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ABSTRACT

Class-Incremental Learning (CIL) or continual learning is a desired capability in
the real world, which requires a learning system to adapt to new tasks without
forgetting former ones. While traditional CIL methods focus on visual information
to grasp core features, recent advances in Vision-Language Models (VLM) have
shown promising capabilities in learning generalizable representations with the aid
of textual information. However, when continually trained with new classes, VLMs
often suffer from catastrophic forgetting of former knowledge. Applying VLMs to
CIL poses two major challenges: 1) how to adapt the model without forgetting; and
2) how to make full use of the multi-modal information. To this end, we propose
PROjectiOn Fusion (PROOF) that enables VLMs to learn without forgetting. To
handle the first challenge, we propose training task-specific projections based on the
frozen image/text encoders. When facing new tasks, new projections are expanded,
and former projections are fixed, alleviating the forgetting of old concepts. For the
second challenge, we propose the fusion module to better utilize the cross-modality
information. By jointly adjusting visual and textual features, the model can capture
better semantic information. Extensive experiments on nine benchmark datasets
with various continual learning scenarios (CIL and continual cross-modal retrieval)
and various VLMs validate PROOF achieves state-of-the-art performance.

1 INTRODUCTION

In our ever-changing world, training data often comes in a stream format with new classes, requiring
a learning system to absorb them continually (Gomes et al., 2017} (Geng et al.| [2020). To address
the challenge of learning emerging new classes, Class-Incremental Learning (CIL) has been pro-
posed (Rebuffi et al., 2017). However, in CIL, the absence of former classes triggers catastrophic
forgetting (French, |1999)), where learning new concepts overwrites the knowledge of old ones and
results in a decline in performance (Li & Hoiem|[2016)). Numerous efforts have been made (De Lange
et al.,[2021}; |[Masana et al.,|2022)) to combat catastrophic forgetting in the machine learning field.

With the rapid development of pre-training techniques (Han et al.| [2021)), recent years have witnessed
the transition of CIL research from training from scratch (Wu et al.l 2019; [Zhao et al.| [2020) to
utilizing pre-trained models (PTM) (Wang et al.| |2022cid). With the help of PTM, e.g., Vision
Transformers (Dosovitskiy et al.||2020)), incremental learners are born with strong transferability to
grasp the visual features. Facing the domain gap introduced by the incremental classes, they only
need to learn a limited number of additional parameters (Jia et al., 2022)) as the patches to bridge the
distribution gap, which significantly simplifies the challenge of incremental learning.

While pre-trained ViT-based CIL methods focus on learning the visual features to recognize new
concepts, recent advances in Vision-Language Models (VLM) have demonstrated the potential of
textual information in building generalized feature representations. A seminal work, i.e., contrastive
language-image pre-training (Radford et al., 2021) (CLIP), maps the visual and textual information
in the shared embedding space, enabling robust learning and recognition of concepts from diverse
sources. This integration of visual and textual modalities presents a promising avenue for developing
continual learning models that can effectively adapt to real-world scenarios.

Extending VLMs to CIL faces two significant challenges. First, sequentially tuning the VLM
overwrites the innate generalizability and former concepts, leading to forgetting and poor performance
on future tasks. Second, relying solely on textual information for classification neglects the valuable
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cross-modal features present in the multi-modal inputs. To fully utilize this information, it is necessary
to explore methods for cross-modal fusion beyond textual features.

Correspondingly, we aim to turn a VLM into a continual learner that is both retentive and comprehen-
sive. Retentive refers to the model’s ability to maintain its pre-trained capabilities, thereby preserving
generalizability and enabling it to perform well on future tasks without forgetting. Comprehensive
refers to the model’s capacity to integrate and adjust information from multiple modalities. By
leveraging these characteristics, we can mitigate catastrophic forgetting and use cross-modal features
to build more robust classifiers as data evolves.

