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ABSTRACT

Despite its popularity, deep neural networks are easily fooled. To alleviate this
deficiency, researchers are actively developing new training strategies, which
encourage models that are robust to small input perturbations. Several successful
robust training methods have been proposed. However, many of them rely on
strong adversaries, which can be prohibitively expensive to generate when the
input dimension is high and the model structure is complicated. We adopt a new
perspective on robustness and propose a novel training algorithm that allows a
more effective use of adversaries. Our method improves the model robustness at
each local ball centered around an adversary and then, by combining these local
balls through a global term, achieves overall robustness. We demonstrate that, by
maximizing the use of adversaries via focusing on local balls, we achieve high
robust accuracy with weak adversaries. Specifically, our method reaches a similar
robust accuracy level to the state of the art approaches trained on strong adversaries
on MNIST, CIFAR-10 and CIFAR-100. As a result, the overall training time is
reduced. Furthermore, when trained with strong adversaries, our method matches
with the current state of the art on MNIST and outperforms them on CIFAR-10 and
CIFAR-100.

1 INTRODUCTION

With the proliferation of deep neural networks (DNN) in areas including computer vision, natural
language processing and speech recognition, there has been a growing concern over their safety. For
example, Szegedy et al. (2013) demonstrated that naturally trained DNNs are in fact fragile. By
adding to each data a perturbation that is carefully designed but imperceptible to humans, DNNs
previously reaching almost 100% accuracy performance could hardly make a correct prediction
any more. This could cause serious issues in areas such as autonomous navigation or personalised
medicine, where an incorrect decision can endanger life. To tackle these issues, training DNNs that
are robust to small perturbations has become an active area of research in machine learning.

Various algorithms have been proposed (Papernot et al., 2016; Kannan et al., 2018; Zhang et al.,
2019b; Qin et al., 2019; Moosavi-Dezfooli et al., 2020; Madry et al., 2018; Ding et al., 2020). Among
them, adversarial training (ADV) (Madry et al., 2018) and TRADES (Zhang et al., 2019b) are
two of the most frequently used training methods so far. Although developed upon different ideas,
both methods require using strong adversarial attacks, generally computed through several steps of
projected gradient descent. Such attacks can quickly become prohibitive when model complexity
and input dimensions increase, thereby limiting their applicability. Since the cost of finding strong
adversaries is mainly due to the high number of gradient steps performed, one potential approach to
alleviate the problem is to use cheap but weak adversaries. Weak adversaries are obtained using fewer
gradient steps, and in the extreme case with a single gradient step. Based on this idea, Wong et al.
(2020) argue that by using random initialization and a larger step-size, adversarial training with weak
adversaries found via one gradient step is sufficient to achieve a satisfactory level of robustness. We
term this method as one-step ADV from now on. While one-step ADV does indeed exhibit robustness,
there is still a noticeable gap when compared with its multi-step counterpart.

In this paper, we further bridge the gap by proposing a new robust training algorithm: Adversarial
Training via LocAl Stability (ATLAS). Local stability, in our context, implies stability of prediction
and is the same as local robustness. Specifically, we make the following contributions:
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• We adopt a new perspective on robust accuracy and introduce a framework for construct-
ing robust training losses that allow more effective use of adversaries. The framework
consists of a local component and a global component. The local component maximizes
the effectiveness of an given adversary by improving the network’s robustness on both the
adversary and points around it. In other words, the local component attempts to increase the
radius of a ball centered at the adversary on which the network is being robust. The global
component combines all local balls in a regularized way to achieve the desired overall robust
performance.

• Based on the framework and guided by the need of fast robust training, we propose our
novel robust training algorithm ATLAS.

• We show that ATLAS makes a more effective use of weak adversaries by favourably
comparing it against one-step ADV on three datasets: MNIST, CIFAR-10 and CIFAR-100.

• Although one-step ATLAS is more expensive than its other one-step counterparts, ATLAS
still allows efficient robust training. We show that, with a one-step weak adversary, ATLAS
manages to achieve comparable levels of robust accuracy to multi-step state of the art
methods on all datasets.

• Finally, we show that when strong adversaries are used, ATLAS matches with the current
state of the art on MNIST and outperforms them on CIFAR-10 and CIFAR-100.

2 RELATED WORKS

Robust training aims to learn a network such that it is able to give the same correct output even
when the input is slightly perturbed. Existing robust training algorithms can be divided into two
categories: natural image based methods and adversaries based methods. Within the first category,
the common form of loss is a natural loss term plus a regularizer computed at natural images. We
briefly mention some of these methods. Moosavi-Dezfooli et al. (2020) observed empirically that
reducing the curvature of the loss function and the decision boundary could lead to robust models.
The authors thus propose a regularizer based on the Hessian of the loss function. Closely related is
the regularizer, introduced in (Jakubovitz & Giryes, 2018; Hoffman et al., 2019; Ross & Doshi-Velez,
2018), that penalizes the Frobenius norm of the Jacobian of the loss function. Jacobian regularizer
can also be seen as a way of reducing the curvature of the decision boundary (Jakubovitz & Giryes,
2018). Although calculating the norm is computationally expensive, a fast estimator with empirically
high accuracy has been developed in Hoffman et al. (2019).

We focus on adversary based robust training, as they generally perform better in terms of robust
accuracy. Under this category, an early fundamental work is the Fast Gradient Sign Method (FGSM)
by Goodfellow et al. (2015). Adversarial Training (ADV) (Madry et al., 2018) is a multi-step variant
of FGSM. Rather than using one step FGSM, ADV employs multi-step projected gradient descent
(PGD) (Kurakin et al., 2016) with smaller step-sizes to generate perturbed inputs. These modifications
have allowed ADV to become one of the most effective robust training methods so far (Athalye
et al., 2018). Another frequently used robust training method is TRADES (Zhang et al., 2019b).
Motivated by its theoretical analyses of the trade-off between natural accuracy and robust accuracy in
a binary classification example, TRADES encourages model robustness by adding to the natural loss
a regularizer involving adversaries to push away the decision boundary.

Recently, Qin et al. (2019) suggest that a robust model can be learned through promoting linearity in
the vicinity of the training examples. They designed a local linearity regularizer (LLR), in which
adversaries are used to maximize the penalty for non-linearity. Applying LLR also allows efficient
robust training. We note that the underlying idea of LLR is complementary to ATLAS. In addition,
several works have suggested to adopt input dependent treatments. These works include incorporating
the fact of whether the given input is correctly classified (Wang et al., 2020) and using adaptive
perturbation for different inputs (Ding et al., 2019).

