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ABSTRACT

Asynchronous and parallel implementation of standard reinforcement learning
(RL) algorithms is a key enabler of the tremendous success of modern RL. Among
many asynchronous RL algorithms, arguably the most popular and effective one is
the asynchronous advantage actor-critic (A3C) algorithm. Although A3C is becom-
ing the workhorse of RL, its theoretical properties are still not well-understood,
including the non-asymptotic analysis and the performance gain of parallelism
(a.k.a. speedup). This paper revisits the A3C algorithm with TD(0) for the critic
update, termed A3C-TD(0), with provable convergence guarantees. With linear
value function approximation for the TD update, the convergence of A3C-TD(0) is
established under both i.i.d. and Markovian sampling. Under i.i.d. sampling, A3C-
TD(0) obtains sample complexity ofO(ε−2.5/N) per worker to achieve ε accuracy,
where N is the number of workers. Compared to the best-known sample complex-
ity of O(ε−2.5) for two-timescale AC, A3C-TD(0) achieves linear speedup, which
justifies the advantage of parallelism and asynchrony in AC algorithms theoretically
for the first time. Numerical tests on synthetically generated instances and OpenAI
Gym environments have been provided to verify our theoretical analysis.

1 INTRODUCTION

Reinforcement learning (RL) has achieved impressive performance in many domains such as robotics
[1, 2] and video games [3]. However, these empirical successes are often at the expense of significant
computation. To unlock high computation capabilities, the state-of-the-art RL approaches rely on
sampling data from massive parallel simulators on multiple machines [3, 4, 5]. Empirically, these
approaches can stabilize the learning processes and reduce training time when they are implemented in
an asynchronous manner. One popular RL method that often achieves the best empirical performance
is the asynchronous variant of the actor-critic (AC) algorithm, which is referred to as A3C [3].

A3C builds on the original AC algorithm [6]. At a high level, AC simultaneously performs policy
optimization (a.k.a. the actor step) using the policy gradient method [7] and policy evaluation (a.k.a.
the critic step) using the temporal difference learning (TD) algorithm [8]. To ensure scalability,
both actor and critic steps can combine with various function approximation techniques. To ensure
stability, AC is often implemented in a two time-scale fashion, where the actor step runs in the slow
timescale and the critic step runs in the fast timescale. Similar to other on-policy RL algorithms, AC
uses samples generated from the target policy. Thus, data sampling is entangled with the learning
procedure, which generates significant overhead. To speed up the sampling process of AC, A3C
introduces multiple workers with a shared policy, and each learner has its own simulator to perform
data sampling. The shared policy can be then updated using samples collected from multiple learners.

Despite the tremendous empirical success achieved by A3C, to the best of our knowledge, its
theoretical property is not well-understood. The following theoretical questions remain unclear: Q1)
Under what assumption does A3C converge? Q2) What is its convergence rate? Q3) Can A3C obtain
benefit (or speedup) using parallelism and asynchrony?

For Q3), we are interested in the training time linear speedup with N workers, which is the ratio
between the training time using a single worker and that using N workers. Since asynchronous
parallelism mitigates the effect of stragglers and keeps all workers busy, the training time speedup
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can be measured roughly by the sample (i.e., computational) complexity linear speedup [9], given by

Speedup(N) =
sample complexity when using one worker

average sample complexity per worker when using N workers
. (1)

If Speedup(N) = Θ(N), the speedup is linear, and the training time roughly reduces linearly as
the number of workers increases. This paper aims to answer these questions, towards the goal of
providing theoretical justification for the empirical successes of parallel and asynchronous RL.

1.1 RELATED WORKS

Analysis of actor critic algorithms. AC method was first proposed by [6, 10], with asymptotic
convergence guarantees provided in [6, 10, 11]. It was not until recently that the non-asymptotic
analyses of AC have been established. The finite-sample guarantee for the batch AC algorithm
has been established in [12, 13] with i.i.d. sampling. Later, in [14], the finite-sample analysis was
established for the double-loop nested AC algorithm under the Markovian setting. An improved
analysis for the Markovian setting with minibatch updates has been presented in [15] for the nested
AC method. More recently, [16, 17] have provided the first finite-time analyses for the two-timescale
AC algorithms under Markov sampling, with both Õ(ε−2.5) sample complexity, which is the best-
known sample complexity for two-timescale AC. Through the lens of bi-level optimization, [18] has
also provided finite-sample guarantees for this two-timescale Markov sampling setting, with global
optimality guarantees when a natural policy gradient step is used in the actor. However, none of the
existing works has analyzed the effect of the asynchronous and parallel updates in AC.

Empirical parallel and distributed AC. In [3], the original A3C method was proposed and became
the workhorse in empirical RL. Later, [19] has provided a GPU-version of A3C which significantly
decreases training time. Recently, the A3C algorithm is further optimized in modern computers
by [20], where a large batch variant of A3C with improved efficiency is also proposed. In [21], an
importance weighted distributed AC algorithm IMPALA has been developed to solve a collection of
problems with one single set of parameters. Recently, a gossip-based distributed yet synchronous AC
algorithm has been proposed in [5], which has achieved the performance competitive to A3C.

Asynchronous stochastic optimization. For solving general optimization problems, asynchronous
stochastic methods have received much attention recently. The study of asynchronous stochastic
methods can be traced back to 1980s [22]. With the batch size M , [23] analyzed asynchronous
SGD (async-SGD) for convex functions, and derived a convergence rate of O(K−

1
2M−

1
2 ) if delay

K0 is bounded by O(K
1
4M−

3
4 ). This result implies linear speedup. [24] extended the analysis of

[23] to smooth convex with nonsmooth regularization and derived a similar rate. Recent studies
by [25] improved upper bound of K0 to O(K

1
2M−

1
2 ). However, all these works have focused on

the single-timescale SGD with a single variable, which cannot capture the stochastic recursion of
the AC and A3C algorithms. To best of our knowledge, non-asymptotic analysis of asynchronous
two-timescale SGD has remained unaddressed, and its speedup analysis is even an uncharted territory.

1.2 THIS WORK

In this context, we revisit A3C with TD(0) for the critic update, termed A3C-TD(0). The hope is to
provide non-asymptotic guarantee and linear speedup justification for this popular algorithm.

Our contributions. Compared to the existing literature on both the AC algorithms and the async-
SGD, our contributions can be summarized as follows.

c1) We revisit two-timescale A3C-TD(0) and establish its convergence rates with both i.i.d. and
Markovian sampling. To the best of our knowledge, this is the first non-asymptotic convergence
result for asynchronous parallel AC algorithms.

c2) We characterize the sample complexity of A3C-TD(0). In i.i.d. setting, A3C-TD(0) achieves a
sample complexity of O(ε−2.5/N) per worker, where N is the number of workers. Compared to the
best-known complexity of O(ε−2.5) for i.i.d. two-timescale AC [18], A3C-TD(0) achieves linear
speedup, thanks to the parallelism and asynchrony. In the Markovian setting, if delay is bounded, the
sample complexity of A3C-TD(0) matches the order of the non-parallel AC algorithm [17].
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c3) We test A3C-TD(0) on the synthetically generated environment to verify our theoretical guarantees
with both i.i.d. and Markovian sampling. We also test A3C-TD(0) on the classic control tasks and
Atari Games from OpenAI Gym. Code is available in the supplementary material.

Technical challenges. Compared to the recent convergence analysis of nonparallel two-timescale
AC in [16, 17, 18], several new challenges arise due to the parallelism and asynchrony.

Markovian noise coupled with asynchrony and delay. The analysis of two-timescale AC algorithm is
non-trivial because of the Markovian noise coupled with both the actor and critic steps. Different from
the nonparallel AC that only involves a single Markov chain, asynchronous parallel AC introduces
multiple Markov chains (one per worker) that mix at different speed. This is because at a given
iteration, workers collect different number of samples and thus their chains mix to different degrees.
As we will show later, the worker with the slowest mixing chain will determine the convergence.

Linear speedup for SGD with two coupled sequences. Parallel async-SGD has been shown to achieve
linear speedup recently [9, 26]. Different from async-SGD, asynchronous AC is a two-timescale
stochastic semi-gradient algorithm for solving the more challenging bilevel optimization problem
(see [18]). The errors induced by asynchrony and delay are intertwined with both actor and critic
updates via a nested structure, which makes the sharp analysis more challenging. Our linear speedup
analysis should be also distinguished from that of mini-batch async-SGD [27], where the speedup is
a result of variance reduction thanks to the larger batch size generated by parallel workers.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS AND POLICY GRADIENT THEOREM

RL problems are often modeled as an MDP described byM = {S,A,P, r, γ}, where S is the state
space, A is the action space, P(s′|s, a) is the probability of transitioning to s′ ∈ S given current
state s ∈ S and action a ∈ A, and r(s, a, s′) is the reward associated with the transition (s, a, s′),
and γ ∈ [0, 1) is a discount factor. Throughout the paper, we assume the reward r is upper-bounded
by a constant rmax. A policy π : S → ∆(A) is defined as a mapping from the state space S to the
probability distribution over the action space A.

Considering discrete time t in an infinite horizon, a policy π can generate a trajectory of state-action
pairs (s0, a0, s1, a1, . . .) with at ∼ π(·|st) and st+1 ∼ P(·|st, at). Given a policy π, we define the
state and state action value functions as

Vπ(s) := E

[
∞∑
t=0

γtr(st, at, st+1) | s0 = s

]
, Qπ(s, a) := E

[
∞∑
t=0

γtr(st, at, st+1) | s0 = s, a0 = a

]
(2)

where E is taken over the trajectory (s0, a0, s1, a1, . . .) generated under policy π. With the above
definitions, the advantage function is Aπ(s, a) := Qπ(s, a) − Vπ(s). With η denoting the initial
state distribution, the discounted state visitation measure induced by policy π is defined as dπ(s) :=
(1 − γ)

∑∞
t=0 γ

tP(st = s | s0 ∼ η, π), and the discounted state action visitation measure is
d′π(s, a) = (1− γ)

∑∞
t=0 γ

tP(st = s | s0 ∼ η, π)π(a|s).

The goal of RL is to find a policy that maximizes the expected accumulative reward J(π) :=
Es∼η[Vπ(s)]. When the state and action spaces are large, finding the optimal policy π becomes
computationally intractable. To overcome the inherent difficulty of learning a function, the policy
gradient methods search the best performing policy over a class of parameterized policies. We
parameterize the policy with parameter θ ∈ Rd, and solve the optimization problem as

max
θ∈Rd

J(θ) with J(θ) := E
s∼η

[Vπθ (s)]. (3)

To maximize J(θ) with respect to θ, one can update θ using the policy gradient direction given by [7]

∇J(θ) = E
s,a∼d′

θ

[Aπθ (s, a)ψθ(s, a)] , (4)

where ψθ(s, a) := ∇ log πθ(a|s), and d′θ := (1 − γ)
∑∞
t=0 γ

tP(st = s | s0, πθ)πθ(a|s). Since
computing E in (4) is expensive if not impossible, popular policy gradient-based algorithms iteratively
update θ using stochastic estimate of (4) such as REINFORCE [28] and G(PO)MDP [29].
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2.2 ACTOR-CRITIC ALGORITHM WITH VALUE FUNCTION APPROXIMATION

Both REINFORCE and G(PO)MDP-based policy gradient algorithms rely on a Monte-Carlo estimate
of the value function Vπθ (s) and thus ∇J(θ) by generating a trajectory per iteration. However,
policy gradient methods based on Monte-Carlo estimate typically suffer from high variance and large
sampling cost. An alternative way is to recursively refine the estimate of Vπθ (s). For a policy πθ, it is
known that Vπθ (s) satisfies the Bellman equation [30], that is

Vπθ (s) = E
a∼πθ(·|s), s′∼P(·|s,a)

[
r(s, a, s′) + γVπθ (s

′)
]
, ∀s ∈ S. (5)

In practice, when the state space S is prohibitively large, one cannot afford the computational and
memory complexity of computing Vπθ (s) and Aπθ (s, a). To overcome this curse-of-dimensionality,
a popular method is to approximate the value function using function approximation techniques.
Given the state feature mapping φ(·) : S −→ Rd′ for some d′ > 0, we approximate the value function
linearly as Vπθ (s) ≈ V̂ω(s) := φ(s)>ω, where ω ∈ Rd′ is the critic parameter.

Given a policy πθ, the task of finding the best ω such that Vπθ (s) ≈ V̂ω(s) is usually addressed by
TD learning [8]. Defining the kth transition as xk := (sk, ak, sk+1) and the corresponding TD-error
as δ̂(xk, ωk) := r(sk, ak, sk+1) + γφ(sk+1)>ωk − φ(sk)>ωk, the parameter ω is updated via

ωk+1 = ΠRω

(
ωk + βkg(xk, ωk)

)
with g(xk, ωk) := δ̂(xk, ωk)∇ωk V̂ωk(sk) (6)

where βk is the critic stepsize, and ΠRω is the projection with Rω being a pre-defined constant. The
projection step is often used to control the norm of the gradient. In AC, it prevents the actor and critic
updates from going a too large step in the ‘wrong’ direction; see e.g., [6, 16, 17].

Using the definition of advantage function Aπθ (s, a) = Es′∼P [r(s, a, s′) + γVπθ (s
′)]− Vπθ (s), we

can also rewrite (4) as ∇J(θ) = Es,a∼d′θ,s′∼P [(r(s, a, s′) + γVπθ (s
′)− Vπθ (s))ψθ(s, a)]. Lever-

aging the value function approximation, we can then approximate the policy gradient as

∇̂J(θ) =
(
r(s, a, s′) + γV̂ω(s

′)− V̂ω(s)
)
ψθ(s, a) = δ̂(x, ω)ψθ(s, a) (7)

which gives rise to the policy update

θk+1 = θk + αkv(xk, θk, ωk) with v(xk, θk, ωk) := δ̂(xk, ωk)ψθk(sk, ak) (8)

where αk is the stepsize for the actor update.

To ensure convergence when simultaneously performing critic and actor updates, the stepsizes αk
and βk often decay at two different rates, which is referred to the two-timescale AC [17, 18].

3 ASYNCHRONOUS ADVANTAGE ACTOR CRITIC WITH TD(0)

To speed up the training process, we implement AC over N workers in a shared memory setting
without coordinating among workers — a setting similar to that in A3C [3]. Each worker has its
own simulator to perform sampling, and then collaboratively updates the shared policy πθ using AC
updates. As there is no synchronization after each update, the policy used by workers to generate
samples may be outdated, which introduces staleness.

Notations on transition (s, a, s′). Since each worker will maintain a separate Markov chain, we
thereafter use subscription t in (st, at, st+1) to indicate the tth transition on a Markov chain. We
use k to denote the global counter (or iteration), which increases by one whenever a worker finishes
the actor and critic updates in the shared memory. We use subscription (k) in (s(k), a(k), s

′
(k)) to

indicate the transition used in the kth update.
Specifically, we initialize θ0, ω0 in the shared memory. Each worker will initialize the simulator
with initial state s0. Without coordination, workers will read θ, ω in the shared memory. From each
worker’s view, it then generates sample (st, at, st+1) by either sampling st from µθ(·), where µθ(·)
is the stationary distribution of an artificial MDP with transition probability measure P̃(·|st, at) :=
γP(·|st, at) + (1 − γ)η(·), or, sampling st from a Markov chain under policy πθ. In both cases,
each worker obtains at ∼ πθ(·|st) and st+1 ∼ P̃(·|st, at). Sampling st+1 from P̃(·|st, at) can be
achieved by sampling st+1 from η(·) with probability 1− γ and from P(·|st, at) otherwise. Once
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Algorithm 1 Asynchronous advantage AC with TD(0): each worker’s view.
1: Global initialize: Global counter k = 0, initial θ0, ω0 in the shared memory.
2: Worker initialize: Local counter t = 0. Obtain initial state s0.
3: for t = 0, 1, 2, · · · do
4: Read θ, ω in the shared memory.
5: Option 1 (i.i.d. sampling):
6: Sample st ∼ µθ(·), at ∼ πθ(·|s), st+1 ∼ P̃(·|st, at).
7: Option 2 (Markovian sampling):
8: Sample at ∼ πθ(·|st), st+1 ∼ P̃(·|st, at).
9: Compute δ̂(xt, ω) = r(st, at, st+1) + γV̂ω(st+1)− V̂ω(st).

10: Compute g(xt, ω) = δ̂(xt, ω)∇ωV̂ω(st).
11: Compute v(xt, θ, ω) = δ̂(xt, ω)ψθ(st, at).
12: In the shared memory, perform update (9).
13: end for

obtaining xt := (st, at, st+1), each worker locally computes the policy gradient v(xt, θ, ω) and the
TD(0) update g(xt, ω), and then updates the parameters in shared memory asynchronously by

ωk+1 = ΠRω

(
ωk + βkg(x(k), ωk−τk)

)
, (9a)

θk+1 = θk + αkv(x(k), θk−τk , ωk−τk), (9b)

where τk is the delay in the kth actor and critic updates. See the A3C with TD(0) in Algorithm 1.

Sampling distributions. Since the transition kernel required by the actor and critic updates are
different in the discounted MDP, it is difficult to design a two-timescale AC algorithm. To address
this issue, we adopt the sampling method introduced in the seminal work [6, 31] and the recent work
[15, 16], which inevitably introduces bias by sampling from the artificial transition P̃ instead of P .
However, as we will mention later, this extra bias is small when the discount factor γ is close to 1.

Parallel sampling. The AC update (6) and (8) uses samples generated “on-the-fly” from the target
policy πθ, which brings overhead. Compared with (6) and (8), the A3C-TD(0) update (9) allows
parallel sampling from N workers, which is the key to linear speedup. We consider the case where
only one worker can update parameters in the shared memory at the same time and the update cannot
be interrupted. In practice, (9) can also be performed in a mini-batch fashion.