In this paper, we propose PROjectiOn Fusion (PROOF) to address catastrophic forgetting in VLM.
To make the model retentive, we freeze the pre-trained image/text backbones and append liner
projections on top of them. The task-specific information is encoded in the corresponding projection
layer by mapping the projected features. When facing new tasks, new projections are extended while
old ones are frozen, preserving former knowledge. Besides, we aim to fuse the information from
different modalities via cross-model fusion, which allows for the query embedding to be adjusted
with context information. Consequently, PROOF efficiently incorporates new classes and meanwhile
resists forgetting old ones, achieving state-of-the-art performance on nine benchmark datasets. We
also evaluate PROOF in various continual learning settings, including CIL and continual cross-modal
retrieval, to show its effectiveness in various real-world scenarios.

2 RELATED WORK

Vision-Language Model (VLM) Tuning: Recent years have witnessed the prosperity of research in
VLMs (Radford et al., 20215 |Li et al., 2023} |Alayrac et al.,[2022). With great generalizability, they can
be applied for downstream tasks in a zero-shot manner. However, a domain gap still exists between
the pre-trained and downstream datasets, requiring further tuning. CoOp and CoCoOp (Zhou et al.,
2022bja) apply prompt learning (Li & Liang, [2021) into VLM tuning with learnable prompt tokens.
Subsequent works explore VLM tuning via adapter tuning (Gao et al., [2021)), prompt distribution
learning (Lu et al.} [2022), similarity learning (Zhang et al., 2022}, descriptor learning (Mao et al.,
2022)), and optimal transport mapping (Chen et al., 2023). However, they focus on adapting VLM to
downstream tasks while overlooking the forgetting of former ones.

Class-Incremental Learning (CIL): aims to learn from evolutive data and absorb new knowledge
without forgetting. Replay-based methods (Luo et al.,[2023; |Aljundi et al., [2019; |Chaudhry et al.|
2018a; [Liu et al.l [2020; (Chaudhry et al., 2018b) save and replay former instances to recover old
knowledge when learning new ones. Knowledge distillation-based methods (Rebutffi et al., 2017;|L1 &
Hoiem| 2016; [Douillard et al.| [2020) build the mapping between models as regularization. Parameter
regularization-based methods (Kirkpatrick et al.l|2017;|Aljundi et al., 2018} Zenke et al.,[2017) weigh
the importance of different parameters as regularization. Model rectification-based methods (Shi
et al., [2022} [Zhao et al.,2020; Wu et al., 2019; |Yu et al., 2020) rectify the inductive bias for unbiased
predictions. Dynamic networks (Yan et al., 2021; |Wang et al.|[2022a}; Zhou et al., 2023b) show strong
performance by expanding the network structure as data evolves. (Deng et al.| [2021}; [Saha et al.,
20215 Lin et al.,|2022) explore gradient projection in new tasks to enable model updating without
harming former knowledge. In contrast to these works, in this paper, we propose to learn feature
projections based on the frozen embedding functions to encode task-specific information.

CIL with VLM: The aforementioned CIL methods aim to train an incremental model from scratch,
while it would be easier to start with a pre-trained model (Lee et al., 2023). The integration of
pre-trained Vision Transformer (Dosovitskiy et al., 2020) into CIL has attracted the attention of the
community, and most methods (Wang et al. 2022c;d; [Seale Smith et al.| 2022) employ parameter-
efficient tuning techniques to learn without forgetting. S-Prompt (Wang et al.||2022b)) explores CLIP
in domain-incremental learning, but the application of VLM in CIL remains relatively unexplored.
WISE-FT (Wortsman et al., 2022)) utilizes weight ensemble for robust finetuning, while it cannot be
extended to multiple tasks.