One major drawback of adversary based methods (Madry et al., 2018; Zhang et al., 2019b; Qin et al.,
2019; Wang et al., 2020; Ding et al., 2019) is that most of them rely on strong adversaries, computed
via expensive PGD. When the input dimension is high and the model structure is complicated, finding
adversaries can be too expensive for these methods to work effectively. Several works have researched
possible ways to speed up the process. Algorithmically, Zhang et al. (2019a) cut down the total
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number of full forward and backward passes for generating multi-step PGD adversaries while Zhang
et al. (2020) introduce a parameter to allow early stop PGD. Shafahi et al. (2019) reduce adversary
overhead by combining weight update and input perturbation update within a single back propagation
and use a single step FGSM adversary. Wong et al. (2020) argue that the main reason one-step
FGSM, generally regarded as not robust, is effective in (Shafahi et al., 2019) is due to the non-zero
initialization used. As a result, Wong et al. (2020) proposed that with random initialization and a
larger step size, weak adversaries generated by FGSM could lead to models with a high level of
robust accuracy. In this study, we adopt a similar viewpoint of accelerating robust training through
the use of weak adversaries.

3 PRELIMINARIES AND NOTATIONS

We consider classification tasks. Let x be an image from the data distribution X ⊂ RN and yx be
its correct label from classes C = {1, . . . , C}. We denote a neural network, parameterized by θ,
as f(x;θ) : X → RC . The function f outputs logits and the predicted class label is chosen to be
the element with the largest scalar value. Given a supervised dataset, the parameters θ are obtained
by minimizing a loss function ` over the dataset. In natural training, a common loss choice is the
cross-entropy loss, denoted as `CE. To compute `CE, we need prediction probabilities p(x;θ), which
is evaluated as pi(x;θ) = exp(fi(x;θ))∑

j exp(fj(x;θ))
element-wise.

Given a tolerance level ε and a distance measure norm Lp, we say the network f is robust to
adversaries at a given point x ∈ X , if it satisfies

arg max
i∈C

fi(x
′;θ) = arg max

i∈C
fi(x;θ), ∀x′ s.t ‖x′ − x‖p ≤ ε. (1)

We equivalently use a ball Bε(x) = {x′ | ‖x′ − x‖p ≤ ε} to represent the allowed perturbation. If f
is robust on Bε, we call Bε a robust ball.

Evaluating the true robustness of f on X is challenging. In practice, we replace X with a test set and
evaluate the robustness of f by measuring the percentage of the test set satisfying the condition in
equation (1). To check whether the condition is met, various attack strategies are applied. Commonly
used attacks are PGD based. To be specific, PGD performs the following gradient step during each
iteration t+ 1,

xt+1 = ΠBε(x)(xt + ξ · sgn(∇x`(f(xt;θ)), y)), ξ < ε, (2)
and repeats the iteration several times. Here, sgn denotes the sign function. On the other hand, FGSM
uses a single gradient step

x′ = x+ ε · sgn(∇x`(f(x;θ)), y). (3)

Finally, we introduce the following notation to facilitate the discussion. We first assume that the
neural network f contains ReLU activation for the sake of clarity. This implies that the neural network
is piecewise linear. As a consequence, at each x ∈ X , it is easy to find a weight matrix Wx ∈ RC×N
and a constant vector bx ∈ RC such that f(x;θ) = Wxx+ bx. To simplify the notation, we define

W̆x = [Wx | bx ] ∈ RC×(N+1), x̆T = [xT | 1 ] ∈ R1×(N+1). (4)

As a result, at each point x, we have f(x;θ) = W̆xx̆. Before we delve in to the details of the
algorithm ATLAS, we first introduce a new framework for designing robust training losses.

4 THE GENERAL FRAMEWORK

Unlike the optimization perspective taken by ADV and the regularization viewpoint adopted by
TRADES, our new loss framework is motivated from a geometric standpoint. We start by briefly
mentioning its closely related regularization type approaches. Generally, in such approaches, we
start from a natural image x. By including a loss term for x, regularization type losses ensure the
model gives the correct prediction yx at x. Assume the network makes the correct prediction at the
natural image x. It follows that, there exists a robust ball Bγ(x), where γ ≥ 0 is the maximum radius
achievable. Previous use of adversary regularization term encourages the radius γ of the ball Bγ(x),
centered at x, to increase.
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We take a different direction in our new loss framework. Instead of focusing on one global ball
centered at x, we focus on local balls centered at various points x′ ∈ Bε(x) and hopefully, by
combining them in a regularized way, we achieve the desired robustness γ ≥ ε. To facilitate the
illustration, we introduce our loss framework through a binary classification problem. Let there be
two classes C = {c1, c2}. For an arbitrary point x ∈ X , the correct class label is yx = c1. Since we
are interested in a network’s performance in classifying labels, we compute logits difference as

f1(x;θ)− f2(x;θ) = dW̆xx̆ ∈ R,

where d = [1,−1] is a row vector. For a binary classification problem with cross-entropy loss,
the loss decreases monotonically with the increase of the value dW̆xx̆. To achieve the desired
robustness, we require dW̆x′ x̆′ > 0 for all x′ ∈ Bε(x). When cross entropy loss ` is considered, we
need `(x′) < − log(0.5) for all x′ ∈ Bε(x). In Figure 1, we show a potential loss curve on Bε(x)
by fixing the value of x on all dimensions apart from one. Our loss framework consists of a local
component and a global component. Both components update the parameters of the network model.

Figure 1: Original loss curve on Bε(x)
by fixing the value of x on all dimen-
sions apart from one. Points with the loss
above the decision boundary − log 0.5
are adversarial points and marked as red.

4.1 LOCAL ROBUSTNESS

For the local component, at each given local point x′ ∈ Bε(x), the goal is to attain a robust ball
Bγ′(x′) with large radius. We maximize the use of adversaries by treating them as local center points
x′. In other words, given an adversary x′ ∈ Bε(x), we need to satisfy two requirements: the model
predicts the required label yx at x′ and the radius γ′ of Bγ′(x′) should be enlarged. When compared
with ADV, the additional second requirement allows us to achieve improved robustness performance
even when weak adversaries are used.

The first requirement can be easily met by applying a standard loss term at x′ with the label yx. For
the second requirement, to push away the decision boundary, various methods including Jacobian
regularizers (Jakubovitz & Giryes, 2018; Ross & Doshi-Velez, 2018), MMA (Ding et al., 2019) and
MMR (Croce & Hein, 2019) have been introduced. An expected loss curve after introducing the local
component is shown in Figure 2.

Figure 2: Loss curve after a local step. The
dashed line is the original loss curve. Provided
with a weak adversary x′, the local step aims
to decrease the loss at x′ while increase local
robustness so the local robust ball centered at x′
has a large radius.

