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Abstract

There is a rapidly growing number of open-source Large Language Models (LLMs)
and benchmark datasets to compare them. While some models dominate these
benchmarks, no single model typically achieves the best accuracy in all tasks and
use cases. In this work, we address the challenge of selecting the best LLM out
of a collection of models for new tasks. We propose a new formulation for the
problem, in which benchmark datasets are repurposed to learn a “router” model for
this LLM selection, and we show that this problem can be reduced to a collection
of binary classification tasks. We demonstrate the utility and limitations of learning
model routers from various benchmark datasets. The extended version of the paper
is available at this arXiv link.

1 Introduction

Figure 1: We learn the strengths of candidate
LLMs (T5, Falcon, Llama) on various tasks
(emojis inside boxes: QA, reasoning, etc.)
and domains (4 sections within each box: fi-
nance, legal, etc.) from benchmark datasets.
We achieve this by training a binary classifier
per LLM (decision boundaries marked with
colors in the upper part of the figure). For a
new task (paper stack), we score each LLM
with these binary classifiers and recommend
an LLM (here Falcon) to the user.

The popularity of LLMs and their many potential
uses prompted the development of comprehensive
benchmarks, i.e., datasets representing different tasks
and domains to compare LLMs. For example, HELM
[1] consists of 42 scenarios covering a variety of uses,
MMLU [2] is a multiple-choice question answering
with 57 tasks organized by topics, among others [3, 4].
While there always will be an LLM that is the best
on average across benchmarks, there is unlikely ever
to be a model that is strictly the best on each of the
hundreds of datasets comprising various benchmarks.

In this paper, we study the problem of identifying the
best LLM for a new task. To learn about the strengths
and weaknesses of candidate LLM, we use bench-
mark datasets that give insights into the performance
across tasks and domains. We cast the learning of
model strengths as a binary supervised learning task,
where the features are input embeddings of samples
across tasks, and the labels are whether the model
“did well” on the corresponding inputs, e.g., gener-
ated correct class label, answered a question correctly,
or followed input instructions sufficiently well. See
Figure 1 for an illustration. We emphasize that when
training the proposed “correctness" predictor, it is im-
portant to consider their ability to generalize out-of-
distribution (OOD) data since our goal is to estimate
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LLM performance on new tasks that were not seen during training. Training predictors given data
from multiple domains that need to be generalized to unseen domains is an active area of research in
ML literature [5–7]. We provide extended related work discussion in Appendix A.

2 Learning from Benchmarks

We introduce notations describing a typical NLP benchmark. Let {xd
1, . . . , x

d
nd
}Dd=1 be a collection of

inputs across D tasks. Each input text xd
i corresponds to a reference answer rdi , i.e., an ideal generation

for this input. There is a task-dependent metric Fd(x, o, r) that measures how well a response o for
an input x corresponds to the reference r. To test an LLMm, m ∈ {1, . . . ,M}, on the benchmark,
for each task d = 1, . . . , D, its responses are generated {odim = LLMm(xd

i )}
nd
i=1 and compared to

the corresponding references to obtain performance metrics {fd
im = Fd(x

d
i , o

d
im, rdi )}

nd
i=1. 1 At this

point, most of the benchmark studies will take a (weighted) average of the performance metrics and
report a single score for every LLM to rank them in performance. Instead, we reuse these evaluation
results to formulate a supervised learning problem to understand better the strengths and weaknesses
of various LLMs based on their performance on data points and tasks.

Our goal is to learn a routing function gm(x) for each LLM, m = 1, . . . ,M , that can predict
performance of this LLM, {fd′

im}nd′
i=1. We denote the “correctness” of model m on an input x by

y(x,m) ∈ {0, 1}. Correctness is evaluated as follows: generate a response odim with LLM m on input
xd
i , compare it to the corresponding reference rdi , and output 1 if the model’s response is good enough,

i.e., fd
im > ηd, and 0 otherwise, where ηd is some threshold that can be task and/or metric specific.

For tasks like classification or multiple-choice QA, y(xd
i ,m) = fd

im, while for various evaluation
metrics used in summarization and instruction following tasks [8–10], the notion of correctness can
help to account for the heterogeneity of popular metrics and task difficulty levels.

For each LLM, m = 1, . . . ,M , we train a predictor of its correctness with (multi-task) empirical risk
minimization: mingm

∑D
d=1

∑nd

i=1 ℓ(gm(xd
i ), y(x

d
i ,m)), where we choose ℓ to be a binary cross-

entropy loss and gm is any standard probabilistic classifier, i.e., gm(x) estimates P (y(x,m) = 1|x).
We embed all inputs with a sentence transformer [11] and use a k-nearest neighbors classifiers [12]
as correctness predictors {gm}Mm=1. We choose this approach for learning correctness predictors to
emphasize the utility of learning from benchmarks even with a basic method and instead focus on
the question specific to our problem that has not been studied in prior works on OOD generalization:
Can we improve the quality of LLM routing with an imperfect correctness predictor?