3 PRELIMINARIES

3.1 CLASS-INCREMENTAL LEARNING AND VISION LANGUAGE MODEL

In CIL, we have the sequence of B training sets without overlapping classes, denoted as
{D*,D?,... , DB}, where D’ = {(x;,y;)}.*; is the b-th training set with n;, instances. A training
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instance x; € RP belongs to class y; € Y},. Y} is the label space of task b, and Y, N Yy = & for
b # b'. Following (Rebuffi et al.,[2017), a fixed number of exemplars from the former classes are
selected as the exemplar set £. During the b-th incremental stage, we can only access data from D?
and & for model training. The target is to build a unified classifier for all seen classes J, = Y1 U--- Y}
continually. In other words, we aim to find a model f(x) : X — ), that minimizes the expected risk:

f* = argmin JE(x,y)NDtlLJ~-D£’]I (y # f(X)) ’ (1)

feH

where H denotes the hypothesis space and I(-) is the indicator function. D? denotes the data
distribution of task b. In this paper, we consider CIL as a main task and also consider other continual
learning scenarios like continual cross-modal retrieval in Section [5.4] Following (Wang et all
2022cidib), we assume that a pre-trained vision-language model (e.g., CLIP (Radford et al., [2021)) is
available as the initialization for f(x). During pre-training, CLIP jointly learns an image encoder
gi(-) : RP — R? and a text encoder g;(-) : RP* — R? in a contrastive manner, where D /Dt
are input dimensions of image/text, and d is the embedding dimension. CLIP projects a batch of
image-text pairs into a shared embedding space. It maximizes the cosine similarity of paired inputs
and minimizes it for unmatched ones. Benefiting from the massive training data, CLIP can synthesize
a zero-shot classifier that generalizes to unseen classes. The output of CLIP is formulated as follows:

_ exp(cos(z,w;)/T) )
Sl exp (cos (2, w;) /7)

where cos(-, -) denotes cosine similarity, 7 is learnable temperature parameter, z = g;(x) is the image

embedding. Correspondingly, w; is the text embedding of class y; obtained by feeding templated

texts, e.g., “a photo of a [CLASS]” into the text encoder. We denote the templated text of class 7 as t;.
Eq.[2]aims to find the most similar text t; that maximizes the cosine similarity to the query image.

p(yi | x)

3.2 OVERCOME FORGETTING IN CLASS-INCREMENTAL LEARNING

Vision-Based Learning: CIL methods primarily rely on the image encoder to capture new patterns.
L2P (Wang et al.| [2022d) leverages visual prompt tuning (Jia et al., 2022) to enable incremental
updates of a pre-trained Vision Transformer (Dosovitskiy et al.|[2020). By keeping the image encoder
frozen, L2P trains a learnable prompt pool and combines it with patch embeddings to obtain instance-
specific embeddings. By freezing the encoder, L2P grasps the new pattern with limited forgetting.
CLIP Tuning: The issue of tuning VLM without forgetting in CIL remains unaddressed, as previous
works have solely focused on transferring CLIP to downstream tasks without considering the perfor-
mance of former tasks. CoOp (Zhou et al.| 2022b) converts text template into a learnable prompt, i.e.,
t; = [V]i[Vlz - - - [V]a[CLASS];. With learned prompt, it enables the model to be transferred to the
downstream task. However, since the prompt is shared for all tasks, sequentially tuning CoOp will
suffer forgetting of former concepts.

Discussions: Current methods focus on different aspects of CIL. Vision-based methods address
the issue of forgetting but neglect the valuable semantic information conveyed in texts. Conversely,
CLIP’s pre-trained text encoder captures class-wise relationships that can enhance model learning.
Meanwhile, transfer learning methods effectively leverage the cross-modal information while sequen-
tially tuning them suffers the catastrophic forgetting of former concepts. Is it possible to combine the
cross-modal information and meanwhile resist catastrophic forgetting?

