deviation (TBD), which leverages the probability patterns of the generated out-
put tokens. Our method is motivated by the analysis that distilled models tend to
generate near-deterministic tokens for seen questions, while producing more low-
probability tokens for unseen questions. Our key idea behind TBD is to quantify
how far the generated tokens’ probabilities deviate from a high reference probabil-
ity. In effect, our method achieves competitive detection performance by produc-
ing lower scores for seen questions than for unseen questions. Extensive exper-
iments demonstrate the effectiveness of our method, achieving an AUC of 0.918
and a TPR@1% FPR of 0.470 on the S1 dataset.

1 INTRODUCTION

Large Reasoning Models (LRMs) have shown impressive performance on complex tasks like math-
ematical reasoning and coding problems (Jaech et al., 2024; Guo et al., 2025; Yang et al., 2025; xAI,
2025). By articulating intermediate steps via Chain-of-Thought (CoT), LRMs dynamically allocate
extra compute to challenging problems. However, such reasoning capabilities are typically limited
to LRMs exceeding 100 billion parameters, hindering practical deployment in resource-constrained
settings (Wei et al., 2022). To address this, recent studies have explored reasoning distillation, trans-
ferring reasoning abilities from LRMs to Small Language Models (SLMs) by simulating reasoning
traces (Chen et al., 2025; Ye et al., 2025; Muennighoff et al., 2025b; Liu et al., 2025). This paradigm
has been widely applied in cutting-edge models, such as DeepSeek R1 series (Guo et al., 2025), Sky-
T1-32B-preview (Team, 2025), and Bespoke-32B (Labs, 2025).

In reasoning distillation, current methods generate reasoning trajectories and answers from LRMs
for domain-specific questions, using these to supervise SLM training (Wu et al., 2025b; Li et al.,
2025). Yet, the lack of transparency regarding distillation data raises concerns about benchmark
contamination, where evaluation data inadvertently included in training can inflate performance met-
rics (Oren et al., 2024a; Xu et al., 2024a). These issues highlight the need to detect distillation data
for distilled SLMs, ensuring transparency and fairness. Different from training data detection (Shi
et al., 2024; Zhang et al., 2025b), the unique challenge of this task lies in partial availability: only
the question is available at detection, without access to corresponding reasoning trajectories and
answers. Accessing question-response pairs is generally infeasible due to the non-deterministic
generation process in solution construction (Ye et al., 2025; Wu et al., 2025a) and the proprietary
nature of datasets (Guo et al., 2025; Yang et al., 2025). Consequently, existing methods operating
on input sequences struggle to obtain reliable membership signals given partial sample information.

In this study, we demonstrate that tokens generated by distilled models can expose information
for identifying their distillation data. We observe that distilled models generally exhibit different
probability distributions for members (i.e., seen questions) and non-members (i.e., unseen questions)
in greedy decoding. In particular, distilled models tend to generate near-deterministic tokens for

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Distillation Dataset Distilled Model

Distilled Model

Training

Non-training

Base Model

Text

Text

{(𝑞, 𝑐, 𝑎)}𝑛

Selected Questions

Distillation Data Detection

Questions Detector

LRMs

Generate Solutions Fine-tuning

Reasoning Distillation from LRMs

TBD
(ours)

Figure 1: Overview of distillation data detection. The top panel illustrates the pipeline of the
reasoning distillation that distils the reasoning capacities of LRMs to smaller LLMs. The bottom
panel illustrates the process of detecting distillation data.

members, while producing more low-probability tokens for non-members. This difference in token
generation behavior indicates that the probability distributions of distilled models can be used to
determine whether a given question was seen in the distillation process.

Inspired by the analysis, we propose a simple yet effective method – Token Probability Deviation
(dubbed TBD1), which detects the distillation data through the probabilities of generated tokens,
instead of input tokens. Our key idea behind TBD is to quantify how far the probabilities of gener-
ated tokens are from being fully deterministic. In particular, this can be accomplished by measuring
the deviation of the generated token’s probability from a high reference probability. In effect, our
method produces smaller scores for members than for non-members at test time. By way of our
method, we can achieve a clear separability of scores between seen and unseen questions, even
when only the question component of each sample is available.

Empirically, we perform extensive experiments to validate the effectiveness of the proposed method
across diverse models and various datasets, including S1, S1.1 (Muennighoff et al., 2025a) and
LIMO (Ye et al., 2025). The results demonstrate that our method can significantly achieve superior
performance than existing methods for detecting distillation data (See Table 1). For example, our
method achieves an AUC of 0.918 and a TPR@1%FPR of 0.470 on the distilled model obtained
by fine-tuning Qwen2.5-32B-Instruct on the S1 dataset, indicating the effectiveness of our method
for detecting distillation data. Moreover, the ablation study shows that components in our method
contribute to the overall high performance. In addition, experimental results show the robustness of
our method across various datasets and models, enabling us to deploy our algorithm without task-
specific hyperparameter tuning. In summary, our method shows superior performance in both the
AUC and TPR@1%FPR metrics, showing the practicality of our method in real-world applications.

Our contributions and findings are summarized as follows:

• We first present the problem of distillation data detection and emphasize its unique chal-
lenge of partial availability. We then analyze the limitations of existing methods in the task
of detecting distillation data.

• We propose Token Probability Deviation (dubbed TBD), a novel and effective method for
detecting distillation data. The core idea of our method is to measure the deviation of
generated tokens’ probabilities from a high reference probability.

• We empirically show that our method can significantly outperform baselines for detecting
distillation data, through extensive experiments conducted on various models and datasets.

1We denote the probability by B in our method, referred to as TBD.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

Reasoning distillation. Reasoning distillation transfers the step-by-step reasoning behavior of
large reasoning models (LRMs) into a smaller student language model by imitating the reason-
ing trajectories generated by teacher models (Guo et al., 2025; Li et al., 2025). Let q denote a
question drawn from a large-scale corpus Q, collected from diverse sources. Using q as a prompt,
developers usually use LRMs to generate reasoning trajectories c along with the final answer a (See
Appendix B.1 for an example). To construct a high-quality distillation dataset D = {(qi, ci, ai)}Ni=1,
developers then execute a meticulous selection process from an initial large-scale pool of candidates.
The goal of reasoning distillation is to obtain a distilled model by fine-tuning an SLM on the result-
ing distillation dataset (See Figure 1). Formally, the objective of training can be formulated as:

Lθ =

N∑
t=1

logPθ

(
yt | y<t, q

)
, (1)

where q denotes the input question, and y = {y1, y2, . . . , yN} represents the corresponding target
sequence, comprising the reasoning trajectory c and the final answer a. Pθ

(
yt | y<t, q

)
denotes the

predicted probability of model for token yt, given preceding tokens. This paradigm explicitly trains
the student model to reproduce intermediate reasoning, aiming to internalize not just the outcomes
but the procedural patterns of teacher models.

Membership inference. Membership Inference Attacks (MIAs) aim to predict whether a partic-
ular record is included in the training data (Shokri et al., 2017). MIAs are often used as a measure
of information leakage, such as privacy disclosure (Mozes et al., 2023), copyright violations (Chang
et al., 2023), and test set contamination (Xu et al., 2024a; Choi et al., 2025). The definition of
traditional MIAs is as follows: Given a trained model f(x,θ) and a data point (x, y), an attacker
infers whether a target data point belongs to the training data Dtrain. In traditional MIA settings,
they often require strong assumptions, such as training multiple shadow models and accessing to the
underlying data distribution. This is often impractical for LLMs due to the unavailability of training
data distribution and high training costs. The existing MIAs on LLMs usually aim to determine
whether a given piece of text x is part of the training dataset for a large language model M, by
computing a membership score S(x,M). Training data detection methods for LLMs generally de-
sign a scoring function that computes a score for each input (Li, 2023; Shi et al., 2024; Zhang et al.,
2025b). Although some methods for pretraining and fine-tuning data detection have been studied,
membership inference on distillation data for reasoning distillation remains underexplored. In the
next section, we introduce the distillation data detection task, a tailored formulation of this problem.

3 DISTILLATION DATA DETECTION

In this section, we formally define the Distillation Data Detection task, which is uniquely challeng-
ing due to the partial availability of distillation data. The goal of our task is to predict whether a
given question is included in the model’s distillation dataset.

