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Abstract
Multi-hop question answering (MHQA) in-
volves reasoning across multiple documents
to answer complex questions. Dense retriev-
ers typically outperform sparse methods like
BM25 by leveraging semantic embeddings;
however, they require labeled query-document
pairs for fine-tuning. This poses a signifi-
cant challenge in MHQA due to the high vari-
ability of queries—(reformulated) questions—
throughout the reasoning steps. To over-
come this limitation, we introduce Retriever
Supervision with Consistency and Relevance
(ReSCORE), a novel method for training dense
retrievers for MHQA without labeled docu-
ments. ReSCORE leverages large language
models to capture each document’s relevance
to the question and consistency with the correct
answer and use them to train a retriever within
an iterative question-answering framework.
Experiments on three MHQA benchmarks
demonstrate the effectiveness of ReSCORE,
with significant improvements in retrieval, and
in turn, the state-of-the-art MHQA perfor-
mance. Our implementation is available at:
https://leeds1219.github.io/ReSCORE.

1 Introduction

Multi-hop question answering (MHQA) consists
of complex questions that need to be answered
by logically-connecting relevant information from
multiple documents. For instance, to answer
"Which city was the director of the film Para-
site born?", you must first identify the director—
"Bong Joon-ho"—and figure out where he was
born—"Bongdeok-dong, Daegu." The state-of-the-
art (SOTA) systems for MHQA take an itera-
tive retrieval-augmented generation (RAG) ap-
proach, where they iteratively retrieve relevant doc-
uments and generate partial answers from them,
until the final answer is reached, as illustrated in
Fig. 1 (Trivedi et al., 2023; Jeong et al., 2024).

∗* Equal contribution.
†† Corresponding authors.
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Figure 1: Iterative RAG Framework for MHQA. At
iteration i, the framework first retrieves top k documents
relevant to the current query q(i) to generate an answer
a(i). (a) If the answer is "unknown", a thought t(i) is
generated as a compact representation of the retrieved
documents based on the query q(i). This thought is
then used to reformulate the query for the next iteration
q(i+1) and continues the next iteration. (b) If a(i) is not
"unknown", the iteration ends, and a(i) is returned as
the final answer.

One common limitation of these systems is the
use of sparse retrievers, such as BM25 (Robert-
son et al., 1995), even though dense retrievers like
Contriever (Izacard et al., 2021) are known to be
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more effective in general. This is largely due to
the fact that, unlike sparse retrievers based on key-
word matching, dense retrievers rely on query and
document embeddings that need to be trained on
the target domain (Karpukhin et al., 2020). For
MHQA, however, it is cost- and labor-intensive
to prepare documents labeled with their relevance
to respective queries across iterations, because the
queries—reformulated questions—can be differ-
ent for each large language model (LLM) used for
answer generation, even for the same domain.

To address this issue, we propose Retriever
Supervision with Consistency and Relevance
(ReSCORE), a novel method for training a dense
retriever for MHQA without labeled documents.
ReSCORE builds on the intuition that the impor-
tance of a document for answering a question is pro-
portional to the probability of an LLM generating
both the question and the correct answer given the
document. In this way, the document’s consistency
with the answer (Izacard et al., 2023) and relevance
to the question are jointly modeled. ReSCORE
leverages this probability as pseudo-ground truth
(pseudo-GT) label to train the retriever within an
iterative RAG framework.

We demonstrate the efficacy of ReSCORE
through experiments on three popular MHQA
datasets: MuSiQue (Trivedi et al., 2022),
2WikiMHQA (Ho et al., 2020), and HotpotQA
(Yang et al., 2018). The experiments show that a
combination of consistency and relevance provides
effective supervision for training a dense retriever
for MHQA without labeled documents. The re-
triever trained using ReSCORE not only improves
the retrieval quality but also achieves the SOTA
performance on MHQA when integrated into our
iterative RAG framework, Iterative Question An-
swerer with Trained Retriever (IQATR, which is
pronounced as “equator”).

Our key contributions are as follows:
• We propose ReSCORE, an iterative dense re-

triever training approach for MHQA without
relying on documents labeled with their rele-
vance to respective queries.

• We present IQATR, an MHQA system with its
retriever trained using ReSCORE. It achieves
the SOTA on three popular benchmarks,
thereby showcasing the efficacy of ReSCORE.

• We provide an in-depth analysis of the effects
of various pseudo-GT labels and query refor-
mulation methods.

2 Related Work

Training Retrievers for RAG In the context
of RAG, retrieval accuracy plays a critical role in
improving the performance of the overall system.
Several approaches have focused on improving re-
trieval quality by training retrievers, including su-
pervised training with large labeled datasets (Izac-
ard et al., 2021; Guu et al., 2020), and unsupervised
training (Izacard et al., 2021). While these meth-
ods primarily concentrate on optimizing a retriever,
they often overlook the generation aspect, leading
to a domain gap between retrieval and generation
tasks. To bridge this gap, techniques leveraging
LLM supervision, LLM-Embedder (Zhang et al.,
2023), Intermediate Distillation (Li et al., 2024),
REPLUG (Shi et al., 2024) and ATLAS (Izacard
et al., 2023) have proposed methods that train the
retrieval to align with generation, aiming to opti-
mize both processes. However, these approaches
typically focus on single-hop questions and only
consider consistency of the document with the an-
swer, overlooking iterative reasoning and MHQA.
In contrast, our approach trains within an iterative
framework, emphasizing both the consistency and
the relevance of a document, offering a more holis-
tic solution for MHQA.
Iterative RAG Iterative RAG extends single-
hop RAG to tasks requiring multiple reason-
ing steps across documents (Xiong et al., 2021).
FLARE (Jiang et al., 2023) focuses on adaptively
retrieving documents when low-probability tokens
are generated. To dynamically determine the need
for external knowledge, Self-RAG (Asai et al.,
2023) trains on a GPT-4 (Brown et al., 2020) gen-
erated dataset. ITER-RETGEN (Shao et al., 2023)
incorporates the output from the previous iteration
as a retrieval context. Another notable method,
IRCoT (Trivedi et al., 2023), extends a Chain of
Thoughts iteratively to mimic multi-step reason-
ing. Building on IRCoT, Adaptive-RAG (Jeong
et al., 2024) improves efficiency by introducing
a classifier that dynamically adjusts the number
of reasoning steps based on question complexity.
Adaptive-Note (Wang et al., 2024) filters out some
of retrieved documents using an LLM to improve
precision. While the aforementioned works excel
in iterative RAG, none of them focus on training
retrievers, which is a crucial element and rely either
on traditional sparse retrievers or a dense retriever
pretrained on a different dataset. In contrast, we
train a dense retriever directly within the iterative



