
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EGLNN:ENHANCED GRAPHLESS NEURAL NETWORK
FOR IOT DATA STORAGE TRANSACTION SECURITY

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rise of 5G and the IOT, the amount of data generated by IoT devices has
exploded. Ethereum has become a secure tool for storing and trading IoT data due
to its openness and tamper-proof nature. However, as Ethereum becomes more
and more popular, the Ethereum platform has also become a hotbed for various
types of cybercrimes, so ensuring the security of the Ethereum network is crucial.
Recently, algorithms based on GNN have been seen as an effective way to detect
abnormal nodes in the network. However, through analysis, this work finds that
its original network structure is not optimal, directly applied to the existing GNN
model with poor results. Meanwhile, it is understood that most of the current
GNNs rely on the message-passing principle, which leads to slow model train-
ing and inference, and large model size. It is quite challenging to directly apply
traditional GNN algorithms in industrial scenarios with limited space and high
feedback time requirements. This study proposes a knowledge distillation-based
algorithm called Enhanced Graph-Less Neural Network .EGLNN estimates more
realistic graph structures through Bayesian graph structure estimator and solves
the problem of large-scale GNN models being difficult to be widely applied in
industry through the faculty-student distillation method.

1 INTRODUCTION

The Internet of Things (IoT)Xu et al. (2022) refers to a group or groups of tightly connected devices
that form a network through wireless or cable communication technology and work together to the
common objectives of its users.With the rapid development of 5G, the amount of data generated by
connected devices in the Industrial IoT (IIoT) paradigm has significantly increased within Industry
4.0. This data holds immense value across fields such as technology, economy, energy, and smart
cities. An rising number of consumers and businesses see the transactional value of IoT data. Conse-
quently, IoT data trading platforms have extensive applications and promising prospects.Currently,
most IoT data trading platforms rely on third parties for data storage and transactionsMohamed &
Mohamed (2019). However, this data trading approach is not inherently secure and may lead to data
security issues such as industrial information leaks due to platform credibility concerns. Blockchain
technologyWu et al. (2019), with its attributes of decentralization, transparency, and immutability,
offers a potential solution to these problems. As a result, an increasing number of researchers are ex-
ploring the utilization of blockchain technology for storing and trading IoT data without dependence
on third-party platformsEsposito et al. (2018).

However, with the increasing popularity of Ethereum, the Ethereum network platform has also be-
come a hotbed of various cybercrimes Wu et al. (2021). Among them, phishing scams are the
most harmful among all kinds of cybercrimes Li et al. (2022a).This shows that the security of the
Ethereum platform has become a key issue affecting the development of the Ethereum ecosystem.
Currently, the most popular method for detecting abnormal nodes in the Ethereum network is to
convert the abnormal node detection problem into a node classification problem through network
representation learning, and identify abnormal nodes in the network by learning the characteristic
information of the network Lin et al. (2020). Wang et al.Wang et al. (2022) presented a hetero-
geneous network-based network embedding approach to mine implicit information in Ethereum
transactions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In recent research on anomaly detection in the Ethereum network, algorithms applying network
representation learning and graph neural networks have made significant progress. However, what
we still need to think about is whether this type of GNN model is enough to solve the Ethereum
network security problem in the context of industrial information storage transactions? In this work,
the topology of the Ethereum transaction network was first analyzed, and it was found that the degree
of nodes in the Ethereum transaction network exhibits the characteristics of a long-tail distribution
Liu et al. (2020). This shows that the original transaction network structure of Ethereum may not
be optimal, making it difficult for the GNN model trained directly using the original graph to obtain
optimal network structure information.Secondly, by analyzing the principle of the GNN algorithm,
we know that most of the current GNNs rely on the principle of message passing Yang et al. (2023b).
This makes the training and execution speed of the GNN model slower and the size of the trained
model larger. Although this feature of GNN can guarantee good results in node classification tasks,
it is only suitable for scenarios with unlimited memory and speed, and it is not suitable for industrial
application scenarios.

After identifying these challenges, this study proposes a model called Enhanced Graphless Neural
Network (EGLNN) to Solve Ethereum network security issues in industrial information storage and
transaction scenarios. The model’s main idea is to transfer a large amount of work from the delay-
constrained teacher GNN reasoning to the less time-sensitive student MLP by adopting the method
of knowledge distillation (KD) Yang et al. (2023a). The purpose is to transfer the knowledge learned
in the teacher model from The typical GNN large model is extracted into a smaller MLP model, such
that the student MLP model can perform similarly to the instructor model and has a running speed
that the teacher model does not have, so that it can be applied to industrial platforms.

The following are the three main contributions of this paper:

(1) This paper proposes a new GNN model, which gets rid of the scalability and deployment chal-
lenges brought about by GNN’s data dependence in industrial environments through knowledge
distillation, so that it can be deployed to applications that require fast reasoning. in latency-limited
applications.

(2) Through research, it was discovered that the original Ethereum transaction network structure is
not reliable. This work optimizes the graph structure based on Bayesian reasoning, and replaces the
initial node features with position encoding (PE) vectors to ensure that the knowledge transferred by
the teacher model to students only contains optimized graph structure information.

(3) Extensive experiments are conducted on the Ethereum dataset collected in this work, and the
experimental results show that EGLNN has better performance compared with state-of-the-art meth-
ods.

2 RELATED WORK

This section first briefly reviews two techniques related to this work – graph neural network and
knowledge distillation, and introduces related work.

2.1 GRAPH NEURAL NETWORK

Current graphic neural network algorithms can be roughly divided into the following five categories:
graphical network-based (GCN), graphical attention network (GAT), graphic self-coding (GAE)
based, graphic generating model (GAN) based and graphical pooled neural networks (GPN) based.