3 LLM routing with (imperfect) correctness predictors

The goal of LLM routing is to identify an LLM that will have the highest frequency of being correct
on a new task d′, given the inputs {xd′

i }nd′
i=1 from this task: argmaxm S̃(m, d′), where S̃(m, d′) =

1
nd′

∑nd′
i=1 y(x

d′

i ,m). Here, S̃(m, d′) is the “oracle” score that we want to estimate. The most intuitive
estimator is simply using the correctness predictor

S1(m, d′) = 1
nd′

∑nd′
i=1 gm(xd′

i ), (1)

but prior work has shown that accurately estimating P (y|x), i.e., calibration, is challenging on OOD
data [13]. Meanwhile, gm may still produce accurate predictions after thresholding the predicted
probability even if the class probabilities are not estimated well, which is often the case with neural
networks [14]. This motivates another score:

S2(m, d′) = 1
nd′

∑nd′
i=1 ḡm(xd′

i ), where ḡm(xd′

i ) = I(gm(xd′

i ) > t), (2)

where t ∈ (0, 1) is some threshold, e.g., t = 0.5, I is an indicator function, and ḡm(x) ∈ {0, 1}
can be interpreted as the prediction of gm on x. This score, however, does not take into account the
potential “imperfection” of gm, i.e., lower accuracy on OOD data from task d′. To address this issue,
we model the out-of-distribution confidence of the predictions ḡm.

A simple OOD confidence model. We model LLM correctness as follows:

y(x,m)|x, d′ =
{
ḡm(x) with probability p(d′,m)

1− ḡm(x) with probability 1− p(d′,m),
(3)

1W.l.o.g., we can consider the same LLM with a different prompting strategy as a different LLM.
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i.e., p(d′,m) ∈ [0, 1] is the probability that ḡm is the correct prediction on a data point from task d′.
The above model can be condensed as follows:

y(x,m)|x, d′ ∼ Bern(ḡm(x)p(d′,m) + (1− ḡm(x))(1− p(d′,m))). (4)

In this simplistic (and approximate) model, we assume that p(d′,m) does not depend on the input x
after conditioning on the task d′. We treat the problem of estimating p(d′,m) as a supervised learning
task, taking advantage of the task partition. Specifically, we assign a task descriptor u(d) ∈ R+ to
every task that measures the distance of the data from task d to the other available tasks combined.
Then we collect the values of p(d,m), i.e., the accuracy of ḡm on d, and fit a non-parametric
regression model to predict p(d,m) from u(d). At test time, we compute u(d′) for a new task d′

based on the inputs {xd′

i }nd′
i=1 and predict p(d′,m) using the fitted regression model (we use Gaussian

kernel smoother). We provide details in Appendix B.

Finally, given the model of LLM correctness 4, S̃(m, d′) is a random variable (corresponding to
S̃(m, d′)) distributed as a (scaled) sum of two Bernoulli random variables. To arrive at our final score
for LLM routing, we take its expected value:

S3(m, d′) = S2(m, d′)p(d′,m) + (1− S2(m, d′))(1− p(d′,m)). (5)

When selecting an LLM with S3, we consider an alternative to the argmax criterion based on our
correctness model 4, which defaults to the best model on average across benchmark datasets when
we are not sufficiently confident that a candidate model will be better:{

m3 if P (S̃(m3, d
′) > S̃(m∗, d′)) > η

m∗ otherwise,
(6)

where m3 = argmaxm S3(m, d′), i.e., the best LLM for the new task according to S3, and m∗ =

argmaxm
∑D

d=1 S̃(m, d), i.e., the best LLM across the benchmark datasets. In the experiments, we
set η = 0.6. We summarize our LLM routing procedures in Appendix B.

4 Model routing on HELM

Data: We select 29 datasets from the HELM benchmark [1] representing scenarios such as question
answering (including a subset of MMLU [2]), text classification, language, knowledge, and reasoning,
among others. We present additional information about these datasets in Table 5.

Models: We evaluate 18 open-source models ranging in size from 3B to 70B, including base and
chat variations of Llama 2 in different sizes. All models are summarized in Table 6.

Model routing: The best model on average (BMA) across the 29 considered HELM datasets is
llama-2-70b. Our goal is to show that learning model routers from benchmark data can simultane-
ously outperform BMA and reduce inference costs by recommending smaller LLMs for tasks where
they can perform well. We compare models selected with the three scores, S1, S2, and S3, presented
in Section 3 to the performance of llama-2-70b, i.e., the BMA. All correctness predictors gms are
kNN classifiers with k = 5. We report results with neural networks in Appendix C.1.

Table 1: LLM routing on HELM.
Acc. Pearson # Params

S1 eq. 1 0.662 0.685 40.3B
S2 eq. 2 0.676 0.636 44.3B
S3 eq. 5, 6 0.727 0.492 49.8B
S3 true p 0.735 0.799 33.8B
LL 0.684 0.714 —
BMA 0.688 — 70.0B

Oracle 0.773 — 29.1B

We also report the performance of the best model ac-
cording to the “oracle” score S̃, which is the upper
bound on what can be achieved with model routing,
and S3 with the true p(d′,m), i.e., the accuracy of (an
imperfect) gm on d′. Finally, we compare the scoring
LLMs with the average log-likelihood (LL) (or negative
perplexity) of the response they generate on the inputs
from the task of interest. This last baseline requires
producing generations with every LLM at test time to
make a selection, while all of our scores only require
generating with the chosen LLM.