RAG system, and allow the retriever to effectively
adapt to the target domain.
Training with LLM Supervision In recent years,
training smaller models with LLM supervision has
become a common and effective approach, espe-
cially when human annotation is limited or unavail-
able. One notable example is CoT-Distill (Shrid-
har et al., 2023), which utilize teacher model gen-
erated Chain-of-Thought dataset to train smaller
models. In a similar vein, Self-RAG (Asai et al.,
2023) employs a dataset curated by GPT-4 (Brown
et al., 2020) to learn a classifier deciding when to
retrieve. Moreover, Intermediate Distillation (Li
et al., 2024), Promptagator (Dai et al., 2023), and
RankVicuna (Pradeep et al., 2023) explore the use
of teacher model generated document ranking lists
to guide the training process. Other works, such
as DistilBERT (Sanh, 2019), which is a smaller
version of BERT trained by leveraging the hidden
states vector of a teacher model. Similarly, AT-
LAS (Izacard et al., 2023) uses token probabilities
from the teacher model to train a retriever. To the
best of our knowledge, this study is the first to
leverage an LLM for training a retriever within an
iterative RAG framework for MHQA.

3 Methods

3.1 Iterative RAG Framework

Given a question q, the goal of MHQA is to gen-
erate the answer a leveraging knowledge from a
document database D from which relevant docu-
ments are retrieved. Notably, the question q can
be answered only if the complete set of relevant
documents D∗ = {d∗1, . . . , d∗h} ⊆ D is accurately
identified and utilized. To tackle this problem, we
adopt an iterative reasoning process, following pre-
vious studies (Trivedi et al., 2023; Jeong et al.,
2024), where the system iteratively retrieves rele-
vant documents and refines the answer based on
the retrieved information as illustrated in Fig. 1.

Specifically, given the question q, which we des-
ignate as the first query q(1), we retrieve a set of k
documents D(1) = {d(1)1 , . . . , d

(1)
k } ⊆ D. D(1) is

then incorporated into a predefined prompt for the
LLM. The prompt instructs the LLM to either defer
answer generation to retrieve additional informa-
tion, or predict an answer a(1) based on the suffi-
ciency of the information in D(1), thereby terminat-
ing the question-answering process, as illustrated
by (a) and (b) in Fig. 1, respectively. If the LLM
decides to retrieve additional documents by pre-

dicting “unknown” as the answer, the system con-
structs a compressed representation of the retrieved
documents D(1), referred to as a thought t(1). To
achieve this, we prompt the LLM to construct a
single sentence distilling the key information re-
quired to answer the initial question q from the
retrieved documents D(1). This technique, adopted
from (Trivedi et al., 2023), allows us to maintain
the retrieved information in a compact form, which
is then utilized during subsequent iterations in an-
swer generation. Finally, the system reformulates
the query q(1) into a new query q(2) highlighting
unresolved aspects of q(1) in D(1) requiring addi-
tional information. This reformulated query q(2)

then guides the retrieval of additional documents
in the next iteration.

In the next iteration, the refined query q(2) is
used to retrieve a new set of k documents D(2) =
{d(2)1 , . . . , d

(2)
k } ⊆ D −D(1). These retrieved doc-

uments are then provided to the LLM along with
the thought t(1), which either outputs a final answer
or continues the iterative process by generating a
new thought t(2) and a further reformulated query
q(3). More generally, at each iteration i, a set of k
new relevant documents D(i) is retrieved based on
the query q(i). Then, the LLM either generates the
final answer based on the retrieved documents Di,
as well as all available thoughts t(1), . . . , t(i−1) or
continues the process with a new thought t(i) and a
reformulated query q(i+1).

3.2 Training Retriever for Iterative RAG

A key component of this iterative RAG framework
is the retriever, which must ensure the retrieval
of documents that provide relevant and comple-
mentary information across iterations to support
multi-hop reasoning. However, collecting labeled
documents for retriever training is labor- and cost-
intensive. To address this limitation, we propose
ReSCORE, a novel framework for retriever training
without document labels. In ReSCORE, a retriever
is trained for MHQA using pseudo-GT labels gener-
ated by leveraging an LLM, as illustrated in Fig. 2.
Generating Pseudo-GT Labels As labels for rel-
evant documents are unavailable, it is essential to
devise a method to identify which documents are
required to the input question to effectively train the
retriever. Specifically, we measure the distribution
Q

(i)
LM(d

(i)
j | q(i)), which represents the likelihood

of retrieving a document d(i)j given a query q(i) at
iteration i. To achieve this, we leverage an LLM
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Figure 2: Overview of ReSCORE. At each iteration i within a iterative RAG process, the retriever receives
gradients from the KL-Divergence loss of the retrieval distribution P

(i)
R against the pseudo-GT distribution Q

(i)
LM,

which is derived from the LLM probabilities of question and answer given each document d(i)j with normalization.
The number of iterations is dynamically determined by the LLM and the process ends if the LLM predicts an answer
which is not “unknown”. The red dashed lines represents gradient flows for the retriever.

inspired from (Izacard et al., 2023) capturing the
intuition that Q(i)

LM(d
(i)
j | q(i)) for a document d(i)j

is proportional to the probability that the LLM gen-
erates both the question q and the corresponding
answer a given d

(i)
j . Formally, this is expressed as:

Q
(i)
LM(d

(i)
j | q) ∝ P

(i)
LM(a, q | d(i)j ) (1)

= P
(i)
LM(q | d(i)j ) · P (i)

LM(a | q, d(i)j )

(2)

where PLM denotes the probability of a token se-
quence as computed by the LLM.