Problem definition. Using question q as a prompt, developers often generate training data by
sampling responses from multiple advanced LRMs and by refining them to obtain high-quality rea-
soning trajectories c and corresponding answer a (Ye et al., 2025; Wu et al., 2025b; Tian et al.,
2025; Zhuang et al., 2025). However, the resulting distillation dataset D = {(qi, ci, ai)}Ni=1 is often
proprietary (Guo et al., 2025; Yang et al., 2025)—i.e., the exact reasoning trajectory and answer are
inaccessible for a given question. Also, due to the non-deterministic generation process and post-
hoc filtering, it is generally infeasible to recover the exact reasoning trajectory or answer associated
with a given question. Thus, we study a more practical question-only setting in which an auditor
can query a distilled model M with question q and obtain model outputs, but has no access to the
corresponding reasoning trajectories c and answer a of a datapoint.

Formally, let QD = {qi : (qi, ci, ai) ∈ D} denote the set of questions from a distillation dataset
used for training base models. We pose distillation data detection as a level-set estimation problem
defined on a scoring function S(q,M) as:

G(q;M) =

{
1 if S(q,M) < λ,

0 if S(q,M) ≥ λ,
(2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where G = 1 indicates member (q ∈ QD) and G = 0 indicates non-member (q /∈ QD), with λ being
a case-dependent threshold. The key difficulty of this task lies in partial availability: the training
datapoint is triple x = (q, c, a), yet only the question q is available at test time. Consequently, the
design of S must rely solely on question-conditioned behaviours of M, rather than on likelihood-
driven metrics over the ground truth (c, a).

Challenge of partial availability. Most prior work on training data detection for LLMs assumes
access to the entire training sample, which contains complete information seen during training (Mat-
tern et al., 2023; Fu et al., 2024; Mireshghallah et al., 2022). In this setting, the scoring function
S can be defined directly in terms of sample likelihoods, exploiting probability estimates over in-
put tokens. Existing training data detection approaches targeting LLMs typically leverage a scoring
function that computes a score for each input sequence. For example, MIN-K% (Shi et al., 2024)
computes the average log-likelihood of the lowest K% tokens scores over the input, effectively using
low-probability tokens as signals of membership. Such approaches are well-suited when full sample
information is observable at detection time.

MIN-K%

AUC = 0.496

Non-members
Members

Figure 2: Scores distribution of Min-
K% for members and non-members,
obtained from the distilled model
trained on the LIMO dataset using the
Qwen2.5-32B-Instruct base model.

However, these approaches may perform poorly in the
setting of distillation data detection, where distillation
data are only partially available. The absence of joint
question-response pairs weakens the key signal exploited
by likelihood-based approaches operating over input se-
quences, leaving them ill-suited for this task. To illustrate,
we analyze the distribution of MIN-K% scores for mem-
ber versus non-member questions. As shown in Figure 2,
the two distributions exhibit substantial overlap, indicat-
ing limited separability and poor discriminative power
when only questions are available. This highlights the
requirement for alternative scoring functions effective un-
der partial availability. Motivated by the challenge of par-
tial availability, we investigate whether the token gener-
ation behavior of distilled models, conditioned solely on
q, can serve as a reliable signal of membership.

4 METHOD

To address the challenge of partial availability, we explore a question-only scoring approach that
leverages the token-level generation behavior of distilled reasoning models. We begin by comparing
the probability patterns of tokens between member and non-member questions (See Section 4.1).
Then, building on our empirical observations, we propose Token Probability Deviation (TBD), a
simple yet effective method to detect distillation data (See Section 4.2).

4.1 MOTIVATING ANALYSIS

Analysis setup. The goal of our analysis is to investigate whether the token-level probability pat-
terns produced by a distilled model differ between member and non-member questions. Following
prior work (Muennighoff et al., 2025b), we first distill the reasoning capabilities to the Qwen2.5-
32B-Instruct model via supervised full-parameter fine-tuning on the S1 dataset. The dataset is split
into training and testing subsets with an 8:2 ratio, from which we sample members (training set)
and non-members (testing set). This ensures an i.i.d setup, with both groups drawn from the same
underlying data distribution. For each question, we generate a response from the distilled model
using greedy decoding and extract the token probabilities of the response for comparison. Example
question prompts are provided in Appendix B.2.

Members generate near-deterministic tokens more frequently. To examine distributional dif-
ferences in token probabilities, we analyze sequences of up to 300 generated tokens for both mem-
ber and non-member questions. Figure 3a shows the token-wise maximum probability distributions
from the distilled model across 20 member and 20 non-member samples. The horizontal axis de-
notes the token index, while the vertical axis reports the probability assigned to the corresponding

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Non-membersMembers

Token Indices

N
o
n
-m

em
b
er

s

P
ro

b
ab

ili
ty

P
ro

b
ab

ili
ty

(a) (b)

M
em

b
er

s

Frequency

(a) Token-wise probability distributions

Non-membersMembers

Token Indices

N
o
n
-m

e
m

b
e
rs

P
ro

b
ab

il
it
y

P
ro

b
ab

il
it
y

(a) (b)

M
e
m

b
e
rs

Frequency

(b) Near-deterministic tokens comparison

Figure 3: Comparison of token-level generation behaviour of distilled models for 20 member and
20 non-member questions under greedy decoding. (a) Token-wise probability distributions: we
contrast the distribution of token-wise probability between members and non-members, showing
that non-members tend to produce more tokens with lower probability. (b) Near-deterministic
vs. non-deterministic tokens: near-deterministic tokens denote generated tokens with probabilities
approaching 1, and vice versa for non-deterministic tokens. The distilled reasoning model tends to
generate more near-deterministic tokens for members.

token. Thin lines correspond to individual samples, and bold lines denote mean token-wise proba-
bility across all members or non-members. We observe that the distilled model tend to frequently
generate tokens with probabilities close to 1 for members, while producing more low-probability to-
kens for non-members. Figure 3b further contrasts the frequency of near-deterministic tokens (with
probability approaching 1) against non-deterministic tokens. The results show that the distilled
model produces a substantially higher fraction of near-deterministic tokens for member questions.
This suggests that generation probabilities are likely to carry membership signals, motivating our de-
sign of a scoring function that leverages tokens generated by the distilled model to detect distillation
data. Building on these insights, we introduce Token Probability Deviation in the next section.

4.2 TOKEN PROBABILITY DEVIATION

Motivated by our preliminary analysis, we propose Token Probability Deviation (TBD), a method
that exploits the observation that member questions tend to elicit near-deterministic tokens, whereas
non-members induce relatively more low-probability tokens. Unlike many methods for detecting
training data from LLMs, which rely on input token probabilities (Shi et al., 2024; Zhang et al.,
2025b), TBD utilizes the generated token probabilities along the model’s reasoning trajectory for
given question q. This design sidesteps the partial-availability constraint of distillation datasets while
providing a simple, model-agnostic signal for distillation data detection.

Token Probability Deviation. The core idea of our method is to measure the deviation of the
generated tokens’ probability from a high reference probability. Given a question entailed with a
sequence of tokens q = {q1, q2, ..., qN}, the tokens generated by model can be denoted as y =
{y1, y2, ..., yi}. We use pθ(yi | y<i, q) to denote the probability that the target model predicts yi,
given the question prompt q and the generated text prefix y<i = {y1, y2, ..., yi−1}. We first quantify
the deviation between the probability of the generated token yi and the reference probability τ .
Formally, we define the deviation term as:

di(q; τ) = max
(
0, τ − pθ(yi | y<i, q)

)
, (3)

where max(0, ·) ensures that only outlier tokens, whose probabilities are below the threshold τ ,
contribute to the final score computation. Since distilled reasoning models tend to generate tokens
with extremely high probability for seen questions, outlier tokens are likely to display a highly

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

distinctive membership signal. Therefore, by computing the deviation of the outlier tokens, we
expect to obtain a more distinctive signal for data membership.

Considering that the earlier generated tokens are likely to be more representative of the behaviour
of the model for members and non-members, we perform a truncation operation to focus on the first
M generated tokens. To obtain the final robust sentence-level score, we compute the average of the
token’s deviation di(q; τ). Concretely, the final score can be formulated as:

S(q, θ) = 1

E

M∑
i=1

di(q; τ)
α, (4)

where E =
∑M

i=1 1(pθ(yi | y<i, q) < τ) denotes the number of outliers among the first M tokens.

In practice, we introduce a tunable parameter α to adjust the contribution of tokens to the scoring
function. For instance, a small value of α (e.g., 0.6) can amplify the deviation of a generated token’s
probability from τ . Our experimental results in Figure 4b show that a suitable α can yield an
improved TPR@1% FPR for detecting distillation data.