Figure 3: Loss curve after a global step. The
dashed line is the loss curve after a local step.
To further smooth the loss curve and to remove
adversaries between x and x′, we penalize the
difference p(x;θ) − p(x′;θ). As a result, the
gap between `(x) and `(x′) is decreased.
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4.2 GLOBAL REGULARIZATION

In terms of the global component, we combine local balls together in a controlled way to further
improve robustness. We first make the following observation.

Proposition 1. Consider a ball Bε(x) at an arbitrary point x ∈ X . For any x∗ ∈ Bε(x), we define
W̆x∗ and x̆∗ accordingly, as in equation (4). Let u be a constant such that, for all possible W̆x∗ , the
following is satisfied ‖W̆x∗‖F ≤ u. Assume x1 and x2 are arbitrary chosen points in Bε(x). Then
for any

xη = η · x1 + (1− η) · x2, (5)

we have

dW̆xη x̆η ≥
1

2
(dW̆x1

x̆1 + dW̆x2

x̆2)− u · L, (6)

where L =
√

2(2‖x̆η‖2 + 1
2‖x̆

1 − x̆2‖2) is a constant.

We now consider the combination of local robust balls. At each loss computation, we have two points:
the natural image x and the adversary x′. Assume the model makes the correct prediction at the
natural image and, after the local component loss, at x′, so we have two non-empty local robust
balls Bγ(x) and Bγ′(x′). We further assume these two balls are disjoint for the sake of simplicity.
The same underlying idea should work for more general cases. The goal is that, with the global
regularization step, points that are misclassified even after the local step can be correctly predicted.

To do so, given that local robust balls Bγ(x) and Bγ′(x′) are disjoint, we assume there exists an
adversary point x∗ ∈ Bε(x) satisfying

x∗ = η∗ · x+ (1− η∗) · x′, (7)

where η∗ ∈ (0, 1) is a constant depending on Bγ(x) and Bγ′(x′). Then a direct application of
Proposition 1 gives

dW̆x∗ x̆∗ ≥ 1

2
(dW̆xx̆+ dW̆x′ x̆′)− u · L

=
1

2
d(W̆xx̆− W̆x′ x̆′) + dW̆x′ x̆′ − u · L

(8)

where u and L are defined accordingly.

To make x∗ no longer an adversary (that is, to encourage dW̆x∗ x̆∗ > 0) after global combination,
we should make the lower bound on the right as high as possible. Since both dW̆xx̆ and dW̆x′ x̆′

have the same max value theoretically, we can increase their sum by first increasing the value of
dW̆x′ x̆′ and then decrease the distance between dW̆xx̆ and dW̆x′ x̆′. We recall that during the
local robustness step, we have introduced cross-entropy loss at x′, which directly maximizes the
value of dW̆x′ x̆′. In addition, enlarging local robust balls often leads to a decreased value of u.
Given that dW̆x′ x̆′ and u are already optimized, a sound global step is to minimise the distance
between dW̆xx̆ and dW̆x′ x̆′. We note that, for the distance to be zero, it is sufficient to have the
relative differences f2(x′;θ)−f1(x′;θ) and f2(x;θ)−f1(x;θ) to be equal rather than requiring an
equality between logits f(x;θ) and f(x′;θ). To account for this fact, we use prediction probabilities
instead. The global regularization step requires minimizing the prediction probability difference
p(x;θ)− p(x′;θ). As the result, we are likely to turn x∗ into a correctly predicted point after the
global step, as illustrated in Figure 3.

When the loss surface is considered, the global component loss encourages the loss surface to be
smoothened and flattend on Bε(x), so the global component is helpful even when no such adversaries
x∗ exist. As suggested in (Zhang et al., 2019b; Cisse et al., 2017; Ross & Doshi-Velez, 2018;
Moosavi-Dezfooli et al., 2017), these properties of the loss surface are desired and are possibly
indispensable for models to be robust.

Overall, various losses can be constructed under this framework. Depending on the problem at hand,
one can choose an appropriate regularizer for increasing local robust balls while selecting a suitable
metric for penalizing the prediction probability difference.
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5 ATLAS

Guided by the goal of effective fast robust training, we propose a new training algorithm ATLAS,
which stands for Adversarial Training via LocAl Stability. We mention that local stability, in our
context, means stability of prediction, so it is the same as local robustness. ATLAS based on the
framework. We introduce and explain our choices for local and global components.

5.1 ATLAS-LOCAL

Many existing approaches for increasing robust ball radius are computationally expensive. In this
work, we adopt the standard Jacobian approach to meet our local component requirements based
on the fact that an efficient estimation algorithm for Jacobian has been developed in Hoffman et al.
(2019). We briefly introduce how Jacobian can be used to increase local robustness.

Given a local point x′, let the correct class label be c = yx. Then for any c′ 6= c, the boundary
hyper-surface separating classes c and c′ consists of points xb satisfying

fc(x
b;θ)− fc′(xb;θ) = 0. (9)

Applying the standard formula for computing the distance between a point and a hyper-plane 1, we
get the first order approximation distance dc′ of x′ to the boundary hyper-surface in equation (9)
under the l2 norm as

dc′ =
|fc(x′;θ)− fc′(x′;θ)|

‖∇x′fc(x′;θ)−∇x′fc′(x′;θ)‖2
. (10)

Since the above equation holds true for any c′, we conclude the model is robust on an l2 norm ball
centered at x′ with radius d := minc′ 6=c dc′ . To maximize the radius d, we borrow the following
proposition from Jakubovitz & Giryes (2018), which introduced a Jacobian regularizer to the natural
loss, to provide a lower bound for d.
Proposition 2. Assume the model is making the correct prediction c = yx for x′ and the distance
metric is measured via l2 norm. The first order approximation of the minimum perturbation d that is
required to find an adversary example is lower bounded by

d ≥ 1√
2‖J(x′)‖F

min
c′ 6=c
|fc(x′;θ)− fc′(x′;θ)|, (11)

where J(x′) = ∇x′f(x′;θ) is the Jacobian matrix computed at x′ and ‖ · ‖F is the Frobenius norm.

For a larger distance d, we need to both increase the value of |fc(x′;θ)− fc′(x′;θ)| and decrease
the Frobenius norm of J(x′). The first term can be easily taken care of by using a cross-entropy loss
on x′ while for the second term, we can include a cheap approximation of ‖J(x′)‖2F , denoted by
‖J(x′)‖approxF as a penalty term in our loss. Using the idea of random projection, Hoffman et al.
(2019) shows theoretically and empirically that ‖J(x′)‖approxF can be estimated with high quality by
one backward pass regardless the total number of classes C.