GCN Kipf & Welling (2016) is one of the most classic and basic algorithms in graphic neural net-
works, which updates the characteristic vector of each node by aggregating the characteristics of
neighbouring nodes . Chen et al.Chen et al. (2019) proposed GIN, which is a graph convolutional
neural network based on graph isomorphism. It constructs the embedding vector of nodes by ac-
cumulating and splicing the feature vectors of neighboring nodes. The algorithm based on GAT
Perozzi et al. (2014) is a graph neural network algorithm based on attention mechanism. Different
from GCN, GAT can assign different weights to each neighbor node, and weight the contributions
of different neighbor nodes when computing node feature vectors. GATv2 Brody et al. (2021) is an
improved version based on variational dropout, which introduces a variational dropout mechanism
based on Gaussian noise, which can improve the generalization ability of the model. The algorithm

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

based on graph autoencoder (GAE) Schulman et al. (2015) is an algorithm that utilizes autoencoder
structure to learn graph representation. It treats the graph structure as input, and learns the low-
dimensional representation of the graph through the process of encoding and decoding, so as to
realize tasks such as graph classification and clustering. An algorithm based on a graph generative
model (GAN) Creswell et al. (2018) is a neural network model capable of generating data similar
to the input data. In graph neural networks, GANs can be used to generate graph structures that
meet specific property or structural requirements. Graph Pooling Neural Network (GPN) Gao et al.
(2021) is a GNN based on adaptive graph pooling, which can reduce the size of the graph, improve
computational efficiency, and enhance the model’s generalization efficacy. It is widely used in graph
classification, Graph generation etc.

In summary, most current graph neural network algorithms still directly take the original topological
graph as input without considering the incompleteness of the graph structure, which greatly hamper
their performance in subsequent tasks.

2.2 KNOWLEDGE DISTILLATION

Traditionally, large neural networks need to be run on GPU or TPU to achieve good performance,
but large neural networks cannot be run directly on industrial IoT devices with limited computing
resources and storage space.Therefore, research on GNN reasoning acceleration has attracted in-
creasing attention.Hinton et al. Hinton et al. (2015) first proposed a knowledge distillation(KD)
algorithm.Its central concept is to extract the teacher model’s knowledge from a typical large model
into a smaller one. In recent years, there are many related studies on knowledge distillation. For
example, Zhang et al. Zheng et al. (2021) proposed a model called Cold brew to solve the node long-
tail distribution problem by distilling the structural embedding SE learned by the teacher GNN into
the student MLP, and Huo et al. Huo et al. (2023) proposed a The double distillation mode enhances
the ability of the student model by distilling topological features and attribute features separately.

There are many advantages of knowledge distillation: 1) It can compress the size of the model and
compress the knowledge of the large model into a small model while retaining the accuracy of the
large model. 2) It can speed up the inference speed. 3) It can improve the model generalization
ability. In short, the knowledge distillation algorithm can solve the problem of deploying the GNN
algorithm on the Industrial Internet of Things very well. It can greatly reduce the computing and
storage costs of the deep neural network, improve the efficiency and performance of the model, and
accelerate the deployment and operation on various devices.

2.3 ANOMALY DETECTION ALGORITHMS ON THE ETHEREUM NETWORK

The Ethereum ecosystem is gravely threatened by malicious accounts on the Ethereum network.This
section summarizes the Ethereum network anomaly detection algorithms released in recent years
and introduces their principles and characteristics.Wu et al.Wu et al. (2020) proposed an algorithm
called Trans2vec, which is an improvement of Node2vecGrover & Leskovec (2016), is a method for
detecting phishing scams by mining transaction records in the Ethereum network. Li et al.Li et al.
(2022b) proposed a method called TTAGN to model the temporal relationship in historical trans-
action records between nodes. This method combines transaction features with common statistical
and structural features obtained through graph neural networks to identify phishing addresses.Liu et
alLiu et al. (2023) proposed an algorithm called AMBGAT, which enhances the Ethereum network
structure by using Bayesian estimation to improve the identification accuracy of phishing nodes.

To sum up, Most of the current Ethereum anomaly detection algorithms are based on graph neural
network methods. Although these algorithms have high accuracy, they rely on the aggregation of
neighbor nodes that are more than hops away from the target. Therefore, An industrial setting would
burden latency-first applications, making it difficult to deploy into latency-bound applications that
require fast inference

3 THE PROPOSED FRAMEWORK

This section will delve into the methodological framework proposed in this work, which is a novel
GNN framework based on knowledge distillation. The method mainly includes two modules:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

teacher GNN module and student MLP module. The details are shown in Figure 2 below. In the
teacher model, in order to solve the problems of poor topology, long-tail node degree distribution
and poor homogeneity of the Ethereum transaction network pointed out in this article, a more real-
istic graph structure is first estimated through Bayesian inference. It is used for downstream tasks,
and then the teacher GNN learns a vector containing only the structural feature embedding (SFE)
of the optimal graph based on the optimal graph obtained by Bayesian inference and passes it to the
student through the knowledge distillation method. Model MLP1 enables MLP1 to generate an em-
bedding similar to the optimal graph structure feature embedding (SFE) vector by inputting only the
node features of the original graph. Next, the structure generated by student MLP1 is used in the stu-
dent model through self-attention. The feature embeddings and node attribute feature embeddings
generated by MLP2 are fused for the final anomaly detection task.

Figure 1: EGLNN Overall Framework

3.1 TEACHER GNN MODULE

The main goal of the teacher GNN is to learn an embedding with node structural features and pass
it to the student MLP model through distillation. In this way, the student model, given only node
features as input, is able to generate embeddings similar to the topological feature embeddings
of the optimal graph. This process is designed to enable the student model to obtain topological
information from the estimated optimal graph learned by the teacher model and maintain similar
features when generating embeddings.

To effectively convey the topological information from the network to the student model, while min-
imizing the influence of node attribute characteristics, this work uses PE vectors to replace the initial
node features. Positional encoding vectors can effectively model positional information in sequence
data. In this work, PE vectors are designed to further extract the position information of nodes in the
graph structure. One-hot encoding is used to calculate PE vectors, and the dimensions of the vectors
are converted to the same dimensions as the initial node features through linear transformation to
improve scalability in large-scale graph data. The PE vector of node v can be expressed as:

PEv = W · xv + b (1)

where W is the learnable parameter matrix, b is the bias vector, and xv is the one-hot encoding of
node v.

The optimal graph with node attribute features replaced by PEs is then input into a multi-layer GNN
network to obtain structural feature embedding (SFE) for distillation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ZSFE = fGNN (Q,PE) (2)

3.2 STUDENT MODULE

In this work, the student model is designed to consist of two MLP modules. The first student MLP
uses the knowledge distillation method to imitate the teacher GNN to generate the structural feature
embedding of each node. The second student MLP learns attribute feature embeddings for each
node. Then, through the self-attention algorithm, the structural feature embedding generated by
student MLP1 and the node attribute feature embedding generated by MLP2 are fused to generate
the final embedding for subsequent anomaly detection tasks.