Detection with token probability deviation. Our method enables us to build a detector G(q;M)
for a distilled reasoning model to infer the membership of question q. In particular, our method is
robust across various datasets, enabling us to deploy our algorithm without task-specific hyperpa-
rameter tuning. At test time, samples with lower scores S(q, θ) are classified as distillation data and
vice versa. By way of our method, we can obtain a clear distinction between seen questions and
unseen questions, establishing excellent performance for detecting distillation data.

5 EXPERIMENTS

In this section, we evaluate the performance of our method across several datasets with multiple
models of different sizes. Extensive experiments demonstrate the effectiveness of our method, which
designs a scoring function using generated tokens instead of input tokens.

5.1 EXPERIMENTAL SETUP

Datasets and models. We conduct experiments on several high-quality distillation datasets pro-
vided by previous work, including S1, S1.1 (Muennighoff et al., 2025b) and LIMO (Ye et al., 2025).
The details of datasets are provided in Appendix B.1. Specifically, we fine-tune the base model (e.g,
Qwen2.5-32B-Instruct) on these datasets with a full-parameter supervised fine-tuning strategy. In
addition, we also perform experiments on different-sized base models, such as Qwen2.5-7B-Instruct,
Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct models (Qwen et al., 2025).

Baseline methods. We compare our method with current competitive baselines: (1) Perplex-
ity (Li, 2023): uses the perplexity of input text as a metric. (2) Zlib (Carlini et al., 2021): computes
the ratio of example perplexity and zlib compression entropy (3) Lowercase (Carlini et al., 2021):
computes the ratio of the perplexity on the text before and after lowercasing. (4) Neighbor (Mat-
tern et al., 2023): perturbs the input sentence with masked language models to create “neighbor”
and compares the loss of the input sentence with the average loss of the neighbor sentences. (5)
Min-K% (Shi et al., 2024): computes the average log-likelihood of K% outlier tokens with the
smallest predicted probability. (6) Min-K%++ (Zhang et al., 2025b): compares the probability
of the target token with the expected probability of all tokens within the vocabulary. (7) Infilling
Score (Raoof et al., 2025): computes the ratio of the infilling probability of the ground-truth token
and the maximum causal likelihood token. These methods typically detect training data by design-
ing likelihood-based scores derived from input tokens, while our method leverages tokens generated
from models to detect training data. Additionally, we introduce two vanilla variants of our method,
which use generated tokens to determine data membership. Specifically, (8) Generated Perplex-
ity: computes the perplexity using the probabilities of generated tokens. (9) Generated Min-K%:
computes the average log-likelihood of K% generated tokens with the lowest predicted probability.

Implementation details. To effectively evaluate our method, we fine-tune the Qwen2.5-32B-
Instruct model separately on S1, S1.1, and LIMO distillation datasets to obtain diverse distilled

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: AUC of our method and baselines on diverse distilled models. These models are produced
through fine-tuning diverse different-sized models (e.g., Qwen2.5-32B-Instruct) on various distilla-
tion datasets, including S1, LIMO and S1.1 datasets. † indicates methods that compute score using
output tokens. Bold shows the superior result.

Method Qwen2.5-7B-Instruct Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct

S1 LIMO S1.1 S1 LIMO S1.1 S1 LIMO S1.1

Input-token-based methods
Perplexity (Li, 2023) 0.444 0.482 0.503 0.449 0.498 0.517 0.433 0.499 0.487
Lowercase (Carlini et al., 2021) 0.435 0.472 0.493 0.467 0.507 0.489 0.459 0.475 0.463
Zlib (Carlini et al., 2021) 0.474 0.486 0.467 0.467 0.495 0.471 0.448 0.496 0.447
Neighbor (Mattern et al., 2023) 0.539 0.503 0.441 0.543 0.500 0.435 0.555 0.503 0.444
MIN-K% (Shi et al., 2024) 0.443 0.480 0.494 0.453 0.496 0.509 0.437 0.496 0.479
MIN-K%++ (Zhang et al., 2025b) 0.472 0.458 0.486 0.509 0.508 0.489 0.461 0.461 0.439
Infilling Score (Raoof et al., 2025) 0.529 0.529 0.520 0.534 0.544 0.493 0.574 0.489 0.475

Output-token-based methods
Generated Perplexity† 0.753 0.605 0.564 0.785 0.596 0.558 0.847 0.662 0.619
Generated MIN-K† 0.754 0.604 0.563 0.785 0.596 0.559 0.847 0.661 0.619
Ours† 0.855 0.694 0.617 0.870 0.671 0.562 0.918 0.728 0.649

reasoning models. For the main results, the original datasets are split into training and testing sub-
sets, with an 8:2 train-test split. We then perform full-parameter fine-tuning on 8 A100 GPUs using
DeepSpeed ZeRO-3 optimization, with a sequence length limit of 16,384 tokens. The details of
training parameters are provided in the Appendix B.2. To ensure fair evaluation, we construct bal-
anced datasets of member and non-member samples, drawn respectively from the training and test
sets, ensuring an IID setting. For two vanilla variants of our method, Generated Perplexity and Gen-
erated Min-K%, the sample score is computed using only the first 1,000 generated tokens. For main
experiments, we apply a greedy decoding strategy for generation, and compute the TBD score using
the first 300 generated tokens with τ = 1 and α = 0.6.

Evaluation metrics. We evaluate the performance of our method and baselines for detecting dis-
tillation data by measuring the following metrics: (1) AUC, the area under the receiver operating
characteristic curve; (2) TPR@1%FPR, the true positive rate at 1% false positive rate (Carlini et al.,
2022). Instead of paying equal attention to members and nonmembers, this metric pays more atten-
tion to members and evaluates whether one can confidently identify members.

5.2 EXPERIMENTAL RESULTS

Is our method effective across models trained on various datasets? To investigate the perfor-
mance of our method across diverse distilled reasoning models, we fine-tune the diverse models on
three distillation datasets, including S1, LIMO and S1.1 datasets. Table 1 shows that our method sig-
nificantly outperforms the baselines, achieving superior performance for detecting distillation data.
We also present the TPR@1% FPR score of our method and baselines in Appendix C.2. Firstly,
our experiments demonstrate that tokens generated by distilled models can serve as effective infor-
mation for detecting distillation data. Furthermore, empirical evidence suggests that our method
can detect distillation data even under a low false-positive rate constraint, showing the practicality
of our method in real-world applications. For example, our method achieves a high AUC of 0.918
and a TPR@1% FPR of 0.470 on the distilled model obtained by fine-tuning Qwen2.5-32B-Instruct
on S1. Overall, our experimental results demonstrate the effectiveness of our method for detecting
distillation data across diverse models and datasets.

Is our method effective across various models? To investigate the effectiveness of our method
across various models, we conduct experiments on the S1 dataset with three different LLMs, includ-
ing Llama-3.1-8B-Instruct (Dubey et al., 2024), Gemma-7B-it (Team et al., 2024) and Mistral-7B-
Instruct-v0.3 (Jiang et al., 2023) models. In Appendix C.2, we provide the AUC and TPR@1%FPR
scores for our method and the baselines across various models. The results indicate that our method

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

600 700 800
Size

0.00

0.20

0.40

0.60

0.80

1.00

AU
C

(a) AUC score vs. size of distillation data

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

AUC
TPR@1%FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R@

1%
FP

R

(b) AUC and TPR@1%FPR scores vs. parameter α

Figure 4: Effect of distillation data size (4a) and parameter α (4b) on our method’s performance.

consistently achieves superior performance compared to baselines, demonstrating its model-agnostic
nature and broad applicability.

Is our method effective with models of different parameter sizes? To validate the effectiveness
of our methods on distilled models of different sizes, we fine-tune Qwen2.5-7B-Instruct, Qwen2.5-
14B-Instruct, and Qwen2.5-32B-Instruct models on various datasets, respectively. As presented in
Table 1, the results show that our method achieves superior performance for detecting distillation
data, demonstrating the effectiveness of our method across models of different sizes. Among three
models of different sizes, our method achieves the best AUC and TPR@1%FPR on the S1 dataset
under the 32B model. The properties of models and characteristics of datasets may potentially
influence our method’s performance.

How does the distillation data size affect our method? To investigate the performance of our
method on varying dataset scales, we conduct experiments on the S1 dataset and fine-tune Qwen2.5-
32B-Instruct with data sizes of 600, 700, and 800. At test time, we construct a balanced dataset to
evaluate the performance of our method. Figure 4a shows the AUC of our method with various sizes
of distillation datasets. The results demonstrate our method consistently achieves reliable detection
performance across diverse distilled models. In addition, we observe that the AUC of our method
slightly increases with the size of the distillation dataset, likely because the distilled model trained
on more data exhibits enhanced generation behaviour that improves detection. In summary, our
experiment indicates the effectiveness of our method with distillation datasets of different sizes.