The advantage of our approach lies in its abil-
ity to evaluate not only the relevance of the doc-
ument to the question but also its consistency in
answering the question. The probability in Eq. (1)
can be further decomposed into two components
using the chain rule as in Eq. (2). The former rep-
resents the probability of generating the question
from the document, capturing the relevance. The
latter represents the probability of predicting the
correct answer to the question with the document,
assessing the consistency. While P

(i)
LM(a | q, d(i)j )

appears more directly aligned with the QA training
objective, this term alone often fails to capture the
relevance of the document to the question. Notably,
determining whether a document is consistent for
answering a given question is often challenging,
even for humans. This can lead to high LM scores,
even when there are only superficial word-level

alignments between the document and the answer,
which may not necessarily reflect true relevance.
For instance, P (i)

LM(a | q, d(i)j ) for a document ti-
tled “2006 FIFA World Cup” is higher than that
for the GT documents for the question: “In what
year did the studio behind Toy Story release its first
feature film after being acquired by Disney?” This
occurs because, while the document is irrelevant, it
contains the token “2006”, which is the correct an-
swer1. In contrast, Eq. (2) additionally incorporates
P

(i)
LM(q | d(i)j ), which is low for topically unrelated

documents, thereby down-weighting them in the
in the final scores. Furthermore, a document’s rel-
evance to a question itself does not imply that it
provides adequate information for answering the
question, as it overlooks the consistency to the an-
swer. By explicitly modeling both consistency and
relevance, our method trains a retriever to retrieve
the documents necessary for answering a given
question.
Training Loss Function Given the distribution
QLM as the ground truth, we train the retriever by
minimizing the Kullback-Leibler (KL) divergence
over all QA pairs (qn, an) and iterations i:

N∑
n=1

ηn∑
i=0

DKL

(
Q

(i)
LM(D(i) | q(i)n ) ∥ P

(i)
R (D(i) | q(i)n )

)
,

1Pixar—the studio behind Toy Story—was acquired by
Disney in January 2006, and its first post-acquisition film,
Cars, was released in May 2006.



where N is the number of QA pairs in the train-
ing set, ηn is the number of iterations determined
by the LLM for each question qn, and P

(i)
R is the

document distribution for retrieval at iteration i.
The distribution P

(i)
R is computed by applying the

Softmax function on the dot products between the
question vector and each document vector in the
database D, i.e.,

P
(i)
R (d

(i)
j | q(i)n ) = Softmax

(
d
(i)
j · q(i)

n

)
where d

(i)
j = Embeddoc(d

(i)
j ) is a document em-

bedding and q
(i)
n = Embedquery(q

(i)
n ) is a query

embedding.
Note, the GT answer an for each instance is used

to compute Q
(i)
LM, which serves as the distribution

the retriever aims to learn. However, calculating
the distribution Q

(i)
LM(D(i) | q(i)n ) over the entire

database D is computationally prohibitive due to
the large size of D and the high computational cost
of the LLM. Thus, at each iteration i, we sample
the top M ≪ |D| documents based on the retriever
scores and compute Q

(i)
LM only on these sampled

documents.

4 Experiment

4.1 Settings
Datasets We conduct our experiments on three
popular MHQA datasets: MuSiQue (Trivedi et al.,
2022), 2WikiMHQA (Ho et al., 2020), and Hot-
potQA (Yang et al., 2018). Each dataset con-
tains complex question structures that require
reasoning across multiple documents, making
them ideal for evaluating multi-hop retrieval and
question-answering capabilities. Following prior
works (Trivedi et al., 2023; Jeong et al., 2024; John-
son et al., 2021), experiments are conducted on
subsampled versions of the validation and test sets,
as well as the retrieval database. These datasets
come with GT document labels, which are not used
for training our model.
Models We take as baselines the best existing
models for MHQA: ReAcT (Yao et al., 2023),
FLARE (Jiang et al., 2023), Self-RAG (Asai
et al., 2023), Adaptive-Note (Wang et al., 2024),
IRCoT (Trivedi et al., 2023), and Adaptive-
RAG (Jeong et al., 2024). We then establish our
own baseline models by implementing the itera-
tive RAG framework described in Sec. 3.1, in-
tegrating Llama-3.1-8B-Instruct (Touvron et al.,
2023) with BM25 (Robertson et al., 1995) and

Contriever (Izacard et al., 2021) trained on the MS-
MARCO dataset (Nguyen et al., 2016).2 Lastly, we
prepare our model—Iterative Question Answerer
with Trained Retriever (IQATR)—by fine-tuning
Contriever in our baseline model using ReSCORE.
Evaluation Metrics To assess the QA perfor-
mance of our approach, we adopt two standard
metrics for MHQA: Exact Match (EM) and F1
score. These metrics are applied at the answer level,
using the official evaluation protocol provided in
each dataset. To assess the retrieval performance
within our iterative RAG framework, we introduce
a metric called multi-hop recall at k (MHR@k),
measuring recall across iterations. Specifically, we
compute the MHR@k for iteration i, denoted as
MHRi@k, by