To combine the above analyses, for the local robustness component, we introduce the following loss,

`local(x
′) = `CE(x′) + α · ‖J(x′)‖approxF , (12)

where α is a positive scalar. It is worth noting that our local loss shown in equation (12) is different
from that of (Jakubovitz & Giryes, 2018; Hoffman et al., 2019; Ross & Doshi-Velez, 2018) as the
loss is evaluated at an adversary x′ instead of the image x. In the fast robust training setting, x′ is a
weak adversary obtained through one-step FGSM.
5.2 ATLAS-GLOBAL

To penalize the prediction probability difference, a natural and frequently used choice is Kull-
back–Leibler (KL) distance. We thus formulate the global loss as

`global(x
′) = β · KL(p(x′;θ)‖p(x;θ)), (13)

where β is a positive constant.
1in this case, the point should be x′ and the hyper-plane is tangent to the boundary hyper-surface.
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Although generally KL(p(x′;θ)‖p(x;θ)) 6= KL(p(x,θ)‖p(x′,θ)) due to the asymmetric nature of
KL distance, the same underlying nature of both terms means it is sufficient to use one direction
for the penalty. In our loss, we have use the prediction distribution at x′ to be the base distribution.
There are two reasons for this choice: firstly, we want it to be consistent with the fact that the local
component loss is computed on x′; and secondly, we hope it could mitigate a possible over-fitting
issue. If a model over-fits at the original image x causing an element pi(x;θ) of p(x;θ) to be close
to 0, the distance between pi(x;θ) and pi(x′;θ) would not be penalized effectively. In extreme cases,
the difference will not be penalized at all if pi(x;θ) = 0. Using p(x′;θ) as the base might alleviate
this issue, as x′ keeps changing during each epoch. Under the same reasoning, we point out TRADES
relies on finding strong adversaries. Since it uses the natural image x to compute cross-entropy loss
and as the base distribution in the KL regularizer, TRADES cannot use adversaries effectively when
they are weak. This is consistent with what we see in the experiments section that is, TRADES with
one step FGSM is largely outperformed by other methods on challenging datasets. Furthermore, in
Appendix C.1, we show that when putting more emphasis on adversaries by replacing x with x′ in
TRADES, improved robust accuracy can be achieved.

5.3 FINAL LOSS

Integrating the above analyses, we propose the following as the final loss for ATLAS. Given α > 0
and β > 0, the loss is formulated as

`ATLAS =
1

|X |
∑
x∈X

`CE(x′) + α · ‖J(x′)‖approxF︸ ︷︷ ︸
local

+β · KL(p(x′;θ)‖p(x;θ))︸ ︷︷ ︸
global

, x′ ∈ Bε(x). (14)

We mention that although our analyses are carried out in l2 norm, our results are easily generalizable
to other norms. To ensure the model makes correct predictions at natural images x ∈ X and for
effective patch combination, we adopt an adaptive value scheme for the pre-determined perturbation
epsilon. Specifically, we start by setting ε = 0 and gradually increases its value to the required
number over epochs during the initial stage of training. Assume the final value of ε is v, to be
consistent with the magnitude of ε, we replace α and β as ε

v · α and ε
v · β accordingly.

6 EXPERIMENTS
We evaluate the performance of ATLAS on three datasets: MNIST, CIFAR-10 and CIFAR-100. We
consider the cases of training robustness models with weak adversaries generated by FGSM and with
strong adversaries by multi-step PGD. To be consistent with the general experimental setting, we
adopt l∞ norm and use the perturbation value ε = 0.3 for MNIST and ε = 8/255 for CIFAR-10 and
CIFAR-100. MNIST is trained on a 4-layer CNN, which consists of 2 convolutional layers followed
by 2 fully connected layers. CIFAR-10 and CIFAR-100 are trained on Wide-ResNet-28-8 (Zagoruyko
& Komodakis, 2016). To encourage efficient robust training, instead of a fixed learning rate scheduler
that decreases the learning rate at pre-specified epoch numbers, we randomly choose a subset of the
data to be the validation set and then use its robust accuracy to guide the learning rate adjustment
and to terminate the training process. For MNIST, 20-step PGD is applied for computing robust
accuracy on the validation set while for CIFAR-10 and CIFAR-100, 10-step PGD is used. In addition,
we gradually increase epsilon value from 0 to 0.3 or 8/255 for the first 15 epochs. We use the SGD
optmizer for the training. More training related details can be found in Appendix B.

Methods We compare against ADV and TRADES. We term methods that use weak FGSM ad-
versaries as one-step methods. Following the advice from Wong et al. (2020), we apply FGSM,
combined with random initialization and a step size of 1.25ε to generate adversarial examples. One-
step ADV is an implementation of (Wong et al., 2020). To be consistent with their multi-step variants,
we use cross-entropy loss for computing the gradient in FGSM for ADV and ATLAS while employ
KL distance for TRADES. Multi-step methods are trained on strong adversaries generated by PGD:
20 steps for the MNIST and 10 steps for CIFAR-10 and CIFAR-100. We also include the Jacobian
penalty loss (Jakubovitz & Giryes, 2018; Hoffman et al., 2019; Ross & Doshi-Velez, 2018) due to
its close relation to our local loss component. We refer to it as zero-step JAC to emphasize the fact
it does not require adversaries. For each method, a range of parameters are tested and those that
give both high clean accuracy and high validation robust accuracy are chosen. Results for all tested
parameter choices are provided in Appendix F. Due to the limited space, the ablation study on the
effect of each component of ATLAS: the local part (ATLAS-l, by setting β = 0) and the global part
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(ATLAS-g, by setting α = 0) is left to Appendix C and the same is for a detailed comparison between
TRADES and ATLAS-g. In addition, we have include in Appendix D.1 an experiment to demonstrate
ATLAS’s effective use of weak adversaries. We compare ATLAS against a loss which always treats
the natural image x, instead of a weak adversary x′, as the center point for the local component. In
the words, the loss takes the form of combining TRADES and zero-step JAC.