Minor differences from A3C [3]. The A3C-TD(0) algorithm resembles the popular A3C method
[3]. With nmax denoting the horizon of steps, for n ∈ {1, ..., nmax}, A3C iteratively uses n-step TD
errors to compute actor and critic gradients. In A3C-TD(0), we use the TD(0) method which is the
1-step TD method for actor and critic update. When nmax = 1, A3C method reduces to A3C-TD(0).
The n-step TD method is a hybrid version of the TD(0) method and the Monte-Carlo method. The
A3C method with Monte-Carlo sampling is essentially the delayed policy gradient method, and thus
its convergence follows directly from the delayed SGD. Therefore, we believe that the convergence
of the A3C method based on TD(0) in this paper can be easily extended to the convergence of the
A3C method with n-step TD. We here focus on A3C with TD(0) just for ease of exposition.

4 CONVERGENCE ANALYSIS OF TWO-TIMESCALE A3C-TD(0)

In this section, we analyze the convergence of A3C-TD(0) in both i.i.d. and Markovian settings.
Throughout this section, the notation O(·) contains constants that are independent of N and K0.

To analyze the performance of A3C-TD(0), we make the following assumptions.
Assumption 1. There exists K0 such that the delay at each iteration is bounded by τk ≤ K0,∀k.

Assumption 1 ensures the viability of analyzing the asynchronous update; see the same assumption in
e.g., [5, 25]. In practice, the delay usually scales as the number of workers, that is K0 = Θ(N).

With P̃πθ (s′|s) =
∑
a∈A P̃(s′|s, a)πθ(a|s), we define that:

Aθ,φ := E
s∼µθ,s′∼P̃πθ

[φ(s)(γφ(s′)− φ(s))>], bθ,φ := E
s∼µθ,a∼πθ,s′∼P̃

[r(s, a, s′)φ(s)]. (10)
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It is known that for a given θ, the stationary point ω∗θ of the TD(0) update in Algorithm 1 satisfies

Aθ,φω
∗
θ + bθ,φ = 0. (11)

Assumption 2. For all s ∈ S, the feature vector φ(s) is normalized so that ‖φ(s)‖2 ≤ 1. For all
γ ∈ [0, 1] and θ ∈ Rd, Aθ,φ is negative definite and its max eigenvalue is upper bounded by −λ.

Assumption 2 is common in analyzing TD with linear function approximation; see e.g., [17, 32, 33].
With this assumption, Aθ,φ is invertible, so we have ω∗θ = −A−1

θ,φbθ,φ. Define Rω := rmax/λ, then
we have ‖ω∗θ‖2 ≤ Rω . It justifies the projection introduced in Algorithm 1. In practice, the projection
radius Rω can be estimated online by methods proposed in [32, Section 8.2] or [34, Lemma 1].
Assumption 3. For any θ, θ′ ∈ Rd, s ∈ S and a ∈ A, there exist constants such that: i) ‖ψθ(s, a)‖2 ≤
Cψ; ii) ‖ψθ(s, a)− ψθ′(s, a)‖2 ≤ Lψ‖θ − θ′‖2; iii) |πθ(a|s)− πθ′(a|s)| ≤ Lπ‖θ − θ′‖2.

Assumption 3 is common in analyzing policy gradient-type algorithms which has also been made by
e.g., [34, 35, 36]. This assumption holds for many policy parameterization methods such as tabular
softmax policy [36], Gaussian policy [37] and Boltzmann policy [31].
Assumption 4. For any θ ∈ Rd, the Markov chain under policy πθ and transition kernel P(·|s, a)

or P̃(·|s, a) is irreducible and aperiodic. Then there exist constants κ > 0 and ρ ∈ (0, 1) such that

sup
s∈S

dTV (P(st ∈ ·|s0 = s, πθ), µθ) ≤ κρt, ∀t (12)

where µθ is the stationary state distribution under πθ, and st is the state of Markov chain at time t.

Assumption 4 assumes the Markov chain mixes at a geometric rate; see also [32, 33]. The stationary
distribution µθ of an artificial Markov chain with transition P̃ is the same as the discounted visitation
measure dθ of the Markov chain with transition P [6]. This means that if we sample according to
at ∼ πθ(·|st), st+1 ∼ P̃(·|st, at), the marginal distribution of (st, at) will converge to the discounted
state-action visitation measure d′θ(s, a), which allows us to control the gradient bias.

4.1 LINEAR SPEEDUP RESULT WITH I.I.D. SAMPLING

In this section, we consider A3C-TD(0) under the i.i.d. sampling setting, which is widely used for
analyzing RL algorithms; see e.g., [13, 18, 38].

We first give the convergence result of critic update as follows.
Theorem 1 (Critic convergence). Suppose Assumptions 1–4 hold. Consider Algorithm 1 with
i.i.d. sampling and V̂ω(s) = φ(s)>ω. Select step size αk = c1

(1+k)σ1 , βk = c2
(1+k)σ2 , where

0 < σ2 < σ1 < 1 and c1, c2 are positive constants. Then it holds that

1

K

K∑
k=1

E
∥∥ωk − ω∗θk∥∥22=O( 1

K1−σ2

)
+O

(
1

K2(σ1−σ2)

)
+O

(
K2

0

K2σ2

)
+O

(
K0

Kσ1

)
+O

(
1

Kσ2

)
. (13)

Different from async-SGD (e.g., [9]), the optimal critic parameter ω∗θ is constantly drifting as θ
changes at each iteration. This necessitates setting σ1 > σ2 to make the policy change slower than
the critic, which can be observed in the second term in (13). If σ1 > σ2, then the policy is static
relative to the critic in an asymptotic sense.

To introduce the convergence of actor update, we first define the critic approximation error as

εapp := max
θ∈Rd

√
E

s∼µθ
|Vπθ (s)− V̂ω∗θ (s)|

2 ≤ εfa + εsp, (14)

where µθ is the stationary distribution under πθ and P̃ . The error εapp captures the quality of the critic
approximation under Algorithm 1. It can be further decomposed into the function approximation error
εfa, which is common in analyzing AC with function approximation [14, 15, 17], and the sampling
error εsp = O(1− γ), which is unique in analyzing two-timescale AC for a discounted MDP. The
error εapp is small when the value function approximation is accurate and the discounting factor γ is
close to 1; see the detailed derivations in Lemma 7 of supplementary material. Now we are ready to
give the actor convergence.
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Theorem 2 (Actor convergence). Under the same assumptions of Theorem 1, select step size αk =
c1

(1+k)σ1 , βk = c2
(1+k)σ2 , where 0 < σ2 < σ1 < 1 and c1, c2 are positive constants. Then it holds that

1

K

K∑
k=1

E ‖∇J(θk)‖22 = O
(

1

K1−σ1

)
+O

(
K0

Kσ1

)
+O

(
K2

0

K2σ2

)
+O

(
1

K

K∑
k=1

E ‖ωk − ω∗θk‖
2
2

)
+O(εapp).

(15)

Different from the analysis of async-SGD, in actor update, the stochastic gradient v(x, θ, ω) is biased
because of inexact value function approximation. The bias introduced by the critic optimality gap
and the function approximation error correspond to the last two terms in (15).

In Theorem 1 and Theorem 2, optimizing σ1 and σ2 gives the following convergence rate.
Corollary 1 (Linear speedup). Given Theorem 1 and Theorem 2, select σ1 = 3

5 and σ2 = 2
5 . If we

further assume K0 = O(K
1
5 ), then it holds that

1

K

K∑
k=1

E ‖∇J(θk)‖22 = O
(
K−

2
5

)
+O(εapp) (16)

where O(·) contains constants that are independent of N and K0.

By setting the first term in (16) to ε, we get the total iteration complexity to reach ε-accuracy is
O(ε−2.5). Since each iteration only uses one sample (one transition), it also implies a total sample
complexity of O(ε−2.5). Then the average sample complexity per worker is O(ε−2.5/N) which
indicates linear speedup in (1). Intuitively, the negative effect of parameter staleness introduced by
parallel asynchrony vanishes asymptotically, which implies linear speedup in terms of convergence.

4.2 CONVERGENCE RESULT WITH MARKOVIAN SAMPLING

Theorem 3 (Critic convergence). Suppose Assumptions 1–4 hold. Consider Algorithm 1 with
Markovian sampling and V̂ω(s) = φ(s)>ω. Select step size αk = c1

(1+k)σ1 , βk = c2
(1+k)σ2 , where

0 < σ2 < σ1 < 1 and c1, c2 are positive constants. Then it holds that

1

K

K∑
k=1

E
∥∥ωk − ω∗θk∥∥22 = O

(
1

K1−σ2

)
+O

(
1

K2(σ1−σ2)

)
+O

(
K2

0

K2σ2

)
+O

(
K2

0 log
2K

Kσ1

)
+O

(
K0 logK

Kσ2

)
.

(17)

The following theorem gives the convergence rate of actor update in Algorithm 1.
Theorem 4 (Actor convergence). Under the same assumptions of Theorem 3, select step size αk =

c1
(1+k)σ1 , βk = c2

(1+k)σ2 , where 0 < σ2 < σ1 < 1 and c1, c2 are positive constants. Then it holds that

1

K

K∑
k=1

E ‖∇J(θk)‖22 =O
(

1

K1−σ1

)
+O

(
K2

0 log
2K

Kσ1

)
+O

(
K2

0

K2σ2

)
+O

(
1

K

K∑
k=1

E ‖ωk − ω∗θk‖
2
2

)
+O(εapp).

(18)
Assume K0 = O(K

1
5 ). Given Theorem 3, select σ1 = 3

5 and σ2 = 2
5 , then it holds that

1

K

K∑
k=1

E ‖∇J(θk)‖22 = Õ
(
K0K

− 2
5

)
+O(εapp), (19)

where Õ(·) hides constants and the logarithmic order of K.

With Markovian sampling, the stochastic gradients g(x, ω) and v(x, θ, ω) are biased, and the bias
decreases as the Markov chain mixes. The mixing time corresponds to the logarithmic term logK
in (17) and (18). Because of asynchrony, at a given iteration, workers collect different number of
samples and their chains mix to different degrees. The worker with the slowest mixing chain will
determine the rate of convergence. The product of K0 and logK in (17) and (18) appears due to the
slowest mixing chain. As the last term in (17) dominates other terms asymptotically, the convergence
rate reduces as the number of workers increases. While the theoretical linear speedup is difficult to
establish in the Markovian setting, we will empirically demonstrate it in Section 5.2.

7



Under review as a conference paper at ICLR 2021

0 100 200 300
Training Time (sec.)

0

1

2

3

4

C
rit

ic
 O

pt
 G

ap

workers = 1
workers = 2
workers = 4
workers = 8
workers = 16

0 100 200 300
Training Time (sec.)

50

55

60

65

70

75

80

85

Av
er

ag
e 

R
ew

ar
d

workers = 1
workers = 2
workers = 4
workers = 8
workers = 16

0 1 2 3
Training Samples 1e5

50

55

60

65

70

75

80

Av
er

ag
e 

R
ew

ar
d

workers = 1
workers = 2
workers = 4
workers = 8
workers = 16

1 2 4 8 16
Number of Workers

2

4

6

8

10

12

14

Sp
ee

du
p

Figure 1: Convergence results of A3C-TD(0) with i.i.d. sampling in synthetic environment.
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Figure 2: Convergence results of A3C-TD(0) with Markovian sampling in synthetic environment.

5 NUMERICAL EXPERIMENTS

We test the speedup performance of A3C-TD(0) on both synthetically generated and OpenAI Gym
environments. The settings, parameters, and codes are provided in supplementary material.

5.1 A3C-TD(0) IN SYNTHETIC ENVIRONMENT

To verify the theoretical result, we tested A3C-TD(0) with linear value function approximation
in a synthetic environment. We use tabular softmax policy parameterization [36], which satisfies
Assumption 3. The MDP has a state space |S| = 100, an discrete action space of |A| = 5. Each state
feature has a dimension of 10. Elements of the transition matrix, the reward and the state features are
randomly sampled from a uniform distribution over (0, 1). We evaluate the convergence of actor and
critic respectively with the running average of test reward and critic optimality gap ‖ωk − ω∗θk‖2.

Figures 1 and 2 show the training time and sample complexity of running A3C-TD(0) with i.i.d.
sampling and Markovian sampling respectively. The speedup plot is measured by the number of
samples needed to achieve a target running average reward under different number of workers. All
the results are average over 10 Monte-Carlo runs. Figure 1 shows that the sample complexity of
A3C-TD(0) stays about the same with different number of workers under i.i.d. sampling. Also,
it can be observed from the speedup plot of Figure 1 that the A3C-TD(0) achieves roughly linear
speedup with i.i.d. sampling, which is consistent with Corollary 1. The speedup of A3C-TD(0) with
Markovian sampling shown in Figure 2 is roughly linear when number of workers is small.

5.2 A3C-TD(0) IN OPENAI GYM ENVIRONMENTS

We have also tested A3C-TD(0) with neural network parametrization in the classic control (Carpole)
environment and the Atari game (Seaquest and Beamrider) environments. In Figures 3-5, each curve
is generated by averaging over 5 Monte-Carlo runs with 95% confidence interval. Figures 3–5 show
the speedup of A3C-TD(0) under different number of workers, where the average reward is computed
by taking the running average of test rewards. The speedup and runtime speedup plots are respectively
measured by the number of samples and training time needed to achieve a target running average
reward under different number of workers. Although not justified theoretically, Figures 3–5 suggest
that the sample complexity speedup is roughly linear, and the runtime speedup slightly degrades when
the number of workers increases. This is partially due to our hardware limit. Similar observation has
also been obtained in async-SGD [9].
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Figure 3: Speedup of A3C-TD(0) in OpenAI gym classic control task (Carpole).
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Figure 4: Speedup of A3C-TD(0) in OpenAI Gym Atari game (Seaquest).
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Figure 5: Speedup of A3C-TD(0) in OpenAI Gym Atari game (Beamrider).

6 CONCLUSIONS

This paper revisits the A3C algorithm with TD(0) for the critic update, termed A3C-TD(0). With linear
value function approximation, the convergence of the A3C-TD(0) algorithm has been established
under both i.i.d. and Markovian sampling settings. Under i.i.d. sampling, A3C-TD(0) achieves linear
speedup compared to the best-known sample complexity of two-timescale AC, theoretically justifying
the benefit of parallelism and asynchrony for the first time. Under Markov sampling, such a linear
speedup can be observed in most classic benchmark tasks.
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Supplementary Material

A PRELIMINARY LEMMAS

A.1 GEOMETRIC MIXING

The operation p⊗ q denotes the tensor product between two distributions p(x) and q(y), i.e. (p⊗
q)(x, y) = p(x) · q(y).
Lemma 1. Suppose Assumption 4 holds for a Markov chain generated by the rule at ∼ πθ(·|st),
st+1 ∼ P̃(·|st, at). For any θ ∈ Rd, we have

sup
s0∈S

dTV

(
P((st, at, st+1) ∈ ·|s0, πθ), µθ ⊗ πθ ⊗ P̃

)
≤ κρt. (20)

where µθ(·) is the stationary distribution with policy πθ and transition kernel P̃(·|s, a).

Proof. We start with

sup
s0∈S

dTV

(
P((st, at, st+1) = ·|s0, πθ), µθ ⊗ πθ ⊗ P̃

)
= sup
s0∈S

dTV

(
P(st = ·|s0, πθ)⊗ πθ ⊗ P̃, µθ ⊗ πθ ⊗ P̃

)
= sup
s0∈S

1

2

∫
s∈S

∑
a∈A

∫
s′∈S

|P(st = ds|s0, πθ)πθ(a|s)P̃(ds′|s, a)− µθ(ds)πθ(a|s)P̃(ds′|s, a)
∣∣∣

= sup
s0∈S

1

2

∫
s∈S
|P(st = ds|s0, πθ)− µθ(ds)|

∑
a∈A

πθ(a|s)
∫
s′∈S
P̃(ds′|s, a)

= sup
s0∈S

dTV (P(st ∈ ·|s0, πθ), µθ)

≤ κρt,
which completes the proof.

For the use in the later proof, given K > 0, we first define mK as:
mK := min

{
m ∈ N+ |κρm−1 ≤ min{αk, βk}

}
, (21)

where κ and ρ are constants defined in (4). mK is the minimum number of samples needed for the
Markov chain to approach the stationary distribution so that the bias incurred by the Markovian
sampling is small enough.

A.2 AUXILIARY MARKOV CHAIN

The auxiliary Markov chain is a virtual Markov chain with no policy drifting — a technique developed
in [34] to analyze stochastic approximation algorithms in non-stationary settings.
Lemma 2. Under Assumption 1 and Assumption 3, consider the update (9) in Algorithm 1 with
Markovian sampling. For a given number of samples m, consider the Markov chain of the worker
that contributes to the kth update:

st−m
θk−dm−−−−→ at−m

P̃−→ st−m+1

θk−dm−1−−−−−−→ at−m+1 · · · st−1

θk−d1−−−−→ at−1
P̃−→ st

θk−d0−−−−→ at
P̃−→ st+1,

where (st, at, st+1) = (s(k), a(k), s
′
(k)), and {dj}mj=0 is some increasing sequence with d0 := τk.

Given (st−m, at−m, st−m+1) and θk−dm , we construct its auxiliary Markov chain by repeatedly
applying πθk−dm :

st−m
θk−dm−−−−→ at−m

P̃−→ st−m+1
θk−dm−−−−→ ãt−m+1 · · · s̃t−1

θk−dm−−−−→ ãt−1
P̃−→ s̃t

θk−dm−−−−→ ãt
P̃−→ s̃t+1.

Define xt := (st, at, st+1), then we have:
dTV (P(xt ∈ ·|θk−dm , st−m+1),P(x̃t ∈ ·|θk−dm , st−m+1))

≤ 1

2
|A|Lπ

dm∑
i=τk

E [‖θk−i − θk−dm‖2|θk−dm , st−m+1] . (22)
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Proof. Throughout the lemma, all expectations and probabilities are conditioned on θk−dm and
st−m+1. We omit this condition for convenience.