MHRi@k =

∣∣∣D∗ ∩
⋃i

l=1D(l)
∣∣∣

|D∗|
(3)

where D∗ is the set of GT supporting documents,
and

⋃i
l=1D(l) is the union of retrieved documents

up to iteration i. This measures the cumulative
recall at iteration i as the ratio of GT supporting
documents retrieved up to iteration i to the total
number of the GT supporting documents.
Implementation Details We train the question
embedder while keeping the document embedder
frozen throughout the process. To compute the
document distribution, we format the question, an-
swer, and document into a predefined prompt, as
described in Section 5. For loss calculation, we
use the top M = 32 documents, while for inference,
we select the top k = 8 documents. The maximum
number of iterations ηn is set to 6, and the batch
size to 16. Temperature scaling is applied to con-
trol the output distributions of the LLM, with a
temperature value of 0.1, which is selected among
1, 0.1, and 0.01. We use the AdamW optimizer
and two NVIDIA A100 GPUs (40GB memory).
The initial learning rate is set to 1 × 10−6 and is
exponentially decayed at every 100 iterations by
a factor of 0.9. The training continues until the
validation loss stops improving within an epoch.
Additionally, in accordance with the MHQA re-
quirements, which involve reasoning over at least
two hops, we set a minimum iteration limit of 2, in
both training and inference of IQATR, inspired by
Adaptive-RAG (Jeong et al., 2024).

2Unlike existing works, we employ Llama to address Flan-
T5’s slow inference and GPT-3.5’s cost issue. Also, Contriever
is one of the best-performing dense retrievers. It is typically
trained on MS MARCO and fine-tuned on the target domain.



MuSiQue HotpotQA 2WikiMHQA
Model EM F1 EM F1 EM F1

ReAcT (GPT-3.5+BM25)† 10.2 19.7 36.0 46.9 28.0 37.3
FLARE (GPT-3.5+BM25)† 11.2 18.7 36.4 47.8 31.8 42.8
Self-RAG (GPT-3.5+BM25)† 10.6 19.2 33.8 44.4 24.4 30.8
Adaptive-Note (GPT-3.5+BM25)† 13.2 24.2 45.6 58.4 43.2 54.2
IRCoT (Flan-T5-XL+BM25)‡ 22.0 31.8 44.4 56.2 49.7 54.9
Adaptive-RAG (Flan-T5-XL+BM25)‡‡ 23.6 31.8 42.0 53.8 40.6 49.8
Our Baseline (Llama-3.1-8B+BM25) 15.2 23.6 42.2 55.7 44.6 52.2
Our Baseline (Llama-3.1-8B+Contriever) 15.2 23.8 39.4 52.3 32.8 41.6
IQATR (Llama-3.1-8B+Contriever trained w/ ReSCORE) 23.4 32.7 47.2 59.3 50.0 59.7

Table 1: Comparisons to State-of-the-Art Iterative RAG Frameworks on three MHQA benchmarks. EM and
F1 scores are measured on each dataset. † Scores are sourced from (Wang et al., 2024). ‡ Scores are reproduced using
the official codes. ‡‡ Scores are sourced from the original paper (Jeong et al., 2024). We conducted significance
tests at p = 0.05, confirming IQATR’s superiority (details in Appendix C).

4.2 Results and Analysis

4.2.1 Efficacy of ReSCORE

We first compare IQATR, equipped with a retriever
fine-tuned by ReSCORE, against baseline models
and existing SOTA methods in Tab. 1. The results
first present that baseline models perform better
with the sparse BM25 retriever than with a pre-
trained Contriever. This can be attributed to the fact
that Contriever was not trained on domain-specific
data (Izacard et al., 2021).

Although BM25 performs better initially, how-
ever, its training-free nature limits its potential for
further improvement. In contrast, the document rep-
resentations of Contriever can be enhanced through
fine-tuning, enabling greater adaptability and per-
formance gains. Consequently, when fine-tuned
with ReSCORE, the model demonstrates signifi-
cant improvements across all metrics on all three
benchmarks, achieving SOTA performance.

In addition, we test the proposed method,
ReSCORE, with other existing iterative MHQA
methods, including Self-RAG (Asai et al., 2023),
FLARE (Jiang et al., 2023), and Adaptive-
Note (Wang et al., 2024). These frameworks are re-
implemented using Llama and Contriever to avoid
costs for API calls. Tab. 2 presents the MHQA
performance in terms of EM and F1, as well as
retrieval performance measured by MHRi@k with
k = 8 and varying i. Note that ηn represents
the total number of iterations, which varies for
each question. The results clearly demonstrate
that ReSCORE consistently enhances both MHQA
and retrieval performances across all methods and
benchmarks, highlighting its broad applicability.
Notably, the improvements in MHRi@8 become
bigger as i increases. The MHRi@8 scores in

the baseline models are bounded even though i
increases whereas the scores with the retrievers
fine-tuned with ReSCORE continue to improve as
i grows. This signifies that ReSCORE effectively
trains the retriever to identify documents that com-
plement those already retrieved.

4.2.2 Analysis of Pseudo-GT Labels
We next demonstrate the effectiveness of using
the proposed pseudo-GT labels for fine-tuning
the retriever by comparing the results of three
LLM-based re-ranking methods, including the pro-
posed approach: PLM(q | dj), PLM(a | q, dj) and
PLM(q, a | dj). The first question probability,
PLM(q | dj), evaluates the relevance of the doc-
ument dj to the question q. The second answer
probability, PLM(a | q, dj), measures the consis-
tency of the document in answering the question.
Finally, the third approach, PLM(q, a | dj), which
is adopted as the pseudo-GT labels in ReSCORE,
jointly considers both relevance and consistency,
providing a comprehensive metric for training a
retriever. For this experiment, we simply measure
the standard recall on re-ranked results in a single
iteration.