Results: We conduct 29 sets of experiments, each time selecting 28 of the datasets as the benchmark
data for training the LLM routers and using the remaining task as the new task d′ for evaluating the
performance. In Table 1 we report averages across experiments for the performance of the selected
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model (Acc.), Pearson rank correlations between model accuracies and model scores, and the number
of parameters of the selected model (# Params). We present additional comparison metrics in Table 2.

First, we notice that accounting for imperfections of the correctness predictors (their average accuracy
is 0.59) has clear benefits: when we have access to the true accuracy of correctness predictors, the
corresponding score, S3 true p, noticeably outperforms all other scores. Our simple kernel smoothing
estimator of this accuracy (MAE= 0.116) allows us to obtain a practical model routing score S3 that
outperforms BMA (llama-2-70b) while choosing smaller models for some of the tasks (as evident
by the average number of parameters of the chosen models). S2 sacrifices some accuracy but chooses
even smaller performant models. Overall, learning from benchmarks allows us to obtain LLM routers
that can improve overall performance while utilizing smaller models where appropriate. Finally, we
note that log-likelihood (LL) also performs well. However, routing with it requires passing each test
input through each candidate LLM, which has 347B parameters in total.

Reducing the OOD gap: The average accuracy of correctness predictors across tasks and models
for the experiments in Table 1 is 0.59. It is a fairly low accuracy for binary classification, which we
attribute to the diversity of tasks in HELM leading to substantial distribution shifts when predicting
the correctness of LLMs on held-out tasks. We investigate the quality of model routing when we
reduce this OOD gap. A simple strategy to reduce this gap is to collect a small number of labeled
in-distribution samples. This can be accomplished by asking a practitioner to provide reference
answers (rd

′

i s) for a small number of inputs from their task to evaluate the correctness of candidate
LLMs on these in-distribution inputs and use it to improve correctness predictors.
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Figure 2: Reducing the OOD gap.

We simulate this scenario by moving min(αnd′
, 50)

samples from the data from a new task d′ to the data
for training the correctness predictors. The upper
limit of 50 samples is to maintain practical utility
while accounting for varying dataset sizes (see Table
5). We conduct 29 sets of experiments, repeating
each one 10 times to obtain standard deviations (ran-
domness is due to random selection of data points
from a new task for reducing the OOD gap). We
summarize the average accuracy of models selected
with various routing scores for varying α in Figure 2
(α = 0 corresponds to Table 1). Results for Pearson
correlation are in Figure 4(a).

We see that even a small number of in-distribution samples (α = 0.05) can reduce the OOD gap
(corresponding average accuracy of correctness predictors is 0.65; see Figure 4(b)) and noticeably
improves the model routing performance of all three of our scores. When the number of in-distribution
samples further increases, S1 starts to outperform S3. We attribute this observation to kNN being
well-calibrated in-distribution, i.e., the correctness predictors provide reliable estimates of their own
confidence P (y|x), which are used by S1 in (1). Finally, we note a fairly large variance in the results
due to random selection of the in-distribution training samples from d′, suggesting that active learning
[15] can help to improve LLM routing further.
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Figure 3: Correlation(S3, Accs.) and u(d′).

Learning from more benchmarks: We anticipate
learning LLM routers from benchmarks to be the
most effective when new tasks are similar to the
benchmark tasks, thus reducing the OOD gap without
any labeling burden for a practitioner. To empirically
investigate this hypothesis, in Figure 3 we visualize
the relation between the quality of model routing
with S3, measured with Pearson correlation between
model scores and accuracies of candidate LLMs, and
the distance u(d′) from a new task d′ to the training
benchmark data. Here we aggregated results across
different α values from Figure 2. For smaller dis-
tance values the correlation is approaching 1, while
for large distances it sometimes deteriorates. Results
for other scores demonstrate a similar trend and are presented in Appendix C.3 along with additional
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details. Our work demonstrates the potential of learning from benchmarks for LLM routing and
investigates 3 model scores in the context of OOD generalization when routing LLMs for new tasks.

We present results on routing smaller LLMs on HELM in Appendix E, results on the MixInstruct
benchmark [16] in Appendix D, and discussion of potential future work directions in Appendix F.
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[19] Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, et al. Findings of the
2014 workshop on statistical machine translation. In Proceedings of the ninth workshop on
statistical machine translation, pages 12–58, 2014.

[20] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and benchmarking
self-supervised visual representation learning. In Proceedings of the ieee/cvf International
Conference on computer vision, pages 6391–6400, 2019.

[21] Chunyuan Li, Haotian Liu, Liunian Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping
Jin, Houdong Hu, Zicheng Liu, Yong Jae Lee, et al. Elevater: A benchmark and toolkit for
evaluating language-augmented visual models. Advances in Neural Information Processing
Systems, 35:9287–9301, 2022.

[22] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[23] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. Advances in neural information processing systems, 32, 2019.