First we have

dTV (P(st+1 ∈ ·),P(s̃t+1 ∈ ·))

=
1

2

∫
s′∈S
|P(st+1 = ds′)− P(s̃t+1 = ds′)|

=
1

2

∫
s′∈S

∣∣∣∣∣
∫
s∈S

∑
a∈A

P(st = ds, at = a, st+1 = ds′)− P(s̃t = ds, ãt = a, s̃t+1 = ds′)

∣∣∣∣∣
≤ 1

2

∫
s′∈S

∫
s∈S

∑
a∈A
|P(st = ds, at = a, st+1 = ds′)− P(s̃t = ds, ãt = a, s̃t+1 = ds′)|

=
1

2

∫
s∈S

∑
a∈A

∫
s′∈S
|P(st = ds, at = a, st+1 = ds′)− P(s̃t = ds, ãt = a, s̃t+1 = ds′)|

= dTV (P(xt ∈ ·),P(x̃t ∈ ·)) , (23)

where the last second equality is due to Tonelli’s theorem. Next we have

dTV (P(xt ∈ ·),P(x̃t ∈ ·))

=
1

2

∫
s∈S

∑
a∈A

∫
s′∈S
|P(st = ds, at = a, st+1 = ds′)− P(s̃t = ds, ãt = a, s̃t+1 = ds′)|

=
1

2

∫
s∈S

∑
a∈A
|P(st = ds, at = a)− P(s̃t = ds, ãt = a)|

∫
s′∈S
P̃(st+1 = ds′|st = ds, at = a)

=
1

2

∫
s∈S

∑
a∈A
|P(st = ds, at = a)− P(s̃t = ds, ãt = a)|

= dTV (P ((st, at) ∈ ·) ,P ((s̃t, ãt) ∈ ·)) . (24)

Due to the fact that θk−τk is dependent on st, we need to write P(st, at) as

P(st, at) =

∫
θk−τk∈Rd

P(st, θk−τk , at)

=

∫
θ∈Rd

P(st)P(θk−τk = dθ|st)πθk−τk (at|st)

= P(st)

∫
θ∈Rd

P(θk−τk = dθ|st)πθk−τk (at|st)

= P(st)E[πθk−τk (at|st)|st].

Then we have

dTV (P ((st, at) ∈ ·) ,P ((s̃t, ãt) ∈ ·))

=
1

2

∫
s∈S

∑
a∈A

∣∣∣P(st = ds)E[πθk−τk (at = a|st = ds)|st = ds]− P(s̃t = ds)πθk−dm (ãt = a|s̃t = ds)
∣∣∣

≤ 1

2

∫
s∈S

∑
a∈A

∣∣∣P(st = ds)E[πθk−τk (at = a|st = ds)|st = ds]− P(st = ds)πθk−dm (at = a|st = ds)
∣∣∣

+
1

2

∫
s∈S

∑
a∈A

∣∣P(st = ds)πθk−dm (ãt = a|s̃t = ds)− P(s̃t = ds)πθk−dm (ãt = a|s̃t = ds)
∣∣

=
1

2

∫
s∈S

P(st = ds)
∑
a∈A

∣∣∣E[πθk−τk (at = a|st = ds)|st = ds]− πθk−dm (at = a|st = ds)
∣∣∣

+
1

2

∫
s∈S
|P(st = ds)− P(s̃t = ds)| . (25)
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Using Jensen’s inequality, we have

dTV (P ((st, at) ∈ ·) ,P ((s̃t, ãt) ∈ ·))

≤ 1

2

∫
s∈S

P(st = ds)
∑
a∈A

E
[∣∣∣πθk−τk (at = a|st = ds)− πθk−dm (at = a|st = ds)

∣∣∣∣∣∣ st = ds
]

+
1

2

∫
s∈S
|P(st = ds)− P(s̃t = ds)|

≤ 1

2

∫
s∈S

P(st = ds)
∑
a∈A

E [‖θk−τk − θk−dm‖2| st = ds] +
1

2

∫
s∈S
|P(st = ds)− P(s̃t = ds)|

=
1

2
|A|Lπ E ‖θk−τk − θk−dm‖2 + dTV (P(st ∈ ·),P(s̃t ∈ ·)) (26)

where the last inequality follows Assumption 3.

Now we start to prove (22).

dTV (P(xt ∈ ·),P(x̃t ∈ ·))
(24)
= dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·))

(25)
≤ dTV (P(st ∈ ·),P(s̃t ∈ ·)) +

1

2
|A|Lπ E ‖θk−τk − θk−dm‖2

(23)
≤ dTV (P(xt−1 ∈ ·),P(x̃t−1 ∈ ·)) +

1

2
|A|Lπ E ‖θk−τk − θk−dm‖2.

Now we have

dTV (P(xt ∈ ·),P(x̃t ∈ ·)) ≤ dTV (P(xt−1 ∈ ·),P(x̃t−1 ∈ ·)) +
1

2
|A|Lπ E ‖θk−τk − θk−dm‖2.

(27)

Since dTV (P(xt−m ∈ ·),P(xt−m ∈ ·)) = 0, recursively applying (27) for {t− 1, ..., t−m} gives

dTV (P(xt ∈ ·),P(x̃t ∈ ·)) ≤
1

2
|A|Lπ

m∑
j=0

E ‖θk−dj − θk−dm‖2

≤ 1

2
|A|Lπ

dm∑
i=τk

E ‖θk−i − θk−dm‖2,

which completes the proof.

A.3 LIPSCHITZ CONTINUITY OF VALUE FUNCTION

Lemma 3. Suppose Assumption 3 holds. For any θ1, θ2 ∈ Rd and s ∈ S, we have

‖∇Vπθ1 (s)‖2 ≤ LV , (28a)

|Vπθ1 (s)− Vπθ2 (s)| ≤ LV ‖θ1 − θ2‖2, (28b)

where the constant is LV := Cψrmax/(1− γ) with Cψ defined as in Assumption 3.

Proof. First we have

Qπ(s, a) = E

[ ∞∑
t=0

γtr(st, at, st+1)|s0 = s, a0 = a

]

≤
∞∑
t=0

γtrmax =
rmax

1− γ
.
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By the policy gradient theorem [7], we have

‖∇Vπθ1 (s)‖2 =
∥∥E [Qπθ1 (s, a)ψθ1(s, a)

]∥∥
2

≤ E
∥∥Qπθ1 (s, a)ψθ1(s, a)

∥∥
2

≤ E
[
|Qπθ1 (s, a)|‖ψθ1(s, a)‖2

]
≤ rmax

1− γ
Cψ,

where the first inequality is due to Jensen’s inequality, and the last inequality follows Assumption 3
and the fact that Qπ(s, a) ≤ rmax

1−γ . By the mean value theorem, we immediately have

|Vπθ1 (s)− Vπθ2 (s)| ≤ sup
θ1∈Rd

∥∥∇Vπθ1 (s)
∥∥

2
‖θ1 − θ2‖2 = LV ‖θ1 − θ2‖2,

which completes the proof.

A.4 LIPSCHITZ CONTINUITY OF POLICY GRADIENT

We give a proposition regarding the LJ -Lipschitz of the policy gradient under proper assumptions,
which has been shown by [35].
Proposition 1. Suppose Assumption 3 and 4 hold. For any θ, θ′ ∈ Rd, we have ‖∇J(θ) −
∇J(θ′)‖2 ≤ LJ‖θ − θ′‖2, where LJ is a positive constant.

A.5 LIPSCHITZ CONTINUITY OF OPTIMAL CRITIC PARAMETER

We provide a justification for Lipschitz continuity of ω∗θ in the next proposition.

Proposition 2. Suppose Assumption 3 and 4 hold. For any θ1, θ2 ∈ Rd, we have

‖ω∗θ1 − ω
∗
θ2‖2 ≤ Lω‖θ1 − θ2‖2,

where Lω := 2rmax|A|Lπ(λ−1 + λ−2(1 + γ))(1 + logρ κ
−1 + (1− ρ)−1).

Proof. We use A1, A2, b1 and b2 as shorthand notations of Aπθ1 , Aπθ2 , bπθ1 and bπθ2 respectively.
By Assumption 2, Aθ,φ is invertible for any θ ∈ Rd, so we can write ω∗θ = −A−1

θ,φbθ,φ. Then we have

‖ω∗1 − ω∗2‖2 = ‖ −A−1
1 b1 +A−1

2 b2‖2
= ‖ −A−1

1 b1 −A−1
1 b2 +A−1

1 b2 +A−1
2 b2‖2

= ‖ −A−1
1 (b1 − b2)− (A−1

1 −A
−1
2 )b2‖2

≤ ‖A−1
1 (b1 − b2)‖2 + ‖(A−1

1 −A
−1
2 )b2‖2

≤ ‖A−1
1 ‖2‖b1 − b2‖2 + ‖A−1

1 −A
−1
2 ‖2‖b2‖2

= ‖A−1
1 ‖2‖b1 − b2‖2 + ‖A−1

1 (A2 −A1)A−1
2 ‖2‖b2‖2

≤ ‖A−1
1 ‖2‖b1 − b2‖2 + ‖A−1

1 ‖2‖A
−1
2 ‖2‖b2‖2‖(A2 −A1)‖2

≤ λ−1 ‖b1 − b2‖2 + λ−2rmax ‖A1 −A2‖2 , (29)

where the last inequality follows Assumption 2, and the fact that

‖b2‖2 = ‖E[r(s, a, s′)φ(s)]‖2 ≤ E ‖r(s, a, s′)φ(s)‖2 ≤ E [|r(s, a, s′)|‖φ(s)‖2] ≤ rmax.

Denote (s1, a1, s′1) and (s2, a2, s′2) as samples drawn with θ1 and θ2 respectively, i.e. s1 ∼ µθ1 ,
a1 ∼ πθ1 , s′1 ∼ P̃ and s2 ∼ µθ2 , a2 ∼ πθ2 , s′2 ∼ P̃ . Then we have

‖b1 − b2‖2 =
∥∥E [r(s1, a1, s′1)φ(s1)

]
− E

[
r(s2, a2, s′2)φ(s2)

]∥∥
2

≤ sup
s,a,s′

‖r(s, a, s′)φ(s)‖2‖P((s1, a1, s′1) ∈ ·)− P((s2, a2, s′2) ∈ ·)‖TV

≤ rmax‖P((s1, a1, s′1) ∈ ·)− P((s2, a2, s′2) ∈ ·)‖TV

= 2rmaxdTV

(
µθ1 ⊗ πθ1 ⊗ P̃, µθ2 ⊗ πθ2 ⊗ P̃

)
≤ 2rmax|A|Lπ(1 + logρ κ

−1 + (1− ρ)−1)‖θ1 − θ2‖2, (30)
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where the first inequality follows the definition of total variation (TV) norm, and the last inequality
follows Lemma A.1. in [17]. Similarly we have:

‖A1 −A2‖2 ≤ 2(1 + γ)dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

= (1 + γ)|A|Lπ(1 + logρ κ
−1 + (1− ρ)−1)‖θ1 − θ2‖2. (31)

Substituting (30) and (31) into (29) completes the proof.

B PROOF OF MAIN THEOREMS

B.1 PROOF OF THEOREM 1

For brevity, we first define the following notations:
x := (s, a, s′),

δ̂(x, ω) := r(s, a, s′) + γφ(s′)>ω − φ(s)>ω,

g(x, ω) := δ̂(x, ω)φ(s),

g(θ, ω) := E
s∼µθ,a∼πθ,s′∼P̃

[g(x, ω)] .

We also define constant Cδ := rmax + (1 + γ) max{ rmax

1−γ , Rω}, and we immediately have

‖g(x, ω)‖2 ≤ |r(x) + γφ(s′)>ω − φ(s)>ω| ≤ rmax + (1 + γ)Rω ≤ Cδ (32)
and likewise, we have ‖g(x, ω)‖2 ≤ Cδ .
The critic update in Algorithm 1 can be written compactly as:

ωk+1 = ΠRω

(
ωk + βkg(x(k), ωk−τk)

)
, (33)

where τk is the delay of the parameters used in evaluating the kth stochastic gradient, and x(k) :=
(s(k), a(k), s

′
(k)) is the sample used to evaluate the stochastic gradient at kth update.

Proof. Using ω∗k as shorthand notation of ω∗θk , we start with the optimality gap

‖ωk+1 − ω∗k+1‖22
= ‖ΠRω

(
ωk + βkg(x(k), ωk−τk)

)
− ω∗k+1‖22

≤ ‖ωk + βkg(x(k), ωk−τk)− ω∗k+1‖22
= ‖ωk − ω∗k‖

2
2 + 2βk

〈
ωk − ω∗k, g(x(k), ωk−τk)

〉
+ 2

〈
ωk − ω∗k, ω∗k − ω∗k+1

〉
+
∥∥ω∗k − ω∗k+1 + βkg(x(k), ωk−τk)

∥∥2

2

= ‖ωk − ω∗k‖
2
2 + 2βk

〈
ωk − ω∗k, g(x(k), ωk−τk)− g(x(k), ωk)

〉
+ 2βk

〈
ωk − ω∗k, g(x(k), ωk)− g(θk, ωk)

〉
+ 2βk 〈ωk − ω∗k, g(θk, ωk)〉+ 2

〈
ωk − ω∗k, ω∗k − ω∗k+1

〉
+
∥∥ω∗k − ω∗k+1 + βkg(x(k), ωk−τk)

∥∥2

2

≤ ‖ωk − ω∗k‖
2
2 + 2βk

〈
ωk − ω∗k, g(x(k), ωk−τk)− g(x(k), ωk)

〉
+ 2βk

〈
ωk − ω∗k, g(x(k), ωk)− g(θk, ωk)

〉
+ 2βk 〈ωk − ω∗k, g(θk, ωk)〉+ 2

〈
ωk − ω∗k, ω∗k − ω∗k+1

〉
+ 2

∥∥ω∗k − ω∗k+1

∥∥2

2
+ 2C2

δβ
2
k. (34)

We first bound 〈ωk − ω∗k, g(θk, ωk)〉 in (34) as
〈ωk − ω∗k, g(θk, ωk)〉 = 〈ωk − ω∗k, g(θk, ωk)− g(θk, ω

∗
k)〉

=
〈
ωk − ω∗k,E

[
(γφ(s′)− φ(s))

>
(ωk − ω∗k)φ(s)

]〉
=
〈
ωk − ω∗k,E

[
φ(s) (γφ(s′)− φ(s))

>
]

(ωk − ω∗k)
〉

=
〈
ωk − ω∗k, Aπθk (ωk − ω∗k)

〉
≤ −λ‖ωk − ω∗k‖22, (35)

where the first equality is due to g(θ, ω∗θ) = Aθ,φω
∗
θ + b = 0, and the last inequality follows

Assumption 2. Substituting (35) into (34), then taking expectation on both sides of (34) yield

E ‖ωk+1 − ω∗k+1‖22 ≤ (1− 2λβk)E ‖ωk − ω∗k‖
2
2 + 2βk E

〈
ωk − ω∗k, g(x(k), ωk−τk)− g(x(k), ωk)

〉
+ 2βk E

〈
ωk − ω∗k, g(x(k), ωk)− g(θk, ωk)

〉
+ 2E

〈
ωk − ω∗k, ω∗k − ω∗k+1

〉
+ 2E

∥∥ω∗k − ω∗k+1

∥∥2

2
+ 2C2

δβ
2
k. (36)
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We then bound the term E
〈
ωk − ω∗k, g(x(k), ωk−τk)− g(x(k), ωk)

〉
in (36) as

E
〈
ωk − ω∗k, g(x(k), ωk−τk)− g(x(k), ωk)

〉
= E

〈
ωk − ω∗k,

(
γφ(s′(k))− φ(s(k))

)>
(ωk−τk − ωk)φ(s(k))

〉
≤ (1 + γ)E [‖ωk − ω∗k‖2‖ωk−τk − ωk‖2]

≤ (1 + γ)E

‖ωk − ω∗k‖2
∥∥∥∥∥

k−1∑
i=k−τk

(ωi+1 − ωi)

∥∥∥∥∥
2


≤ (1 + γ)E

[
‖ωk − ω∗k‖2

k−1∑
i=k−τk

βi‖g(xi, ωi−τi)‖2

]

≤ (1 + γ)E

[
‖ωk − ω∗k‖2

k−1∑
i=k−τk

βk−K0
‖g(xi, ωi−τi)‖2

]
≤ Cδ(1 + γ)K0βk−K0 E ‖ωk − ω∗k‖2, (37)

where the second last inequality is due to the monotonicity of step size, and the last inequality follows
the definition of Cδ in (32).

Next we jointly bound the fourth and fifth term in (36) as

2E
〈
ωk − ω∗k, ω∗k − ω∗k+1

〉
+ 2E

∥∥ω∗k − ω∗k+1

∥∥2

2

≤ 2E
[
‖ωk − ω∗k‖2

∥∥ω∗k − ω∗k+1

∥∥
2

]
+ 2E

∥∥ω∗k − ω∗k+1

∥∥2

2

≤ 2Lω E [‖ωk − ω∗k‖2 ‖θk − θk+1‖2] + 2L2
ω E ‖θk − θk+1‖22

= 2Lωαk E
[
‖ωk − ω∗k‖2

∥∥∥δ̂(x(k), ωk−τk)ψθk−τk (s(k), a(k))
∥∥∥

2

]
+ 2L2

ωα
2
k E
∥∥∥δ̂(x(k), ωk−τk)ψθk−τk (s(k), a(k))

∥∥∥2

2

≤ 2LωCpαk E ‖ωk − ω∗k‖2 + 2L2
ωC

2
pα

2
k, (38)

where constant Cp := CδCψ. The second inequality is due to the Lω-Lipschitz of ω∗θ shown in
Proposition 2, and the last inequality follows the fact that

‖δ̂(x(k), ωk−τk)ψθk−τk (s(k), a(k))‖2 ≤ CδCψ = Cp. (39)

Substituting (37) and (38) into (36) yields

E ‖ωk+1 − ω∗k+1‖22 ≤ (1− 2λβk)E ‖ωk − ω∗k‖
2
2 + 2βk(C1

αk
βk

+ C2K0βk−K0)E ‖ωk − ω∗k‖2

+ 2βk E
〈
ωk − ω∗k, g(x(k), ωk)− g(θk, ωk)

〉
+ Cqβ

2
k, (40)

where C1 := LωCp, C2 := Cδ(1 + γ) and Cq := 2C2
δ + 2L2

ωC
2
p max(k)

α2
k

β2
k

= 2C2
δ + 2L2

ωC
2
p
c21
c22

.