Robustness Evaluation Extensive robustness evaluations are conducted in order to avoid a false
sense of security. Black box attack generates adversaries on surrogate models with 1000 PGD
steps. In terms of white box attacks, apart from an initial robustness evaluation with PGD-20,
we further introduce three strong white attacks: PGD-1000, Untargeted (Un-T) attack (Carlini &
Wagner, 2017) and Multi-targeted (Multi-T) attack (Gowal et al., 2019). Untargeted attack uses the
loss fu(x;θ) − fc(x;θ), where c is the correct class and u = arg maxi 6=c fi(x). We allow u to
change during each gradient step. Regarding Multi-targeted attack, we perform attack with the loss
fi(x;θ)− fc(x;θ) for all i ∈ C such that i 6= c. On the big Wide-ResNet model, we run 10 restarts
with 100 steps for Untargeted attack and 5 restarts with 20 steps for Multi-target attack. We reduce the
number of restarts and steps for the Multi-target attack to account for the fact that each incorrect class
needs to be tested. Due to the large number of classes, Multi-target is not performed on CIFAR-100.
On the other hand, we perform 20 restarts with 50 steps for both attacks on the small CNN model.
For each method, attack results are reported for a model at the epoch that gives the best validation
robust accuracy during the training. On the challenging datasets CIFAR-10 and CIFAR-100, two
more robust evaluations are carried out to obtain a more comprehensive understanding of models’
robustness performance. Specifically, we apply an hard-label attack, RayS (Chen & Gu, 2020) and an
ensemble of diverse parameter-free attacks, AutoAttack (Croce & Hein, 2020). Models’ robustness
performance under these two evaluations are reported in Appendix D.2.

We summarize attack results in Table 1. We mention that with a learning rate scheduler, which
is guided by the robust accuracy on the validation set, all models achieved their best performance
around 30 epochs, except 12 epochs for zero-step JAC on MNIST. In terms of robustness performance,
slight performance improvements for all methods and narrower performance gaps will be observed if
all models are trained for 70 epochs with a fixed learning rate scheduler on MNIST. On the other
hand, on CIFAR-10 and CIFAR-100, we found all methods perform better with the guided learning
rate scheduler. Since we are interested in efficient robust learning, we use the guided learning rate
scheduler for all experiments.

Evaluations on CIFAR-10 We study the challenging CIFAR-10 first. For zero-step Jac, we observe
that to achieve a roughly 30% robust accuracy, nominal accuracy is dropped to below 65%. Directly
including a Jacobian penalty at natural images could thus lead to over-regularization issues. This
may also be the reason why the method is used as a post-processing technique in (Jakubovitz &
Giryes, 2018). On the other hand, by using local adversaries instead of natural images, ATLAS-l
manages to obtain robust accuracy without sacrificing the nominal accuracy too much, which is
demonstrated in the Appendix. When TRADES is considered, we find that its effectiveness relies on
strong adversaries: robust accuracy increases sharply from one-step case to multi-step case. Since
TRADES computes loss at natural images and use them as the base distribution in the KL penalty,
weak adversaries are not effectively used.

In addition, we constantly find for one-step TRADES that, after a certain number of epochs, the
percentage of the model making incorrect decisions on weak adversaries falls sharply, leading to
a sudden drop of more than 10% on validation robust accuracy. This phenomena is referred to as
catastrophic overfitting (Wong et al., 2020; Andriushchenko & Flammarion, 2020). We observe
that when this behaviour occurs, the approximated value ‖J(x′)‖approxF increases steeply, which is
consistent with what has been observed in Andriushchenko & Flammarion (2020). When dealing
with catastrophic overfitting is the main concern, Andriushchenko & Flammarion (2020) argue the
key is to increase local linearity and they introduce a regularizer to maximize gradient alignment for
points within the perturbation ball. In our case, the issue could be similarly resolved by increasing
the coefficient α to encourage local linearity. However, since the goal of this project is to achieve
high robust accuracy fast, we do not restrict ourselves to models without catastrophic overfitting only,
which are likely to compensate robust accuracy for stability. Instead, we use early termination and
consider a wider range of models. We mention that the same phenomenon is observed on one-step
ADV and on one-step ATLAS when α is small but less frequently. More discussions on catastrophic
overfitting can be found in Appendix E.
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Table 1: Robustness performance for MNIST on a small CNN and for CIFAR-10 and CIFAR-100 on
Wide-Resnet 28-8. The higher the better.

White box attack Time

Model Clean
accuracy

Black box
attack

PGD-20
attack

PGD-1000
attack

Un-T
attack

Multi-T
attack

per batch

M
N

IS
T

zero-step JAC 98.34% 89.84% 58.09% 2.48% 28.83% 28.72% 0.012s
one-step ADV 99.49% 96.26 % 96.29% 83.25% 91.02% 90.62% 0.009s
one-step TRADES 99.40% 96.21% 96.28% 83.05% 90.66% 90.02% 0.016s
one-step ATLAS 99.47% 96.36% 96.84% 89.56% 92.44% 92.04% 0.018s
twenty-step ADV 99.48% 96.40% 97.16% 92.32% 93.01% 92.87% 0.077s
twenty-step TRADES 99.49% 96.21% 97.01% 90.51% 92.49% 92.21% 0.097s
twenty-step ATLAS 99.44% 96.45% 97.19% 92.20% 93.03% 92.74% 0.086s

C
IF

A
R

-1
0

zero-step JAC 63.24% 60.45% 34.40% 34.34% 31.13% 30.32% 0.47s
one-step ADV 86.24% 82.53% 45.73% 44.98% 45.14% 42.97% 0.25s
one-step TRADES 86.84% 82.63% 40.03% 39.41% 39.31% 38.14% 0.55s
one-step ATLAS 84.52% 81.06% 49.01% 48.59% 48.54% 46.55% 0.73s
ten-step ADV 84.77% 82.53% 50.60% 50.22% 49.74% 47.96% 1.38s
ten-step TRADES 84.01% 82.63% 52.70% 52.45% 50.29% 49.66% 2.02s
ten-step ATLAS 82.94% 81.06% 53.45% 53.10% 51.51% 50.16% 1.88s

C
IF

A
R

-1
00

zero-step JAC 47.96% 44.67% 15.39% 15.18% 14.35% - 0.47s
one-step ADV 48.88% 45.59% 19.89% 19.72% 19.04% - 0.25s
one-step TRADES 62.58% 57.64% 16.93% 16.21% 14.83% - 0.53s
one-step ATLAS 60.98% 57.04% 26.30% 25.94% 26.28% - 0.73s
ten-step ADV 60.72% 58.15% 27.71% 27.43% 26.83% - 1.37s
ten-step TRADES 59.76% 57.78% 26.27% 26.10% 23.86% - 2.00s
ten-step ATLAS 59.62% 57.83% 29.12% 28.89% 27.77% - 1.87s

Overall, one-step ATLAS outperforms other one-step methods in all strong white box attacks. Even
when compared with methods trained with 10 steps PGD, the performance gap between one-step
ATLAS and multi-step ADV under the strongest Multi-T attack is below 1.5%. Although adding local
and global penalties result in extra computational time for one-step ATLAS (0.73s) than one-step
ADV (0.25s), the fact that ATLAS achieves comparable high robust accuracy to that of multi-step
ADV (1.38s) with weak adversaries still allows a roughly 50% speed-up in training. For a fair
comparison, we also evaluate an ADV model with 5 PGD steps. The 5-step ADV models requires
slightly more time (0.75s per batch) but is less robust than one-step ATLAS by reaching 44.93%
accuracy under the Multi-T attack. When trained on strong adversaries, multi-step ATLAS wins over
the other two multi-step methods in all strong white box attacks.