The objective of the first student MLP is to learn the mapping from the input node feature X to
SFEStu through the knowledge distillation method. For node v:

êv = ξ1(xv) (3)

The distillation loss is:

L = λ
∑
v∈V L

Llabel(ŷv, yv) + (1− λ)
∑
v∈V

LDistill(êv, ev) (4)

where êv is the structural embedding generated by student MLP1 under the guidance of the structural
feature embedding ev passed by the teacher GNN, ŷv is the label prediction of node v by student
MLP1, yv is the true label of node v, and λ is the balance of two Loss hyperparameters. Continuously
reducing the distillation loss L through supervised learning makes the student MLP1 capable of
outputting structural feature embeddings similar to the teacher GNN under the condition of only
inputting node features.

The second student MLP learns an embedding that contains node attribute feature information by
inputting the attribute features xv of the node:

âv = ξ2(xv) (5)

Considering that the label information of Ethereum nodes may be related to one or several feature
information among them, in order to better integrate these two parts of information and extract the
information related to Ethereum node labels in these two parts of features, we use adaptive Node
feature fusion technology automatically selects the information of the two types of information that
is more important to downstream tasks to generate the final node feature embedding.

The fusion process uses the attention adaptive mechanism to automatically learn the importance
of different embedded information to the Ethereum fishing node identification task, that is, for the
feature information [êv, âv], learn the importance coefficient [qe, qa] ∈ Rn∗1. Specifically, taking
node i as an example, we first perform a nonlinear change on its feature vector, and then multiply it
by the shared attention vector ω to obtain its attention value

[
qie, q

i
a

]
:

qix = ωT · tanh
(
W · (hi

x)
T + b

)
(6)

where hi
x ∈ R1×d is one of the two feature embeddings of node i, W ∈ Rd

′
×d is the trainable

weight matrix, b ∈ Rd
′
×1 is the paranoia parameter, ω ∈ Rd

′
×1.

Then we use the softmax function to normalize the attention values qe, qa to get the final weight:

qie = softmax(qie) =
exp(qie)

exp(qie) + exp(qia)
(7)

.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The final feature vector is obtained by combining the two learnt weight coefficients with the corre-
sponding feature information:

Hi = qie · hi
e + qia · hi

a (8)

4 EXPERIMENT

In this section, extensive experimental tests will be conducted using the Ethernet transaction dataset
collected in this paper to evaluate the effectiveness of EGLNN in performing anomaly detection
tasks in Ethernet transaction networks. First, the experimental setup, including the dataset, base-
line methodology, and implementation details, is discussed. Then, EGLNN is compared with the
baseline approach to evaluate its performance advantages. Next, ablation experimental analysis and
model hyperparameter experimental analysis are performed. Finally, the analysis validates the supe-
riority of EGLNN deployment in an industrial environment. It is important to note that the goal of
this work is not to pursue the best accuracy, but to improve the model’s adaptability in industrial en-
vironments as much as possible. It is important to note that the goal of this work is not to pursue the
best accuracy rate, but to improve the model’s adaptability and scalability in industrial environments
as much as possible.

4.1 EXPERIMENT SETTINGS

4.1.1 DATA SET

In this paper, we conduct experiments using the dataset collected in subsection 3.2. The collected
data is modeled as an Ethernet transaction network, and the Ethernet anomaly detection task is
transformed into a graph node classification task. By categorizing the obtained nodes in the Ethernet
transaction network, it is possible to effectively identify anomalous accounts in Ethernet transactions
and storage, thus improving the transparency and security of IoT storage and transaction platforms.
This work employs a typical semi-supervised learning approach that uses both labeled and unlabeled
data during model training. The advantage of this approach is that it is able to achieve performance
comparable to supervised learning while using less labeled data. With this semi-supervised learning
approach, the unlabeled data in the dataset can be fully utilized to improve the generalization ability
and performance of the model.

In order to provide a comprehensive evaluation of the approach proposed in this work, the training
set is partitioned through three different methods. Specifically, the total dataset is divided into three
training sets, D1, D2 and D3, which are used to test the performance of EGLNN. In these datasets,
the training set for each type of account contained 60, 80, and 100 randomly assigned labeled nodes
of each type, respectively, and the test set was specified to contain 1000 labeled nodes. By using
training sets of different sizes and test sets of the same size, it is possible to accurately compare the
performance of the models in different data situations and draw more reliable conclusions.

4.2 NODE CLASSIFICATION

In this section the semi-supervised node classification performance of EGLNN is evaluated accord-
ing to the state-of-the-art baseline, and in Table 3, the results of the precision, recall, and F1-score
averaged over five independent trials of each method using different random seeds under different
test validation sets are reported.

The results of evaluating the efficacy of EGLNN for semi-supervised node classification on the
Ethernet transaction network are presented in Table 3. The following observations can be drawn
from the results in Table 3:

(1) Compared with previous knowledge distillation methods, the EGLNN method proposed in this
paper achieves significant improvements on three different training sets, especially on D1, when the
training data is more limited, and the performance improvement is most obvious compared with
other knowledge distillation methods. This suggests that the embeddings learned by augmenting the
topological features of the graph via Bayesian enhancers in the teacher GNN are more effective rela-
tive to the embeddings delivered to the student model by traditional knowledge distillation methods.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Node classification results of different methods

Method
Dataset D1 D2 D3

Metric Pre Recall F1 Pre Recall F1 Pre Recall F1

traditional method
DeepWalk 69.30 69.31 69.30 70.63 71.66 71.14 71.60 71.54 71.57

GCN 70.18 71.07 70.62 71.94 71.63 71.78 71.41 71.85 71.63

Graph Structure

Learning method
GEN 71.55 71.84 71.69 73.43 72.62 73.02 75.5 76.97 76.23

knowledge distillation

method

DistillGCN 69.10 68.11 68.60 71.11 72.65 71.87 73.10 73.12 73.11

T2-GNN 70.81 70.11 70.46 74.11 73.10 73.60 76.12 75.31 75.71

Blockchain method
Trans2vec 77.80 76.66 77.23 81.40 81.42 81.41 82.71 81.72 82.21

AMBGAT 79.40 78.81 79.10 81.80 79.79 80.78 85.31 85.70 85.10

EGLNN 81.07 79.96 80.51 83.40 82.30 82.85 85.46 83.94 84.70

These enhanced embeddings contained richer information and had a more positive impact on the
instruction of the student model. This finding emphasizes the superiority of the EGLNN method in
knowledge distillation, especially in the case of data scarcity, where the performance enhancement
is significant.