The results in Tab. 3 demonstrate that re-ranking
documents using the question probability improves
recalls across all three datasets by an average of
5.37%. This highlights the critical role of consider-
ing document relevance to the question in retrieval
for MHQA. Interestingly, however, re-ranking doc-
uments solely based on the answer probability sig-
nificantly degrades 23.8% from the baseline perfor-
mance on average. This decline is primarily due to
an increase in false positives, where irrelevant doc-
uments are erroneously assigned high consistency
scores because of their superficial alignment with



QA MHRi@K
Model EM F1 i = 1 i = 2 i = ηn

MuSiQue

Self-RAG∗ 1.2 8.2 25.8 25.8 25.8
+ReSCORE 2.8 10.8 24.9 31.6 31.6

FLARE 7.3 13.3 31.0 37.1 37.1
+ReSCORE 8.2 15.3 30.9 40.1 43.3

Adaptive-Note 9.6 17.7 44.9 50.2 50.2
+ReSCORE 11.2 20.5 45.1 49.8 55.3

Our Baseline 15.2 23.8 44.9 51.6 51.6
+ReSCORE 23.4 32.7 46.8 63.0 65.2

HotpotQA

Self-RAG∗ 5.6 17.9 36.1 36.5 36.5
+ReSCORE 8.7 19.2 33.8 37.2 37.2

FLARE 27.5 38.9 37.2 48.4 48.4
+ReSCORE 31.4 42.5 39.2 48.5 51.7

Adaptive-Note 42.0 55.3 44.8 49.8 50.1
+ReSCORE 43.8 58.0 47.3 63.3 77.2

Our Baseline 39.4 52.3 44.8 47.5 47.5
+ReSCORE 47.2 59.3 46.6 69.3 72.4

2WikiMHQA

Self-RAG∗ 3.0 19.1 26.3 27.1 27.1
+ReSCORE 5.6 21.2 25.9 28.4 32.8

FLARE 23.2 35.0 32.5 42.9 42.9
+ReSCORE 26.5 38.0 33.2 45.6 45.6

Adaptive-Note 35.7 46.1 45.7 59.2 59.2
+ReSCORE 37.4 49.3 49.8 63.2 67.5

Our Baseline 32.8 41.6 45.7 56.9 56.9
+ReSCORE 50.0 59.7 51.2 81.2 88.0

Table 2: Effects of ReSCORE with various iterative
RAG systems on three MHQA benchmarks. All meth-
ods are re-implemented using Llama 3.1 and Contriever,
except for Self-RAG, which uses Llama-2-7B model
from the original study. All hyperparameters for the
baselines are taken from the original paper and code, as
detailed in Appendix A.

the answer confusing the LLM.
Finally, we tested our proposed approach, which

uses the QA probability, combining relevance and
consistency. Note that this QA probability can be
factorized as the product of the question and an-
swer probabilities, PLM(q | dj) · PLM(a | q, dj).
The results show approximately 14.4% improve-
ments on average across the benchmarks compared
to the baseline. While the answer probability by
itself seemed ineffective, its combination with the
question probability becomes powerful, as it eval-
uates the consistency among relevant documents,
with irrelevant ones already filtered out due to their
low question probabilities.

4.2.3 Pseudo-GT vs. GT Labels
To further evaluate the quality of pseudo-GT labels
in ReSCORE, we fine-tune retrievers with GT la-

Pseudo-GT EM F1 R@2 R@4 R@8

MuSiQue

None 15.2 23.8 32.7 40.1 47.1
PLM(q | d) 15.9 25.9 34.6 41.1 47.9
PLM(a | q, d) 5.8 12.3 28.9 35.1 41.4
PLM(q, a | d) 16.4 26.3 42.7 50.3 55.7

HotpotQA

None 39.4 52.3 49.4 56.5 61.7
PLM(q | d) 42.0 53.9 55.2 62.4 65.9
PLM(a | q, d) 19.2 26.4 27.5 34.4 42.8
PLM(q, a | d) 43.6 56.4 58.1 64.6 68.3

2WikiMHQA

None 32.8 41.6 46.4 54.3 58.9
PLM(q | d) 39.2 47.9 50.8 59.1 63.2
PLM(a | q, d) 18.8 26.5 26.1 33.3 41.9
PLM(q, a | d) 41.4 51.7 53.7 63.0 67.1

Table 3: Comparisons of Different Pseudo-GT Labels
on Document Reranking. Recall@k (R@k) was com-
puted after retrieving 100 documents with Contriever
and re-ranking them using the given pseudo-GT label
for questions in the validation set. EM/F1 was computed
in the same setting on the test set.

bels. For this fine-tuning, a retriever is trained in
a single step, treating all labeled GT documents
as positives. Here, InfoNCE loss function from
DPR (Karpukhin et al., 2020) and Contriever (Izac-
ard et al., 2021) is employed in line with the
common practice for fine-tuning dense retrievers.
While it might be hypothesized that such models
serve as an upper bound for ReSCORE, experimen-
tal results in Tab. 4 reveal that ReSCORE-trained
models outperform these models, achieving supe-
rior results in both MHQA and multi-hop retrieval
metrics. This occurs because the model trained
with GT labels forces the query to align with mul-
tiple documents simultaneously. Note that, the
GT document distribution remains fixed. In this
context, a contrastive loss with treating all GT doc-
uments as positive attempts to align the query with
potentially distant multiple GT documents simulta-
neously. For example, consider the query: "Who
is the first president of the country where Billie
Eilish’s favorite food originates from?" To answer
this, multiple documents each containing informa-
tion on "Billie Eilish," "Avocado," and "Presidents
of Mexico" are required. When training with GT
documents, the query encoder would attempt to
align the query embedding with the centroid of
these distant document embeddings, which may
not be effective for retrieving any of the documents.
While GT labels enhance initial retrieval results,
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Figure 3: Comparison of GT and Pseudo-GT Labels on All Relevant Document Retrieval. The y-axis shows
the proportion of questions for which all relevant documents were found, which are all needed to correctly answer
a given complex question. Pseudo-GT labels lead to improved performance as the number of iterations increases.