4 PROOF: PROJECTION FUSION FOR VLM

Observing the limitations of typical vision-based methods in utilizing textual information and
forgetting in CLIP tuning, we aim to leverage cross-modality knowledge in CLIP while effectively
mitigating forgetting. We first make the model retentive to learn without forgetting by learning
projections to map the pre-trained features in the projected feature space. Our unique training strategy
ensures the preservation of former knowledge by freezing old projections and expanding new ones for
new tasks. Besides, we also make the model comprehensive by co-adapting and utilizing cross-modal
information to enhance unified predictions. The query instance’s embedding is influenced by both
visual and textual information, allowing for instance-specific adaptation and enabling comprehensive
predictions. In the following sections, we introduce the learning paradigm and the co-adaptation
process. Lastly, we provide detailed guidelines for training and inference.
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Figure 1: Illustration of PROOF. The model learns expandable projections and aggregates them to get the
aggregated features. The query instance, prototype features, textual features, and context prompts are fed into
the cross-modal fusion module. The fusion process utilizes self-attention to co-adapt the input set, which outputs
the adapted features. The adapted query embedding is separately matched among the visual prototypes and
textual features to get the final prediction. parts are trainable while gray ones are frozen.

4.1 EXPANDABLE FEATURE PROJECTION

CLIP is known for its strong zero-shot performance, i.e., Eq. 2] obtains competitive results even
without explicit training on the specific tasks. However, given the domain gap between pre-trained
and downstream tasks, an adaptation process is still necessary to capture the characteristics of the
latter. Specifically, we introduce a linear layer (denoted as “projection”), which is appended after the
frozen image and text embeddings to facilitate the matching of pair-wise projected features. Denoting
the projection of image/text as P;(-) : RY — R? and P;(+) : RY — R<, Eq.[2)is transformed into:

exp (cos (P; (z) , Py (w;)) /7)
| x) = . 3)
P10 = S0 e (con (7 (5) By () /7

Projected Matching

We denote the classification based on Eq. as fem(x). By freezing the image and text encoders, it
aligns the downstream features in the projected space, allowing the model to encode the relevant
downstream information into projection layers. Since the pre-trained model outputs generalizable
features, the projection layer learns to recombine features in a data-driven manner. For instance, in a
task involving ‘birds,” the projection would assign a higher weight to features like ‘beaks’ and ‘wings.’
This adaptation enables the projected features to better discern and recognize downstream tasks.

Expandable Projections: However, sequentially training a single projection layer still leads to
forgetting of former tasks, resulting in confusion when combining old and new concepts. To
this end, we expand task-specific projections for each new task. Specifically, we append a newly
initialized projection layer P?, PP when a new task D’ arrives. This results in a set of projections:
{PL, P?,... PP}, {PL, P2 --- Pt }, and we adopt the aggregation as the output, i.e.,

Pi(z) =0 _ P (z), Pi(w)=Y"_, P (w). )

In Eq.[d] projected features from different stages are mapped and aggregated to capture the different
emphases of former and latter tasks. For example, former tasks might emphasize ‘beak’ features
for bird recognition, while later tasks may focus on ‘beard’ features to differentiate cats. The
aggregation of different projections produces a comprehensive representation of the query instance.
By substituting Eq. [d]into Eq.[3] the model aligns the unified features in the joint space.

How to resist forgetting of former projections? To overcome forgetting old concepts, we freeze the
projections of former tasks when learning new ones, i.e., {Pil, Pf, e Pib7 } (same for P;). It allows
the newly initialized projection to learn the residual information of new tasks, incorporating new
concepts while preserving the knowledge of former ones. During the learning process of task b, we
optimize the cross-entropy loss to encode the task-specific information into the current projections.

Effect of projections: The illustration of projections are shown in Figure[I| (left). PROOF learns pro-
jections based on the pre-trained encoders, which fits new patterns and maintains the generalizability
of the pre-trained model. The parameter number of each projection layer is d x d, which is negligible
for the pre-trained model. These projections can be further merged during inference to alleviate
the storage budget, as discussed in Section[D.2] Furthermore, the model learns new projections for
new tasks, and task-specific projections fit new concepts easily. Since we only optimize the current
projections and freeze old ones, the former knowledge is preserved, and forgetting is alleviated.
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4.2 CONTEXTUALIZING PROJECTIONS WITH PROJECTION FUSION