(2) The EGLNN method proposed in this paper achieves a significant improvement in the task of
anomaly detection in the Industrial Internet of Things (IoT) as compared to traditional methods.
Although knowledge distillation is essentially a method of compressing a large model into a small
model to improve efficiency, the experimental results in this paper show that the distillation method
designed in this study can effectively transfer the topological knowledge learned from the teacher’s
GNN model corresponding to the real-world situation to the student’s model, which solves the prob-
lem of the missing original graph structure in a more optimal way and resolves the problem of the
large scale of the traditional GNN model that cannot be be applied to industrial scenarios. By fully
utilizing the ground truth topological information learned by the teacher model, the student model
is able to better learn and represent the graph structure features, thus improving the accuracy and
robustness of the model.

(3) Relative to existing neural network-based IoT and Ethernet anomaly detection algorithms,
EGLNN can achieve similar or even slightly higher performance, while the performance of pre-
vious knowledge distillation methods is significantly lower than them. This result suggests that
by adopting Bayesian inference in the teacher GNN to learn the optimal graph, and by replacing
the original node attribute information with location-encoded information to generate the structural
feature information of the optimal graph and transferring it to the student model, the node catego-
rization ability of the student model can be significantly improved, resulting in the student model
to exhibit better performance. This finding emphasizes the superior performance of the EGLNN
approach in the industrial IoT anomaly detection task, which is able to achieve better performance
while occupying a smaller scale and taking less time compared to traditional anomaly detection
algorithms.

4.3 ABLATION ANALYSIS

In order to verify the rationality and effectiveness of the model, this work conducts comparative
experiments on the Ethereum transaction dataset, comparing EGLNN and its three versions. Specif-
ically, this work tests the following versions of EGLNN separately:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

EGLNN-E: Remove the Bayesian structural enhancement module, and only transfer the topological
feature information of the original graph through knowledge distillation.

EGLNN-T: Remove the student MLP module and only use the teacher GNN to detect anomalous
nodes in Ethereum.

EGLNN-A: Removing the attention fusion module in the student MLP for anomaly detection tasks
using only information distilled from the teacher GNN.

Figure 2: Ablation experimental results of EGLNN.

The results in Fig. 4 show that:

(1) EGLNN outperforms EGLNN-E, which suggests that the model learned by training directly
using the raw data map is quite poor. It shows that the structure of the original data map is indeed
unsatisfactory and further demonstrates the usefulness of the Bayesian enhancer used in this paper.
By applying the Bayesian enhancer to the graph in the teacher GNN, a more complete and realistic
graph structure can be provided for subsequent tasks.

(2) The performance of EGLNN is similar to that of EGLNN-T (a module using only the teacher
GNN), which indicates that the knowledge distillation algorithm proposed in this paper is able to
realize the knowledge migration from the teacher model to the student model in a more effective and
comprehensive way. This advantage enables the EGLNN to achieve higher accuracy at a smaller
scale, which makes it perfect for anomaly detection tasks in the field of industrial IoT.

(3) EGLNN outperforms EGLNN-A, which indicates that the adaptive algorithm is able to merge
the topological features distilled from the teacher model and the node attribute features learned
from the student model in a better way compared to the traditional GNN. The introduction of the
adaptive algorithm improves the model’s performance in detecting anomalous nodes. This finding
emphasizes the effectiveness of the adaptive algorithm in fusing knowledge distillation information
and student model features, and its improved performance in detecting anomalous nodes.

In summary, the results in Figure 4 validate the soundness and effectiveness of the EGLNN ap-
proach. These comparative experiments validate the rationality of the model and reveal the impor-
tance and effectiveness of each module in the anomaly detection task.

4.4 PARAMETER SENSITIVITY ANALYSIS

In order to deeply investigate the impact of different parameters on model performance, this study
evaluates and analyzes a series of parameters on the performance of EGLNN for node classification
task on different Ethernet data subsets. When specific parameters are evaluated, all other parameters
are set to default values.

First, the effect of embedding dimension on classification performance was evaluated. The classifi-
cation effectiveness of EGLNN was tested with the node embedding dimensions set to 2, 4, 8, 16,
32, and 64, respectively, and the final classification results are presented in Figure 5.

By observing the experimental results in Fig. 5, it can be learned that the performance of EGLNN on
the three datasets peaks when the embedding dimension is 32, while the performance of EGLNN on
all three different datasets decreases when the embedding dimension is increased to 64. Therefore,
it was chosen to set the embedding dimension to 32 in this study.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Experimental Results Graph for Variation of Embedding Dimension Parameters Across
Different Datasets.

In addition, the equilibrium parameter λ for distillation loss was also evaluated in this work, and the
classification effectiveness of EGLNN on these three different datasets was tested by varying λ from
0.1 to 0.9 in steps of 0.1, and the final classification results are presented in Fig. 6.

Figure 4: Experimental results graph for variation of balancing parameter λ across different datasets.

By observing Fig. 6, it can be noticed that the performance of EGLNN shows a trend of increasing
and then decreasing with the increase of λ. Overall when λ takes the value of 0.3, the performance
reaches the optimum level. Therefore, this study chose to set the equilibrium parameter for distilla-
tion loss to 0.4.

4.5 PERFORMANCE ANALYSIS

In order to analyze and validate the superiority of EGLNN deployment in an industrial environ-
ment. This work compares EGLNN with several state-of-the-art GNN algorithms to examine their
performance under different number of training iterations (where EGLNN-T is the teacher model
of EGLNN). The experiments were performed using the same hardware environment and Ethernet
transaction dataset, and the same anomaly detection task was performed for each algorithm. The
detailed experimental results are shown in Fig. 7.

The experimental results show that:

(1) By using the knowledge distillation algorithm, the EGLNN algorithm performs well in terms of
execution speed and occupied resources. Compared with advanced GNN algorithms, EGLNN is able
to accomplish the same scale of tasks under the condition of occupying less computational resources
and with superior performance, thus saving a lot of computational resources and time. Therefore,
EGLNN is more suitable to be applied to anomaly detection tasks in industrial environments where
resources and time are limited.