For brevity, we use x ∼ θ to denote s ∼ µθ, a ∼ πθ and s′ ∼ P̃ in this proof. Consider the third
term in (40) conditioned on θk, ωk, θk−τk . We bound it as

E
[〈
ωk − ω∗k, g(x(k), ωk)− g(θk, ωk)

〉
|θk, ωk, θk−τk

]
=

〈
ωk − ω∗k, E

x(k)∼θk−τk

[
g(x(k), ωk)|ωk

]
− g(θk, ωk)

〉
=

〈
ωk − ω∗k, g(θk−τk , ωk)− g(θk, ωk)

〉
≤ ‖ωk − ω∗k‖2‖g(θk−τk , ωk)− g(θk, ωk)‖2

≤ 2Rω

∥∥∥∥ E
x∼θk−τk

[g(x, ωk)]− E
x∼θk

[g(x, ωk)]

∥∥∥∥
2

≤ 2Rω sup
x
‖g(x, ωk)‖2

∥∥∥µθk−τk ⊗ πθk−τk ⊗ P̃ − µθk ⊗ πθk ⊗ P̃∥∥∥TV
≤ 4RωCδdTV (µθk−τk ⊗ πθk−τk ⊗ P̃, µθk ⊗ πθk ⊗ P̃), (41)
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where second last inequality follows the definition of TV norm and the last inequality uses the
definition of Cδ in (32).

Define constant C3 := 2RωCδ|A|Lπ(1 + logρ κ
−1 + (1− ρ)−1). Then by following the third item

in Lemma A.1 shown by [17], we can write (41) as

E
[〈
ωk − ω∗k, g(x(k), ωk)− g(θk, ωk)

〉
|θk, ωk, θk−τk

]
≤ 4RωCδdTV (µθk−τk ⊗ πθk−τk ⊗ P̃, µθk ⊗ πθk ⊗ P̃)

≤ C3 ‖θk−τk − θk‖2

≤ C3

k−1∑
i=k−τk

αi‖g(xi, ωi−τi)‖2

≤ C3CδK0αk−K0 , (42)

where we used the monotonicity of αk and Assumption 1.

Taking total expectation on both sides of (42) and substituting it into (40) yield

E ‖ωk+1 − ω∗k+1‖22 ≤ (1− 2λβk)E ‖ωk − ω∗k‖
2
2 + 2βk

(
C1
αk
βk

+ C2K0βk−K0

)
E ‖ωk − ω∗k‖2

+ 2C3CδK0βkαk−K0 + Cqβ
2
k. (43)

Taking summation on both sides of (43) and rearranging yield

2λ

K∑
k=K0

E ‖ωk − ω∗k‖
2
2 ≤

K∑
k=K0

1

βk

(
E ‖ωk − ω∗k‖

2
2 − E

∥∥ωk+1 − ω∗k+1

∥∥2

2

)
I1

+Cq

K∑
k=K0

βk

I2

+ 2

K∑
k=K0

2C3CδK0αk−K0

I3

+2

K∑
k=K0

(
C1
αk
βk

+ C2K0βk−K0

)
E ‖ωk − ω∗k‖2

I4

.

(44)

We bound I1 as

I1 =

K∑
k=MK

1

βk

(
E ‖ωk − ω∗k‖

2
2 − E

∥∥ωk+1 − ω∗k+1

∥∥2

2

)

=

K∑
k=MK

(
1

βk
− 1

βk−1

)
E ‖ωk − ω∗k‖

2
2 +

1

βMK−1
E
∥∥ωMK

− ω∗MK

∥∥2

2
− 1

βk
E
∥∥ωK+1 − ω∗K+1

∥∥2

2

≤
K∑

k=MK

(
1

βk
− 1

βk−1

)
E ‖ωk − ω∗k‖

2
2 +

1

βMK−1
E
∥∥ωMK

− ω∗MK

∥∥2

2

≤ 4R2
ω

(
K∑

k=MK

(
1

βk
− 1

βk−1

)
+

1

βMK−1

)
=

4R2
ω

βk
= O(Kσ2), (45)

where the last inequality is due to the fact that

‖ωk − ω∗θ‖2 ≤ ‖ωk‖2 + ‖ω∗θ‖2 ≤ 2Rω.

We bound I2 as

K∑
k=MK

βk =

K∑
k=MK

c2
(1 + k)σ2

= O(K1−σ2) (46)

where the inequality follows from the integration rule
∑b
k=a k

−σ ≤ b1−σ

1−σ .
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We bound I3 as

I3 =

K∑
k=K0

2C3CδK0αk−K0
= 2C3Cδc1K0

K−K0∑
k=0

(1 + k)−σ1 = O(K0K
1−σ1). (47)

For the last term I4, we have

I4 =

K∑
k=K0

(
C1
αk
βk

+ C2K0βk−K0

)
E ‖ωk − ω∗k‖2

≤

√√√√ K∑
k=K0

(
C1
αk
βk

+ C2K0βk−K0

)2
√√√√ K∑
k=K0

(
E ‖ωk − ω∗k‖2

)2
≤

√√√√ K∑
k=K0

(
C1
αk
βk

+ C2K0βk−K0

)2
√√√√ K∑
k=K0

E ‖ωk − ω∗k‖
2
2
, (48)

where the first inequality follows Cauchy–Schwartz inequality, and the second inequality follows
Jensen’s inequality. In (48), we have

K∑
k=K0

(
C1
αk
βk

+ C2K0βk−K0

)2

≤
K−K0∑
k=0

(
C1
αk
βk

+ C2K0βk

)2

= C2
1

K−K0∑
k=0

α2
k

β2
k

+ 2C1C2K0

K−K0∑
k=0

αk + C2
2K

2
0

K−K0∑
k=0

β2
k

= O
(
K2(σ2−σ1)+1

)
+O

(
K0K

−σ1+1
)

+O
(
K2

0K
1−2σ2

)
(49)

where the first inequality is due to the fact that αkβk and βk−K0
are monotonically decreasing.

Substituting (49) into (48) gives

I4 ≤
√
O
(
K2(σ2−σ1)+1

)
+O (K0K−σ1+1) +O (K2

0K
1−2σ2)

√√√√ K∑
k=MK

E ‖ωk − ω∗k‖
2
2
. (50)

Substituting (45), (46), (47) and (50) into (44), and dividing both sides of (44) by K −K0 + 1 give

2λ
1

K −K0 + 1

K∑
k=K0

E ‖ωk − ω∗k‖
2
2

≤

√
O
(
K2(σ2−σ1)+1

)
+O (K0K−σ1+1) +O (K2

0K
1−2σ2)

K −K0 + 1

√√√√ K∑
k=K0

E ‖ωk − ω∗k‖
2
2

+O
(

1

K1−σ2

)
+O

(
1

Kσ2

)
+O

(
K0

Kσ1

)
. (51)

We define the following functions:

T1(K) :=
1

K −K0 + 1

K∑
k=K0

E ‖ωk − ω∗k‖
2
2 ,

T2(K) := O
(

1

K1−σ2

)
+O

(
1

Kσ2

)
+O

(
K0

Kσ1

)
,

T3(K) :=
O
(
K2(σ2−σ1)+1

)
+O

(
K0K

−σ1+1
)

+O
(
K2

0K
1−2σ2

)
K −K0 + 1

.
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Then (51) can be written as:

T1(K)− 1

2λ

√
T1(K)

√
T3(K) ≤ 1

2λ
T2(K).

Solving this quadratic inequality in terms of T1(K), we obtain

T1(K) ≤ 1

λ
T2(K) +

1

2λ2
T3(K), (52)

which implies

1

K −K0 + 1

K∑
k=K0

E ‖ωk − ω∗k‖
2
2

= O
(

1

K1−σ2

)
+O

(
1

K2(σ1−σ2)

)
+O

(
K2

0

K2σ2

)
+O

(
K0

Kσ1

)
+O

(
1

Kσ2

)
.

We further have

1

K

K∑
k=1

E ‖ωk − ω∗k‖22 ≤
1

K

(
K0−1∑
k=1

4R2
ω +

K∑
k=K0

E ‖ωk − ω∗k‖22

)

=
K0 − 1

K
4R2

ω +
K −K0 + 1

K

1

K −K0 + 1

K∑
k=K0

E ‖ωk − ω∗k‖22

= O
(
K0

K

)
+O

(
1

K −K0 + 1

K∑
k=K0

E ‖ωk − ω∗k‖
2
2

)

= O

(
1

K −K0 + 1

K∑
k=K0

E ‖ωk − ω∗k‖
2
2

)
(53)

which completes the proof.

B.2 PROOF OF THEOREM 2

We first clarify the notations:

x := (s, a, s′),

δ̂(x, ω) := r(s, a, s′) + γφ(s′)>ω − φ(s)>ω,

δ(x, θ) := r(s, a, s′) + γVπθ (s
′)− Vπθ (s).

The update in Algorithm 1 can be written compactly as:

θk+1 = θk + αk δ̂(x(k), ωk−τk)ψθk−τk (s(k), a(k)). (54)

For brevity, we use ω∗k as shorthand notation of ω∗θk . Then we are ready to give the proof.

Proof. From LJ -Lipschitz of policy gradient shown in Proposition 1, we have:

J(θk+1) ≥ J(θk) + 〈∇J(θk), θk+1 − θk〉 −
LJ
2
‖θk+1 − θk‖22

= J(θk) + αk

〈
∇J(θk),

(
δ̂(x(k), ωk−τk)− δ̂(x(k), ω

∗
k)
)
ψθk−τk (s(k), a(k))

〉
+ αk

〈
∇J(θk), δ̂(x(k), ω

∗
k)ψθk−τk (s(k), a(k))

〉
− LJ

2
α2
k‖δ̂(x(k), ωk−τk)ψθk−τk (s(k), a(k))‖22

≥ J(θk) + αk

〈
∇J(θk),

(
δ̂(x(k), ωk−τk)− δ̂(x(k), ω

∗
k)
)
ψθk−τk (s(k), a(k))

〉
+ αk

〈
∇J(θk), δ̂(x(k), ω

∗
k)ψθk−τk (s(k), a(k))

〉
− LJ

2
C2
pα

2
k,

where the last inequality follows the definition of Cp in (39).
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Taking expectation on both sides of the last inequality yields

E[J(θk+1)] ≥ E[J(θk)] + αk E
〈
∇J(θk),

(
δ̂(x(k), ωk−τk)− δ̂(x(k), ω

∗
k)
)
ψθk−τk (s(k), a(k))

〉
I1

+ αk E
〈
∇J(θk), δ̂(x(k), ω

∗
k)ψθk−τk (s(k), a(k))

〉
I2

−LJ
2
C2
pα

2
k. (55)

We first decompose I1 as

I1 = E
〈
∇J(θk),

(
δ̂(x(k), ωk−τk)− δ̂(x(k), ω

∗
k)
)
ψθk−τk (s(k), a(k))

〉
= E

〈
∇J(θk),

(
δ̂(x(k), ωk−τk)− δ̂(x(k), ωk)

)
ψθk−τk (s(k), a(k))

〉
I
(1)
1

+ E
〈
∇J(θk),

(
δ̂(x(k), ωk)− δ̂(x(k), ω

∗
k)
)
ψθk−τk (s(k), a(k))

〉
I
(2)
1

.

We bound I(1)
1 as

I
(1)
1 = E

〈
∇J(θk),

(
γφ(s′(k))− φ(s(k))

)>
(ωk−τk − ωk)ψθk−τk (s(k), a(k))

〉
≥ −E

[
‖∇J(θk)‖2‖γφ(s′(k))− φ(s(k))‖2‖ωk − ωk−τk‖2‖ψθk−τk (s(k), a(k))‖2

]
≥ −2Cψ E [‖∇J(θk)‖2‖ωk − ωk−τk‖2]

≥ −2CψCδK0βk−1 E ‖∇J(θk)‖2,

where the last inequality follows

‖ωk − ωk−τk‖2 =

∥∥∥∥∥
k−1∑

i=k−τk

(ωi+1 − ωi)

∥∥∥∥∥
2

≤
k−1∑

i=k−τk

‖βig(xi, ωi−τi)‖2

≤ βk−1

k−1∑
i=k−τk

‖g(xi, ωi−τi)‖2

≤ βk−1K0Cδ,

where the second inequality is due to the monotonicity of step size, and the third one follows (32).

Then we bound I(2)
1 as

I
(2)
1 = E

〈
∇J(θk),

(
δ̂(x(k), ωk)− δ̂(x(k), ω

∗
k)
)
ψθk−τk (s(k), a(k))

〉
= −E

〈
∇J(θk),

(
γφ(s′(k))− φ(s(k))

)>
(ω∗k − ωk)ψθk−τk (s(k), a(k))

〉
≥ −E

[
‖∇J(θk)‖2‖γφ(s′(k))− φ(s(k))‖2‖ωk − ω∗k‖2‖ψθk−τk (s(k), a(k))‖2

]
≥ −2Cψ E [‖∇J(θk)‖2‖ωk − ω∗k‖2] .

Collecting the lower bounds of I(1)
1 and I(2)

1 gives

I1 ≥ −2Cψ E [‖∇J(θk)‖2 (CδK0βk−1 + ‖ωk − ω∗k‖2)] . (56)
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Now we consider I2. We first decompose I2 as

I2 = E
〈
∇J(θk), δ̂(x(k), ω

∗
k)ψθk−τk (s(k), a(k))

〉
= E

〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ̂(x(k), ω

∗
k−τk)

)
ψθk−τk (s(k), a(k))

〉
I
(1)
2

+ E
〈
∇J(θk),

(
δ̂(x(k), ω

∗
k−τk)− δ(x(k), θk−τk)

)
ψθk−τk (s(k), a(k))

〉
I
(2)
2

+ E
〈
∇J(θk), δ(x(k), θk−τk)ψθk−τk (s(k), a(k))−∇J(θk)

〉
I
(3)
2

+‖∇J(θk)‖22.

We bound I(1)
2 as

I
(1)
2 = E

〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ̂(x(k), ω

∗
k−τk)

)
ψθk−τk (s(k), a(k))

〉
= E

〈
∇J(θk),

(
γφ(s′(k))− φ(s(k))

)> (
ω∗k − ω∗k−τk

)
ψθk−τk (s(k), a(k))

〉
≥ −E

[
‖∇J(θk)‖2‖

(
γφ(s′(k))− φ(s(k))

)>
‖2
∥∥ω∗k − ω∗k−τk∥∥2

‖ψθk−τk (s(k), a(k))‖2
]

≥ −LV Cψ(1 + γ)E
∥∥ω∗k − ω∗k−τk∥∥2

≥ −LV LωCψ(1 + γ)E ‖θk − θk−τk‖2
≥ −LV LωCψCp(1 + γ)K0αk−K0

,

where the second last inequality follows from Proposition 2 and the last inequality uses (39) as

‖θk − θk−τk‖2 ≤
k−1∑

i=k−τk

‖θi+1 − θi‖2

=

k−1∑
i=k−τk

αi‖δ̂(xi, ωi−τi)ψθi−τi (si, ai)‖2

≤
k−1∑

i=k−τk

αk−τkCp

≤ CpK0αk−K0
. (57)

We bound I(2)
2 as

I
(2)
2 = E

〈
∇J(θk),

(
δ̂(x(k), ω

∗
k−τk)− δ(x(k), θk−τk)

)
ψθk−τk (s(k), a(k))

〉
≥ −E

[
‖∇J(θk)‖2

∣∣∣δ̂(x(k), ω
∗
k−τk)− δ(x(k), θk−τk)

∣∣∣ ‖ψθk−τk (s(k), a(k))‖2
]

≥ −Cψ E
[
‖∇J(θk)‖2

∣∣∣δ̂(x(k), ω
∗
k−τk)− δ(x(k), θk−τk)

∣∣∣]
= −Cψ E

[
‖∇J(θk)‖2

∣∣∣γ (φ(s′(k))
>ω∗k−τk − Vπθk−τk (s′(k))

)
+ Vπθk−τk

(s(k))− φ(s(k))
>ω∗k−τk

∣∣∣]
≥ −Cψ E

[
‖∇J(θk)‖2

(
γ
∣∣∣φ(s′(k))

>ω∗k−τk − Vπθk−τk (s′(k))
∣∣∣+
∣∣∣Vπθk−τk (s(k))− φ(s(k))

>ω∗k−τk

∣∣∣)]
= −Cψ E

[
‖∇J(θk)‖2 E

[
γ
∣∣∣φ(s′(k))

>ω∗k−τk − Vπθk−τk (s′(k))
∣∣∣+
∣∣∣Vπθk−τk (s(k))− φ(s(k))

>ω∗k−τk

∣∣∣∣∣∣ θk, θk−τk]]
≥ −2Cψεapp E ‖∇J(θk)‖2
≥ −2CψLV εfa − 2Cψεsp E ‖∇J(θk)‖2 (58)
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where the second last inequality follows from the fact that

E
[
γ
∣∣∣φ(s′(k))

>ω∗k−τk − Vπθk−τk (s′(k))
∣∣∣+
∣∣∣Vπθk−τk (s(k))− φ(s(k))

>ω∗k−τk

∣∣∣]
≤ γ

√
E
∣∣∣φ(s′(k))

>ω∗k−τk − Vπθk−τk (s′(k))
∣∣∣2 +

√
E
∣∣∣Vπθk−τk (s(k))− φ(s(k))>ω

∗
k−τk

∣∣∣2
≤ 2εapp.