How does α affect the performance of our method? Our method introduces a tunable parameter
α to adjust the contribution of tokens on the sample score. For instance, a small value of α amplifies
the deviation of a generated token’s probability from τ , thereby increasing its impact on the sample
score when deviations are minor. We conduct experiments with varying α values to examine their
effect on our method’s performance, based on the distilled model fine-tuned from Qwen2.5-32B-
Instruct on S1. Figure 4b shows the AUC and TPR@1%FPR scores of our method with varying
α. Note that setting α to 1 is equivalent to applying our method without deviation adjustment.
Increasing α initially improves the AUC score, and performance ultimately stabilizes as α continues
to increase. The TPR@1%FPR score significantly rises as α increases, reaching a peak near α =
0.6, and subsequently decreases. This behaviour allows us to deploy our algorithm flexibly by
simply adjusting α, targeting the preferred metric in practical applications. Overall, our method can
significantly improve TPR@1%FPR by applying a α in our method.

How does truncation length M affect the performance of our method? Our method introduces
a truncation operation to compute the sample score using the first M generated tokens. To study how
the length of tokens affects the performance of our method, we perform an evaluation by adjusting
the number of tokens used to compute the score. Concretely, we set the number of tokens from 50
to 1000 with a step size of 50. In our experiment, setting the truncation length to 300 corresponds
to computing the score using the first 300 generated tokens. We evaluate our method on distilled
models obtained by fine-tuning Qwen2.5-32B-Instruct on three distillation datasets, reporting the
AUC and TPR@1%FPR of our method with different truncation lengths. The figure 5a shows that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

200 400 600 800
Trucation length

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C LIMO-32B

S1.1-32B
S1-32B

(a) AUC vs. M

200 400 600 800
Trucation length

0.0

0.1

0.2

0.3

0.4

TP
R@

1%
FP

R

(b) TPR@1%FPR vs. M

0.80 0.85 0.90 0.95 1.00
Parameter

0.2

0.4

0.6

0.8

1.0

AU
C

0.918

0.777

(c) AUC vs. τ

Figure 5: Ablation study on hyperparameter M and threshold τ . We present AUC and
TPR@1%FPR of our method with varying truncation length M on three datasets (5a & 5b), and
AUC of our method under varying threshold τ on the S1 dataset (5c).

Table 2: Ablation study on the components of our method with the distilled model fine-tuned from
Qwen2.5-32B-Instruct on the S1 dataset. Note that excluding parameter α corresponds to setting
α = 1. The grey rows correspond to the final design of our method with different α. Bold shows
the superior result, with the runner-up underlined.

Truncation length Token deviation Parameter α AUC TPR@1% FPR

✗ ✗ ✗ 0.847 0.170
M = 300 ✗ ✗ 0.903 0.290
M = 300 ✓ ✗ 0.920 0.320
M = 300 ✓ α = 0.6 0.918 0.470
M = 300 ✓ α = 0.7 0.920 0.415

the AUC initially increases with truncation length, but declines as the length continues to increase.
Our method consistently reaches its optimal performance across various datasets when the truncation
length is around 300. Similarly, Figure 5b show that the TPR@1%FPR score exhibits a similar
trend. These findings indicate the robustness of our method across various datasets, allowing users
to deploy our algorithm with a fixed truncation length value.

Effect of threshold τ on the performance of our method. Our method introduces a reference
probability τ to quantify the deviation of the generated token’s probability from the reference proba-
bility. In Figure 5c, we show the AUC of our method with varying τ on the distilled model obtained
by fine-tuning Qwen2.5-32B-Instruct on S1. The result shows that our method achieves superior per-
formance with a large value of τ . As described in Section 4.1, the distilled reasoning model tends
to generate tokens with extremely high probability. Thus, applying a high reference probability can
help identify outlier tokens and achieve better performance for detecting distillation data.

Decomposing the contribution of our method. As described in Equation 4, our method can be
decomposed into three key components: (1) truncation operation M , which truncates the generated
sequence to the first M tokens; (2) token deviation measure di(q; τ), which measures the deviation
of the generated token’s probability from a reference probability τ ; and (3) tunable parameter α,
which adjusts the contribution of tokens on the sample score. To elucidate individual contributions
of each component, we conduct an ablation study in Table 2. We start by computing the average
predicted probabilities over the first 1000 generated tokens. We then gradually incorporate the trun-
cation operation, token deviation measure, and parameter α into the score computation, leading to
the final formulation of our method. In particular, applying a truncation operation, using only the
first 300 generated tokens for score computation, leads to a significant improvement in performance.
Secondly, our method achieves better performance after applying the token deviation measure, indi-
cating that focusing on outlier tokens produces a more distinguishable membership signal. Finally,
we introduce a α to adjust the contribution of tokens to the score, leading to a significant improve-
ment in the TPR@1%FPR score. By combining these components, we obtain the final formulation
of our method, which achieves superior performance in both AUC and TPR@1% FPR scores.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: AUC scores of our method and baselines on the paraphrased S1 dataset, evaluated across
different-sized models. Bold shows the superior result.

Method Qwen2.5-7B-Instruct Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct

Perplexity (Li, 2023) 0.463 0.468 0.469
Lowercase (Carlini et al., 2021) 0.503 0.493 0.543
Zlib (Carlini et al., 2021) 0.497 0.497 0.496
MIN-K% (Shi et al., 2024) 0.469 0.475 0.473
MIN-K%++ (Zhang et al., 2025b) 0.500 0.494 0.527

Ours 0.615 0.692 0.691

6 DISCUSSION

How does partial availability affect the performance of our method and baselines? To illus-
trate the scenarios where our method provides utility, we evaluate our method and baselines on the
S1 dataset using the Qwen2.5-7B-Instruct model across three distinct settings:(1) using only the
question, (2) using the question along with the reasoning trajectories, and (3) using the full sample
comprising the question, reasoning trajectories and answer.

We provide the AUC scores of baselines and our method in Appendix C.2. The results show that
baseline methods are effective in settings where reasoning trajectories and answers are available,
while their performance notably degrades when only the question is available. The finding indicates
that partial availability leads to poor performance of baselines in distillation data detection. The re-
sults show that our TBD is the only effective method in the Question-Only setting, while all baseline
methods fail to detect distillation data. Our method enables effective detection in the realistic and
challenging setting, where only the is available, achieving meaningful performance without relying
on trajectories or answers.

Is our method effective for question paraphrasing? To examine the performance of our method
under reasoning distillation with paraphrased questions, we conduct experiments on the S1 dataset
across different models, including Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct and Qwen2.5-32B-
Instruct models. We use GPT-5-mini2 to paraphrase the original question, obtaining a rephrased
version that remains semantically consistent with the original question. We then evaluate our method
on paraphrased questions to simulate a scenario where the original questions used for reasoning
distillation are unavailable. The Table 3 reports the AUC scores of baselines and our method. The
results show that our method consistently outperforms baselines, indicating its capability to detect
distillation data in the question paraphrasing scenario.

7 CONCLUSION

In this work, we first present the problem of distillation data detection and emphasize its unique chal-
lenge of partial availability. We propose Token Probability Deviation (TBD), a novel and effective
method for detecting distillation data. Our method utilizes generated tokens instead of input se-
quences to identify data membership. This can be achieved by measuring the deviation of generated
tokens’ probabilities from a high reference probability. Experimental results show that our method
is robust to parameter choice, enabling us to deploy our algorithm without task-specific hyperpa-
rameter tuning. In addition, our method can detect distillation data even under a low false-positive
rate constraint, showing the practicality of our method in real-world applications. In summary, ex-
tensive experiments demonstrate the effectiveness of our method on various datasets across diverse
models in distillation data detection. We hope that our study can advance further research on data
contamination resulting from reasoning distillation.

Limitations Our work focuses on detecting training data used in reasoning distillation. Our
method is limited in the scope of reasoning distillation with supervised fine-tuning, leaving other
scenarios to be explored in future work.