(2) Compared to advanced graph structure learning algorithms, by combining Bayesian inference
with knowledge distillation algorithms, EGLNN shows higher efficiency and scalability in process-
ing large-scale graph data. It is only able to better capture the features and topology of real data
graphs, but also able to overcome the data-dependency problem of GNN algorithms, effectively
utilize the computational resources, and complete the task at a faster speed while ensuring high

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Performance comparison of EGLNN and other algorithms.

performance. This finding emphasizes the advantages of EGLNN in dealing with large-scale graph
data, especially in improving efficiency and scalability while maintaining performance.

In summary, by combining the Bayesian graph structure learning algorithm with the knowledge
distillation algorithm, EGLNN achieves significant advantages in the industrial IoT anomaly detec-
tion task. Its efficient graph structure learning ability, model compression and knowledge migration
ability, and high performance in processing large-scale graph data make EGLNN more effective in
processing industrial IoT graph data compared with other graph neural network algorithms.

5 CONCLUSION

This work employs the algorithm of graph neural networks to detect anomalous nodes in Ethernet
networks used for IoT data storage transactions. Different from traditional IoT anomaly detection
algorithms, this study innovatively introduces a knowledge distillation algorithm into the traditional
GNN algorithm. Through this approach, a more lightweight model that occupies less storage space
is successfully trained to solve the problem that large-scale GNN models are difficult to be widely
applied in industry. Specifically, this work proposes a model named EGLNN, which consists of a
teacher module and a student module. In the teacher module, a more realistic graph structure is
first estimated by a Bayesian inference-based approach, and then the structural feature embedding
(SFE) of the optimal graph is learned by replacing the attribute features of the nodes with the PE of
the nodes on the premise of the estimated optimal graph. Next, the structural feature embeddings
learned by the teacher model are transferred as knowledge to the student model through knowledge
distillation, so that the student model has similar capabilities as the teacher model. Finally, the
structural embeddings learned by the student model are fused with the attribute embeddings using the
attention mechanism to obtain the most favorable embeddings for the subsequent anomaly detection
task. The effectiveness of the EGLNN was confirmed through extensive experiments and verified the
greater advantages of the model over traditional GNN models for industrial IoT anomaly detection
tasks. Future work should study the dynamics and heterogeneity of IoT data storage transactions in
more depth, and extend EGLNN to dynamic networks containing time-series information, in order
to better adapt to the needs of real industrial scenarios.

REFERENCES

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491, 2021.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in neural information
processing systems, 32, 2019.

Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A
Bharath. Generative adversarial networks: An overview. IEEE signal processing magazine, 35
(1):53–65, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Christian Esposito, Alfredo De Santis, Genny Tortora, Henry Chang, and Kim-Kwang Raymond
Choo. Blockchain: A panacea for healthcare cloud-based data security and privacy? IEEE cloud
computing, 5(1):31–37, 2018.

Hongyang Gao, Yi Liu, and Shuiwang Ji. Topology-aware graph pooling networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 43(12):4512–4518, 2021.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Cuiying Huo, Di Jin, Yawen Li, Dongxiao He, Yu-Bin Yang, and Lingfei Wu. T2-gnn: Graph
neural networks for graphs with incomplete features and structure via teacher-student distillation.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 4339–4346,
2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Ranran Li, Zhaowei Liu, Yuanqing Ma, Dong Yang, and Shuaijie Sun. Internet financial fraud
detection based on graph learning. Ieee Transactions on Computational Social Systems, 2022a.

Sijia Li, Gaopeng Gou, Chang Liu, Chengshang Hou, Zhenzhen Li, and Gang Xiong. Ttagn: Tempo-
ral transaction aggregation graph network for ethereum phishing scams detection. In Proceedings
of the ACM Web Conference 2022, pp. 661–669, 2022b.

Dan Lin, Jiajing Wu, Qi Yuan, and Zibin Zheng. Modeling and understanding ethereum transaction
records via a complex network approach. IEEE Transactions on Circuits and Systems II: Express
Briefs, 67(11):2737–2741, 2020.

Zemin Liu, Wentao Zhang, Yuan Fang, Xinming Zhang, and Steven CH Hoi. Towards locality-
aware meta-learning of tail node embeddings on networks. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pp. 975–984, 2020.

Zhaowei Liu, Dong Yang, Yingjie Wang, Mingjie Lu, and Ranran Li. Egnn: Graph structure learning
based on evolutionary computation helps more in graph neural networks. Applied Soft Computing,
135:110040, 2023.

Khaled Salah Mohamed and Khaled Salah Mohamed. Iot cloud computing, storage, and data ana-
lytics. The Era of Internet of Things: Towards a Smart World, pp. 71–91, 2019.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

Yixian Wang, Zhaowei Liu, Jindong Xu, and Weiqing Yan. Heterogeneous network representation
learning approach for ethereum identity identification. IEEE Transactions on Computational
Social Systems, 2022.

Jiajing Wu, Qi Yuan, Dan Lin, Wei You, Weili Chen, Chuan Chen, and Zibin Zheng. Who are the
phishers? phishing scam detection on ethereum via network embedding. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 52(2):1156–1166, 2020.

Jiajing Wu, Jieli Liu, Weili Chen, Huawei Huang, Zibin Zheng, and Yan Zhang. Detecting mix-
ing services via mining bitcoin transaction network with hybrid motifs. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 52(4):2237–2249, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuzhao Wu, Yongqiang Lyu, and Yuanchun Shi. Cloud storage security assessment through equi-
librium analysis. Tsinghua Science and Technology, 24(6):738–749, 2019.

Jinyuan Xu, Baoxing Gu, and Guangzhao Tian. Review of agricultural iot technology. Artificial
Intelligence in Agriculture, 6:10–22, 2022.

Cheng Yang, Yuxin Guo, Yao Xu, Chuan Shi, Jiawei Liu, Chunchen Wang, Xin Li, Ning Guo, and
Hongzhi Yin. Learning to distill graph neural networks. In Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining, pp. 123–131, 2023a.

Zhaoming Yang, Zhe Liu, Jing Zhou, Chaofan Song, Qi Xiang, Qian He, Jingjing Hu, Michael H
Faber, Enrico Zio, Zhenlin Li, et al. A graph neural network (gnn) method for assigning gas
calorific values to natural gas pipeline networks. Energy, 278:127875, 2023b.

Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and Karthik
Subbian. Cold brew: Distilling graph node representations with incomplete or missing neighbor-
hoods. arXiv preprint arXiv:2111.04840, 2021.

A APPENDIX

A.1 PRELIMINARY KNOWLEDGE

To support the proposed EGLNN model, this section provides an overview of the proposed problem,
introduces the collection and network analysis of the Ethereum dataset for IoT storage transactions,
and briefly outlines the relevant prior knowledge.

A.1.1 PROBLEM DESCRIPTION

The focus of this paper is the task of detecting abnormal accounts in IoT storage transactions,
which can be regarded as a graph node classification problem. The IoT storage transactions stud-
ied in this article are conducted on Ethereum. The transaction data set of Ethereum can be rep-
resented as a graph G = (A,X), where A ∈ Rn∗n is the adjacency matrix representation of the
Ethereum transaction network, n is the number of nodes. If A[i][j] = 1, it indicates that node i
is connected to node j.In contrast, if A[i][j] = 0, there is no connection between nodes i and j.
X = [x1, x2, . . . xn] ∈ Rn∗c is the attribute feature matrix of the node, where c represents the di-
mension of the node attribute feature, and xi is the attribute feature vector for the node i.Since only a
few nodes have label information, this research assignment is a semi-supervised node classification
task.

A.1.2 NETWORK TOPOLOGY ANALYSIS

In order to perform the task of detecting abnormal accounts in IoT storage transactions, enough data
is needed to support it. Only with a sufficient amount of training data can the model discover feature
relationships and eventually achieve improved classification performance. Due to the transparency
and openness of the Ethereum platform, all Ethereum transaction records are accessible. The specific
data set collection method follows previous work [57], and the collected network has a total of
376,759 nodes and 1,048,576 edges.

After completing the collection of the data set, this work analyzed the collected Ethereum network
topology, including the average degree index, average path length and homogeneity of the nodes in
the network (The homogeneity coefficient is used to measure whether nodes in the network like to
interact with other nodes with the same label, and its maximum value is 1) analysis. The analysis
results show that most nodes in this network have low degrees, transactions between nodes are in
their own small worlds and most nodes with the same label do not tend to be connected to each
other. However, the performance of graph neural network (GNN) relies heavily on the information
of network topology. Although this network has certain topological characteristics, it still has a big
gap compared with other networks. It is difficult to directly promote most graph neural network
algorithms to the Ethereum transaction network. If the network is directly used with the GNN
algorithm will lead to poor model performance. Therefore, it is necessary to estimate a realistic
topology through analysis.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.1.3 GNN

The graph neural network (GNN) algorithm can encode each node into an embedding vector by
iteratively aggregating neighbor information, that is, a message passing mechanism. This message
passing mechanism makes the GNN algorithm show outstanding performance in processing various
analysis tasks of graph-structured data. Powerful capabilities. where the representation hu of each
node u is iteratively updated in each layer by collecting messages from its neighbors. In the GNN
learning node representation procedure, the expression for neighborhood aggregation in the l-th
layer of the graph convolution network is:

x(l)
v = Prop(l)(h(l−1)

v), v ∈ N(u) (9)

h(l)
u = AGGR(l)(h(l−1)

u ,
{
x(l)
v : v ∈ N(u)

}
) (10)

Where N(u) is the neighbor set of node u, Prop(l)(·) is the node representation generated by ag-
gregating the previous layer of information in the message passing process, AGGR(l)(·) indicates
aggregating the information of its neighbors and itself to produce the final node representation.
Given the input features x0 of a node u and its neighbors N(u), the final embedding representation
of the node can be obtained using Equation (1) and Equation (2).

A.1.4 KNOWLEDGE DISTILLATION

Knowledge distillation is a model compression method. The goal is to extract knowledge from
cumbersome teacher models into lightweight student models, enabling students to maintain similar
performance to teachers. This method smoothes the teacher’s output by setting a higher temperature
in the softmax function so that it contains information about the relationship between classes. The
loss function of distillation during the distillation process is weighted by distill loss and student loss.

L = αLdistill + βLstudent (11)

Where Ldistill is the cross entropy of the student’s softmax output results under the same temperature
conditions and the teacher model’s results is the first part of the Loss function.

Ldistill = −
∑N

j pTj log(q
T
j) (12)

pTj =
exp(vj/T)∑N
k exp(vk/T)

(13)

qTj =
exp(zj/T)∑N
k exp(zk/T)

(14)

Lstudent is the cross entropy between the softmax output of the student model and the true label
under the condition of T=1.

Lstudent = −
∑N

j cj log(q
1
j) (15)

q1i =
exp(zj)∑N
k exp(zk)

(16)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 BAYESIAN INFERENCE

The goal of this subsection is to estimate realistic graphs by constructing a Bayesian-based proba-
bilistic method. When performing graph structure estimation, in order to minimize the bias, in this
work, we compile the embedding model to aggregate neighborhood feature information to generate
accurate node embedding data into the Bayesian estimator to explicitly constrain the generation of
the graph, and in order to reduce the estimation bias To allow the Bayesian inferrer to observe more
information, an observation model containing multi-order neighborhood similarity is introduced and
injected into the Bayesian inference model to provide node local to global information and constraint
estimation The underlying structure of the graph is generated.

Specifically, the original graph G and the node feature matrix The node representation of each layer
constructs an observation graph of each layer to describe the similarity of neighborhoods in different
levels. The observation graph is calculated in the form of KNN proximity graph Oi, and the K
proximity graph generated by each layer is composed of the original graph G. The observation set
O = {G,O1, O2, ...Ol}, which reflects the optimal graph structure from different views, can be
integrated to infer a more reliable graph structure. Finally, the observation set O, the output Z of
GAT, and the real label Y are put into the Bayesian graph structure estimator, and a more realistic
estimated graph S is estimated and inferred by integrating the information provided from different
angles. Finally, The estimated map S is fed back to GAT to perform the next round of iteration, and
the estimated map S is made more consistent with the actual situation through continuous iterative
optimization. Figure 3 shows the entire Bayesian inference framework. By using the Bayesian-
based graph structure estimation method, the graph structure in the original Ethereum transaction
network can be optimized, filling in the edge data that may be lost during the data acquisition and
graph model construction process, and eliminating possible false edges. Obtain a more realistic
graph structure and provide more accurate input for subsequent graph neural network algorithms.