Define artificial transition x̄(k) := (s(k), a(k), s̄
′
(k) ∼ P), then I(3)

2 can be bounded as

I
(3)
2 = E

〈
∇J(θk), δ(x(k), θk−τk)ψθk−τk (s(k), a(k))−∇J(θk)

〉
= E

[
E
[〈
∇J(θk), δ(x(k), θk−τk)ψθk−τk (s(k), a(k))−∇J(θk)

〉∣∣∣ θk−τk , θk]]
= E

〈
∇J(θk),E

[(
δ(x(k), θk−τk)− δ(x̄(k), θk−τk)

)
ψθk−τk (s(k), a(k))

∣∣∣ θk−τk , θk]〉
+ E

〈
∇J(θk),E

[
δ(x̄(k), θk−τk)ψθk−τk (s(k), a(k))

∣∣∣ θk−τk , θk]−∇J(θk)
〉

≥ −E
[
‖∇J(θk)‖2

∥∥∥E [(δ(x(k), θk−τk)− δ(x̄(k), θk−τk)
)
ψθk−τk (s(k), a(k))

∣∣∣ θk−τk , θk]∥∥∥
2

]
− E

[
‖∇J(θk)‖2

∥∥∥E [δ(x̄(k), θk−τk)ψθk−τk (s(k), a(k))
∣∣∣ θk−τk , θk]−∇J(θk)

∥∥∥
2

]
. (59)

The first term in the last inequality can be bounded as

E
[(
δ(x(k), θk−τk)− δ(x̄(k), θk−τk)

)
ψθk−τk (s(k), a(k))

∣∣∣ θk−τk , θk]
= E

[(
δ(x(k), θk−τk)− δ(x̄(k), θk−τk)

)
ψθk−τk (s(k), a(k))

∣∣∣ θk−τk , θk]
= E

[(
r(x(k)) + γ E[r(s′k, a

′, s′′)]−
(
r(x̄(k)) + γ E[r(s̄′k, a

′, s′′)]
))
ψθk−τk (s(k), a(k))

∣∣∣ θk−τk , θk]
≤ 2Cψrmax‖P̃ − P‖TV
≤ 8Cψrmax(1− γ), (60)

where the last inequality follows

‖P̃ − P‖TV = 2

∫
s′∈S

∣∣∣P̃(s′|s, a)− P(s′|s, a)
∣∣∣ = 2(1− γ)

∫
s′∈S
|P(s′|s, a)− η(s′)| ≤ 4(1− γ).

(61)

The second term in (59) can be rewritten as

E
[
δ(x̄(k), θk−τk)ψθk−τk (s(k), a(k))

∣∣∣ θk−τk , θk]
= E

s(k)∼µθk−τk
a(k)∼πθk−τk
s̄′(k)∼P

[(
r(x̄(k)) + γVπθk−τk

(s̄′(k))− Vπθk−τk (s(k))
)
ψθk−τk (s(k), a(k))

∣∣∣∣θk−τk , θk]

= E
s(k)∼µθk−τk
a(k)∼πθk−τk

[(
Qπθk−τk

(s(k), a(k))− Vπθk−τk (s(k))
)
ψθk−τk (s(k), a(k))

∣∣∣∣θk−τk , θk]

= E
s(k)∼µθk−τk
a(k)∼πθk−τk

[
Aπθk−τk

(s(k), a(k))ψθk−τk (s(k), a(k))

∣∣∣∣θk−τk , θk]

= E
s(k)∼dθk−τk
a(k)∼πθk−τk

[
Aπθk−τk

(s(k), a(k))ψθk−τk (s(k), a(k))

∣∣∣∣θk−τk , θk] = ∇J(θk−τk) (62)

where the second last equality follows µθ(·) = dθ(·) with dθ being a shorthand notation of dπθ [6].
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Substituting (60) and (62) into (59) yields

I
(3)
2 ≥ −8Cψrmax(1− γ)E ‖∇J(θk)‖2 − E [‖∇J(θk)‖2‖∇J(θk−τk)−∇J(θk)‖2]

≥ −8Cψrmax(1− γ)E ‖∇J(θk)‖2 − LV LJ E ‖θk−τk − θk‖2
≥ −8Cψrmax(1− γ)E ‖∇J(θk)‖2 − LV LJCpK0αk−K0

, (63)
where the second last inequality is due to LJ -Lipschitz of policy gradient shown in Proposition 1,
and the last inequality follows (57).

Collecting lower bounds of I(1)
2 , I(2)

2 and I(3)
2 gives

I2 ≥ −D1K0αk−K0
− (2Cψεsp + 8Cψrmax(1− γ))E ‖∇J(θk)‖2 − 2CψLV εfa + ‖∇J(θk)‖22,

(64)
where the constant is D1 := LV LωCψCp(1 + γ) + LV LJCp.

Substituting (56) and (64) into (55) yields
E[J(θk+1)] ≥ E[J(θk)]− 2αkCψ (εsp + 4rmax(1− γ) + CδK0βk−1 + ‖ωk − ω∗k‖2)E ‖∇J(θk)‖2

− αkD1K0αk−K0 − 2αkCψLV εfa + αk‖∇J(θk)‖22 −
LJ
2
C2
pα

2
k. (65)

By following Cauchy-Schwarz inequality, the second term in (65) can be bounded as
(εsp + 4rmax(1− γ) + CδK0βk−1 + ‖ωk − ω∗k‖2)E ‖∇J(θk)‖2

≤
√
E ‖∇J(θk)‖22 E

[
(εsp + 4rmax(1− γ) + CδK0βk−1 + ‖ωk − ω∗k‖2)

2
]

≤
√
E ‖∇J(θk)‖22

√
E
[
4C2

δK
2
0β

2
k−1 + 4‖ωk − ω∗k‖22 + 4ε2sp + 64r2

max(1− γ)2
]

= 2
√
E ‖∇J(θk)‖22

√
C2
δK

2
0β

2
k−1 + E ‖ωk − ω∗k‖22 +O(ε2sp), (66)

where the last inequality follows the order of εsp in Lemma 7.

Collecting the upper bound gives

E[J(θk+1)] ≥ E[J(θk)]− 4αkCψ

√
E ‖∇J(θk)‖22

√
C2
δK

2
0β

2
k−1 + E ‖ωk − ω∗k‖22 +O(ε2sp)

− αkD1K0αk−K0
− 2αkCψLV εfa + αk‖∇J(θk)‖22 −

LJ
2
C2
pα

2
k. (67)

Dividing both sides of (67) by αk, then rearranging and taking summation on both sides give
K∑

k=K0

E ‖∇J(θk)‖22 ≤
K∑

k=K0

1

αk
(E[J(θk+1)]− E[J(θk)])

I3

+

K∑
k=K0

(
D1K0αk−K0 +

LJ
2
C2
pαk

)
I4

+ 4Cψ

K∑
k=K0

√
E ‖∇J(θk)‖22

√
C2
δK

2
0β

2
k−1 + E ‖ωk − ω∗k‖22 +O(ε2sp)

I5

+ 2CψLV (K −K0 + 1)εfa. (68)

We bound I3 as

I3 =

K∑
k=K0

1

αk
(E [J(θk+1)]− E [J(θk)])

=

K∑
k=K0

(
1

αk−1
− 1

αk

)
E [J(θk)]− 1

αMK−1
E [J(θMK

)] +
1

αK
E [J(θK+1)]

≤ 1

αK
E [J(θK+1)]

≤ rmax

1− γ
1

αK
= O(Kσ1), (69)
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where the first inequality is due to the αk is monotonic decreasing and positive, and last inequality is
due to Vπθ (s) ≤ rmax

1−γ for any s ∈ S and πθ.

We bound I4 as

I4 =

K∑
k=K0

(
D1K0αk−K0 +

LJ
2
C2
pαk

)
≤
K−K0∑
k=0

(
D1K0αk +

LJ
2
C2
pαk

)
= O(K0K

1−σ1).

We bound I5 as

I5 =

K∑
k=K0

√
E ‖∇J(θk)‖22

√
C2
δK

2
0β

2
k−1 + E ‖ωk − ω∗k‖22 +O(ε2sp)

≤

√√√√ K∑
k=K0

E ‖∇J(θk)‖22

√√√√ K∑
k=K0

(
C2
δK

2
0β

2
k−1 + E ‖ωk − ω∗k‖22 +O(ε2sp)

)

=

√√√√ K∑
k=K0

E ‖∇J(θk)‖22

√√√√C2
δK

2
0

K∑
k=K0

β2
k−1 +

K∑
k=K0

E ‖ωk − ω∗k‖22 +O(Kε2sp), (70)

where the first inequality follows Cauchy-Schwartz inequality.

In (70), we have

K∑
k=K0

β2
k−1 ≤

K−K0∑
k=0

β2
k =

K−K0∑
k=0

c22(1 + k)−2σ2 = O(K1−2σ2).

Substituting the last equality into (70) gives

I5 ≤

√√√√ K∑
k=MK

E ‖∇J(θk)‖22

√√√√O(K2
0K

1−2σ2) +

K∑
k=MK

E ‖ωk − ω∗k‖22 +O(Kε2sp). (71)

Dividing both sides of (67) by K −K0 + 1 and collecting upper bounds of I3, I4 and I5 give

1

K −K0 + 1

K∑
k=K0

E ‖∇J(θk)‖22

≤ 4Cψ
K −K0 + 1

√√√√ K∑
k=K0

E ‖∇J(θk)‖22

√√√√O(K2
0K

1−2σ2) +

K∑
k=K0

E ‖ωk − ω∗k‖22 +O(Kε2sp)

+O
(

1

K1−σ1

)
+O

(
K0

Kσ1

)
+O(εfa). (72)

Define the following functions

T4(K) :=
1

K −K0 + 1

K∑
k=K0

E ‖∇J(θk)‖22,

T5(K) :=
1

K −K0 + 1

(
O(K2

0K
1−2σ2) +

K∑
k=K0

E ‖ωk − ω∗k‖22 +O(Kε2sp)

)
,

T6(K) := O
(

1

K1−σ1

)
+O

(
K0

Kσ1

)
+O(εfa).

Then (72) can be rewritten as

T4(K) ≤ T6(K) +
√

2(1 + γ)Cψ
√
T4(K)

√
T5(K).
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Solving this quadratic inequality in terms of T4(K), we obtain

T4(K) ≤ 2T6(K) + 4(1 + γ)2C2
ψT5(K), (73)

which implies

1

K −K0 + 1

K∑
k=K0

E ‖∇J(θk)‖22

= O
(

1

K1−σ1

)
+O

(
K0

Kσ1

)
+O

(
K2

0

K2σ2

)
+O

(
1

K −K0 + 1

K∑
k=K0

E ‖ωk − ω∗k‖22

)
+O(εapp).

We further have

1

K

K∑
k=1

E ‖∇J(θk)‖22 ≤
1

K

(
K0−1∑
k=1

L2
V +

K∑
k=K0

E ‖∇J(θk)‖22

)

=
K0 − 1

K
L2
V +

K −K0 + 1

K

1

K −K0 + 1

K∑
k=K0

E ‖∇J(θk)‖22

= O
(
K0

K

)
+O

(
1

K −K0 + 1

K∑
k=K0

E ‖∇J(θk)‖22

)

= O

(
1

K −K0 + 1

K∑
k=K0

E ‖∇J(θk)‖22

)
(74)

which completes the proof.

B.3 PROOF OF THEOREM 3

Given the definition in Section B.1, we now give the convergence proof of critic update in Algorithm
1 with linear function approximation and Markovian sampling.

By following the derivation of (40), we have

E ‖ωk+1 − ω∗k+1‖22 ≤ (1− 2λβk)E ‖ωk − ω∗k‖
2
2 + 2βk(C1

αk
βk

+ C2K0βk−K0)E ‖ωk − ω∗k‖2

+ 2βk E
〈
ωk − ω∗k, g(x(k), ωk)− g(θk, ωk)

〉
+ Cqβ

2
k, (75)

where C1 := CpLω , C2 := Cδ(1 + γ) and Cq := 2C2
δ + 2L2

ωC
2
p max(k)

α2
k

β2
k

= 2C2
δ + 2L2

ωC
2
p
c21
c22

.

Now we consider the third item in the last inequality. For some m ∈ N+, we define M :=
(K0 + 1)m+K0. Following Lemma 4 (to be presented in Sec. C.1), for some dm ≤M and positive
constants C4, C5, C6, C7, we have
E
〈
ωk − ω∗k, g(x(k), ωk)− g(θk, ωk)

〉
≤ C4 E ‖θk − θk−dm‖2 + C5

dm∑
i=τk

E ‖θk−i − θk−dm‖2 + C6 E ‖ωk − ωk−dm‖2 + C7κρ
m−1

≤ C4

k−1∑
i=k−dm

E ‖θi+1 − θi‖2 + C5

dm−1∑
i=τk

k−i−1∑
j=k−dm

E ‖θj+1 − θj‖2 + C6

k−1∑
i=k−dm

E ‖ωi+1 − ωi‖2 + C7κρ
m−1

≤ C4

k−1∑
i=k−dm

αiCp + C5

dm−1∑
i=τk

k−i−1∑
j=k−dm

αjCp + C6

k−1∑
i=k−dm

βiCδ + C7κρ
m−1

≤ C4αk−dm

k−1∑
i=k−dm

Cp + C5αk−dm

dm−1∑
i=τk

k−i−1∑
j=k−dm

Cp + C6βk−dm

k−1∑
i=k−dm

Cδ + C7κρ
m−1

≤ C4dmCpαk−dm + C5(dm − τk)2Cpαk−dm + C6dmCδβk−dm + C7κρ
m−1

≤
(
C4M + C5M

2
)
Cpαk−M + C6MCδβk−M + C7κρ

m−1, (76)
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where the third last inequality is due to the monotonicity of step size, and the last inequality is due to
τk ≥ 0 and dm ≤M .

Further letting m = mK which is defined in (21) yields

E
〈
ωk − ω∗k, g(x(k), ωk)− g(θk, ωk)

〉
=
(
C4MK + C5M

2
K

)
Cpαk−MK

+ C6CδMKβk−MK
+ C7κρ

mK−1

≤
(
C4MK + C5M

2
K

)
Cpαk−MK

+ C6CδMKβk−MK
+ C7αK , (77)

where MK = (K0 + 1)mK +K0, and the last inequality follows the definition of mK .

Substituting (77) into (75), then rearranging and summing up both sides over k = MK , ...,K yield

2λ

K∑
k=MK

E ‖ωk − ω∗k‖
2
2 ≤

K∑
k=MK

1

βk

(
E ‖ωk − ω∗k‖

2
2 − E

∥∥ωk+1 − ω∗k+1

∥∥2

2

)
I1

+Cq

K∑
k=MK

βk

I2

+ 2

K∑
k=MK

((
C4MK + C5M

2
K

)
Cpαk−MK

+ C6CδMKβk−MK
+ C7αK

)
I3

+ 2

K∑
k=MK

(
C1
αk
βk

+ C2K0βk−K0

)
E ‖ωk − ω∗k‖2

I4

. (78)

where the order of I1, I2 and I4 have already been given by (45), (46) and (50) respectively.

We bound I3 as

I3 =
(
C4MK + C5M

2
K

)
Cp

K∑
k=MK

αk + C6CδMK

K∑
k=MK

βk + C7αK

K∑
k=MK

1

≤
(
C4MK + C5M

2
K

)
Cpc1

K1−σ1

1− σ1
+ C6CδMKc2

K1−σ2

1− σ2
+ C7c1K(1 +K)−σ1

= O
(
(K2

0 log2K)K1−σ1
)

+O
(
(K0 logK)K1−σ2

)
, (79)

where the last inequality follows from the integration rule
∑b
k=a k

−σ ≤ b1−σ

1−σ , and the last equality
is due to O(MK) = O(K0mK) = O(K0 logK).

Collecting the bounds of I1, I2, I3 and I4, and dividing both sides of (78) by K −MK + 1 yield

2λ
1

K −MK + 1

K∑
k=MK

E ‖ωk − ω∗k‖
2
2

≤

√
O
(
K2(σ2−σ1)+1

)
+O (K0K−σ1+1) +O (K2

0K
1−2σ2)

K −MK + 1

√√√√ K∑
k=MK

E ‖ωk − ω∗k‖
2
2

+O
(

1

K1−σ2

)
+O

(
K2

0 log2K

Kσ1

)
+O

(
K0 logK

Kσ2

)
. (80)

Similar to the derivation of (52), (80) implies

1

K −MK + 1

K∑
k=MK

E ‖ωk − ω∗k‖
2
2

= O
(

1

K1−σ2

)
+O

(
1

K2(σ1−σ2)

)
+O

(
K2

0

K2σ2

)
+O

(
K2

0 log2K

Kσ1

)
+O

(
K0 logK

Kσ2

)
.
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Similar to (53), we have

1

K

K∑
k=1

E ‖ωk − ω∗k‖22 = O
(
K0 logK

K

)
+O

(
1

K −MK + 1

K∑
k=MK

E ‖ωk − ω∗k‖
2
2

)

= O

(
1

K −MK + 1

K∑
k=MK

E ‖ωk − ω∗k‖
2
2

)
(81)

which completes the proof.

B.4 PROOF OF THEOREM 4

Given the definition in section B.2, we now give the convergence proof of actor update in Algorithm
1 with linear value function approximation and Markovian sampling method.

By following the derivation of (55), we have

E[J(θk+1)] ≥ E[J(θk)] + αk E
〈
∇J(θk),

(
δ̂(x(k), ωk−τk)− δ̂(x(k), ω

∗
k)
)
ψθk−τk (s(k), a(k))

〉
I1

+ αk E
〈
∇J(θk), δ̂(x(k), ω

∗
k)ψθk−τk (s(k), a(k))

〉
I2

−LJ
2
C2
pα

2
k. (82)

The item I1 can be bounded by following (56) as

I1 ≥ −2Cψ E [‖∇J(θk)‖2 (CδK0βk−1 + ‖ωk − ω∗k‖2)] . (83)

Next we consider I2. We first decompose it as

I2 = E
〈
∇J(θk), δ̂(x(k), ω

∗
k)ψθk−τk (s(k), a(k))

〉
= E

〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ(x(k), θk)

)
ψθk−τk (s(k), a(k))

〉
I
(1)
2

+ E
〈
∇J(θk), δ(x(k), θk)ψθk−τk (s(k), a(k))−∇J(θk)

〉
I
(2)
2

+E ‖∇J(θk)‖22. (84)

For some m ∈ N+, define M := (K0 + 1)m + K0. Following Lemma 5, for some dm ≤ M and
positive constants D2, D3, D4, D5, I(1)

2 can be bounded as

I
(1)
2 = E

〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ(x(k), θk)

)
ψθk−τk (s(k), a(k))

〉
≥ −D2 E ‖θk−τk − θk−dm‖2 −D3 E ‖θk − θk−dm‖2 −D4

k−τk∑
i=k−dm

E ‖θi − θk−dm‖2

−D5κρ
m−1 − 2CψLV εfa − 2Cψεsp E ‖∇J(θk)‖2

≥ −D2(dm − τk)Cpαk−dm −D3dmCpαk−dm −D4(dm − τk)2Cpαk−dm

−D5κρ
m−1 − 2CψLV εfa − 2Cψεsp E ‖∇J(θk)‖2, (85)

where the derivation of the last inequality is similar to that of (76).