Evaluations on CIFAR-100 and MNIST Similar performances are observed on the CIFAR-100.
The key fact to notice here is that the per batch training cost required for CIFAR-100 is similar to that
of CIFAR-10. Since we apply an efficient approximation to evaluate ‖J(x)‖2F , the increase of total
class number does not result in a rise of total computational cost. Again, we evaluate ADV models
with 5 PGD steps, which requires 0.75s per batch and reaches 25.21% robust accuracy under Un-T
attack. On MNIST, one-step ATLAS performs the best as well. Since MNIST is a simple dataset, all
multi-step methods obtain high robust accuracy on the small CNN model. For the same reason, the
unstable sudden drop of validation robust accuracy is not observed on any one-step method.

7 DISCUSSION

We have adopted a different perspective and proposed a new framework for constructing losses that
allow more effective use of adversaries. Specifically, based on the framework, we introduce a novel
algorithm ATLAS for fast robust training. ATLAS can be used as an initialisation technique for other
complicated tasks. For instance, model trained with ATLAS can be employed as the starting point for
layer-wise adversarial training in improving certified robustness. Apart from fast robust training, we
believe other losses could be constructed from the framework to accommodate different problems.
We leave the explorations of potential applications to various robust training setting to future research.
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A. PROOF FOR PROPOSITION 2

Proposition 1. Consider a ball Bε(x) at an arbitrary point x ∈ X . For any x∗ ∈ Bε(x), we define
W̆x∗ and x̆∗ accordingly, as in equation (4). Let u be a constant such that, for all possible W̆x∗ , the
following is satisfied ‖W̆x∗‖F ≤ u. Assume x1 and x2 are arbitrary chosen points in Bε(x). Then
for any

xη = η · x1 + (1− η) · x2, (5)
we have

dW̆xη x̆η ≥
1

2
(dW̆x1

x̆1 + dW̆x2

x̆2)− u · L, (6)

where L =
√

2(2‖x̆η‖2 + 1
2‖x̆

1 − x̆2‖2) is a constant.

Proof. The proof is straightforward. To simplify the notation, we define s1 := dW̆x1

x̆1, s2 :=

dW̆x2

x̆2 and sη := dW̆xη x̆η. Also, let l be the lower bound dW̆x∗ x̆∗ ≥ l for any x∗ ∈ Bε(x).
Such l exits because Bε(x) is a closed and bounded ball and f is continuous. We first note that

|s1 − l| − |s1 − sη| ≤ |sη − l|.

Since s1 − l > 0 and sη − l ≥ 0, we can remove the absolute sign and have

s1 − |s1 − sη| ≤ sη. (15)

The term |s1 − sη| can be upper bounded as

|s1 − sη| = |dW̆x1

x̆1 − dW̆xη x̆η|

≤ |(dW̆x1

− dW̆xη )x̆η|+ |dW̆x1

(x̆1 − x̆η)|
≤ 2u‖d‖2‖x̆η‖2 + u(1− η)‖d‖2‖x̆1 − x̆2‖2.

(16)

We further denote m = 2u‖d‖2‖x̆η‖2 and v = u‖d‖2‖x̆1 − x̆2‖2. By replace |s1 − sη| with its
upper bounds equation (16), it follows that

s1 −m− (1− η)v ≤ sη. (17)

Similarly for s2, we have
s2 −m− ηv ≤ sη. (18)

Finally, combining equation (17) and equation (18), we get

1

2
(s1 + s2)−m− 1

2
v ≤ sη, (19)

the desired inequality.

B. EXPERIMENTAL DETAILS

We give more details about training and attacks in the following.

Training We rely on the robust accuracy on a validation dataset to guide the training process. To be
more specific, we first randomly select 5000 images from the training dataset to form a validation set
before training starts. During training, after each epoch, we run a multi-step PGD attack to evaluate
the model’s robust accuracy on the validation set. If the validation robust accuracy does not improve
for a fixed number of consecutive epochs (we refer to the number as plateau epoch number), we
decrease the learning rate by five. If the robust accuracy does not improve for ten consecutive epochs,
we terminate the training process.

MNIST We use SGD optimizer with a starting learning rate of 0.01 on MNIST. Batch size is set to
be 128. After each epoch, we apply a 20-step PGD attack with step size 0.01 to determine validation
robust accuracy. Similarly, when generating strong adversaries for multi-step methods, 20-step PGD
attack with step size 0.01 is used. For numbers reported in Table 1, zero-step JAC is trained with
αJAC = 0.5; one-step and multi-step TRADES are trained with βTRADES = 1; one-step ATLAS is
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trained with α = 1e − 05 and β = 0.3 while multi-step ATLAS is trained with α = 5e − 06 and
β = 0.2.

CIFAR-10 and CIFAR-100 On both CIFAR-10 and CIFAR-100, we employ the SGD optimizer
with a starting learning rate of 0.1, a momentum of 0.9 and a weight decay of 2e− 4. A batch size
of 64 is used. In terms of computing validation robust accuracy and generating strong adversaries
in multi-step cases, we apply 10-step PGD attack with step size 0.007. On the CIFAR-10 dataset,
the following parameters are used for the numbers reported in Table 1: zero-step JAC is trained with
αJAC = 0.5; one-step TRADES is trained with βTRADES = 2; multi-step TRADES is trained with
βTRADES = 4; one-step ATLAS is trained with α = 0.0002 and β = 5 and multi-step ATLAS is
trained with α = 0.0001 and β = 5.0. On the CIFAR-10 dataset, we used αJAC = 0.5 for zero-step
JAC; βTRADES = 2 for one-step TRADES; βTRADES = 4 for multi-step TRADES; α = 0.0002 and
β = 5.0 for one-step ATLAS and α = 0.0001 and β = 10.0 for multi-step ATLAS.

Attacks Random initialization is applied in all attacks. Untargeted and Multi-targeted attacks are
implemented by following the descriptions given in (Qin et al., 2019). For these two attacks, we
consider an attack is successful if an adversary is found after a gradient update at any point during
the optimization procedure.