[24] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615, 2022.

[25] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

[26] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements
of statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[27] Sebastian Raschka. Model evaluation, model selection, and algorithm selection in machine
learning. arXiv preprint arXiv:1811.12808, 2018.

[28] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

6



[29] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[30] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2021.

[31] Hui Xu and Robert Tibshirani. Estimation of prediction error with known covariate shift. arXiv
preprint arXiv:2205.01849, 2022.

[32] Mayee Chen, Karan Goel, Nimit S Sohoni, Fait Poms, Kayvon Fatahalian, and Christopher Ré.
Mandoline: Model evaluation under distribution shift. In International conference on machine
learning, pages 1617–1629. PMLR, 2021.

[33] Subha Maity, Mikhail Yurochkin, Moulinath Banerjee, and Yuekai Sun. Understanding new
tasks through the lens of training data via exponential tilting. In International Conference on
Learning Representations, 2023.

[34] Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J Zico Kolter. Assessing Generalization
of SGD via Disagreement. In International Conference on Learning Representations, 2021.

[35] Jiefeng Chen, Frederick Liu, Besim Avci, Xi Wu, Yingyu Liang, and Somesh Jha. Detecting
errors and estimating accuracy on unlabeled data with self-training ensembles. Advances in
Neural Information Processing Systems, 34:14980–14992, 2021.

[36] Nathan Hoyen Ng, Neha Hulkund, Kyunghyun Cho, and Marzyeh Ghassemi. Predicting out-
of-domain generalization with neighborhood invariance. Transactions on Machine Learning
Research, 2023.

[37] Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor Darrell, and Ludwig Schmidt. Pre-
dicting with confidence on unseen distributions. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1134–1144, 2021.

[38] Saurabh Garg, Sivaraman Balakrishnan, Zachary Chase Lipton, Behnam Neyshabur, and Hanie
Sedghi. Leveraging unlabeled data to predict out-of-distribution performance. In International
Conference on Learning Representations, 2022.

[39] Yaodong Yu, Zitong Yang, Alexander Wei, Yi Ma, and Jacob Steinhardt. Predicting out-of-
distribution error with the projection norm. In International Conference on Machine Learning,
pages 25721–25746. PMLR, 2022.

[40] Yixin Liu and Pengfei Liu. Simcls: A simple framework for contrastive learning of abstractive
summarization. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 1065–1072, 2021.

[41] Mathieu Ravaut, Shafiq Joty, and Nancy Chen. Summareranker: A multi-task mixture-of-
experts re-ranking framework for abstractive summarization. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
4504–4524, 2022.

[42] Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to Use Large Language Models
While Reducing Cost and Improving Performance. arXiv preprint arXiv:2305.05176, 2023.

[43] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[44] LAION-AI. Open assistant, 2023.

[45] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.

7



[46] Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrin Kirchhoff. Masked language model
scoring. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 2699–2712, 2020.

[47] Lingjiao Chen, Matei Zaharia, and James Y Zou. Frugalml: How to use ml prediction apis more
accurately and cheaply. Advances in neural information processing systems, 33:10685–10696,
2020.

8



A Related work

Benchmarking Comparing models or algorithms across various tasks is a standard practice in
ML and AI literature. Prior to Foundation Models [17], it was typical to apply the same learning
algorithm to train a model on each of the datasets and compare the performance against other
learning algorithms. The UCI Machine Learning Repository [18] is one prominent example of
such a collection of datasets often used to compare learning algorithms. With the emergence of
Foundation Models, i.e., models with billions of parameters trained on massive datasets using large
compute clusters, the paradigm changed to evaluating the same model (or a few-shot tuned version
of it) on a variety of tasks [19–21]. In the context of Large Language Models, many benchmarks
[22, 23, 2, 4, 24, 1, 3, 16] were proposed to help determine the most capable LLM. Benchmarks
typically average the performance of models across tasks and provide a final ranking, discarding
the rest of the information. In this work, we use the byproducts of benchmark evaluations, i.e., the
per-sample performance of various LLMs across tasks, to learn about their individual strengths and
identify the best LLM for a new task.

Model selection Selecting the best model, or model selection, is a classical topic in statistics and
ML [25–27]. However, the typical problem setting is quite different: classical methods like cross-
validation aim to estimate the population error of a model trained on samples from the population
distribution. In other words, the goal is to find the best model for in-distribution test data, i.e., data
sampled from the same distribution as the train data. The notion of “train” data is quite elusive for
LLMs, as they are usually trained on massive datasets with trillions of tokens with a simple task of
next token prediction [28, 29]. However, the tasks we evaluate them on are often more structured, e.g.,
classification and question-answering, and are specific to domains that may or may not be sufficiently
represented in the train data. In addition, techniques like k-fold cross-validation require training the
model multiple times, which is infeasible for LLMs.

Out-of-distribution model selection Recognizing the limitations of the model selection methods
for in-distribution test data [30, 7], recent work has proposed a variety of methods to select models
when deployed on data that may differ from the train data. These methods rely on ideas such as
bootstrapping [31], reweighing [32, 33], agreement of models or ensembles [34–36], or aligning
model accuracy in-distribution with a confidence threshold [37–39]. Most of these methods are
nontrivial to extend to generation use-cases of LLMs; some require training multiple models, and
some need well-defined in-distribution data related to the new task.