By setting m = mK in (85), and following the fact that dmK ≤MK and τk ≥ 0, we have

I
(1)
2 ≥ −D2MKCpαk−MK

−D3MKCpαk−MK
−D4M

2
KCpαk−MK

−D5κρ
mK−1

− 2CψLV εfa − 2Cψεsp E ‖∇J(θ)‖2
= −

(
(D2 +D3)CpMK +D4CpM

2
K

)
αk−MK

−D5κρ
mK−1 − 2CψLV εfa − 2Cψεsp E ‖∇J(θk)‖2

≥ −
(
(D2 +D3)CpMK +D4CpM

2
K

)
αk−MK

−D5αK − 2CψLV εfa − 2Cψεsp E ‖∇J(θk)‖2,
(86)
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where the last inequality is due to the definition of mK .

Following Lemma 6, for some positive constants D6, D7, D8 and D9, we bound I(2)
2 as

I
(2)
2 = E

〈
∇J(θk), δ(x(k), θk)ψθk−τk (s(k), a(k))−∇J(θk)

〉
≥ −D6 E ‖θk−τk − θk−dm‖2 −D7 E ‖θk − θk−dm‖2 −D8

dm∑
i=τk

E ‖θk−i − θk−dm‖2

−D9κρ
m−1 − 8Cψrmax(1− γ)E ‖∇J(θk)‖2 .

Similar to the derivation of (86), we have

I
(2)
2 ≥ − (D6 +D7 +D8MK)CpMKαk−MK

−D9αK − 8Cψrmax(1− γ)E ‖∇J(θk)‖2 . (87)

Collecting the lower bounds of I(1)
2 and I(2)

2 yields

I2 ≥ −2CψLV εfa − 2Cψ (εsp + 4rmax(1− γ))E ‖∇J(θk)‖2 + E ‖∇J(θk)‖22
−DKαk−MK

− (D5 +D9)αK , (88)

where we define DK := (D4 +D8)CpM
2
K + (D2 +D3 +D6 +D7)CpMK for brevity.

Substituting (83) and (88) into (82) yields

E[J(θk+1)] ≥ E[J(θk)]− 2αkCψ E [‖∇J(θk)‖2 (εsp + 4rmax(1− γ) + CδK0βk−1 + ‖ωk − ω∗k‖2)]

− αk (DKαk−MK
+ (D5 +D9)αK)− 2CψLV εfaαk + αk E ‖∇J(θk)‖22 −

LJ
2
C2
pα

2
k.

Similar to the derivation of (67), the last inequality implies

E[J(θk+1)] ≥ E[J(θk)]− 4αkCψ

√
E ‖∇J(θk)‖22

√
C2
δK

2
0β

2
k−1 + E ‖ωk − ω∗k‖22 +O(ε2sp)

− αk (DKαk−MK
+ (D5 +D9)αK)− 2CψLV εfaαk + αk E ‖∇J(θk)‖22 −

LJ
2
C2
pα

2
k.

Rearranging and dividing both sides by αk yield

E ‖∇J(θk)‖22 ≤
1

αk
(E[J(θk+1)]− E[J(θk)]) +DKαk−MK

+ (D5 +D9)αK +
LJ
2
C2
pαk

+ 4Cψ

√
E ‖∇J(θk)‖22

√
C2
δK

2
0β

2
k−1 + E ‖ωk − ω∗k‖22 +O(ε2sp) + 2CψLV εfa.

Taking summation gives

K∑
k=MK

E ‖∇J(θk)‖22 ≤
K∑

k=MK

1

αk
(E[J(θk+1)]− E[J(θk)])

I3

+

K∑
k=MK

(
DKαk−MK

+
LJ
2
C2
pαk + (D5 +D9)αK

)
I4

+ 4Cψ

K∑
k=MK

√
E ‖∇J(θk)‖22

√
C2
δK

2
0β

2
k−1 + E ‖ωk − ω∗k‖22 +O(ε2sp)

I5

+ 2CψLV (K −MK + 1)εfa. (89)

in which the upper bounds of I3 and I5 have already been given by (69) and (71) respectively.
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We bound I4 as

I4 =

K∑
k=MK

(
DKαk−MK

+
LJ
2
C2
pαk + (D5 +D9)αK

)

≤
K∑

k=MK

(
DKαk−MK

+
LJ
2
C2
pαk−MK

+ (D5 +D9)αK

)

=

(
DK +

LJ
2
C2
p

) K∑
k=MK

αk−MK
+ (D5 +D9)(K −MK + 1)αK

=

(
DK +

LJ
2
C2
p

)K−MK∑
k=0

αk + (D5 +D9)(K −MK + 1)αK

≤
(
DK +

LJ
2
C2
p

)
c1

1− σ1
K1−σ1 + c1(D5 +D9)(K + 1)1−σ1

= O
(
(K2

0 log2K)K1−σ1
)

(90)

where the last inequality uses
∑b
k=a k

−σ ≤ b1−σ

1−σ , and the last equality is due to the fact that

O(DK) = O(M2
K +MK) = O((K0mK)2 +K0mK) = O(K2

0 log2K).

Substituting the upper bounds of I3, I4 and I5 into (89), and dividing both sides by K−MK + 1 give

1

K −MK + 1

K∑
k=MK

E ‖∇J(θk)‖22

≤ 4Cψ
K −MK + 1

√√√√ K∑
k=MK

E ‖∇J(θk)‖22

√√√√O(K2
0K

1−2σ2) +

K∑
k=MK

E ‖ωk − ω∗k‖22 +O(Kε2sp)

+O
(

1

K1−σ1

)
+O

(
K2

0 log2K

Kσ1

)
+O(εfa). (91)

Following the similar steps of those in (73), (91) essentially implies

1

K −MK + 1

K∑
k=MK

E ‖∇J(θk)‖22

= O
(

1

K1−σ1

)
+O

(
K2

0 log2K

Kσ1

)
+O

(
K2

0

K2σ2

)
+O

(
1

K −MK + 1

K∑
k=MK

E ‖ωk − ω∗θk‖
2
2

)
+O(εapp).

Similar to (74), we have

1

K

K∑
k=1

E ‖∇J(θk)‖22 = O
(
K0 logK

K

)
+O

(
1

K −MK + 1

K∑
k=MK

E ‖∇J(θk)‖22

)

= O

(
1

K −MK + 1

K∑
k=MK

E ‖∇J(θk)‖22

)

which completes the proof.
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C SUPPORTING LEMMAS

C.1 SUPPORTING LEMMAS FOR THEOREM 3

Lemma 4. For any m ≥ 1 and k ≥ (K0 + 1)m+K0 + 1, we have

E
〈
ωk − ω∗θk , g(x(k), ωk)− g(θk, ωk)

〉
≤ C4 E ‖θk − θk−dm‖2 + C5

dm∑
i=τk

E ‖θk−i − θk−dm‖2

+ C6 E ‖ωk − ωk−dm‖2 + C7κρ
m−1,

where dm ≤ (K0 + 1)m + K0, and C4 := 2CδLω + 4RωCδ|A|Lπ(1 + logρ κ
−1 + (1 − ρ)−1),

C5 := 4RωCδ|A|Lπ and C6 := 4(1 + γ)Rω + 2Cδ , C7 := 8RωCδ .

Proof. Consider the collection of random samples {x(k−K0−1), x(k−K0), ..., x(k)}. Suppose x(k) is
sampled by worker n, then due to Assumption 1, {x(k−K0−1), x(k−K0), ..., x(k−1)} will contain at
least another sample drawn by worker n. Therefore, {x(k−(K0+1)m), x(k−(K0+1)m+1), ..., x(k−1)}
will contain at least m samples from worker n.

Consider the Markov chain formed by m+ 1 samples in {x(k−(K0+1)m), x(k−(K0+1)m+1), ..., x(k)}:

st−m
θk−dm−−−−→ at−m

P̃−→ st−m+1

θk−dm−1−−−−−−→ at−m+1 · · · st−1

θk−d1−−−−→ at−1
P̃−→ st

θk−d0−−−−→ at
P̃−→ st+1,

where (st, at, st+1) = (s(k), a(k), s
′
(k)), and {dj}mj=0 is some increasing sequence with d0 := τk.

Suppose θk−dm was used to do the kmth update, then we have xt−m = x(km). Following Assumption
1, we have τkm = km − (k − dm) ≤ K0. Since x(km) is in {x(k−(K0+1)m), ..., x(k)}, we have
km ≥ k − (K0 + 1)m. Combining these two inequalities, we have

dm ≤ (K0 + 1)m+K0. (92)

Given (st−m, at−m, st−m+1) and θk−dm , we construct an auxiliary Markov chain as that in Lemma
2:

st−m
θk−dm−−−−→ at−m

P̃−→ st−m+1
θk−dm−−−−→ ãt−m+1 · · · s̃t−1

θk−dm−−−−→ ãt−1
P̃−→ s̃t

θk−dm−−−−→ ãt
P̃−→ s̃t+1.

For brevity, we define

∆1(x, θ, ω) := 〈ω − ω∗θ , g(x, ω)− g(θ, ω)〉 .

Throughout this proof, we use θ, θ′, ω, ω′, x and x̃ as shorthand notations of θk, θk−dm , ωk, ωk−dm ,
xt and x̃t respectively.

First we decompose ∆1(x, θ, ω) as

∆1(x, θ, ω) = ∆1(x, θ, ω)−∆1(x, θ′, ω)

I1

+ ∆1(x, θ′, ω)−∆1(x, θ′, ω′)

I2

+ ∆1(x, θ′, ω′)−∆1(x̃, θ′, ω′)

I3

+ ∆1(x̃, θ′, ω′)

I4

. (93)

We bound I1 in (93) as

∆1(x, θ, ω)−∆1(x, θ′, ω) = 〈ω − ω∗θ , g(x, ω)− g(θ, ω)〉 − 〈ω − ω∗θ′ , g(x, ω)− g(θ′, ω)〉
≤ |〈ω − ω∗θ , g(x, ω)− g(θ, ω)〉 − 〈ω − ω∗θ′ , g(x, ω)− g(θ, ω)〉|

+ |〈ω − ω∗θ′ , g(x, ω)− g(θ, ω)〉 − 〈ω − ω∗θ′ , g(x, ω)− g(θ′, ω)〉| .
(94)

For the first term in (94), we have

|〈ω − ω∗θ , g(x, ω)− g(θ, ω)〉 − 〈ω − ω∗θ′ , g(x, ω)− g(θ, ω)〉| = |〈ω∗θ − ω∗θ′ , g(x, ω)− g(θ, ω)〉|
≤ ‖ω∗θ − ω∗θ′‖2‖g(x, ω)− g(θ, ω)‖
≤ 2Cδ‖ω∗θ − ω∗θ′‖2
≤ 2CδLω‖θ − θ′‖2,
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where the last inequality is due to Proposition 2.

We use x ∼ θ′ as shorthand notations to represent that s ∼ µθ′ , a ∼ πθ′ , s′ ∼ P̃ . For the second
term in (94), we have

|〈ω − ω∗θ′ , g(x, ω)− g(θ, ω)〉 − 〈ω − ω∗θ′ , g(x, ω)− g(θ′, ω)〉|
= |〈ω − ω∗θ′ , g(θ′, ω)− g(θ, ω)〉|
≤ ‖ω − ω∗θ′‖2‖g(θ′, ω)− g(θ, ω)‖2
≤ 2Rω‖g(θ′, ω)− g(θ, ω)‖2

= 2Rω

∥∥∥∥ E
x∼θ′

[g(x, ω)]− E
x∼θ

[g(x, ω)]

∥∥∥∥
2

≤ 2Rω sup
x
‖g(x, ω)‖2‖µθ′ ⊗ πθ′ ⊗ P̃ − µθ ⊗ πθ ⊗ P̃‖TV

≤ 2RωCδ‖µθ′ ⊗ πθ′ ⊗ P̃ − µθ ⊗ πθ ⊗ P̃‖TV

= 4RωCδdTV

(
µθ′ ⊗ πθ′ ⊗ P̃, µθ ⊗ πθ ⊗ P̃

)
≤ 4RωCδ|A|Lπ(1 + logρ κ

−1 + (1− ρ)−1)‖θ − θ′‖2,
where the third inequality follows the definition of TV norm, the second last inequality follows (32),
and the last inequality follows Lemma A.1. in [17].

Collecting the upper bounds of the two terms in (94) yields
I1 ≤

[
2CδLω + 4RωCδ|A|Lπ(1 + logρ κ

−1 + (1− ρ)−1)
]
‖θ − θ′‖2.

Next we bound E[I2] in (93) as
E[I2] = E[∆1(x, θ′, ω)−∆1(x, θ′, ω′)]

= E 〈ω − ω∗θ′ , g(x, ω)− g(θ′, ω)〉 − 〈ω′ − ω∗θ′ , g(x, ω′)− g(θ′, ω′)〉
≤ E |〈ω − ω∗θ′ , g(x, ω)− g(θ′, ω)〉 − 〈ω − ω∗θ′ , g(x, ω′)− g(θ′, ω′)〉|

+ E |〈ω − ω∗θ′ , g(x, ω′)− g(θ′, ω′)〉 − 〈ω′ − ω∗θ′ , g(x, ω′)− g(θ′, ω′)〉| . (95)
We bound the first term in (95) as

E |〈ω − ω∗θ′ , g(x, ω)− g(θ′, ω)〉 − 〈ω − ω∗θ′ , g(x, ω′)− g(θ′, ω′)〉|
= E |〈ω − ω∗θ′ , g(x, ω)− g(x, ω′) + g(θ′, ω′)− g(θ′, ω)〉|
≤ 2Rω (E ‖g(x, ω)− g(x, ω′)‖2 + E ‖g(θ′, ω′)− g(θ′, ω)‖2)

≤ 2Rω

(
E ‖g(x, ω)− g(x, ω′)‖2 + E

∥∥∥∥ E
x∼θ′

[g(x, ω′)]− E
x∼θ′

[g(x, ω)]

∥∥∥∥
2

)
= 2Rω

(
E ‖(γφ(s′)− φ(s))>(ω − ω′)‖2 + E

∥∥∥∥ E
x∼θ′

[
(γφ(s′)− φ(s))>

]
(ω′ − ω)

∥∥∥∥
2

)
≤ 2Rω ((1 + γ)E ‖ω − ω′‖2 + (1 + γ)E ‖ω − ω′‖2)

= 4Rω(1 + γ)E ‖ω − ω′‖2.
We bound the second term in (95) as

E |〈ω − ω∗θ′ , g(x, ω′)− g(θ′, ω′)〉 − 〈ω′ − ω∗θ′ , g(x, ω′)− g(θ′, ω′)〉|
= E |〈ω − ω′, g(x, ω′)− g(θ′, ω′)〉|
≤ 2Cδ E ‖ω − ω′‖2.

Collecting the upper bounds of the two terms in (95) yields
E[I2] ≤ (4(1 + γ)Rω + 2Cδ)E ‖ω − ω′‖2.

We first bound I3 as
E[I3|θ′, ω′, st−m+1] = E [∆1(x, θ′, ω′)−∆1(x̃, θ′, ω′)|θ′, ω′, st−m+1]

≤ |E [∆1(x, θ′, ω′)|θ′, ω′, st−m+1]− E [∆1(x̃, θ′, ω′)|θ′, ω′, st−m+1]|
≤ sup

x
|∆1(x, θ′, ω′)| ‖P(x ∈ ·|θ′, ω′, st−m+1)− P(x̃ ∈ ·|θ′, ω′, st−m+1)‖TV

≤ 8RωCδdTV (P(x ∈ ·|θ′, st−m+1),P(x̃ ∈ ·|θ′, st−m+1)) , (96)

32



Under review as a conference paper at ICLR 2021

where the second last inequality follows the definition of TV norm, and the last inequality follows the
fact that

|∆1(x, θ′, ω′)| ≤ ‖ω′ − ω∗θ′‖2‖g(x, ω′)− g(θ′, ω′)‖2 ≤ 4RωCδ.

By following (22) in Lemma 2, we have

dTV (P(x ∈ ·|θ′, st−m+1),P(x̃ ∈ ·|θ′, st−m+1)) ≤ 1

2
|A|Lπ

dm∑
i=τk

E [‖θk−i − θk−dm‖2| θ′, st−m+1] .

Substituting the last inequality into (96), then taking total expectation on both sides yield

E[I3] ≤ 4RωCδ|A|Lπ
dm∑
i=τk

E ‖θk−i − θk−dm‖2.

Next we bound I4. Define x := (s, a, s′) where s ∼ µθ′ , a ∼ πθ′ and s′ ∼ P̃ . It is immediate that

E[∆1(x, θ′, ω′)|θ′, ω′, st−m+1] = 〈ω′ − ω∗θ′ ,E[g(x, ω′)|θ′, ω′, st−m+1]− g(θ′, ω′)〉
= 〈ω′ − ω∗θ′ , g(θ′, ω′)− g(θ′, ω′)〉 = 0. (97)

Then we have

E[I4|θ′, ω′, st−m+1] = E [∆1(x̃, θ′, ω′)−∆1(x, θ′, ω′)|θ′, ω′, st−m+1]

≤ |E [∆1(x̃, θ′, ω′)|θ′, ω′, st−m+1]− E [∆1(x, θ′, ω′)|θ′, ω′, st−m+1]|
≤ sup

x
|∆1(x, θ′, ω′)| ‖P(x̃ ∈ ·|θ′, st−m+1)− P(x ∈ ·|θ′, st−m+1)‖TV

≤ 8RωCδdTV (P(x̃ ∈ ·|θ′, st−m+1),P(x ∈ ·|θ′, st−m+1))

= 8RωCδdTV

(
P(x̃ ∈ ·|θ′, st−m+1), µθ′ ⊗ πθ′ ⊗ P̃

)
, (98)

where the second inequality follows the definition of TV norm, and the third inequality follows (97).