B.1. PLATEAU EPOCH NUMBER AND FGSM STEP-SIZE

Due to the simplicity of the MNIST dataset and similar behaviour on both CIFAR-10 and CIFAR-100,
we determine the plateau epoch number and the FGSM step-size by experimenting with one-step
ADV on CIFAR-10.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
PGD step size (multiplied by )
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One step ADV
Clean-plt2
Robust-plt2
Clean-plt4
Robust-plt4

Figure 4: Clean and robust accuracy for one-step ADV at different step sizes

We use strongest Multi-T attack for evaluating model’s robust accuracy. In Figure 4, the green lines
show the results for plateau epochs to be 2 (plt2) while red lines are for plateau epochs to be 4 (plt4).
In terms of step sizes, we tested 3 possible values: 1.25ε (the suggested value by Wong et al. (2020)),
1.5ε and 1.8ε. It is clear to see that with plt2, models perform better in both nominal accuracy and
robust accuracy at all three step sizes. We thus use plateau epoch number 2 to adjust the learning rate
in all our experiments for comparable results. When step size is considered, both 1.25ε and 1.5ε give
satisfactory results. Since other methods show more stable performances with the step size 1.25ε, we
use it for generating weak adversaries in our experiments.

C ATLAS: ABLATION STUDIES

We perform ablation studies for ATLAS. We consider the one-step setting. Recall that ATLAS
consists of two components: a local component and a global component. We test the effect of the
local component by setting β = 0 to get ATLAS-l:

`ATLAS-l =
1

|X |
∑
x∈X

`CE(x′) + α · A(J(x′)), x′ ∈ Bε(x). (20)
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and the global component by setting α = 0 to get ATLAS-g:

`ATLAS-g =
1

|X |
∑
x∈X

`CE(x′) + β · KL(p(x′;θ)‖p(x;θ)), x′ ∈ Bε(x). (21)

We apply the strongest Multi-T attack on CIFAR-10 and Un-T attack on CIFAR-100. Results are
summarised in Table 2. When CIFAR-10 is considered, both ATLAS-l and ATLAS-g alone are
effective in improving the model’s robust accuracy. Combining the local and global components
(one-step ATLAS) lead to a further robustness improvement. In terms of time per batch, apart from
the cross-entropy loss term at the adversary in both ATLAS-l and ATLAS-g, ATLAS-l requires
computing the gradient of a Jacobian approximation term and is computationally more expensive
than ATLAS-g, which calculates the gradient of a KL penalty term instead. Furthermore, the fact
that ATLAS-g is computationally cheaper than TRADES is because it uses cross-entropy loss to
compute gradients for FGSM while TRADES uses KL distance. Similar performance is observed on
CIFAR-100.

Table 2: Robustness performance for CIFAR-10 and CIFAR-100 on Wide-Resnet 28-8. The higher
the better.

Model Clean
accuracy

Un-T
attack

Multi-T
attack

Time
per batch

C
IF

A
R

-1
0

one-step ADV 86.24% - 42.97% 0.25s
one-step TRADES 86.84% - 38.14% 0.55s
one-step ATLAS-l 85.24% - 44.46% 0.60s
one-step ATLAS-g 82.07% - 44.43% 0.38s
one-step ATLAS 84.52% - 46.55% 0.73s

C
IF

A
R

-1
00

one-step ADV 48.88% 19.04% - 0.25s
one-step TRADES 62.58% 14.83% - 0.53s
one-step ATLAS-l 58.46% 24.73% - 0.60s
one-step ATLAS-g 51.88% 19.71% - 0.37s
one-step ATLAS 60.98% 26.28% - 0.73s

We show model’s performance when trained with ATLAS-l and ATLAS-g at different parameter
values. Results for CIFAR-10 are summarised in Figure 5 and 6 while results for CIFAR-100 are
summarised in Figure 7 and 8. For CIFAR-10, we see that the clean accuracy decreases with the
increase of α value for ATLAS-l but robust accuracy retains at the similar level. In terms of ATLAS-g,
the same trend is observed and when the value of β is large, both clean and robust accuracy decline.
On CIFAR-100, there is a big drop in robust accuracy for ATLAS-l when α rises while robust
accuracy for ATLAS-g is relatively insensitive to the change of β value.
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Figure 5: Clean and robust accu-
racy for ATLAS-l at different α
on CIFAR-10
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Figure 6: Clean and robust accuracy for ATLAS-l at different
β on CIFAR-10
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Figure 7: Performance of
ATLAS-l at different α on
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Figure 8: Clean and robust accuracy for ATLAS-l at different
β on CIFAR-100

C.1 ATLAS-G VS. TRADES

ATLAS-g and TRADES take similar forms. The only differences between these two methods are:
firstly, ATLAS-g computes cross-entropy loss at the adversary while TRADES at the natural image;
secondly, ATLAS-g uses cross-entropy loss to find a gradient in FGSM while TRADES employs KL
distance.

On CIFAR-10, it is clear that ATLAS-g outperforms TRADES on both clean and robust accuracy
for all tested β values. This observation supports the fact that ATLAS-g, by computing the loss at
weak adversaries, allows a more effective use of them. Maximizing the use of weak adversaries is
important in fast robust training setting. In terms of CIFAR-100, ATLAS-g outperforms TRADES
on robust accuracy. However, TRADES achieves higher clean accuracy on small β values. The
regularization effect of ATLAS-g could be higher than TRADES.
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Figure 9: ATLAS-g vs. TRADES
on CIFAR-10
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Figure 10: ATLAS-g vs. TRADES on CIFAR-100

D ADDITIONAL EXPERIMENTS

We compare ATLAS against another loss of similar form. Furthermore, we perform two extra attacks
to obtain more comprehensive evaluations of all tested models. Due to the simplicity of MNIST, we
focus on the challenging datasets CIFAR-10 and CIFAR-100 only.

D.1 ADDITIONAL LOSS

We study an additional loss to demonstrate ATLAS’s effective use of weak adversaries. We recall
that within our framework, the key to maximize the use of weak adversaries is to treat them as center
points of local balls in the local component. We thus consider the following loss

`TradesJac =
1

|X |
∑
x∈X

`CE(x) + αtj · ‖J(x)‖approxF︸ ︷︷ ︸
local

+βtj · KL(p(x;θ)‖p(x′;θ))︸ ︷︷ ︸
global

, x′ ∈ Bε(x).
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We term the loss as TradesJac, as it can also been seen as a combination of the TRADES loss and the
zero-step JAC loss. Adversaries are computed by using the gradient of the KL-distance. The main
difference between TradesJac and ATLAS is in the local component, where TradesJac uses natural
images as center points for local balls instead of weak adversaries.

We train models using TradesJac with various sets of values for αtj and βtj and reported results for the
model with the best validation robust accuracy. Results can be found in Table 3. On both CIFAR-10
and CIFAR-100, we have set αtj = 0.0002 and βtj = 0.5. We have also include other one-step
methods for easy comparison. It is clear to see that ATLAS outperforms TradesJac in all attacks,
confirming that ATLAS is able to employ weak adversaries more effectively in achieving robust
accuracy.