In Eq.[3] the projected visual and textual features (i.e., z and w) are directly matched in the joint
space. However, it would be beneficial to further refine these features to capture the contextual
relationship between images and texts. For instance, when the query instance is a ‘panda,’ it is
desirable to adjust the visual features z to highlight the discriminative attributes such as black eyes
and ears. Meanwhile, considering the visual embedding of a panda, the textual features w should
also be adapted in a coherent manner so that co-adapted visual and textual feature can lead to more
discriminative predictions. Similarly, when the query instance is a ‘cat,” features like beards and
tails should be emphasized jointly for visual and textual embeddings. This adjustment process
involves jointly adapting the query embedding and the context (e.g., textual information) to obtain
a contextualized embedding. A desirable adjustment function should be able to relate every other
component as context to conduct joint adaptation. Correspondingly, we propose a set-to-set function
that contextualizes and fuses the query embeddings and contextual information.

Specifically, we denote the adaptation function as 7 (+). It receives the query instance and context
information as bags, i.e., [P;(z), Context], and outputs the set of adjusted embeddings while being

permutation-invariant: 7 ([P;(z), Context]) = [P;(z), Context]. 7 (-) encodes the set information
and performs adaptation on each component. In the following, we describe the construction of the
context information Context and provide details on the implementation of the set-to-set function.

How to define the context? Context should be items that have the potential to influence the visual
embedding for more discriminative prediction. In Eq.[3] the mapping is established between the
query instance and the textual information (i.e., classifiers). The classifiers represent the typical
textual description of the corresponding class, i.e., the common feature. Hence, a naive idea is to
utilize textual features as the context, i.e., Context = W, W = [P;(w1), P;(wa), - -+, Pi(w)y,|)] €

RIY+1xd ig the concatenation of all textual classifiers. However, (Liang et al.,2022) finds an inherent
domain gap between the visual and textual embeddings in VLM. The gap leads to visual and textual
embeddings residing in two separate clusters in the embedding space, which hinders effective pair-
wise mapping. Correspondingly, we leverage visual prototype features (Snell et al.l 2017) as a

useful tool for capturing the common characteristics of each class. Define the visual prototype of
b

class k as: py, = %lezll I(y; = k)gi(x;), where N = ZLD=b1| I(y; = k). They are calculated via
forward pass at the beginning of each incremental stage and stay fixed in subsequent tasks. Visual
prototypes are representative features of the corresponding class, which can serve as the visual context
to adjust the embeddings. Hence, we augment the context with projected visual information, i.e.,
Context = [P, W], where P = [P;(p1), Pi(p2), - , Pi(p|y,|)] € RI¥*/*? is the concatenation of
all visual prototypes. Combining prototypes from multiple modalities helps the model adapt and fuse
information in a cross-modal manner, which goes beyond simple visual-textual matching.

Implementing 7 (-) with Self-Attention: Given the above context information, the design of cross-
modal fusion should be able to influence instance embedding with the context (e.g., highlighting
the visual features like black eyes and ears for a panda), and vice versa. To this end, we use the
self-attention (SA) mechanism (Vaswani et al., 2017} [Lin et al.| [2017) as the cross-modal fusion
function 7 (-). Being permutation invariant, self-attention is good at outputting adapted embeddings
even with long dependencies, which naturally suits the characteristics of the adaptation function.
Specifically, SA takes the triplets (query Q, key, /C, and value V) as input. The inputs are projected
into the same embedding space, i.e., K = W} [ky; Vk; € K] € R¥IXI. Similar projections are
made for the query Q and value V. Afterward, the query x, € Q is matched against a list of keys K
where each key has a value V. The output of self-attention is the sum of all the values weighted by
the proximity of the key to the query point:

Pz(z) == Pl(Z)Jer aqk"/:,ka (5)