QA MHRi@8
Label EM F1 i = 1 i = 2 i = ηn

MuSiQue

None 15.2 23.8 44.9 51.6 51.6
GT 15.8 24.9 46.7 54.8 54.8
Pseudo-GT 23.4 32.7 46.8 63.0 65.2

HotpotQA

None 39.4 52.3 44.8 47.5 47.5
GT 45.2 55.8 48.7 52.7 52.7
Pseudo-GT 47.2 59.3 46.6 69.3 72.4

2WikiMHQA

None 32.8 41.6 45.7 56.9 56.9
GT 37.1 46.2 48.5 61.7 61.7
Pseudo-GT 50.0 59.7 51.2 81.2 88.0

Table 4: Comparisons of Different Labels for fine-
tuning retrievers on three MHQA benchmarks. None
denotes no label, which means the baseline model with-
out fine-tuning. GT is a binary label denoting whether a
document is relevant to a given question or not. Pseudo-
GT is the labels used within ReSCORE.

they show limited effectiveness in the iterative pro-
cess, as evidenced by the bounded MHR scores
for i ≥ 2. In contrast, our method employs an
iterative retrieval process, enabling the progressive
retrieval of distant GT documents across multiple
steps. This iterative approach inherently addresses
the limitations of single-step retrieval by gradually
complementing the retrieval results as i increases.

This is further illustrated in Fig. 3, which depicts
the proportion of questions for which all relevant
documents are successfully retrieved. As observed,
retrievers trained with GT annotations achieve
higher rates in the initial iteration (blue lines) be-
cause the training procedure pushes the question
embedding towards all relevant documents simul-
taneously. However, ReSCORE-trained retrievers
quickly surpass these rates as i increases, achieving

Reformulation QA MHRi@8
Method EM F1 i = 1 i = 2 i = ηn

MuSiQue

None 10.8 17.8 44.7 45.4 47.4
LLM-rewrite 21.2 30.5 45.1 56.7 63.7
Thought-concat 23.4 32.7 46.8 63.0 65.2

HotpotQA

None 29.4 41.1 42.8 43.6 43.8
LLM-rewrite 44.2 57.4 41.9 54.8 64.7
Thought-concat 47.2 59.3 46.6 69.3 72.4

2WikiMHQA

None 35.6 44.7 48.6 49.7 49.8
LLM-rewrite 51.7 60.1 50.0 86.0 89.5
Thought-concat 50.0 59.7 51.2 81.2 88.0

Table 5: Effect of Query Reformulation Methods
on MHQA. We compare three methods: (1) no rewrit-
ing (None), (2) LLM-based query rewriting using re-
trieved documents (LLM-rewrite), and (3) concatenat-
ing summarized thoughts to the original query for re-
trieval (Thought-concat).

significantly higher rates of retrieving all relevant
documents (red lines) thanks to the incorporation
of the iterative process within ReSCORE.

4.2.4 Ablations on Query Reformulation
We perform an ablation study to evaluate the effec-
tiveness of various query reformulation methods.
The first method, None, uses the original question q
as the query at every iteration without any reformu-
lation, serving as a lower bound. Another method,
LLM-rewrite, prompts an LLM to rewrite the query
q(i) into a refined query q(i+1), focusing on unre-
solved aspects based on the current retrieved docu-
ments D(i). Finally, Thought-concat appends the
current thought t(i) to the query, constructing the
updated query as q(i+1) = [t(i); q(i)], where [a; b]
denotes the concatenation of a and b.

The results in Tab. 5 show that both query refor-



mulation methods improve retrieval and MHQA
performance. Thought-concat achieves larger
gains on MuSiQue and HotpotQA, while LLM-
rewrite performs slightly better on 2WikiMHQA.
This difference stems from question complexity:
LLM-rewrite works well for simpler queries (e.g.,
2WikiMHQA with 11.7 tokens on average) but
struggles with complex ones (e.g., MuSiQue and
HotpotQA with 17.9 and 16.0 tokens, respectively),
often losing focus. In contrast, Thought-concat
benefits from LLMs’ strength in summarization
and allows error recovery in subsequent iterations,
as the original question remains as a part of the
reformulated query.

5 Conclusion

In this paper, we presented ReSCORE, a novel
method for training dense retrievers for MHQA
without documents labeled with their relevance to
respective queries. To demonstrate the efficacy
of ReSCORE, we incorporated it into an iterative
RAG framework, IQATR, to achieve the new SOTA
on MHQA. We also employed it in existing MHQA
systems to improve the performance, showcasing
its broad applicability to various iterative RAG
frameworks for MHQA. In addition, we conducted
additional experiments to analyze various query
reformulation methods and pseudo-GT labels to
be used as fine-tuning signals for retriever training.
We expect our in-depth analysis to provide deeper
insights into ReSCORE and help devise ways to im-
prove on this label-free retriever training method.