2https://platform.openai.com/docs/models/gpt-5-mini

10

https://platform.openai.com/docs/models/gpt-5-mini

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work aims to detect distillation data, a data leakage problem resulting from reasoning distil-
lation. The proposed methodology aims to identify data potentially used in reasoning distillation.
Regarding data access, the distillation datasets we employed in our work come from prior research
and do not involve privacy information. This paper presents work whose goal is to advance research
on data contamination resulting from reasoning distillation. There are many potential societal con-
sequences of our work, none of which we feel must be specifically highlighted here.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure that the experimental results in this paper are reproducible. We
provide an anonymous link to the downloadable source code in the supplementary materials for
others to reproduce the results in our experiments. The experimental setup, including training steps,
datasets, models and hardware details, is described in detail in this paper. To support reproducibility,
we provide detailed instructions on code execution for our experiments. We hope that our efforts
can help other researchers reproduce our work and further advance the field.

REFERENCES

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
bership inference attacks from first principles. In 2022 IEEE symposium on security and privacy
(SP), pp. 1897–1914. IEEE, 2022.

Kent K Chang, Mackenzie Cramer, Sandeep Soni, and David Bamman. Speak, memory: an archae-
ology of books known to chatgpt/gpt-4. arXiv preprint arXiv:2305.00118, 2023.

Xiaoshu Chen, Sihang Zhou, Ke Liang, and Xinwang Liu. Distilling reasoning ability from large
language models with adaptive thinking. IEEE Transactions on Neural Networks and Learning
Systems, 2025.

Hyeong Kyu Choi, Maxim Khanov, Hongxin Wei, and Yixuan Li. How contaminated is your bench-
mark? quantifying dataset leakage in large language models with kernel divergence. In Interna-
tional Conference on Machine Learning, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, and Tao Jiang. Membership
inference attacks against fine-tuned large language models via self-prompt calibration. Advances
in Neural Information Processing Systems, 37:134981–135010, 2024.

Michael M Grynbaum and Ryan Mac. The times sues openai and microsoft over ai use of copy-
righted work. The New York Times, 27, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning dis-
tillation. https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-
reasoning-distillation, 2025. Accessed: 2025-01-22.

Xinhe Li, Jiajun Liu, and Peng Wang. Can large models teach student models to solve mathematical
problems like human beings? a reasoning distillation method via multi-lora interaction, 2025.
URL https://arxiv.org/abs/2508.13037.

Yucheng Li. Estimating contamination via perplexity: quantifying memorisation in language model
evaluation. arXiv preprint arXiv:2309.10677, 2023.

Wanlong Liu, Junxiao Xu, Fei Yu, Yukang Lin, Ke Ji, Wenyu Chen, Yan Xu, Yasheng Wang, Lifeng
Shang, and Benyou Wang. Qfft, question-free fine-tuning for adaptive reasoning. arXiv preprint
arXiv:2506.12860, 2025.

Ziyang Ma, Qingyue Yuan, Linhai Zhang, and Deyu Zhou. Slow tuning and low-entropy masking
for safe chain-of-thought distillation. arXiv preprint arXiv:2508.09666, 2025.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schoelkopf, Mrinmaya Sachan,
and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
bourhood comparison. In Findings of the Association for Computational Linguistics: ACL 2023,
pp. 11330–11343, 2023.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza
Shokri. Quantifying privacy risks of masked language models using membership inference at-
tacks. arXiv preprint arXiv:2203.03929, 2022.

Maximilian Mozes, Xuanli He, Bennett Kleinberg, and Lewis D Griffin. Use of llms for illicit
purposes: Threats, prevention measures, and vulnerabilities. arXiv preprint arXiv:2308.12833,
2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple test-
time scaling. In Workshop on Reasoning and Planning for Large Language Models, 2025a. URL
https://openreview.net/forum?id=LdH0vrgAHm.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025b.

Yonatan Oren, Nicole Meister, Niladri S Chatterji, Faisal Ladhak, and Tatsunori Hashimoto. Proving
test set contamination in black-box language models. In ICLR, 2024a.

Yonatan Oren, Nicole Meister, Niladri S Chatterji, Faisal Ladhak, and Tatsunori Hashimoto. Proving
test set contamination in black-box language models. In The Twelfth International Conference on
Learning Representations, 2024b.

12

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2508.13037
https://openreview.net/forum?id=LdH0vrgAHm

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Negin Raoof, Litu Rout, Giannis Daras, Sujay Sanghavi, Constantine Caramanis, Sanjay Shakkottai,
and Alex Dimakis. Infilling score: A pretraining data detection algorithm for large language
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=9QPH1YQCMn.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. In The
Twelfth International Conference on Learning Representations, 2024.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP),
pp. 3–18. IEEE Computer Society, 2017.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

NovaSky Team. Sky-t1: Train your own o1 preview model within 450. https://novasky-
ai.github.io/posts/sky-t1, 2025. Accessed: 2025-01-09.

Yijun Tian, Yikun Han, Xiusi Chen, Wei Wang, and Nitesh V Chawla. Beyond answers: Trans-
ferring reasoning capabilities to smaller llms using multi-teacher knowledge distillation. In Pro-
ceedings of the Eighteenth ACM International Conference on Web Search and Data Mining, pp.
251–260, 2025.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus Mcaleer, Ying Wen, Weinan Zhang, and
Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. In
International Conference on Machine Learning, pp. 49890–49920. PMLR, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Juncheng Wu, Wenlong Deng, Xingxuan Li, Sheng Liu, Taomian Mi, Yifan Peng, Ziyang Xu,
Yi Liu, Hyunjin Cho, Chang-In Choi, et al. Medreason: Eliciting factual medical reasoning
steps in llms via knowledge graphs. arXiv preprint arXiv:2504.00993, 2025a.

Xiaojun Wu, Xiaoguang Jiang, Huiyang Li, Jucai Zhai, Dengfeng Liu, Qiaobo Hao, Huang Liu,
Zhiguo Yang, Ji Xie, Ninglun Gu, et al. Beyond scaling law: A data-efficient distillation frame-
work for reasoning. arXiv preprint arXiv:2508.09883, 2025b.

xAI. Grok 3 beta — the age of reasoning agents, 2025. URL https://x.ai/news/grok-3.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024.

Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large
language models: A survey. arXiv preprint arXiv:2406.04244, 2024a.

Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. Benchmarking benchmark leakage in large
language models. arXiv e-prints, pp. arXiv–2404, 2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

13

https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=9QPH1YQCMn
https://x.ai/news/grok-3

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning. arXiv preprint arXiv:2502.03387, 2025.

Hengxiang Zhang, Songxin Zhang, Bingyi Jing, and Hongxin Wei. Fine-tuning can help de-
tect pretraining data from large language models. In The Thirteenth International Confer-
ence on Learning Representations, 2025a. URL https://openreview.net/forum?id=
X8dzvdkQwO.

Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Frank
Yang, and Hai Li. Min-k%++: Improved baseline for pre-training data detection from large lan-
guage models. In The Thirteenth International Conference on Learning Representations, 2025b.
URL https://openreview.net/forum?id=ZGkfoufDaU.

Xianwei Zhuang, Zhihong Zhu, Zhichang Wang, Xuxin Cheng, and Yuexian Zou. Unicott: A unified
framework for structural chain-of-thought distillation. In The Thirteenth International Conference
on Learning Representations, 2025.

14

https://openreview.net/forum?id=X8dzvdkQwO
https://openreview.net/forum?id=X8dzvdkQwO
https://openreview.net/forum?id=ZGkfoufDaU

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A Related Works 15

B Experimental Details 16
B.1 Details of Datasets and Models . 16
B.2 Training Details . 16
B.3 Implementation Examples . 17

C Additional Results 20
C.1 Token-wise Probability Distribution . 20
C.2 Experimental Results . 21

D Use of Large Language Models 21

A RELATED WORKS

In this paper, we propose a problem about distillation data detection, which is related to an amount of
literature on reasoning distillation and detecting training data from Large Language Models (LLMs).
We discuss related works in two directions relevant to our study.

Distilling reasoning capability from LRMs. Large Reasoning Models (LRMs) exhibit remark-
able performance in solving complex tasks, achieving this by training the model to produce a long
chain of thought reasoning process before responding with the final answer (Jaech et al., 2024; Yang
et al., 2025; Comanici et al., 2025). However, developing reasoning models, which achieve reason-
ing capacity compared to large reasoning models, remains a significant challenge for the research
community (Kumar et al., 2024; Xin et al., 2024; Wan et al., 2024). Recently, a growing litera-
ture has focused on reasoning distillation, which improves the reasoning capabilities of models with
lower computational cost (Guo et al., 2025; Yang et al., 2025; Wu et al., 2025b; Ma et al., 2025).
In practice, distillation methods often employ supervised fine-tuning to enable a model to mimic
reasoning trajectories generated by large reasoning models (Guo et al., 2025; Muennighoff et al.,
2025b; Ye et al., 2025; Liu et al., 2025). For instance, S1 (Muennighoff et al., 2025b) and LIMO (Ye
et al., 2025) enhance the reasoning capacity of small language models by fine-tuning models on
well-crafted distillation datasets. However, training models on distillation datasets that overlap with
benchmark data can inflate the performance of distilled models. Thus, our work aims to develop
detection methods for identifying distillation data potentially used in reasoning distillation.