Figure 6: Bayesian Teacher GNN Inference Model

(a)Embedded model This part of the embedding model uses the GAT model. When learning the
neighborhood characteristics of nodes, the GAT module can dynamically assign different weights to
nodes in different neighborhoods without knowing the entire graph structure in advance. This means
that it is able to calculate correlations between nodes on a node-by-node basis without the con-
straints of knowing the complete graph structure in advance.Given the original graph G = (A,X),
A ∈ Rn∗n is the adjacency matrix representation of the Ethereum transaction network, and
X = {x1, x2, . . . xi. . . xn} ∈ Rn∗c is the attribute feature matrix of the node, where c represents
the dimension of the node attribute feature, xi represents the attribute feature vector of node i. The
normalized attention mechanism of the GAT model used in this article is:

αl
i,j =

exp(LeakyReLU (⃗a · (W lxl
i || wlxl

j)))∑
k∈Ni

exp(LeakyReLU (⃗a · (W lxl
i || W lxl

k)))
(17)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Where a⃗ is the parameter vector of the forward layer, || is the splicing operation, W is a weight
matrix, Ni is the first-order neighborhood of node i, and LeakyReLU is the activation function.

On the basis of calculating the normalized weight parameters of each node in each layer, the feature
extraction process of each layer of the model can be expressed as:

H l = σ(GAT (αl−1 ·H l−1, A)) (18)

where A is the adjacency matrix of nodes, and H l−1 is the feature embedding vector matrix of
each node generated in the previous layer. αl is the normalized weight parameter generated by the
previous layer.Hk ∈ Rn∗d is the node representation matrix of the k-th layer, H0 = X . For the
l-layer GAT, the activation function of the last layer is row-wise softmax prediction Z = H l.

(b)Observation model

When using the Bayesian estimator to estimate the optimal graph, it is not enough to rely solely on
the predicted embedding of the embedding module. In order to allow the structural model to observe
more information to reduce estimation bias when estimating the graph structure, after k iterations
of aggregation, the embedded representation of the node captures the structural information within
its k-order neighborhood, constructs observation maps from different angles based on the structural
information of each order, and injects the observation model containing multi-order neighborhood
similarity into the Bayesian inference model. , to provide node local to global information.

Specifically, construct the KNN graph {O1, O2. . .Ol} as the observation graph model based on
the feature matrix H =

{
H1, H2. . .H l

}
generated by each layer in the embedding model, where

Oi is The adjacency matrix of the kNN graph generated by Hi represents the similarity of i-order
neighborhoods. These generated KNN graphs reflect the best graph structures from different views
and can be integrated to infer more reliable graph structures.

In particular, the expression generated by the observation map of each layer is:

ui,j =
xi · xj

|xi| |xj |
(19)

Among them, u is the similarity matrix of the node, which is obtained by finding the cosine similarity
of the node vector. The final KNN proximity observation graph is formed by selecting the top K
nodes with the highest similarity for each node based on the similarity matrix.

(c)Bayesian graphical structure estimator

After generating the observation set O and the predicted embedding Z, the next step is to derive
a more realistic optimal graph S based on this information. So how can we generate the optimal
estimation map? Although the observation sets describe the structure of the optimal graph from both
local and global aspects, they are still insufficient and cannot be directly used as optimal estimation
graphs. Therefore, in this work, the stochastic module (SBM) is first used to generate an optimal
symmetric adjacency matrix with a community structure based on the prediction Z and the label Y ,
and then the probability of mapping these observation sets O to this adjacency matrix is calculated,
and finally Computational inversion is achieved by calculating the posterior distribution of the graph
structure through Bayesian inference, thereby achieving the ultimate goal.

Specifically, a stochastic module (SBM) is first used to constrain the homogeneity of the generated
graph structure by fitting the within-Community and between-community parameters in the block
model to generate an estimated graph Q with strong inter-community relationships. the estimated
graph Q is generated using the probability distribution P (Q | Ω, Z, Y), where Ω is a parameter
of SBM, indicating the probability of edges linking within and between communities, for example,
when belonging to groups ci and cj The probability of an edge between nodes i and j is Ωcicj . The
calculation to generate the estimated map Q given the parameters Ω, prediction Z and label Y can
be expressed as:

P (Q | Ω, Z, Y) =
∏
i<j

ΩQij
cicj (1− Ω1−Qij

cicj) (20)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

ci =

{
yi ifvi ∈ Vl

zi otherwise
(21)

where yi is the label of the node and zi is the predicted embedding. The probability Ω of the
connecting edge between nodes is calculated by using the real label instead of the group category of
the node in the training set.

Specifically, the probability Ωcicj of the existence of an edge in communities ci and cj is computed
by averaging the probabilities of each edge between all nodes in these two communities, as follows:

Specifically, the probability Ωcicj of the existence of an edge in communities ci and cj is computed
by averaging the probabilities of each edge between all nodes in these two communities, as follows:

Ωcicj =


φcicj

φci
φcj

ifci ̸= cj
2φcicj

φci
(φci

−1) otherwise
(22)

Where φci is the number of nodes in the community ci, φcicj represents the sum of the probabilities
of edges between nodes in communities ci and cj .

Then, in order to improve the accuracy of the estimated graph, the structure of the graph must be
inferred using as many external observation data as possible. Therefore, in this work, an observation
model has also been introduced to describe how the estimated graph Q is mapped to the observation
graph. It is assumed that the observed values of edges are independent and identically distributed
Bernoulli random variables conditioned on whether the edge exists in the optimal graph. P (O |
Q, δ, ω) is the probability of observing the value O given the estimated graph, parameter model δ
and ω, where δ represents the probability that an edge actually exists in the estimated graph, and
ω represents the probability of an edge in the estimated graph S The probability that no edge is
observed in .

P (O | Q, δ, ω) =∏
i<j

[
δEi,j (1− δ)M−Ei,j

]Qi,j ×
[
ωEi,j (1− ω)M−Ei,j

]1−Qi,j (23)

Where M is the number of observations, Ei,j is the number of edges observed in the observations,
and M − Ei,j is the number of edges not observed in the observations.