Routing LLMs Prior work on selecting LLMs primarily considers choosing one that produces the
best generation for a given input. [40, 41, 16] train dedicated scoring or ranking models that can be
applied to model generations. Unlike our work, these approaches require generating outputs with
every candidate LLM to make a decision, which can be computationally prohibitive with a large pool
of candidate LLMs. FrugalGPT [42] calls LLMs sequentially until a dedicated scoring model deems
the generation acceptable. Prior works in this group require training data sufficiently representative
of each of the tasks and domains of interest to train the corresponding ranking and scoring models. In
this paper, instead, we use data from benchmarks to learn the strengths and weaknesses of LLMs
across tasks and domains. The resulting model router requires generating outputs only with the
chosen LLM at test time.

B Correctness predictors and confidence estimation

We provide additional details on the correctness predictors used in our experiments, along with more
details on the dataset distance and the Gaussian kernel smoother for estimating the accuracy of the
correctness predictors on new tasks, p(d′,m)s.

Correctness predictors in our experiments While any probabilistic classifier may fit our setting,
in the experiments, we mainly used a simple kNN classifier applied in an embedded space. Recall that
we have D benchmark datasets with inputs {xd

i }
nd
i=1 for d = 1, . . . , D. To compute our correctness

predictor based on the benchmark datasets, we first embed all their inputs. We denote the combined
set of embedded inputs from the benchmark datasets as D = {ϕ(xd

1), . . . , ϕ(x
d
nd
)}Dd=1, where ϕ is

a sentence transformer [11]. We use all-mpnet-base-v2 from Hugging Face in all experiments.
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Given a sample xd′

i from a new task d′, we embed it using the same ϕ and define the classifier, gm,
for each model m by:

gm

(
xd′

i

)
=

1

k

∑
e∈NN(ϕ(xd′

i ),k,D)

y(e,m), (7)

where y(e,m) ∈ {0, 1} is the correctness of model m on the (embedded) input e, and
NN(ϕ(xd′

i ), k,D) is the set of k closest embedded neighbors from D to the new embedded sample
ϕ(xd′

i ), according to the cosine distance. Then, ḡm, as defined in (2), is a binary kNN classifier.
Finally, we compute the per-model correctness predictors, S1(m, d′) and S2(m, d′), for the new task
d′, according to (1) and (2), respectively.

Next, we describe a method for estimating the probability p(d′,m) in our confidence model and the
S3(m, d′) score, (5). This method comprises a dataset distance and a kernel smoother, defined as
follows.

Dataset distance Our dataset distance u(d) is a one-sided variant of the Chamfer distance with
extended neighborhood size. We define it formally below:

u(d) =
1

nd

nd∑
i=1

nn(xd
i ,D−d), (8)

where D−d is the set of (embedded) inputs from the D datasets excluding inputs from d (for a new
task d′, D−d′ = D since d′ is not part of the D benchmark datasets we use for training LLM routers),
and nn(xd

i ,D−d) is the average distance from the input xd
i to its closest κ neighbors in D−d:

nn(x,D) =
1

κ

∑
e∈NN(ϕ(x),κ,D)

cosine(ϕ(x), e), (9)

where NN(ϕ(x), κ,D) is the set of κ closest embedded neighbors of ϕ(x) in D according to cosine
distance. We set κ = 19 for the dataset distance in all experiments.

Kernel smoother For each LLM m = 1, . . . ,M , to obtain the corresponding kernel smoother
estimate we iterate over the available benchmark datasets, each time holding one out and computing
pairs (u(d), p(d,m)) for held out dataset d, where p(d,m) is the accuracy of gm on data from d after
training on D−d. We repeat this process 10 times for 15 values of in-distribution mixing parameter α
(similar to the experimental setup in Figure 2 but using benchmark datasets d = 1, . . . , D instead of
d′) to obtain the training set of distance-accuracy pairs {uz, pz(m)}Zz=1. In the HELM experiments
in Section 4, Z = 28 ∗ 10 ∗ 15 = 4200 (28 is the number of datasets from HELM after holding one
out as the new task for evaluating the performance).

For a new task d′, we compute u(d′) using the inputs from this task and our benchmark datasets and
estimate p(d′,m) for each m with simple Gaussian kernel smoothing:

p(d′,m) =

∑Z
z=1 pz(m)K(u(d′), uz)∑Z

z=1 K(u(d′), uz)
, (10)

where K(u(d′), uz) = exp
(
− (u(d′)−uz)

2

2σ2

)
. We set σ = 0.09 in all experiments, which is the value

we found to perform well through some preliminary experimentation.

Finally, we note that the proposed confidence model, including the definitions of the dataset distance
and kernel smoother, can be combined with any classifier gm, and is not restricted to the kNN
classifier used for the correctness predictor in our experiments.