Detecting training data from LLMs. Training data detection on LLMs has been studied in pre-
vious works, encompassing fine-tuning data detection and pretraining data detection (Mattern et al.,
2023; Fu et al., 2024; Zhang et al., 2025b; Shi et al., 2024; Raoof et al., 2025). Training data may
pose risks such as privacy leakage, where training data containing personal information may lead
to privacy leakage (Grynbaum & Mac, 2023; Mozes et al., 2023). Furthermore, the training dataset
may inadvertently include data from benchmarks, which compromises the reliability of benchmark
evaluations (Oren et al., 2024b; Choi et al., 2025; Xu et al., 2024b). Fine-tuning data detection for
LLMs aim to determine the training data used for fine-tuning (Mattern et al., 2023; Mireshghallah
et al., 2022). The repeated exposure of the fine-tuning data across multiple training epochs increases
their vulnerability to privacy attacks. Pretraining data detection aims to determine whether a piece of
text is included in the pretraining dataset (Zhang et al., 2025a). The task is particularly challenging
due to the massive scale of the pretraining corpus and the fact that pretraining usually runs for only
one epoch (Shi et al., 2024). Previous studies often design scoring functions that compute a score
for each input sequence to detect training data from LLMs (Zhang et al., 2025b). Our work proposes

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

a problem of distillation data detection and a novel and effective method, which leverages generated
tokens instead of the input sequence to detect distillation data.

B EXPERIMENTAL DETAILS

B.1 DETAILS OF DATASETS AND MODELS

Datasets and Models. To obtain diverse distilled reasoning models, we fine-tune different mod-
els on three well-crafted distillation datasets, including S1, S1.1 (Muennighoff et al., 2025b) and
LIMO (Ye et al., 2025). Use questions as prompts, developers often generate reasoning trajectories
along with the final answer from advanced large reasoning models to construct distillation datasets.
The S1 and S1.1 datasets contain 1,000 examples, whose reasoning trajectories are produced from
Gemini (Comanici et al., 2025) and DeepSeek-R1 (Guo et al., 2025), respectively. LIMO is a high-
quality distillation dataset containing only 817 examples, where each example contains a question
together with the reasoning trajectory and final answer. We provide details of the distillation datasets
in Table 4. As described in Appendix B.3, we present the illustration of a sample comprising a
question, corresponding reasoning trajectories, and the final answer. In our experiments, following
previous work (Muennighoff et al., 2025b; Ye et al., 2025; Liu et al., 2025), we conduct experiments
on different base models, including the Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct and Qwen2.5-
32B-Instruct models (Qwen et al., 2025). Specifically, we fine-tune these models on the distillation
dataset, enabling models to imitate reasoning trajectories generated by teacher models.

Table 4: Detailed statistics of distillation datasets.

Datasets Samples Avg. Tokens
per sample

Domain Source model Link

LIMO (Ye et al., 2025) 817 7126 Math QwQ-32B, etc. Dataset

S1 (Muennighoff et al., 2025b) 1000 5058 Math, Science Gemini Dataset

S1.1 (Muennighoff et al., 2025a) 1000 10038 Math, Science DeepSeek-R1 Dataset

B.2 TRAINING DETAILS

In our experiments, we fine-tune different base models on distillation datasets to obtain distilled
reasoning models. In particular, we perform full-parameter fine-tuning on 8 A100 GPUs using
DeepSpeed ZeRO-3 optimization, with a sequence length limit of 16,384 tokens. In Table 5, we
report detailed training parameters employed in the supervised fine-tuning process.

Table 5: Hyperparameters used for supervised fine-tuning.

Hyperparameter S1 S1.1 LIMO
sequence length 16384 16384 16384
batch size 8 8 8
learning rate 1e-5 1e-5 1e-5
epochs 5 5 5
scheduler cosine cosine cosine
weight decay 1e-4 1e-4 1e-4
zero optimization ZeRO-3 ZeRO-3 ZeRO-3
training precision bf16 bf16 bf16

16

https://huggingface.co/datasets/GAIR/LIMO
https://huggingface.co/datasets/simplescaling/s1K
https://huggingface.co/datasets/simplescaling/s1K-1.1

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 IMPLEMENTATION EXAMPLES

We provide examples of distillation data and question prompts in Example B.1 and Example B.2. A
datapoint from the S1 distillation dataset (Muennighoff et al., 2025b) is presented in Example B.1,
comprising a question, corresponding reasoning trajectories, and final answer. In Example B.2, we
present three question prompts using the system template.

Example B.1: Illustrative case of distillation data

Question:
Given a rational number, write it as a fraction in lowest terms and calculate the product of the
resulting numerator and denominator. For how many rational numbers between 0 and 1 will 20!
be the resulting product?

Thinking Trajectories:
The problem asks for the number of rational numbers between 0 and 1 such that when the
rational number is written as a fraction in lowest terms, the product of the numerator and the
denominator is 20!.

Let the rational number be r, where 0 < r < 1. We can write r as a fraction a
b , where a and b

are positive integers, and gcd(a, b) = 1. Since 0 < r < 1, we have 0 < a
b < 1, which implies

0 < a < b. The product of the numerator and the denominator of the fraction in lowest terms is
a× b. We are given that a× b = 20!. We need to find the number of pairs (a, b) such that:
1. a and b are positive integers.
2. gcd(a, b) = 1.
3. a < b.
4. a× b = 20!.
Let N = 20!. We have a× b = N . Since gcd(a, b) = 1, the prime factors of N are distributed
between a and b such that no prime factor is shared by both. Consider the prime factorization of
N = 20!. Let N = pe11 pe22 · · · pekk , where pi are distinct prime numbers and ei ≥ 1.

Since a × b = N and gcd(a, b) = 1, each prime power peii must be entirely a factor of a or
entirely a factor of b. For each prime power peii , there are two choices: either peii is a factor of a,
or peii is a factor of b. Since there are k distinct prime factors, there are 2k ways to distribute the
prime power factors between a and b. Each way corresponds to a unique pair (a, b) such that
a × b = N and gcd(a, b) = 1. Let the number of distinct prime factors of N = 20! be ω(20!).
Then the number of pairs (a, b) such that a × b = 20! and gcd(a, b) = 1 is 2ω(20!). Now, we
need to consider the condition a < b.Since a × b = N , if a ̸= b, then either a < b or b < a. If
a = b, then a2 = N , which means N is a perfect square. 20! is not a perfect square because
the exponent of some prime factors in its prime factorization is odd (e.g., the exponent of the
largest prime less than or equal to 20, which is 19). The pairs (a, b) such that a × b = N and
gcd(a, b) = 1 can be grouped into pairs of the form (a, b) and (b, a), where a ̸= b. The number
of such pairs is 2ω(N). Each pair contributes to either a < b or b < a. Since a ̸= b, exactly half
of these pairs will satisfy a < b.

The number of pairs (a, b) such that a × b = N , gcd(a, b) = 1, and a < b is
1
2 × 2ω(N) = 2ω(N)−1. We need to find the number of distinct prime factors of 20!.
The prime numbers less than or equal to 20 are 2, 3, 5, 7, 11, 13, 17, 19. There are 8 distinct
prime factors of 20!. So, ω(20!) = 8. The number of pairs (a, b) satisfying the conditions is
28−1 = 27 = 128. Each such pair (a, b) corresponds to a unique rational number a

b between 0
and 1 in lowest terms, where a × b = 20!. The number of rational numbers between 0 and 1
for which the product of the numerator and denominator of the fraction in lowest terms is 20! is
128. Let’s verify the reasoning. Consider a simpler example: Product is 12. Prime factorization
of 12 is 22× 31. Distinct prime factors are 2 and 3. ω(12) = 2. Pairs (a, b) such that a× b = 12
and gcd(a, b) = 1: Factors of 12 are 1, 2, 3, 4, 6, 12. Possible pairs (a, b) with a× b = 12: (1,
12), (2, 6), (3, 4). Check gcd(a, b) = 1: gcd(1, 12) = 1 gcd(2, 6) = 2 ̸= 1 gcd(3, 4) = 1
The pairs (a, b) such that a × b = 12 and gcd(a, b) = 1 are formed by distributing the prime
factors 22 and 31. a can have factors from {1, 22, 31, 22 × 31} and b will have the remaining

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

factors. Case 1: a = 1, b = 12. gcd(1, 12) = 1. Case 2: a = 4, b = 3. gcd(4, 3) = 1. Case 3:
a = 3, b = 4. gcd(3, 4) = 1. Case 4: a = 12, b = 1. gcd(12, 1) = 1.