-
where oy oc exp (Pi(z)#) , V. is the k-th column of V. In Eq. the fused visual feature
P;(z) adds the attention part based on the original feature P;(z). Since oy, reflects the relative
similarity of the visual feature to other components, the second term in Eq. [5]adjusts the input by
considering its relationship to other components. Apart from the visual feature, the adaptation process
is the same for other components in Context. Specifically, we have Q = K =V = [P;(z), Context].
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Effect of Cross-Modal Fusion: We illustrate cross-modal fusion in Figure[T] (right). Since we utilize
the visual and textual information of seen classes as context information, we can make the visual
embedding instance-specific and discriminative. The fusion model is trained incrementally to adjust
embeddings to reflect the context information as data evolves. With the contextualized embeddings,
we can conduct the visual mapping and textual matching:

exp (cos (Py(z), Py(pi)) /7 exp (cos (Py(z), P(w;) ) /7
plys | %)= -y”leE C(OS Py(z), P, ) )T " -y”lei CES Py(z), P v?/ )’7' - ©
S exp (cos (Pi(2), Pi(p)) /7)o exp (cos (Pi(2), Pi(w))) /)
Visual Matching Textual Matching

In Eq.[6] we consider two matching targets for the fused visual feature, i.e., visual and textual matching.
Visual matching assigns logits by the similarity to the adapted visual prototypes, while textual
matching does it for textual features. Hence, we are able to achieve better prediction performance by
such cross-modal matching process.

Learning Context Prompts: In addition to visual prototypes and textual classifiers, we also introduce
a set of learnable context prompts {c',--- ,c’}, ¢? € R*? to be optimized as data evolves. ¢ denotes
the length of each prompt. Similar to projection layers, we make the context prompts expandable to
catch the new characteristics of new tasks. We initialize a new context prompt while learning a new
task and freeze others {c¢!,¢?, -, cb}. Freezing former context prompts enables us to catch new
task-specific features and meanwhile preserving former ones. The context prompts serve as adaptable
context information, enhancing the co-adaption. Afterward, the context information is formulated
as Context = [P, W, C], where C is the aggregation of all context prompts. As shown in Figure
context prompts C only encode the task-specific information into the self-attention process, and they
not serve as the matching target in Eq. [6]

4.3 SUMMARY OF PROOF

In PROOF, we first enable learning new concepts via projected mapping. Then, to accommodate
new concepts without interference from previous ones, we initialize new projections for each new
task and freeze the former ones. Besides, we utilize self-attention to adjust the embeddings of the
query instance and the context information to promote cross-modal fusion. Figure [T]illustrates three
predictions, i.e., projected matching (Eq. 3, visual/textual matching (Eq.[6). We denote these models
as fpm(x), fym(x), frm(x), respectively. During training, we optimize the cross-entropy loss:

Mingpb pb 7 cby £(fem(x),y) + L(fym(x),y) + £(frm(x),y), (N

where (x,y) € D’ U €. In Eq.[7} all pre-trained weights are frozen, and we only optimize these
additional parameters. For inference, we aggregate the three logits, i.e., f(x) = fem(x) + fym(x) +
frm(x). We give the pseudo-code of PROOF to illustrate the training/inference process in Section

5 EXPERIMENT

In this section, we compare PROOF in comparison to state-of-the-art methods on benchmark datasets
to investigate the capability of overcoming forgetting. Besides, we conduct ablations to analyze
the effect of each component in the model. We also extend PROOF to other VLMs and continual
learning scenarios, experiment with a non-overlapping dataset, and address the zero-shot performance
degradation phenomena. Further details and experimental results can be found in the supplementary.