Additional notes regarding S3 Recall that when selecting a model with S3(m, d′) we use an
additional step described in (6) that facilitates the selection of the best model on average when we
are not sufficiently confident in the model with the highest S3(m, d′) score. Probability expression,
P (S̃(m3, d

′) > S̃(m∗, d′)), required for this step is not available in closed form, as S̃ is distributed
as a (scaled) sum of two Bernoulli random variables, but it is straightforward to estimate via Monte
Carlo sampling from the corresponding Bernoulli distributions.

When reporting correlations for S3 (e.g., Pearson and Spearman correlations in Table 1), we use
S3(m, d′) as is, i.e., as defined in (5).
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Table 2: LLM routing on HELM: Comparison of various model scores for LLM routing with the
Oracle model selection and performance of the best model on average (BMA).

Acc. Ratio to Best Pearson Spearman % BMA # Params Rank

S1 eq. 1 0.662 0.855 0.685 0.465 0.17 40.3B 6.172
S2 eq. 2 0.676 0.868 0.636 0.468 0.10 44.3B 5.897
S3 eq. 5, 6 0.694 0.898 0.727 0.492 0.48 49.8B 5.310
S3 true p 0.735 0.944 0.799 0.596 0.22 33.8B 3.800
LL 0.684 0.869 0.714 0.459 0.10 — 6.517
BMA 0.688 0.884 — — 1.00 70.0B 6.069

Oracle 0.773 1.000 — — 0.21 29.1B 1.000

Table 3: Average metrics for the experiments using MLP. Best results are highlighted with bold, and
second best with an underline (excluding Oracle).

Acc. Ratio to Best Pearson Spearman % BMA # Params Rank

S1 eq. 1 0.693 0.893 0.750 0.559 0.19 57.6 4.345
S2 eq. 2 0.683 0.878 0.675 0.547 0.45 57.9 5.041
S3 eq. 5, 6 0.690 0.884 0.755 0.544 0.81 66.3 5.566
S3 ATC 0.646 0.827 0.651 0.365 0.56 48.7 7.283
S3 true p 0.740 0.943 0.840 0.686 0.43 50.4 3.455
LL 0.684 0.869 0.714 0.459 0.10 — 6.517
BMA 0.688 0.884 — — 1.00 70.0 6.069

Oracle 0.773 1.000 — — 0.21 29.1 1.000

C Additional results for model routing on HELM

C.1 Results with MLP as the correctness predictor

MLP Classifier We present LLM routing with more sophisticated correctness predictors. In this
section, we use a small Multi-Layer Perceptron (MLP) as gm to classify the embedded inputs.
Each MLP comprises three fully connected layers (two hidden layers, 1500 units each) with ReLU
activation and sigmoid output. These MLPs were trained with the Adam optimizer [43] with learning
rate 0.01 to minimize the binary cross entropy loss as described in Section 2. Training occurred over
100 epochs with early stopping should the validation accuracy not increase for 10 consecutive epochs.
We also explore the combination of S3 with ATC (instead of the kernel smoother), a prior OOD
accuracy estimator proposed by [38].

Results We conducted the model routing experiment analogous to the experiment in Table 1 of
the main paper. Results are reported in Table 3. We note several differences compared to results
with the kNN classifier in Tables 1 and 2. First is the clear improvement in the S1 score; the MLP
classifier performs better on OOD data. As before S3 true p outperforms the other scores indicating
the potential value of using the proposed confidence model 4. However, in this experiment, S3

with the kernel smoother no longer improves upon S1. We also report results with ATC as the
estimator of the accuracy of correctness predictors, which performs noticeably worse than our kernel
smoothing estimator. The corresponding MAE is 0.118 for the kernel smoother and 0.177 for the
ATC, demonstrating the advantage of our estimator in this application. Finally, across all scores the
selected model sizes have considerably increased; this suggests that the MLP classifier underestimates
the performance of smaller models compared to kNN.

C.2 Reducing the OOD gap

We present additional results for this experiment in Figure 4. (a) shows Pearson correlation improve-
ment as we increase α, similar to the trends in accuracy improvement in Figure 2; (b) demonstrates
that the accuracy of correctness predictors gms improves as we increase the number of samples from
d′ used for training them, thus reducing the OOD gap; (c) shows the mean absolute error (MAE) of
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Figure 4: Additional results for Reducing the OOD gap experiment in Figure 2.
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Figure 5: LLM routing with ≤ 13B parameter models compared to Llama 2 70B.

our kernel smoothing estimator of the accuracy of correctness predictors p(d′,m) – the estimator
does not improve as much with increased α, thus S3 eventually becomes worse than S1 in terms of
correlation and accuracy of the selected models.

C.3 Dataset distance and Pearson correlation

The dataset distance u(d′) is computed as in (8). As evident from (9), dataset distance will usually
decrease for larger values of α as inputs from d′ are moved into D (assuming that inputs from d′

are on average closer to each other than they are to inputs from other tasks). In this experiment,
this serves as a mechanism to study the performance of LLM routing on closer datasets, providing
insights into the benefits of learning LLM routers on more benchmarks where it is more likely that
dataset distance for a new task is small.