The auxiliary Markov chain with policy πθ′ starts from initial state st−m+1, and s̃t is the (m− 1)th
state on the chain. Following Lemma 1, we have:

dTV

(
P(x̃ ∈ ·|θ′, st−m+1), µθ′ ⊗ πθ′ ⊗ P̃

)
= dTV

(
P ((s̃t, ãt, s̃t+1) ∈ ·|θ′, st−m+1) , µθ′ ⊗ πθ′ ⊗ P̃

)
≤ κρm−1.

Substituting the last inequality into (98) and taking total expectation on both sides yield

E[I4] ≤ 8RωCδκρ
m−1.

Taking total expectation on (93) and collecting bounds of I1, I2, I3, I4 yield

E [∆1(x, θ, ω)] ≤ C4 E ‖θk − θk−dm‖2 + C5

dm∑
i=τk

E ‖θk−i − θk−dm‖2

+ C6 E ‖ωk − ωk−dm‖2 + C7κρ
m−1,

where C4 := 2CδLω + 4RωCδ|A|Lπ(1 + logρ κ
−1 + (1 − ρ)−1), C5 := 4RωCδ|A|Lπ, C6 :=

4(1 + γ)Rω + 2Cδ and C7 := 8RωCδ .

C.2 SUPPORTING LEMMAS FOR THEOREM 4

Lemma 5. For any m ≥ 1 and k ≥ (K0 + 1)m+K0 + 1, we have

E
〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ(x(k), θk)

)
ψθk−τk (s(k), a(k))

〉
≥ −D2 E ‖θk−τk − θk−dm‖2

−D3 E ‖θk − θk−dm‖2 −D4

dm∑
i=τk

E ‖θk−i − θk−dm‖2 −D5κρ
m−1 − 2CψLV εfa − 2Cψεsp E ‖∇J(θ)‖2,

where D2 := 2LV LψCδ, D3 := (2CδCψLJ + LV Cψ(Lω + LV )(1 + γ) + 2CψLJεapp), D4 :=
2LV CψCδ|A|Lπ and D5 := 4LV CψCδ .
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Proof. For the worker that contributes to the kth update, we construct its Markov chain:

st−m
θk−dm−−−−→ at−m

P̃−→ st−m+1

θk−dm−1−−−−−−→ at−m+1 · · · st−1

θk−d1−−−−→ at−1
P̃−→ st

θk−d0−−−−→ at
P̃−→ st+1,

where (st, at, st+1) = (s(k), a(k), s
′
(k)), and {dj}mj=0 is some increasing sequence with d0 := τk. By

(92) in Lemma 4, we have dm ≤ (K0 + 1)m+K0.

Given (st−m, at−m, st−m+1) and θk−dm , we construct an auxiliary Markov chain:

st−m
θk−dm−−−−→ at−m

P̃−→ st−m+1
θk−dm−−−−→ ãt−m+1 · · · s̃t−1

θk−dm−−−−→ ãt−1
P̃−→ s̃t

θk−dm−−−−→ ãt
P̃−→ s̃t+1.

First we have〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ(x(k), θk)

)
ψθk−τk (s(k), a(k))

〉
=
〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ(x(k), θk)

)(
ψθk−τk (s(k), a(k))− ψθk−dm (s(k), a(k))

)〉
+
〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ(x(k), θk)

)
ψθk−dm (s(k), a(k))

〉
. (99)

We first bound the fist term in (99) as〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ(x(k), θk)

)(
ψθk−τk (s(k), a(k))− ψθk−dm (s(k), a(k))

)〉
≥ −‖J(θk)‖2|δ̂(x(k), ω

∗
k)− δ(x(k), θk)|‖ψθk−τk (s(k), a(k))− ψθk−dm (s(k), a(k))‖2

≥ −‖J(θk)‖2
(
|δ̂(x(k), ω

∗
k)|+ |δ(x(k), θk)|

)
‖ψθk−τk (s(k), a(k))− ψθk−dm (s(k), a(k))‖2

≥ −LV
(
|δ̂(x(k), ω

∗
k)|+ |δ(x(k), θk)|

)
‖ψθk−τk (s(k), a(k))− ψθk−dm (s(k), a(k))‖2

≥ −2LV Cδ‖ψθk−τk (s(k), a(k))− ψθk−dm (s(k), a(k))‖2
≥ −2LV LψCδ‖θk−τk − θk−dm‖2, (100)

where the last inequality follows Assumption 3 and second last inequality follows

|δ̂(x, ω∗θ)| ≤ |r(x)|+ γ‖φ(s′)‖2‖ω∗θ‖2 + ‖φ(s)‖2‖ω∗θ‖2 ≤ rmax + (1 + γ)Rω ≤ Cδ,

|δ(x, θ)| ≤ |r(x)|+ γ|Vπθ (s′)|+ |Vπθ (s)| ≤ rmax + (1 + γ)
rmax

1− γ
≤ Cδ.

Substituting (100) into (99) gives〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ(x(k), θk)

)
ψθk−τk (s(k), a(k))

〉
≥ −2LV LψCδ‖θk−τk − θk−dm‖2 +

〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ(x(k), θk)

)
ψθk−dm (s(k), a(k))

〉
.

(101)

Then we start to bound the second term in (101). For brevity, we define

∆2(x, θ) :=
〈
∇J(θ),

(
δ̂(x, ω∗θ)− δ(x, θ)

)
ψθk−dm (s, a)

〉
.

In the following proof, we use θ, θ′, ω∗θ , ω∗θ′ , x and x̃ as shorthand notations for θk, θk−dm , ω∗k,
ω∗k−dm , xt and x̃t respectively. We also define x := (s, a, s′), where s ∼ µθ′ , a ∼ πθ′ and s′ ∼ P̃ .

We decompose the second term in (101) as

∆2(x, θ) = ∆2(x, θ)−∆2(x, θ′)

I1

+ ∆2(x, θ′)−∆2(x̃, θ′)

I2

+ ∆2(x̃, θ′)−∆2(x, θ′)

I3

+ ∆2(x, θ′)

I4

.

We bound the term I1 as

I1 =
〈
∇J(θ),

(
δ̂(x, ω∗θ)− δ(x, θ)

)
ψθ′(s, a)

〉
−
〈
∇J(θ′),

(
δ̂(x, ω∗θ′)− δ(x, θ′)

)
ψθ′(s, a)

〉
=
〈
∇J(θ),

(
δ̂(x, ω∗θ)− δ(x, θ)

)
ψθ′(s, a)

〉
−
〈
∇J(θ′),

(
δ̂(x, ω∗θ)− δ(x, θ)

)
ψθ′(s, a)

〉
+
〈
∇J(θ′),

(
δ̂(x, ω∗θ)− δ(x, θ)

)
ψθ′(s, a)

〉
−
〈
∇J(θ′),

(
δ̂(x, ω∗θ′)− δ(x, θ′)

)
ψθ′(s, a)

〉
.
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For the first term in I1, we have〈
∇J(θ),

(
δ̂(x, ω∗θ)− δ(x, θ)

)
ψθ′(s, a)

〉
−
〈
∇J(θ′),

(
δ̂(x, ω∗θ)− δ(x, θ)

)
ψθ′(s, a)

〉
=
〈
∇J(θ)−∇J(θ′),

(
δ̂(x, ω∗θ)− δ(x, θ)

)
ψθ′(s, a)

〉
≥ −‖∇J(θ)−∇J(θ′)‖2‖δ̂(x, ω∗θ)− δ(x, θ)‖2‖ψθ′(s, a)‖2
≥ −2CδCψ‖∇J(θ)−∇J(θ′)‖2
≥ −2CδCψLJ‖θ − θ′‖2,

where the last inequality is due to the LJ -Lipschitz of policy gradient shown in Proposition 1.

For the second term in I1, we have〈
∇J(θ′),

(
δ̂(x, ω∗θ)− δ(x, θ)

)
ψθ′(s, a)

〉
−
〈
∇J(θ′),

(
δ̂(x, ω∗θ′)− δ(x, θ′)

)
ψθ′(s, a)

〉
=
〈
∇J(θ′),

(
δ̂(x, ω∗θ)− δ̂(x, ω∗θ′) + δ(x, θ′)− δ(x, θ)

)
ψθ′(s, a)

〉
≥ −LV Cψ

∣∣∣δ̂(x, ω∗θ)− δ̂(x, ω∗θ′) + δ(x, θ′)− δ(x, θ)
∣∣∣

≥ −LV Cψ
∣∣γφ(s′)>(ω∗θ − ω∗θ′) + φ(s)>(ω∗θ′ − ω∗θ) + γVπθ′ (s

′)− γVπθ (s′) + Vπθ (s)− Vπθ′ (s)
∣∣

≥ −LV Cψ
(
γ‖ω∗θ − ω∗θ′‖2 + ‖ω∗θ′ − ω∗θ‖2 + γ|Vπθ′ (s

′)− Vπθ (s′)|+ |Vπθ (s)− Vπθ′ (s)|
)

≥ −LV Cψ (γLω‖θ − θ′‖2 + Lω‖θ − θ′‖2 + γLV ‖θ − θ′‖2 + LV ‖θ − θ′‖2)

= −LV Cψ(Lω + LV )(1 + γ)‖θ − θ′‖2,

where the last inequality is due to the Lω-Lipschitz continuity of ω∗θ shown in Proposition 2 and
LV -Lipschitz continuity of Vπθ (s) shown in Lemma 3. Collecting the upper bounds of I1 yields

I1 ≥ − (2CδCψLJ + LV Cψ(Lω + LV )(1 + γ)) ‖θ − θ′‖2.

First we bound I2 as

E[I2|θ′, st−m+1] = E [∆2(x, θ′)−∆2(x̃, θ′)|θ′, st−m+1]

≥ − |E [∆2(x, θ′)| θ′, st−m+1]− E [∆2(x̃, θ′)| θ′, st−m+1]|
≥ − sup

x
|∆2(x, θ′)| ‖P(x ∈ ·|θ′, st−m+1)− P(x̃ ∈ ·|θ′, st−m+1)‖TV

≥ −4LV CψCδdTV (P(x ∈ ·|θ′, st−m+1),P(x̃ ∈ ·|θ′, st−m+1))

≥ −2LV CψCδ|A|Lπ
dm∑
i=τk

E [‖θk−i − θk−dm‖2| θ′, st−m+1] , (102)

where the second inequality is due to the definition of TV norm, the last inequality follows (22) in
Lemma 2, and the second last inequality follows the fact that

|∆2(x, θ′)| ≤ ‖∇J(θ′)‖2|δ̂(x, ω∗θ′)− δ(x, θ′)|‖ψθ′(s, a)‖2 ≤ 2LV CδCψ. (103)

Taking total expectation on both sides of (102) yields

E[I2] ≥ −2LV CψCδ|A|Lπ
dm∑
i=τk

E ‖θk−i − θk−dm‖2.

Next we bound I3 as

E[I3|θ′, st−m+1] = E [∆2(x̃, θ′)−∆2(x, θ′)| θ′, st−m+1]

≥ − |E [∆2(x̃, θ′)| θ′, st−m+1]− E [∆2(x, θ′)| θ′, st−m+1]|
≥ − sup

x
|∆2(x, θ′)| ‖P(x̃ ∈ ·|θ′, st−m+1)− P(x ∈ ·|θ′, st−m+1)‖TV

≥ −4LV CψCδdTV

(
P(x̃ ∈ ·|θ′, st−m+1), µθ′ ⊗ πθ′ ⊗ P̃

)
, (104)

where the second inequality is due to the definition of TV norm, and the last inequality follows (103).
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The auxiliary Markov chain with policy πθ′ starts from initial state st−m+1, and s̃t is the (m− 1)th
state on the chain. Following Lemma 1, we have:

dTV

(
P(x̃ ∈ ·|θ′, st−m+1), µθ′ ⊗ πθ′ ⊗ P̃

)
=dTV

(
P ((s̃t, ãt, s̃t+1) ∈ ·|θ′, st−m+1) , µθ′ ⊗ πθ′ ⊗ P̃

)
≤ κρm−1.

Substituting the last inequality into (104) and taking total expectation on both sides yield

E[I3] ≥ −4LV CψCδκρ
m−1

We bound I4 as

E[I4|θ′] = E
[〈
∇J(θ′),

(
δ̂(x, ω∗θ′)− δ(x, θ′)

)
ψθ′(s, a)

〉∣∣∣ θ′]
≥ −Cψ‖∇J(θ′)‖2 E

[∣∣∣δ̂(x, ω∗θ′)− δ(x, θ′)∣∣∣∣∣∣ θ′]
= −Cψ‖∇J(θ′)‖2 E

[∣∣γ (φ(s′)>ω∗θ′ − Vπθ′ (s
′)
)

+ Vπθ′ (s)− φ(s)>ω∗θ′
∣∣∣∣ θ′]

≥ −Cψ‖∇J(θ′)‖2
(
γ E

[
|φ(s′)>ω∗θ′ − Vπθ′ (s

′)|
∣∣ θ′]+ E

[
|Vπθ′ (s)− φ(s)>ω∗θ′ |

∣∣ θ′])
≥ −Cψ‖∇J(θ′)‖2

(
γ
√
E
[
|φ(s′)>ω∗θ′ − Vπθ′ (s

′)|2
∣∣ θ′]+

√
E
[
|Vπθ′ (s)− φ(s)>ω∗θ′ |2

∣∣ θ′])
= −Cψ‖∇J(θ′)‖2

(
γ
√

E
s′∼µθ′

|φ(s′)>ω∗θ′ − Vπθ′ (s
′)|2 +

√
E

s∼µθ′
|Vπθ′ (s)− φ(s)>ω∗θ′ |2

)
≥ −2Cψ‖∇J(θ′)‖2εapp,

where the second last inequality follows Jensen’s inequality.

The last inequality further implies

E[I4] ≥ −2Cψ E ‖∇J(θ′)−∇J(θ) +∇J(θ)‖2εapp

≥ −2Cψεapp E ‖∇J(θ′)−∇J(θ)‖2 − 2Cψεapp E ‖∇J(θ)‖2
≥ −2Cψεapp E ‖∇J(θ′)−∇J(θ)‖2 − 2Cψεfa E ‖∇J(θ)‖2 − 2CψLV εsp

≥ −2CψLJεapp E ‖θ − θ′‖2 − 2Cψεfa E ‖∇J(θ)‖2 − 2CψLV εsp,

where the last inequality follows Proposition 1.

Taking total expectation on both sides of (101), and collecting lower bounds of I1, I2, I3 and I4 yield

E
〈
∇J(θk),

(
δ̂(x(k), ω

∗
k)− δ(x(k), θk)

)
ψθk−τk (s(k), a(k))

〉
≥ −D2 E ‖θk−τk − θk−dm‖2 −D3 E ‖θk − θk−dm‖2 −D4

dm∑
i=τk

E ‖θk−i − θk−dm‖2

−D5κρ
m−1 − 2CψLV εfa − 2Cψεsp E ‖∇J(θk)‖2,

where D2 := 2LV LψCδ, D3 := (2CδCψLJ + LV Cψ(Lω + LV )(1 + γ) + 2CψLJεapp), D4 :=
2LV CψCδ|A|Lπ and D5 := 4LV CψCδ .
Lemma 6. For any m ≥ 1 and k ≥ (K0 + 1)m+K0 + 1, we have

E
〈
∇J(θk), δ(x(k), θk)ψθk−τk (s(k), a(k))−∇J(θk)

〉
≥ −D6 E ‖θk−τk − θk−dm‖2

−D7 E ‖θk − θk−dm‖2−D8

dm∑
i=τk

E ‖θk−i − θk−dm‖2−D9κρ
m−1 − 8Cψrmax(1− γ)E ‖∇J(θk)‖2 ,

where D6 := LV CδLψ, D7 := CpLJ + (1 + γ)L2
V Cψ + 2LV LJ + 8CψrmaxLJ(1 − γ), D8 :=

LV (Cp + LV )|A|Lπ , D9 := 2LV (Cp + LV ).

Proof. For the worker that contributes to the kth update, we construct its Markov chain:

st−m
θk−dm−−−−→ at−m

P̃−→ st−m+1

θk−dm−1−−−−−−→ at−m+1 · · · st−1

θk−d1−−−−→ at−1
P̃−→ st

θk−d0−−−−→ at
P̃−→ st+1,
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where (st, at, st+1) = (s(k), a(k), s
′
(k)), and {dj}mj=0 is some increasing sequence with d0 := τk. By

(92) in Lemma 4, we have dm ≤ (K0 + 1)m+K0.

Given (st−m, at−m, st−m+1) and θk−dm , we construct an auxiliary Markov chain:

st−m
θk−dm−−−−→ at−m

P̃−→ st−m+1
θk−dm−−−−→ ãt−m+1 · · · s̃t−1

θk−dm−−−−→ ãt−1
P̃−→ s̃t

θk−dm−−−−→ ãt
P̃−→ s̃t+1.

First we have 〈
∇J(θk), δ(x(k), θk)ψθk−τk (s(k), a(k))−∇J(θk)

〉
=
〈
∇J(θk), δ(x(k), θk)

(
ψθk−τk (s(k), a(k))− ψθk−dm (s(k), a(k))

)〉
+
〈
∇J(θk), δ(x(k), θk)ψθk−dm (s(k), a(k))−∇J(θk)

〉
. (105)

We bound the first term in (105) as〈
∇J(θk), δ(x(k), θk)

(
ψθk−τk (s(k), a(k))− ψθk−dm (s(k), a(k))

)〉
≥ −‖∇J(θk)‖2 ‖δ(x(k), θk)‖2‖ψθk−τk (s(k), a(k))− ψθk−dm (s(k), a(k))‖2
≥ −LV ‖δ(x(k), θk)‖2‖ψθk−τk (s(k), a(k))− ψθk−dm (s(k), a(k))‖2
≥ −LV Cδ‖ψθk−τk (s(k), a(k))− ψθk−dm (s(k), a(k))‖2
≥ −LV CδLψ‖θk−τk − θk−dm‖2, (106)

where the last inequality follows Assumption 3, and the second last inequality follows the fact that

|δ(x, θ)| ≤ |r(x)|+ γ|Vπθ (s′)|+ |Vπθ (s)| ≤ rmax + (1 + γ)
rmax

1− γ
≤ Cδ.