5.1 EXPERIMENTAL SETUP

Dataset: Following the benchmark CIL settings (Rebuffi et al., 2017; [Wang et al., [2022d:c; |Yu
et al.l [2020; Zhou et al., 2023c), we evaluate the performance on CIFAR100 (Krizhevsky et al.|
2009), CUB200 (Wah et al., 2011}, ObjectNet (Barbu et al.,|2019), and ImageNet-R (Hendrycks
et al., 2021)). We also follow the benchmark in VLM tuning (Zhou et al.| [2022b), and formulate
FGVCAircraft (Maji et al., [2013)), StanfordCars (Krause et al.| 2013)), Food101 (Bossard et al.,
2014), SUN397 (Xiao et al.,|2010) and UCF101 (Soomro et al.,|2012) into CIL setting. Specifically,
we sample (a subset of) 100 classes from CIFAR100, Aircraft, Cars, Food, UCF, 200 classes from
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Table 1: Average and last performance of different methods. The first and second columns represent the
methods with and without exemplars. Full results are reported in Section [D-11] All methods are initialized
with the same pre-trained CLIP for a fair comparison (see Section @)

ImageNet-R CUB UCF
Method Exemplar B0 Inc20 B100 Inc20 B0 Inc20 B100 Inc20 B0 Inc10 B50 Inc10
A Ap A Ap A Ap A Ap A Ap A Ap
Finetune ) X 1.37 0.43 1.01 0.88 2.06 0.64 0.56 0.47 4.51 1.59 1.21 0.80
Finetune LiT (Zhai et al. X 64.88 3042 57.75 29.77 58.15 3528 5195 3596 7925 64.84 81.79 654
Finetune CoOj X 60.73 37.52 5420 39.77 27.61 857 2403 10.14 4785 33.46 4202 2474
SimpleCIL (ZI X 81.06 7448 76.84 7448 83.81 77.52 79.75 77.52 9044 85.68 88.12 85.68
ZS-CLIP (Radford et al X 8337 77.17 79.57 77.17 7438 63.06 6796 63.06 7550 67.64 7144 67.64
CoOp ( v 8240 7620 79.76 77.13 7734 68.70 74.09 6747 90.13 86.24 8836 85.71
iCaRL (R v 7222 5438 68.67 60.15 82.04 7474 7857 75.07 89.47 8434 8851 84.11
LUCIR | v 7244 5512 68.66 60.12 82.64 7593 7647 7493 89.38 84.68 88.06 85.61
DER (Yan et alJ202]] v 8021 7347 7591 73.05 77.10 6548 71.68 6556 84.86 75.12 83.99 77.05
MEMO v 80.00 74.07 76.72 7395 7732 65.69 72.88 6641 84.02 74.08 82.58 7548
L2pP \M| v 75.73  67.22 7415 7120 79.23 6854 7585 71.12 88.71 8393 86.51 83.22
DualPrompt (V v 7847 70.82 7298 69.18 83.21 7494 78.06 7427 89.48 8541 8696 84.65
PROOF v 8534 80.10 8232 80.30 84.93 7943 81.67 79.18 9234 89.92 9170 89.16
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Figure 2: Incremental performance of different methods. We report the performance gap after the last
incremental stage of PROOF and the runner-up method at the end of the line. Finetune-based methods in Table[T]
are not plotted due to their inferior performance. All methods are based on the same backbone and weight.

CUB200, ObjectNet, ImageNet-R, and 300 classes from SUN to ease the data split. Following
2017), the training class order is shuffled with random seed 1993. The dataset splits are
denoted as Base-z, Inc-y, where x represents the number of classes in the first stage, and y represents
the number of new classes in each subsequent task. x = 0 means each task contains y classes.

Comparison methods: We first compare to SOTA CIL methods iCaRL 2017),
LUCIR (Hou et al., 2019), MEMO (Zhou et al.,[2023b), DER SimpleCIL
let'all,2023¢) L2P (Wang et al, 2022d), DualPrompt (Wang et al.,[2022c)). Denote the baseline of
sequential finetuning as Finetune; we combine it with different tuning techniques, e.g., LiT
2022)) and CoOp (Zhou et al, [2022b). We also report the zero-shot performance of CLIP as
ZS-CLIP by matching the query instance to the template (Eq.[2). All methods are based on the same
pre-trained CLIP for fair comparison.