In Figure 6 we present relations between dataset distance u(d′) and Pearson correlation between
various model scores and accuracies of candidate LLMs. For results with S3 see Figure 3.

D Model Routing on MixInstruct

We further demonstrate our approach in a different setting and task type, on the MixInstruct benchmark
dataset [16]. The dataset is composed of instruction-following tasks, divided into train/validation/test
sets of 100K/5K/5K samples, and includes evaluations of N = 11 open-source LLMs using common
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Figure 6: Correlation of scores and LLM accuracies on new tasks and corresponding data distances.
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Table 4: Average metrics for per-instance LLM selection on the MixInstruct test set. Best results are
highlighted with bold and second best with an underline (excluding Oracle).

BERTScore ↑ BARTScore ↑ BLEURT ↑ MCPI

Random 66.36 -3.76 -0.77 -
LL 65.83 -4.12 -0.96 N
BMA: Open-Assisant 74.68 -3.45 -0.39 -
BMA: Vicuna 69.60 -3.44 -0.61 -
MLM-Scoring [46] 64.77 -4.03 -0.88 N
SimCLS [40] 73.14 -3.22 -0.38 N
SummaReranker [41] 71.60 -3.25 -0.41 N
PairRanker [16] 72.97 -3.14 -0.37 N
Ours 74.75 -3.40 -0.38 2
Oracle 77.67 -2.87 -0.15 N

metrics, e.g. BERTScore [8], BARTScore [10], and BLEURT [9]. In [16], this benchmark was used
to compare different LLM ranking methods in per-instance model selection. We follow the same
setting and apply our score S1(m, d′) to the test set, per-instance, where we use the 100K-sample
train set as the benchmark data for training our LLM router. See Appendices B and D for details on
the score computation and the experiment parameters, respectively. Due to the per-instance setting,
and since the test set was constructed from in-distribution data, we focus on our simplest router model
S1, (1).

We compare our approach with the scoring methods examined by [16], as well as scoring based on the
average log-likelihood (LL) of the model responses to the inputs. Additionally, we present the metrics
for the best models on average (BMA), Open-Assistant [44] and Vicuna [45]. We report the results of
BERTScore, BARTScore and BLEURT in Table 4, along with the number of model calls per instance
(MCPI), for N LLMs, performed during inference time. All compared methods require model
generations for every point in the test set, by each of the examined LLMs, whereas our approach
requires only one model generation and one call to some general embedding function. In addition,
all methods, except for LL, require training auxiliary language models, whereas our approach is a
simple kNN classifier on the embedded inputs. While our approach does not consistently outperform
the compared methods, these results demonstrate the potential of using benchmark datasets for model
routing with significantly better inference-time efficiency.

Effect of benchmark dataset sparsity To highlight the potential of our approach in this setting,
we examine the effect of the reference benchmark data sparsity. We apply our method to different
subsets of the test set, Xtest, where the subsets are defined by limiting the maximal average distance
of each test set point to the closest points from the reference (train) set, denoted by NNtrain, i.e.
X ′

C =
{
x′ ∈ Xtest

∣∣∣ 1
|NNtrain(x′)|

∑
x∈NNtrain(x′) dist(x

′, x) < C
}

, where C is the maximal average
distance and X ′

C is the resulting subset of the test set. Figure 7 presents the metric scores for the
different subsets using our method, the oracle (best possible choices), and LL scoring. We also
report the percentage of the test set that is used in each subset. This figure depicts that our predictor
approaches the oracle metrics as the average distance to the reference points decreases. This suggests
that adding more benchmark datasets to reduce the sparsity of the reference space may lead to better
LLM selections with our approach.

Correctness predictor and metrics In the experiments on the MixInstruct dataset [16], we con-
struct S1(m, d′) following the scoring approach described in Appendix B, where the MixInstruct
train set was defined as the benchmark dataset. Then, instead of computing a per-dataset score for
the entire test set, we compute the score for each test point, i.e., S1(m,xd′

i ) = gm(xd′

i ), and select a
model m per-point based on this score. The reported metrics in Table 4 and Figure 7 are averaged over
the output evaluations of these per-point model selections. In our experiments, to compute gm(xd′

i )
we use the BERTScore metric on the closest train set points (as y(x,m) in 7). This was motivated
by the conceptual relation between the implementation of our approach and the BERTScore, which
relies on embedding space distances, and was validated empirically.
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Figure 7: Average metrics on subsets of the MixInstruct test set, defined by limiting the maximal
average distance between test instances and their closest neighbors in the reference (train) set.

kNN parameter We set k = 10 for the kNN classifier, slightly higher than in the HELM exper-
iments. This choice was motivated by the in-distribution properties of the test set in MixInstruct,
which is constructed from different parts of the same datasets that comprise the train set. We note
that the metrics did not significantly vary for different choices of k ∈ [5, 100].

E How useful are smaller LLMs?

While a given LLM may work best on average, these models tend to be the biggest and therefore most
expensive to run. Practitioners can achieve gains in cost, compute, and latency if we can successfully
predict whether a smaller LLM can be adequate for a given task. Identifying good smaller models for
tasks of interest will also redefine the cost/benefit tradeoff behind automating certain tasks, potentially
incentivizing the automation of new tasks that were previously cost-prohibitive to automate with
larger LLMs.
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Figure 8: LLM routing with ≤ 13B parameter
models compared to Llama 2 70B.