It is difficult to directly calculate the posterior probability distribution of the optimal graph, so the
Bayesian inference method will be used to determine the posterior probability distribution of the
estimated graph Q. The expression of Bayesian inference is as follows:

P (Q,Ω, δ, ω | O,Z, Y) =

P (O | Q, δ, ω)P (Q | Ω, Z, Y)P (ω)P (δ)P (Ω)

P (O,Z, Y)

(24)

It is assumed that the parameters are independent of each other. The posterior probability equations
for the parameters Ω, δ, and ω can be obtained by summing over all possible values of the estimated
graph Q

P (Ω, δ, ω | O,Z, Y) =
∑
A

P (Q,Ω, δ, ω | O,Z, Y) (25)

Maximizing the three parameters of the posterior probability Ω, δ, ω of Equation 17 will provide the
maximum a posteriori estimate, based on the maximum a posteriori estimate, the adjacency matrix
S of the graph Q can be estimated.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Si,j =
∑
A

q(Q)Qi,j (26)

The adjacency matrix S indicates the possibility of an edge between a node and all its adjacent
nodes, and Si,j indicates that the posterior probability value of the edge between node i and node j
is between [0,1].

(d) Iterative update To update the optimally estimated symmetric adjacency matrix S, Equation 17 is
maximized using the expectation-maximization (EM) algorithm [54]. Since Equation 17 is difficult
to solve directly, it is solved in this work by applying Jensen’s inequality to Equation 17:

logP (Ω, δ, ω | O,Z, Y) ≥
∑
Q

q(Q)log
P (Q,Ω, δ, ω | O,Z, Y)

q(Q)
(27)

where q(Q) is the probability distribution on the estimated graph Q, and
∑

Qq(Q) = 1.

The maximum value is obtained when both sides of inequality 19 are equal, namely:

q(Q) =
P (Q,Ω, δ, ω | O,Z, Y)∑
Q P (Q,Ω, δ, ω | O,Z, Y)

(28)

Finally, by applying Bayes’ theorem and maximizing the posterior based on the EM algorithm, the
expectation of the graph structure is finally obtained:

Si,j =

Ωci,cjδ
Ei,j (1− δ)M−Ei,j

Ωci,cjδ
Ei,j (1− δ)M−Ei,j + (1 + Ωci,cj)ω

Ei,j (1− ω)M−Ei,j

(29)

Calculation of the posterior probability distribution q(Q) may be simplified by the value of the
symmetric adjacency matrix Si,j :

q(Q) =
∏

i<j S
Qi,j

i,j (1− Si,j)1−Qi,j (30)

It doesn’t make much sense to save all the edges and the calculation is very heavy. Therefore, in
this paper, a threshold ε is set to screen out those edges smaller than ε, so as to obtain a symmetric
critical matrix SQ.

SQ
i,j =

{
Si,j ifQi,j > ε
0 otherwise

(31)

A.3 BASELINES

By analyzing the comparison of baseline methods with similar work, the EGLNN method is com-
pared to a number of other methods, including: (1) some traditional algorithms (e.g. DeepWalk,
GCN) (2) some latest algorithms for graph structure learning (e.g. GEN) (3) some algorithms for
anomalous node detection in IoT, blockchain (e.g. trans2vec AMBGAT)) (4) Some algorithms for
knowledge distillation (e.g. DistillGCN, T2-GNN).

• DeepWalk [28] : DeepWalk is an algorithm for learning graph structure embeddings by sampling a
sequence of nodes through a random walk and then mapping it into a low-dimensional vector space.

• GCN [18] : GCN is a deep learning model for graph data that learns node representations by
aggregating node neighbor information.

• GEN [54] : GEN is a graph structure learning algorithm. By constructing and utilizing multiple
types of information, a more realistic graph structure can be estimated.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• trans2vec [47] : trans2vec is a method for detecting blockchain phishing scams by mining transac-
tion records in the Ethereum network to map the network structure into low-dimensional embedding
vectors.

• AMBGAT[13]: AMBGAT is an algorithm to secure data in IoT by augmenting node features with
attentional power and estimating graph topologies that conform to basic facts using graph structure
learning.

• DistillGCN [38]: DistillGCN is the first method to extract knowledge from pre-trained GCN mod-
els, enabling knowledge transfer from teacher GCNs to students.

• T2-GNN [53]: T2-GNN is an approach to avoid interference between features and structures by
designing feature-level and structure-level teacher models separately to provide targeted guidance
to student models (base GNNs, e.g., GCNs) through distillation.

A.4 IMPLEMENTATION DETAILS

The implementation of this model consists of a teacher model and a student model. Among them,
in the teacher model, the GAT network is used, and each layer includes K = 4 attention head calcu-
lations. The model is trained using a 0.01 learning rate, a 5e-5 weight decay, a 50% dropout rate per
layer, and an Adam optimizer.

Additionally, the dimensions for the Bayesian graph structure estimator and the hidden layer em-
beddings in the teacher model are selected from the set {64, 128, 256, 512, 768}. The embedding
dimensions for the output layer of the teacher model are chosen from the set {2, 4, 8, 16, 32, 64}.
Feature map K ∈ {2, · · ·, 10}, threshold ε ∈ {0.1 · · · 0.9}. The number of iterations for teacher
model optimization is set to 400. In the student model, the MLP model used is two-layer, the
embedding dimension of the hidden layer is selected from {128, 512}, the distillation temperature
parameter T ∈ {1, 2, · · ·, 5}, the balance parameter λ ∈ {0.1, 0.2, · · ·, 0.9}. During model training
and testing, only the classification performance of labeled nodes was taken into account, and the
parameters with the highest performance were preserved for testing. Five independent experiments
utilizing distinct random seeds were conducted for each technique, and the average accuracy (Pre),
F1 score, and recall were reported to evaluate the performance of the models.

18

	Introduction
	Related Work
	Graph neural network
	knowledge distillation
	Anomaly Detection Algorithms on the Ethereum Network

	The Proposed Framework
	Teacher GNN module
	Student module

	Experiment
	Experiment Settings
	Data Set

	Node Classification
	Ablation analysis
	Parameter sensitivity analysis
	Performance analysis

	Conclusion
	Appendix
	Preliminary Knowledge
	Problem Description
	Network topology analysis
	GNN
	knowledge distillation

	Bayesian inference
	Baselines
	implementation details