Table 3: Robustness performance for one-step methods on CIFAR-10 and CIFAR-100. All models
are trained with Wide-Resnet 28-8. The higher the better.

White box attack Time

Model Clean
accuracy

Black box
attack

PGD-20
attack

PGD-1000
attack

Un-T
attack

Multi-T
attack

per batch

C
IF

A
R

-1
0 one-step ADV 86.24% 82.53% 45.73% 44.98% 45.14% 42.97% 0.25s

one-step TRADES 86.84% 82.63% 40.03% 39.41% 39.31% 38.14% 0.55s
one-step ATLAS 84.52% 81.06% 49.01% 48.59% 48.54% 46.55% 0.73s
one-step TradesJac 84.38% 81.54% 46.04% 45.75% 44.60% 43.59% 1.14s

C
IF

A
R

-1
00 one-step ADV 48.88% 45.59% 19.89% 19.72% 19.04% - 0.25s

one-step TRADES 62.58% 57.64% 16.93% 16.21% 14.83% - 0.53s
one-step ATLAS 60.98% 57.04% 26.30% 25.94% 26.28% - 0.73s
one-step TradesJac 58.15% 54.56% 21.22% 20.89% 19.78% - 1.15s

D.2 ADDITIONAL ATTACKS

We perform two additional robustness evaluations on CIFAR-10 and CIFAR-100. The first one is a
hard-label attack called RayS (Chen & Gu, 2020). For both datasets, we run RayS with 40000 queries
on 1000 randomly selected images from the test set. The second one is an ensemble of parameter-free
attacks, named as AutoAttack (Croce & Hein, 2020). AutoAttack consists of two variants of PGD
attack, an attack focused on gradient-masking and a black-box attack. We have used the standard
version of AutoAttack for all evaluations. Results for CIFAR-10 and CIFAR-100 can be found in
Table 4 and Table 5 respectively. ATLAS gives the most robust performance among all methods in
both weak and strong adversaries cases.

Table 4: Robustness performance for CIFAR-10 on
Wide-Resnet 28-8. The higher the better.

Model RayS
attack

Auto
attack

C
IF

A
R

-1
0

zero-step JAC 33.50% 30.03%

one-step ADV 50.20% 42.49%

one-step TRADES 45.10% 37.74%

one-step ATLAS 52.70% 46.16%

one-step TradesJac 50.20% 43.16%

ten-step ADV 54.40% 47.56%

ten-step TRADES 54.00% 49.40%

ten-step ATLAS 53.20% 49.82%

Table 5: Robustness performance for CIFAR-100 on
Wide-Resnet 28-8. The higher the better.

Model RayS
attack

Auto
attack

C
IF

A
R

-1
00

zero-step JAC 16.70% 11.85%

one-step ADV 19.90% 17.17%

one-step TRADES 19.50% 12.75%

one-step ATLAS 28.60% 23.42%

one-step TradesJac 22.60% 17.99%

ten-step ADV 29.80% 24.64%

ten-step TRADES 28.20% 22.78%

ten-step ATLAS 30.60% 25.77%
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E CATASTROPHIC OVERFITTING

We give more details on catastrophic overfitting behaviour in our experiments. We first show typical
training plots for both cases. The upper row of Figure 11 contains plots for a model when catastrophic
overfitting is avoided and the bottom row show plots for a model when catastrophic overfitting
happens. It is clear to see that catastrophic overfitting is highly associated with a sharp increase of
Jacobian value, which is consistent with the observations made in (Andriushchenko & Flammarion,
2020). In our experiments with roughly 30 epochs, we find that catastrophic overfitting always occurs
for one-step TRADES and ATLAS-g but less frequently for one-step ADV and one-step ATLAS. For
ATLAS-l, the catastrophic overfitting can be effectively avoided by increasing the value for α as it
directly penalizes large Jacobian value. The same strategy can be applied for the full ATLAS method.
We find that, for a stable training performance, the choice of α depends on the value of β. That is a
large β value requires a large α value.

Finally, we mention that since the goal is to achieve high robust accuracy, we use early termination
and consider a wider range of models regardless whether they experience catastrophic overfitting in
the end.
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Figure 11: We show typical training plots for a model on CIFAR-10 when catastrophic overfitting
is avoided in the upper row and when catastrophic overfitting happens in the bottom row. Upper
row plots are for the ATLAS model with α = 0.0002 and β = 5.0 while the bottom row plots
are for the ATLAS model with α = 0 and β = 8.. The figures on the left shows the value of
‖J(x′)‖approx

F throughout the training. Catastrophic overfitting is associated with a steep increase of
the Jacobian value. The figures in the middle gives the trend for robust accuracy on the validation
dataset. Validation robust accuracy drops sharply with the sudden increase of the Jacobian value.
Finally, on the right, we have plots for clean accuracy on the test set after each epoch. A further
increase to almost 90% clean accuracy is experienced in the catastrophic overfitting case.

F PARAMETER CHOICES: ONE-STEP CASE

We show clean accuracy and robust accuracy for each method at various parameter choices.
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F.1 ZERO-STEP JAC

Although zero-step Jac does not require adversaries, we used 2 epochs for adjusting learning rate
via validation robust accuracy to be consistent. Model’s performance over a range of αJac values is
shown in Figure 12 for CIFAR-10 and 13 for CIFAR-100. There is a large trade-off between clean
and robust accuracy for small αJac values and then both clean and robust accuracy decrease with the
increase of αJac.
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Figure 12: Clean and robust accuracy for zero-
step JAC at different αJac on CIFAR-10
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Figure 13: Clean and robust accuracy for zero-
step JAC at different αJac on CIFAR-100

F.2 ONE-STEP TRADES

In Figure 14 (CIFAR-10) and 15 (CIFAR-100), we show one-step TRADES at various βTRADES
values. It is easy to see that increasing the value of βTRADES mainly hurts the clean accuracy without
improving robust accuracy.
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Figure 14: Clean and robust accuracy for one-
step TRADES at different βTRADES on CIFAR-
10
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Figure 15: Clean and robust accuracy for one-
step TRADES at different βTRADES on CIFAR-
100

F.3 ONE-STEP ATLAS

In Figure 16, we give clean and robust accuracy for models trained at different α and β values on
CIFAR-10. In Figure 17, we give clean and robust accuracy for models trained at different α and β
values on CIFAR-100. A slight trade-off between clean and robust accuracy can be observed.
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Figure 16: Clean and robust accuracy for one-step ATLAS at different α, β on CIFAR-10
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Figure 17: Clean and robust accuracy for one-step ATLAS at different α, β on CIFAR-100
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