To evaluate the potential of smaller LLMs we revisit
our HELM experiment in Figure 2. In Figure 8, we
perform LLM routing using only models with ≤ 13B
parameters and compare it to the performance of
Llama 2 70B. Oracle’s performance demonstrates
that it is conceptually possible to outperform a large
model by routing smaller LLMs. Results with our
scores S1 and S2 (see Figure 5 for breakdown by
scores) demonstrate that it is also practically feasi-
ble to match the performance of the 70B model by
combining learning from benchmarks with a small
number (α = 0.04, i.e., 2-40 samples) of labeled sam-
ples from a new task that a practitioner can provide to
save on the inference costs in their LLM application.

F Future work

Our work demonstrates the potential of learning from benchmarks for LLM routing and investigates 3
model scores in the context of OOD generalization when routing LLMs for new tasks. We summarize
potential next steps for improving the quality and efficacy of LLM routers.

The major challenge of LLM routing is OOD generalization of correctness predictors. Thus, using
more benchmarks and modern methods for improving OOD generalization to learn correctness
predictors is a promising next step. A practitioner can also provide labels for a few samples from
their task, possibly guided by active learning techniques, to adapt or fine-tune correctness predictors.
Even when reducing the OOD gap is too challenging, our score accounting for the (potentially low)
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accuracy of correctness predictors demonstrated strong results when this accuracy, p(d′,m), is known
for a new task, thus encouraging the development of methods for estimating it better.

We also anticipate that routing “expert” LLMs fine-tuned for a specific domain can improve the
results. Regions of the sample space where such models are “correct” should mostly align with the
domains of their expertise (recall Figure 1), making it easier to learn the corresponding correctness
predictors and simplifying LLM routing when a new task is from a specific domain.

Our experiments in Figure 8 demonstrate the utility of LLM routing with smaller models, which
can reduce costs and facilitate using LLMs in a broader set of domains. Thus, we want to explore
modifications to our scores that will encourage the selection of smaller LLMs when their anticipated
performance is comparable to the larger, more reliable models. Prior work on frugal API selection
[47, 42] provides a good starting point to explore this direction.
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Table 5: HELM dataset details
Dataset Size (instances) Type

RAFT-ADE Corpus V2 40 Binary Classification
RAFT-Banking 77 40 77 Class Classification

RAFT-NeurIPS Impact Statement Risks 40 Binary Classification
RAFT-One Stop English 40 3 Class Classification

RAFT-Overruling 40 Binary Classification
RAFT-Semiconductor Org Types 40 3 Class Classification

RAFT-Systematic Review Inclusion 40 Binary Classification
RAFT-TAI Safety Research 40 Binary Classification

RAFT-Terms of Service 40 Binary Classification
RAFT-Tweet Eval Hate 40 Binary Classification

RAFT-Twitter Complaints 40 Binary Classification
IMDB 1000 Binary Classification

Civil Comments-demographic=all 1000 Binary Classification
bAbI-QA-task=all 1000 Q&A: one word answers

BoolQ 1000 Binary Classification
Entity Matching-Dataset=Beer 182 Binary Classification

Entity Matching-Dataset=Dirty iTunes Amazon 218 Binary Classification
Entity Matching-Dataset=Abt Buy 1000 Binary Classification

Entity Data Imputation-Dataset=Restaurant 242 Q&A: one word answers
Entity Data Imputation-Dataset=Buy 182 Q&A: one word answers

BBQ-subject=all 1000 Multiple Choice Questions
Legal Support 1000 Multiple Choice Questions

LSAT QA-task=all 461 Multiple Choice Questions
MMLU-Subject=Abstract Algebra 111 Multiple Choice Questions

MMLU-Subject=College Chemistry 108 Multiple Choice Questions
MMLU-Subject=Computer Security 111 Multiple Choice Questions

MMLU-Subject=Econometrics 126 Multiple Choice Questions
MMLU-Subject=US foreign policy 111 Multiple Choice Questions

Truthful QA-task=mc single 654 Multiple Choice Questions
Total: 29 datasets 9946
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Table 6: Candidate LLMs
Name Model Size, B Average Accuracy on the 29 HELM tasks

codegen-16b-mono 16 0.451
dial-flant5-xl 3 0.454
falcon-40b 40 0.641
flan-t5-xl 3 0.650

flan-t5-xxl 11 0.658
flan-ul2 20 0.668

gpt-jt-6b-v1 6 0.576
gpt-neox-20b 20 0.492

mpt-7b-instruct 7 0.514
mt0-xxl 13 0.543

llama-2-13b 13 0.624
llama-2-13b-chat 13 0.623

llama-2-13b-chat-beam 13 0.603
llama-2-70b 70 0.688

llama-2-70b-chat 70 0.687
llama-2-7b 7 0.610

llama-2-7b-chat 7 0.605
starcoder 15 0.587

Total: 18 LLMs 347
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