Substituting (106) into (105) gives〈
∇J(θk), δ(x(k), θk)ψθk−τk (s(k), a(k))−∇J(θk)

〉
≥ −LV CδLψ‖θk−τk − θk−dm‖2 +

〈
∇J(θk), δ(x(k), θk)ψθk−dm (s(k), a(k))−∇J(θk)

〉
. (107)

Then we start to bound the second term in (107). For brevity, we define

∆3(x, θ) :=
〈
∇J(θ), δ(x, θ)ψθk−dm (s, a)−∇J(θ)

〉
.

Throughout the following proof, we use θ, θ′, x and x̃ as shorthand notations of θk, θk−dm , xt and
x̃t respectively.

We decompose ∆3(x, θ) as

∆3(x, θ) = ∆3(x, θ)−∆3(x, θ′)

I1

+ ∆3(x, θ′)−∆3(x̃, θ′)

I2

+ ∆3(x̃, θ′)

I3

.

We first bound I1 as

|I1| = |∆3(x, θ)−∆3(x, θ′)|
=
∣∣〈∇J(θ), δ(x, θ)ψθ′(s, a)〉 − ‖∇J(θ)‖22 − 〈∇J(θ′), δ(x, θ′)ψθ′(s, a)〉+ ‖∇J(θ′)‖22

∣∣
≤ |〈∇J(θ), δ(x, θ)ψθ′(s, a)〉 − 〈∇J(θ′), δ(x, θ′)ψθ′(s, a)〉|+

∣∣‖∇J(θ′)‖22 − ‖∇J(θ)‖22
∣∣

≤ |〈∇J(θ), δ(x, θ)ψθ′(s, a)〉 − 〈∇J(θ′), δ(x, θ′)ψθ′(s, a)〉|+ ‖∇J(θ′) +∇J(θ)‖2‖∇J(θ′)−∇J(θ)‖2
≤ |〈∇J(θ), δ(x, θ)ψθ′(s, a)〉 − 〈∇J(θ′), δ(x, θ′)ψθ′(s, a)〉|+ 2LV LJ‖θ − θ′‖2, (108)
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where the last equality is due to LV -Lipschitz of value function and LJ -Lipschitz of policy gradient.
We bound the first term in (108) as

|〈∇J(θ), δ(x, θ)ψθ′(s, a)〉 − 〈∇J(θ′), δ(x, θ′)ψθ′(s, a)〉|
≤ |〈∇J(θ), δ(x, θ)ψθ′(s, a)〉 − 〈∇J(θ), δ(x, θ′)ψθ′(s, a)〉|

+ |〈∇J(θ), δ(x, θ′)ψθ′(s, a)〉 − 〈∇J(θ′), δ(x, θ′)ψθ′(s, a)〉|
= |〈∇J(θ), (δ(x, θ)− δ(x, θ′))ψθ′(s, a)〉|+ |〈∇J(θ)−∇J(θ′), δ(x, θ′)ψθ′(s, a)〉|
≤ LV Cψ |δ(x, θ)− δ(x, θ′)|+ Cp‖∇J(θ)−∇J(θ′)‖2
= LV Cψ

∣∣γ(Vπθ (s
′)− Vπθ′ (s

′)) + Vπθ′ (s)− Vπθ (s)
∣∣+ Cp‖∇J(θ)−∇J(θ′)‖2

≤ LV Cψ
(
γ
∣∣Vπθ (s′)− Vπθ′ (s′)∣∣+

∣∣Vπθ′ (s)− Vπθ (s)∣∣)+ Cp‖∇J(θ)−∇J(θ′)‖2
≤ LV Cψ (γLV ‖θ − θ′‖2 + LV ‖θ′ − θ‖) + CpLJ‖θ − θ′‖2
=
(
CpLJ + (1 + γ)L2

V Cψ
)
‖θ − θ′‖2.

Substituting the above inequality into (108) gives the lower bound of I1:

I1 ≥ −
(
CpLJ + (1 + γ)L2

V Cψ + 2LV LJ
)
‖θ − θ′‖2.

First we bound I2 as

E[I2|θ′, st−m+1] = E [∆3(x, θ′)−∆3(x̃, θ′)|θ′, st−m+1]

≥ − |E [∆3(x, θ′)|θ′, st−m+1]− E [∆3(x̃, θ′)|θ′, st−m+1]|
≥ − sup

x
|∆3(x, θ′)| ‖P(x ∈ ·|θ′, st−m+1)− P(x̃ ∈ ·|θ′, st−m+1)‖TV

≥ −2LV (Cp + LV )dTV (P(x ∈ ·|θ′, st−m+1),P(x̃ ∈ ·|θ′, st−m+1))

≥ −LV (Cp + LV )|A|Lπ
dm∑
i=τk

E [‖θk−i − θk−dm‖2|θ′, st−m+1] , (109)

where the second inequality is due to the definition of TV norm, the last inequality is due to (22) in
Lemma 2, and thesecond last inequality follows the fact that

|∆3(x, θ′)| ≤ ‖∇J(θ)‖2
(
‖δ(x, θ)ψθk−dm (s, a)‖2 + ‖∇J(θ)‖2

)
≤ LV (Cp + LV ). (110)

Taking total expectation on both sides of (109) yields

E[I2] ≥ −LV (Cp + LV )|A|Lπ
dm∑
i=τk

E ‖θk−i − θk−dm‖2.

Define x := (s, a, s′), where s ∼ dθ′ , a ∼ πθ′ and s′ ∼ P̃ . Then we have

E[I3] = E [∆3(x̃, θ′)−∆3(x, θ′)] + E [∆3(x, θ′)] . (111)

We bound the first term in (111) as

E [∆3(x̃, θ′)−∆3(x, θ′)|θ′, st−m+1]

≥ − |E [∆3(x̃, θ′)|θ′, st−m+1]− E [∆3(x, θ′)|θ′, st−m+1]|
≥ − sup

x
|∆3(x, θ′)| ‖P(x̃ ∈ ·|θ′, st−m+1)− P(x ∈ ·|θ′, st−m+1)‖TV

≥ −2LV (Cp + LV )dTV (P(x̃ ∈ ·|θ′, st−m+1),P(x ∈ ·|θ′, st−m+1))

= −2LV (Cp + LV )dTV

(
P(x̃ ∈ ·|θ′, st−m+1), dθ′ ⊗ πθ′ ⊗ P̃

)
= −2LV (Cp + LV )dTV

(
P(x̃ ∈ ·|θ′, st−m+1), µθ′ ⊗ πθ′ ⊗ P̃

)
(112)

where the second inequality follows the definition of total variation norm, and the third inequality
follows (110). The last equality is due to the fact shown by [6] that µθ′(·) = dθ′(·), where µθ′ is the
stationary distribution of an artificial MDP with transition kernel P̃(·|s, a) and policy πθ′ .
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The auxiliary Markov chain with policy πθ′ starts from initial state st−m+1, and s̃t is the (m− 1)th
state on the chain. Following Lemma 1, we have:

dTV

(
P(x̃ ∈ ·|θ′, st−m+1), µθ′ ⊗ πθ′ ⊗ P̃

)
= dTV

(
P ((s̃t, ãt, s̃t+1) ∈ ·|θ′, st−m+1) , µθ′ ⊗ πθ′ ⊗ P̃

)
≤ κρm−1.

Substituting the last inequality into (112) and taking total expectation on both sides yield

E [∆3(x̃, θ′)−∆3(x, θ′)] ≥ −2LV (Cp + LV )κρm−1.

Consider the second term in (111). Note its form is similar to (59), so by following the derivation of
(63), we directly have

E[∆3(x, θ′)] = E 〈∇J(θ′), δ(x, θ′)ψθ′(s, a)−∇J(θ′)〉 ≥ −8Cψrmax(1− γ)E ‖∇J(θ′)‖2 ,

which further implies

E[∆3(x, θ′)] ≥ −8Cψrmax(1− γ)E ‖∇J(θ′)‖2
≥ −8Cψrmax(1− γ)E ‖∇J(θ′)−∇J(θ)‖2 − 8Cψrmax(1− γ)E ‖∇J(θ)‖2
≥ −8CψrmaxLJ(1− γ)E ‖θ′ − θ‖2−8Cψrmax(1− γ)E ‖∇J(θ)‖2

where the last inequality follows from Proposition 1.

Collecting the lower bounds gives

E[I3] ≥ −2LV (Cp + LV )κρm−1 − 8Cψrmax(1− γ) (LJ E ‖θ′ − θ‖2 − E ‖∇J(θ)‖2) .

Taking total expectation on ∆3(x, θ) and collecting lower bounds of I1, I2, I3 yield

E[∆3(x, θ)] ≥ −
(
CpLJ + (1 + γ)L2

V Cψ + 2LV LJ + 8CψrmaxLJ(1− γ)
)
E ‖θk − θk−dm‖2

− LV (Cp + LV )|A|Lπ
dm∑
i=τk

E ‖θk−i − θk−dm‖2 − 2LV (Cp + LV )κρm−1 − 8Cψrmax(1− γ)E ‖∇J(θk)‖2 .

Taking total expectation on (107) and substituting the above inequality into it yield

E
〈
∇J(θk), δ(x(k), θk)ψθk−τk (s(k), a(k))−∇J(θk)

〉
≥ −D6 E ‖θk−τk − θk−dm‖2

−D7 E ‖θk − θk−dm‖2 −D8

dm∑
i=τk

E ‖θk−i − θk−dm‖2 −D9κρ
m−1 − 8Cψrmax(1− γ)E ‖∇J(θk)‖2 ,

where D6 := LV CδLψ, D7 := CpLJ + (1 + γ)L2
V Cψ + 2LV LJ + 8CψrmaxLJ(1 − γ), D8 :=

LV (Cp + LV )|A|Lπ , D9 := 2LV (Cp + LV ).

C.3 EXPLANATION OF THE APPROXIMATION ERROR

In this section, we will provide a justification for the circumstances when the approximation error
εapp defined in (14) is small.
Lemma 7. Suppose Assumption 2 and 4 hold. Then it holds that

εapp ≤ max
θ∈Rd

√
E

s∼µθ
|Vπθ (s)− V̂ω̄∗θ (s)|2 + 4rmax(λ−1 + λ−2rmax)

(
1 + logρ κ

−1 +
1

1− ρ

)
(1− γ)

(113)

where ω̄∗θ the critic stationary point of original Markov chain with policy πθ and transition kernel P .

In (113), the first term captures the quality of critic function parameterization method which also
appears in previous works [14, 15, 17]. When using linear critic function approximation, it becomes
zero when the value function Vπθ belongs to the linear function space for any θ. The second term
corresponds to the error introduced by sampling from the artificial transition kernel P̃(·|s, a) =
(1− γ)P(·|s, a) + γη(·). For a large γ close to 1, the artificial Markov chain is close to the original
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one. In this case, the second error term is therefore small. This fact also consists with practice where
large γ is commonly used in two time-scale actor critic algorithms [3].

Before going into the proof, we first define that:

Āθ,φ := E
s∼µ̄θ,s′∼Pπθ

[φ(s)(γφ(s′)− φ(s))>], b̄θ,φ := E
s∼µ̄θ,a∼πθ,s′∼P

[r(s, a, s′)φ(s)],

where µ̄θ as the stationary distribution of the original Markov chain with πθ and transition kernel P .

Proof. Recall the definition of the approximation error:

εapp = max
θ∈Rd

√
E

s∼µθ
|Vπθ (s)− V̂ω∗θ (s)|2,

where µθ is the stationary distribution of the artificial Markov chain with πθ and transition kernel P̃ ,
and ω∗θ is the stationary point of critic update under the artificial Markov chain.

We decompose εapp as

εapp = max
θ∈Rd

√
E

s∼µθ
|Vπθ (s)− V̂ω̄∗θ (s) + V̂ω̄∗θ (s)− V̂ω∗θ (s)|2

≤ max
θ∈Rd

√
E

s∼µθ
|Vπθ (s)− V̂ω̄∗θ (s)|2

εfa

+ max
θ∈Rd

√
E

s∼µθ
|V̂ω̄∗θ (s)− V̂ω∗θ (s)|2

εsp

, (114)

where the first term corresponds to the function approximation error εfa, and second term corresponds
to the sampling error εsp.

With A, b and Ā, b̄ as shorthand notations for Aθ,ψ, bθ,ψ and Āθ,ψ, b̄θ,ψ respectively, we bound the
second term in (114) as

|V̂ω̄∗θ (s)− V̂ω∗θ (s)| =
∣∣φ(s)>ω∗θ − φ(s)>ω̄∗θ

∣∣
≤
∥∥A−1b− Ā−1b̄

∥∥
2

=
∥∥A−1b−A−1b̄+A−1b̄− Ā−1b̄

∥∥
2

≤
∥∥A−1(b− b̄)

∥∥
2

+
∥∥(A−1 − Ā−1)b̄

∥∥
2

≤ λ−1‖b− b̄‖2 + rmax

∥∥A−1 − Ā−1
∥∥

2

= λ−1‖b− b̄‖2 + rmax

∥∥A−1(Ā−A)Ā−1
∥∥

2

≤ λ−1‖b− b̄‖2 + λ−2rmax

∥∥Ā−A∥∥
2
. (115)

We bound the first term in last inequality as

‖b− b̄‖2 =

∥∥∥∥∥ E
s∼µθ,a∼πθ,s′∼P̃

[r(s, a, s′)φ(s)]− E
s∼µ̄θ,a∼πθ,s′∼P

[r(s, a, s′)φ(s)]

∥∥∥∥∥
≤ sup ‖r(s, a, s′)φ(s)‖2‖µθ ⊗ πθ ⊗ P̃ − µ̄θ ⊗ πθ ⊗ P‖TV
≤ 2rmaxdTV (µθ ⊗ πθ ⊗ P̃, µ̄θ ⊗ πθ ⊗ P). (116)

We now bound the divergence term in the last inequality as

dTV (µθ ⊗ πθ ⊗ P̃, µ̄θ ⊗ πθ ⊗ P)

=

∫
s∈S

∑
a∈A

∫
s′∈S

∣∣∣µθ(s)πθ(a|s)P̃(s′|s, a)− µ̄θ(s)πθ(a|s)P(s′|s, a)
∣∣∣

=

∫
s∈S

∑
a∈A

∫
s′∈S
|µθ(s)πθ(a|s)P̃(s′|s, a)− µθ(s)πθ(a|s)P(s′|s, a)

+ µθ(s)πθ(a|s)P(s′|s, a)− µ̄θ(s)πθ(a|s)P(s′|s, a)|

≤
∫
s∈S

∑
a∈A

µθ(s)πθ(a|s)
∫
s′∈S

∣∣∣P̃(s′|s, a)− P(s′|s, a)
∣∣∣+

∫
s∈S
|µθ(s)− µ̄θ(s)| . (117)
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We bound the first term in (117) as∫
s′∈S

∣∣∣P̃(s′|s, a)− P(s′|s, a)
∣∣∣ = (1− γ)

∫
s′∈S
|P(s′|s, a)− η(s′)| ≤ 2(1− γ). (118)

Following [39, Theorem 3.1], the second term in (117) can be bounded as∫
s∈S
|µθ(s)− µ̄θ(s)| ≤

(
logρ κ

−1 +
1

1− ρ

)
sup
s

∫
s′∈S

∣∣∣∣∣∑
a

πθ(a|s)
(
P̃(s′|s, a)− P(s′|s, a)

)∣∣∣∣∣
≤
(

logρ κ
−1 +

1

1− ρ

)
sup
s

∑
a

πθ(a|s)
∫
s′∈S

∣∣∣P̃(s′|s, a)− P(s′|s, a)
∣∣∣

≤ 2

(
logρ κ

−1 +
1

1− ρ

)
(1− γ), (119)

where the last inequality follows (118).

Substituting (118) and (119) into (117) gives

dTV (µθ ⊗ πθ ⊗ P̃, µ̄θ ⊗ πθ ⊗ P) ≤ 2

(
1 + logρ κ

−1 +
1

1− ρ

)
(1− γ).

Substituting the above inequality into (116) gives

‖b− b̄‖2 ≤ 4rmax

(
1 + logρ κ

−1 +
1

1− ρ

)
(1− γ). (120)

Similarly, we also have

‖A− Ā‖2 ≤ 4rmax

(
1 + logρ κ

−1 +
1

1− ρ

)
(1− γ). (121)

Substituting (120) and (121) into (115), then substituting (115) into (114) completes the proof.

D EXPERIMENT DETAILS

Hardware device. The tests on synthetic environment and CartPole was performed in a 16-core
CPU computer. The test on Atari game was run in a 4 GPU computer.

Parameterization. For the synthetic environment, we used linear value function approximation and
tabular softmax policy [36]. For CartPole, we used a 3-layer MLP with 128 neurons and sigmoid
activation function in each layer. The first two layers are shared for both actor and critic network. For
the Atari seaquest game, we used a convolution-LSTM network. For network details, see [40].

Hyper-parameters Value
Number of workers 16

Optimizer Adam
Step size 0.00015

Batch size 20
Discount factor 0.99

Entropy coefficient 0.01
Frame size 80 × 80

Frame skip rate 4
Grayscaling Yes

Training reward clipping [-1,1]

Table 1: Hyper-parameters of A3C-TD(0) in the Atari seaquest game.

Hyper-parameters. For the synthetic environment tests, we run Algorithm 1 with actor step size
αk = 0.05

(1+k)0.6 and critic step size βk = 0.05
(1+k)0.4 . In tests of CartPole, we run Algorithm 1 with a

minibatch of 20 samples. We update the actor network with a step size of αk = 0.01
(1+k)0.6 and critic

network with a step size of βk = 0.01
(1+k)0.4 . See Table 1 for hyper-parameters to generate the Atari

game results in Figure 4.
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