Something is wrong here. Let’s use the prime factorization directly. 12 = 22 × 31.
Prime factors are 2 and 3. Possible distributions of prime powers:- a has 20, 30, b has
22, 31 =⇒ a = 1, b = 12. gcd(1, 12) = 1.- a has 22, 30, b has 20, 31 =⇒ a = 4, b = 3.
gcd(4, 3) = 1.- a has 20, 31, b has 22, 30 =⇒ a = 3, b = 4. gcd(3, 4) = 1.- a has 22, 31,
b has 20, 30 =⇒ a = 12, b = 1. gcd(12, 1) = 1. The pairs (a, b) such that a × b = 12
and gcd(a, b) = 1 are (1, 12) and (4, 3) and (3, 4) and (12, 1). Number of such pairs is
2ω(12) = 22 = 4. Now, consider the condition a < b. Pairs where a < b: (1, 12) and
(3, 4). Number of such pairs is 1

2 × 4 = 2. The rational numbers are 1
12 and 3

4 . Product
of numerator and denominator: 1 × 12 = 12, 3 × 4 = 12. Fractions are in lowest terms.
Rational numbers are between 0 and 1. The number of distinct prime factors of 20! needs to
be correctly calculated. Prime numbers ≤ 20: 2, 3, 5, 7, 11, 13, 17, 19. There are 8 distinct
prime factors. Let N = 20!. We are looking for rational numbers a

b such that gcd(a, b) = 1,
0 < a < b, and a× b = N . The number of pairs (a, b) such that a× b = N and gcd(a, b) = 1
is 2ω(N). Each pair corresponds to a factorization of N into two coprime factors. Let
N = pe11 pe22 · · · pekk .a = pα1

1 pα2
2 · · · pαk

k b = pβ1

1 pβ2

2 · · · pβk

k

Since gcd(a, b) = 1, for each i, either αi = ei, βi = 0 or αi = 0, βi = ei. This gives 2k

choices for the pair (a, b). We need a < b. Consider the case a = b. This happens only
if all prime exponents ei are even, which is not the case for 20!. So, for every pair (a, b)
with a × b = N and gcd(a, b) = 1, we have a ̸= b. The pairs can be grouped into (a, b)
and (b, a), where a ̸= b. The number of such pairs is 2ω(N). The number of pairs with
a < b is 1

2 × 2ω(N) = 2ω(N)−1. For N = 20!, ω(N) = 8. The number of pairs (a, b) is
28−1 = 27 = 128. Each pair (a, b) corresponds to a unique rational number a

b between 0 and
1 in lowest terms, such that a × b = 20!. Double-check the problem statement and constraints.
Rational numbers between 0 and 1. Resulting product of numerator and denominator is 20!.
Consider a rational number r between 0 and 1. When written as a fraction in lowest terms, let
it be a

b , where gcd(a, b) = 1 and 0 < a < b. We are given a × b = 20!. We need to find the
number of such fractions a

b . This is equivalent to finding the number of pairs (a, b) satisfying
the conditions. The number of distinct prime factors of 20! is the number of primes less than or
equal to 20, which is 8. The primes are 2, 3, 5, 7, 11, 13, 17, 19. Let the prime factorization
of 20! be pe11 pe22 · · · pe88 .a × b = pe11 pe22 · · · pe88 . Since gcd(a, b) = 1, for each prime factor pi,
either peii is a factor of a or peii is a factor of b.

Consider the divisors of 20! that are coprime to their cofactors in the division. If d is a divisor
of N , then N = d × N

d . We need gcd(d, N
d) = 1. This means that the prime factors of d and

N
d are disjoint. Equivalently, for each prime factor pi of N , either peii divides d or peii divides
N
d . Let a be a divisor of 20! such that gcd(a, 20!

a) = 1. Then b = 20!
a . The number of such

divisors a is 2ω(20!). These divisors correspond to the possible values of the numerator a in the
pairs (a, b) where a × b = 20! and gcd(a, b) = 1. The pairs are formed by choosing, for each
prime power peii , whether it belongs to a or b. Example: 12 = 22 × 31. Prime powers are 22

and 31. Choices for factors of a: {1, 4}, choices for factors of b: {1, 3}. Possible values of a:
1 × 1 = 1, 1 × 3 = 3, 4 × 1 = 4, 4 × 3 = 12. If a = 1, b = 12. If a = 3, b = 4. If a = 4,
b = 3. If a = 12, b = 1. The pairs (a, b) such that a× b = N and gcd(a, b) = 1 are formed by
partitioning the set of prime power factors into two sets, one for a and one for b. Let the prime
power factors be P1, P2, . . . , Pk, where Pi = peii .a is a product of some of these Pi, and b is the
product of the remaining ones. For each Pi, it either goes to a or b. 2k possibilities.

We need a < b. Since a×b = N , and a ̸= b (as N is not a perfect square), either a < b or b < a.
The number of pairs with a < b is equal to the number of pairs with b < a. Total number of pairs
is 2k. Number of pairs with a < b is 2k

2 = 2k−1. Here k = ω(20!) = 8. Number of pairs (a, b)
with a < b, gcd(a, b) = 1, a× b = 20! is 28−1 = 27 = 128. Each such pair (a, b) corresponds
to a unique rational number a

b between 0 and 1 in lowest terms, with the product of numerator

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

and denominator equal to 20!. Example revisited: Product is 12. Prime factors 2, 3. ω(12) = 2.
Pairs (a, b) with a×b = 12, gcd(a, b) = 1:a = 1, b = 12a = 3, b = 4a = 4, b = 3a = 12, b = 1
Pairs with a < b: (1, 12), (3, 4). Number = 22−1 = 21 = 2. Rational numbers: 1

12 ,
3
4 . Consider

the edge cases or potential pitfalls. The condition b̈etween 0 and 1ënsures a < b. The condition
f̈raction in lowest termsënsures gcd(a, b) = 1. The problem boils down to finding the number
of ways to factor 20! into two coprime factors a and b such that a < b. Final confirmation of
the number of distinct prime factors of 20!: Primes ≤ 20: 2, 3, 5, 7, 11, 13, 17, 19. There are 8
distinct prime factors. The number of rational numbers is the number of pairs (a, b) satisfying
the conditions, which is 2ω(20!)−1 = 28−1 = 27 = 128. The question asks for ḧow many
rational numbers,̈ so the answer should be the number of such fractions. Each valid pair (a, b)
corresponds to one rational number. If the product was a perfect square, say 36.36 = 22 × 32.
ω(36) = 2. Pairs (a, b) with a× b = 36, gcd(a, b) = 1:$a=1, b=36$a = 4, b = 9 a = 9, b = 4
a = 36, b = 1 Here a ̸= b. If the product was pe, where p is prime. Pairs (1, pe) and (pe, 1). If
e > 0, 1 < pe. Rational number 1

pe . If the product was pq, where p, q are distinct primes. Pairs
(1, pq), (p, q), (q, p), (pq, 1). If p < q, then p < q, 1 < pq. Pairs with a < b: (1, pq), (p, q).
Number = 22−1 = 2. Rational numbers: 1

pq ,
p
q . The reasoning seems consistent. The number of

rational numbers is indeed 2ω(20!)−1.

Answer:
Solution: Let the rational number between 0 and 1 be r. When written as a fraction in lowest
terms, let it be a

b , where a and b are positive integers, gcd(a, b) = 1, and 0 < a < b. We are
given that the product of the numerator and denominator is 20!, so a× b = 20!. We need to find
the number of pairs (a, b) such that a × b = 20!, gcd(a, b) = 1, and a < b. Let N = 20!. The
prime factorization of N is pe11 pe22 · · · pekk , where pi are distinct prime numbers. The number of
distinct prime factors of 20! is the number of primes less than or equal to 20. These primes are
2, 3, 5, 7, 11, 13, 17, 19. Thus, there are 8 distinct prime factors, so k = 8.