Limitations

The fine-tuning process for our model is specifi-
cally tuned to datasets such as MuSiQue, 2Wiki-
MultiHopQA, and HotpotQA, each of which has
distinct characteristics, including the required num-
ber of hops and the types of reasoning involved.
While our retriever demonstrates strong perfor-
mance on trained datasets, its ability to generalize
to other datasets that differ in reasoning patterns
or dataset characteristics remains limited. This
limitation highlights an Out-of-Distribution gener-
alization challenge. Also, our approach relies on
an iterative retrieval process, which increases com-
putational costs and latency, especially for ques-
tions with high hop requirements. In practical ap-
plications the computational demand may be pro-
hibitive. Further optimization is necessary to make
the framework more efficient and scalable.
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A Hyperparameters

Hyperparameters are directly adopted from the
original papers or their accompanying codes, as
detailed in the Tab 6. It is important to note that
these hyperparameters result from an engineering
process specifically tailored for each method, and
therefore we have adopted them as they are to
ensure consistency. When applying our method,
ReSCORE, in Tab 2, we adhered to the same hy-
perparameters to ensure fair comparisons across all
methods. For prompts, we refer to those detailed in
each corresponding paper. The terms listed in Ta-
ble 6 are explained as follows: Max Tokens refers
to the maximum number of tokens allowed in the
generated output, limiting its length. T represents
the model’s generation temperature, which is set
to 0. to ensure consistent outputs. Top-k indicates
the number of documents considered for answering
at each iteration. Max Step defines the maximum
number of iterations the model can perform. Max
Fail specifies the maximum number of retries al-
lowed in case an iteration fails. For training the
baselines with ReSCORE, we use the same number
of documents, M = 32, for the distribution as used
in IQATR across all experiments.

B Details of the ReSCORE Framework

In this section, we provide a detailed explanation
of the prompts utilized in our framework, outlining
their roles and usage across different components.

The following prompts are employed in the
framework:

• Answer Generation Prompt (Appendix E.1):
Used to either generate answers or explicitly
indicate when the model does not know the
answer, clarifying whether to continue the it-
eration or stop.

• Thought Generation Prompt (Appendix E.2):
Guides the extraction of relevant information
from retrieved documents by summarizing
and preventing context overflow, ensuring the
model stays within the context limit.

• Question Rewriting Prompt (Appendix E.3):
Employed specifically for LLM-based ques-
tion rewriting tasks, as illustrated in Table 5.

For document relevance evaluation, we explore
three key prompts:

• The PLM(a | q, d) prompt (Appendix E.4),
which evaluates the likelihood of an answer a
given a question q and document d.

Max Top Max Max
Tokens T k Step Fail

FLARE 256 0. 2 7 -
Self-RAG 50 0. 5 10 -
Adaptive-Note 1280 0. 8 3 2
Ours 64 0. 8 6 -

Table 6: Hyperparameters used for reproducing each
method. The hyperparameters and prompts are adopted
directly from the original papers or their accompanying
code to ensure consistency.

• The PLM(q | d) prompt (Appendix E.5),
which assesses the relevance of a question
q to the document d.

• The PLM(q, a | d) prompt (Appendix E.6),
which jointly considers the likelihood of a
question-answer pair (q, a) given the docu-
ment d.

Among these, the PLM(q, a | d) prompt serves
as the default pseudo-GT generation mechanism in
the ReSCORE framework.

C Statistical Significance

In this section, we assess the statistical significance
of the results shown in Tab.1 by performing Stu-
dent’s t-tests, summarized in Tab.7. We compare
our method against Adaptive-RAG (Jeong et al.,
2024), IRCoT (Trivedi et al., 2023), and Adaptive-
Note (Wang et al., 2024) over 10 independent runs
with different random seeds. Our approach con-
sistently achieves statistically significant improve-
ments across all evaluated benchmarks (p-value <
0.05 for all comparisons). Specifically, our model
outperforms these baselines on the MuSiQue, Hot-
potQA, and 2WikiMHQA datasets, with signifi-
cant gains in both EM and F1 scores. Even in
the least favorable case—MuSiQue EM—our ap-
proach maintains significance (p = 0.045), with
an average 0.92-point improvement over Adaptive-
RAG. Even in the least favorable case—MuSiQue
EM—our approach maintains significance (p =
0.045), with an average 0.92-point improvement
over Adaptive-RAG. All other comparisons yield
even stronger statistical significance (p ≪ 0.05),
further confirming the robustness of our method.

Additionally, the significance of ReSCORE is
evident in several key aspects. First, it achieves
consistent performance across all three datasets
without requiring benchmark-specific hyperparam-
eter tuning. In contrast, IRCoT and Adaptive-RAG
adjust their hyperparameters and few-shot prompts,



MuSiQue HotpotQA 2WikiMHQA

EM F1 EM F1 EM F1

AdaptiveNote (GPT-3.5+BM25) p-value 1.4e-18 2.5e-17 3.0e-05 8.8e-3 1.7e-14 1.1e-14
∆ +9.58 +8.16 +1.28 +0.77 +6.36 +5.51

IRCoT (Flan-T5-XL+BM25) p-value 2.2e-3 5.9e-3 3.9e-13 1.2e-08 3.5e-2 7.5e-18
∆ +0.86 +0.72 +2.74 +2.67 +0.31 +5.09

Adaptive-RAG (Flan-T5-XL+BM25) p-value 4.5e-2 9.8e-3 1.3e-18 2.9e-18 2.5e-23 1.4e-22
∆ +0.98 +0.64 +5.09 +5.35 +9.40 +10.08

Table 7: Student’s t-test Results for Ours vs. Baselines. p-values from a two-tailed Student’s t-test over 10 random
seeds show all differences are statistically significant (< 0.05). ∆ indicates the average performance gap: Ours –
Baseline, with positive ∆ meaning Ours performed better.