Since a × b = N and gcd(a, b) = 1, each prime power factor peii of N must be entirely a
factor of a or entirely a factor of b. The number of ways to distribute the prime power factors
between a and b is 2k, where k is the number of distinct prime factors of N . Each distribution
corresponds to a unique pair (a, b) such that a× b = N and gcd(a, b) = 1. The number of such
pairs is 2ω(N), where ω(N) is the number of distinct prime factors of N .

Since 20! is not a perfect square, for every pair (a, b) such that a × b = 20! and gcd(a, b) = 1,
we have a ̸= b. The pairs can be grouped into (a, b) and (b, a), where a ̸= b. The number of
pairs with a < b is equal to the number of pairs with b < a. The total number of pairs is 2ω(20!).
The number of pairs with a < b is 1

2 × 2ω(20!) = 2ω(20!)−1.

The number of distinct prime factors of 20! is ω(20!) = 8. The number of pairs (a, b) such that
a× b = 20!, gcd(a, b) = 1, and a < b is 28−1 = 27 = 128. Each such pair (a, b) corresponds to
a unique rational number a

b between 0 and 1 in lowest terms, with the product of the numerator
and denominator equal to 20!.

Final Answer: The final answer is 128

Example B.2: Illustrative case of prompts

Prompt1:
<|im_start|>system
You are Qwen, created by Alibaba Cloud. You are a helpful assistant. <|im_end|>
<|im_start|>user
Given a rational number, write it as a fraction in lowest terms and calculate
the product of the resulting numerator and denominator. For how many rational
numbers between 0 and 1 will $20_{}ˆ{}!$ be the resulting product?<|im_end|>
<|im_start|>assistant

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt2:
<|im_start|>system
You are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>
<|im_start|>user
Joanie takes a $\$6,\!000$ loan to pay for her car. The annual interest rate on
the loan is 12%. She makes no payments for 4 years, but has to pay back all
the money she owes at the end of 4 years. How much more money will she owe if
the interest compounds quarterly than if the interest compounds annually?
Express your answer as a dollar value to the nearest cent.<|im_end|>
<|im_start|>assistant

Prompt3:
You are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>
<|im_start|>user
Gary purchased a large beverage, but only drank m/n of it, where m and n
are relatively prime positive integers. If he had purchased half as much and
drunk twice as much, he would have wasted only $2/9$ as much beverage. Find $m+n$
.<|im_end|>
<|im_start|>assistant

C ADDITIONAL RESULTS

C.1 TOKEN-WISE PROBABILITY DISTRIBUTION

To compare the probability distribution differences in generated tokens, we analyze the first 300 gen-
erated tokens and the generated tokens at positions 700–1000 for both members and non-members.
Figure 6 shows the token-wise probability distributions from the distilled reasoning model across 20
member and 20 non-member samples. We find the generated tokens at positions 700–1000 exhibit
only minor probability distribution differences between members and non-members (Right). This
pattern is significantly different from the generation behavior in the first 300 generated tokens (Left),
where members tend to produce high-probability tokens, whereas non-members induce more low-
probability tokens. The disparity indicates that earlier generated tokens are likely to exhibit distinct
membership signals for members and non-members.

Token Indices

P
ro

b
a
b
il
it
y

P
ro

b
a
b
il
it
y

Non-membersMembers

Token Indices

P
ro

b
a
b
il
it
y

P
ro

b
a
b
il
it
y

Non-membersMembers

Figure 6: Comparison of token-level generation behaviour of distilled models for 20 member and
20 non-member questions under greedy decoding. (Left) Token-wise probability distributions
of the first 300 generated tokens: we contrast the distribution of token-wise probability between
members and non-members over the first 300 generated tokens. (Right) Token-wise probability
distributions of generated tokens at indices 700 to 1000: we compare the distribution of token-
wise probability between members and non-members over generated tokens at indices 700 to 1000.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.2 EXPERIMENTAL RESULTS

In this subsection, we report the additional experimental results. Here, these results are consistent
with the conclusions drawn in the main text. Table 6 reports the TPR@1%FPR of our method and
baselines on diverse distilled reasoning models. The results show that our method is effective on
various dataset across three different models. Table 7 show the AUC and TPR@1%FPR scores
of our method and baseline across various models. The experimental results demonstrate that our
method is model-agnostic. Table 8 shows the AUC scores of our method and baselines on the S1
dataset across three distinct settings. The results indicate the effectiveness of our method in settings
where only the question, or the question along with the reasoning trajectories, is available.

Table 6: TPR@1%FPR of our method and baselines on diverse distilled models. These models are
produced through fine-tuning diverse different-sized models (e.g., Qwen2.5-32B-Instruct) on vari-
ous distillation datasets, including S1, LIMO and S1.1 datasets. † indicates methods that compute
score using output tokens. Bold shows the superior result.

Method Qwen2.5-7B-Instruct Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct

S1 LIMO S1.1 S1 LIMO S1.1 S1 LIMO S1.1

Input-token-based methods
Perplexity (Li, 2023) 0.040 0.000 0.005 0.015 0.012 0.005 0.015 0.006 0.000
Lowercase (Carlini et al., 2021) 0.020 0.006 0.010 0.015 0.037 0.000 0.000 0.000 0.000
Zlib (Carlini et al., 2021) 0.025 0.000 0.000 0.015 0.006 0.000 0.005 0.000 0.000
Neighbor (Mattern et al., 2023) 0.025 0.018 0.005 0.030 0.006 0.005 0.025 0.012 0.005
MIN-K% (Shi et al., 2024) 0.040 0.000 0.005 0.010 0.012 0.010 0.015 0.006 0.000
MIN-K%++ (Zhang et al., 2025b) 0.040 0.018 0.025 0.000 0.024 0.010 0.025 0.006 0.000
Infilling Score (Raoof et al., 2025) 0.010 0.006 0.015 0.020 0.000 0.045 0.025 0.018 0.000

Output-token-based methods
Generated Perplexity† 0.235 0.128 0.070 0.350 0.171 0.045 0.160 0.226 0.080
Generated MIN-K%† 0.235 0.128 0.070 0.350 0.171 0.045 0.160 0.226 0.080
Ours† 0.345 0.256 0.095 0.375 0.226 0.090 0.470 0.335 0.110

Table 7: AUC and TPR@1%FPR scores of our method and baselines on S1 dataset across various
models, including Llama-3.1-8B- Instruct, Gemma-7B-it and Mistral-7B-Instruct-v0 models. Bold
shows the superior result.

Method
AUC TPR@1%FPR

Llama-3.1-8B Gemma-7b Mistral-7B Llama-3.1-8B Gemma-7b Mistral-7B

Perplexity (Li, 2023) 0.529 0.537 0.549 0.015 0.015 0.005
Lowercase (Carlini et al., 2021) 0.524 0.537 0.486 0.005 0.005 0.025
Zlib (Carlini et al., 2021) 0.539 0.533 0.547 0.020 0.025 0.010
MIN-K% (Shi et al., 2024) 0.554 0.535 0.564 0.015 0.015 0.000
MIN-K%++ (Zhang et al., 2025b) 0.562 0.532 0.543 0.005 0.010 0.005

Ours 0.927 0.943 0.953 0.365 0.400 0.220

D USE OF LARGE LANGUAGE MODELS

This paper utilizes large language models solely for the purpose of enhancing the clarity and preci-
sion of specific sentences, without further use of LLMs for additional purposes.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: AUC scores of our method and baselines on S1 dataset across three distinct settings: using
only the question (Question-Only), using the question along with the reasoning trajectories (Ques-
tion–CoT), and using the full sample (Question–CoT-Answer). Bold shows the superior result.

Method Question-Only Question–CoT Question–CoT-Answer

Perplexity (Li, 2023) 0.444 0.972 0.988
Lowercase (Carlini et al., 2021) 0.435 0.998 1.000
Zlib (Carlini et al., 2021) 0.474 0.940 0.966
MIN-K% (Shi et al., 2024) 0.443 0.972 0.988
MIN-K%++ (Zhang et al., 2025b) 0.472 0.704 0.723

Ours 0.855 0.872 0.872

22

	Introduction
	Preliminaries
	Distillation Data Detection
	Method
	Motivating Analysis
	Token Probability Deviation

	Experiments
	Experimental Setup
	Experimental Results

	Discussion
	Conclusion
	Appendix
	 Appendix
	Related Works
	Experimental Details
	Details of Datasets and Models
	Training Details
	Implementation Examples

	Additional Results
	Token-wise Probability Distribution
	Experimental Results

	Use of Large Language Models