MuSiQue HotpotQA 2WikiMHQA

cEM EM F1 cEM EM F1 cEM EM F1

Self-Ask (GPT-3.5) ‡‡ - 13.8 27.0 - - - - 30.0 36.1
Self-Ask (GPT-3.5+Google Search API)‡‡ - 15.2 27.2 - - - - 40.1 52.6
SearChain (GPT-3.5+ColBERT)‡‡ 17.1 - - 56.9 - - 46.3 - -
Ours (Llama-8B+Contriever+ReSCORE) 30.4 23.4 32.7 59.6 47.2 59.3 57.0 50.0 59.7

Table 8: Extended Comparison with Iterative Frameworks. cEM is a metric that assigns a score of 1 if the exact
answer tokens appear anywhere in the LLM-generated output. ‡‡ Scores are sourced from the original papers.

even leveraging GT document annotations. More-
over, Adaptive-Note incorporates GPT-3.5, which
has stronger reasoning capabilities compared to
Llama, the model used in this work. Furthermore,
as shown in Tab 2, ReSCORE consistently en-
hances the performance of Adaptive-Note in both
retrieval and MHQA metrics across all three bench-
marks. These findings underscore the robustness
and effectiveness of the proposed method.

D Extended Comparison to Baselines

The comparison to baselines in Tab 1 is extended
to include additional iterative RAG frameworks
in this section. Self-Ask (Press et al., 2023) and
SearChain (Xu et al., 2024), both of which lever-
age GPT-3.5. These methods employ a step-by-step
reasoning process, iteratively refining retrieved in-
formation while generating the final response. To
further quantify performance, the cover-EM (cEM)
metric from SearChain is introduced to IQATR.
cEM assigns a score of 1 if the exact answer tokens
appear anywhere in the LLM-generated output. As
shown in Tab 8, IQATR outperforms Self-Ask by
an average of 7.1 on EM and F1, and also surpasses
SearChain by an average of 8.8 on cEM, despite
both baselines using GPT-3.5 while our model uses
Llama-8B.



E Prompts

E.1 Answer Generation Prompt

Answer Generation Prompt

<|start_header_id|>system<|end_header_id|>

You will receive three inputs: 'documents', 'a question', and 'hints'.
Your task is to answer the given question.

Instructions:
- Carefully read the documents and hints.
- If you know the answer to the question confidently, generate an answer,
using documents and hints provided.
- If you don't know, generate "Unknown".

Format:
- Return a JSON object formatted as follows: {{"answer": "Your Response"}}
- Your response should be concise 'short-answer'
without any explanation or "Unknown".
- Ensure the entire response is on a single line without placeholder variables.

You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>

Documents:
{documents}

Question:
{question}

Hints:
{hints}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>



E.2 Thought Generation Prompt

Thought Generation Prompt

<|start_header_id|>system<|end_header_id|>

You will receive three inputs: 'documents', 'a question', and 'hints'.
Your task is to provide a hint that aids answering the given question.

Instructions:
- Carefully read the documents and hints.
- Generate a hint containing partial information relevant to the question,
using documents and hints provided.

Format:
- Return a JSON object in this format: {{"hint": "Your response"}}
- Your response should be concise 'one-sentence hint'.
- Ensure the entire response is on a single line without placeholder variables.

You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>

Documents:
{documents}

Question:
{question}

Hints:
{hints}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>



E.3 Question Rewriting Prompt

Question Rewriting Prompt

<|start_header_id|>system<|end_header_id|>

You will receive two inputs: 'documents', and a 'question'.
Your task is to create a new question that asks for additional documents
or information required to comprehensively answer the original question.

Instructions:
- Analyze the provided documents and identify any missing information,
entities, or relationships needed to fully answer the original question.
- Formulate a new question that explicitly asks for the missing
information or documents needed.
- Ensure that the new question maintains the original context and
scope of the original question.
- Focus on identifying gaps in entities (people, places, events)
or specific details that are absent from the provided documents
but are necessary to answer the original question.

Format:
- Return a JSON object formatted as follows: {{"question": "<Your Response>"}}
- Ensure the entire response is on a single line
without placeholder variables or assumptions.

You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>

{documents}

Question: {question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>



E.4 PLM(a | q, d) Prompt

Condition Prompt

<|start_header_id|>system<|end_header_id|>

Your task is to answer the given question using the given document(s).

Instructions:
- Carefully read the provided document(s).
- Answer the question using the given document(s).

Format:
- Return a JSON object formatted as follows:
{{

"answer": "The short-form answer to the question."
}}
- Your response should be concise 'short-answer'.
- Ensure the entire response is on a single line without placeholder variables.

You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>

Document(s):
{documents}

Question:
{question}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Prediction Prompt

{{
"answer": "{answer}"

}}



E.5 PLM(q | d) Prompt

Condition Prompt

<|start_header_id|>system<|end_header_id|>

Your task is to generate a question using the given document(s).

Instructions:
- Carefully read the provided document(s).
- Create a question that can be answered using the given document(s).
- Use information from one or more documents, but ensure that the answer is concise
and directly supported by the content.

Format:
- Return a JSON object formatted as follows:
{{

"question": "Your generated question based on the documents.",
}}
- Make sure the question is on-topic.
- Ensure the entire response is on a single line without placeholder variables.

You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>

Document(s):
{documents}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Prediction Prompt

{{
"question": "{question}"

}}



E.6 PLM(q, a | d) Prompt

Condition Prompt

<|start_header_id|>system<|end_header_id|>

Your task is to generate a question-answer pair using the given document(s).

Instructions:
- Carefully read the provided document(s).
- Create a question that can be answered using the given document(s).
- Use information from one or more documents, but ensure that the answer is
concise and directly supported by the content.

Format:
- Return a JSON object formatted as follows:
{{

"question": "Your generated question based on the documents.",
"answer": "The short-form answer to the question."

}}
- Make sure the question is on-topic and the answer is concise.
- Ensure the entire response is on a single line without placeholder variables.

You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id>

Document(s):
{documents}
<|eot_id|><|start_header_id|>assistant<|end_header_id>

Prediction Prompt

{{
"question": "{question}",
"answer": "{answer}"

}}