Implementation details: We deploy all methods with PyTorch (Paszke et al., [2019) on Tesla
V100. We use the same network backbone, i.e., CLIP with ViT-B/16 for all compared methods
for fair comparison. We experiment with two commonly used pre-trained CLIP weights, i.e.,
OpenAl (Radford et al,[2021)) and OpenCLIP LAION-400M (Tlharco et al.,[2021). The model is
trained with a batch size of 64 for 5 epochs, and we use SGD with momentum for optimization. The
learning rate starts from 0.001 and decays with cosine annealing. Following (Rebuffi et al.|2017)), we
use the herding 2009) algorithm to select 20 exemplars per class for rehearsal. We report
the performance of different exemplar scale in Section|[E.5] The context prompt length is set to 3, and
the head of self-attention is set to 1. The template for classification is the same as 2022).
The source code will be made publicly available upon acceptance.

Evaluation Metrics: Denote the accuracy after the b-th stage as Ay, we follow (Rebuffi et all,[2017)
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Figure 3: Ablation study. Left: experiments on nine benchmarks with OpenAI weights. Middle: ablation study
on compositional components in PROOF. Every part improves the performance of CIL. Right: Ap and A with
change of context prompts. The performance is robust to the change of context prompt length.

to use Ap (last stage performance) and A = % 25:1 Ay (average performance) for evaluation. We
report the forgetting measure (Wang et al.l 2023a)) of different methods in Section [E.4]

5.2 BENCHMARK COMPARISON

We report the results on nine benchmark datasets using CLIP with ViT-B/16 (OpenCLIP LAION-
400M) in Table|l{and Figure 2| These splits include the scenarios with large and small base classes.
Notably, PROOF consistently achieves the best performance among all the methods compared.
Sequential finetuning of the model with contrastive loss leads to significant forgetting, irrespective
of the tuning techniques employed (e.g., LiT and CoOp). Since SimpleCIL and ZS-CLIP do not
finetune the model parameters, they achieve competitive results by transferring the knowledge from
the pre-training stage into the downstream tasks. However, most methods achieve better performance
than ZS-CLIP, indicating the importance of incremental learning on downstream tasks.

Specifically, we can draw three key conclusions from these results. 1) The first stage performance of
PROOF surpasses that of the typical prompt learning method, CoOp, thus validating the effectiveness
of learning projections for downstream tasks. 2) The performance curve of PROOF consistently
ranks at the top across all methods, demonstrating its capability to resist forgetting. 3) Compared to
vision-only methods (i.e., L2P and DualPrompt), PROOF exhibits substantial improvement, indicating
textual and visual information can be co-adapted to facilitate incremental learning. We report the
running time comparison of different methods in Section[D.3]

5.3 ABLATION STUDY

Different backbone weights: The comparison in Section is based on LAION-400M pre-trained
CLIP. As another popular pre-trained weight, we also explore the performance of the weights provided
by OpenAl. We report the last accuracy Ap of four competitive methods on nine benchmarks in
Figure [3(a)l We report the full results of the incremental performance in Section[D.6] As depicted in
the figure, PROOF still performs the best on all datasets among all compared methods.

Compositional components: We experiment on CIFAR100 B0 Inc10 to investigate the importance
of each part in PROOF. Specifically, we compare the performance of PROOF and its sub-modules,
i.e., projections and cross-modal fusion. The results, shown in Figure [3(b)] indicate that training
expandable projections or the fusion module individually can both enhance the performance of vanilla
CLIP. This suggests that the expandable task representation and cross-modal information can help
the learning process. Furthermore, when combining them together, we find ‘Projection & Fusion’
further show better performance than any of them, verifying that they can work together by fusing
the expandable representations. Lastly, when incorporating the context prompts, the model shows
the best performance among all variations, verifying the effectiveness of expandable task-specific
prompts in incremental learning. Ablations verify the importance of each component in PROOF.

Number of context prompts: Figure verifies the strong performance of context prompts, and
we explore the appropriate length c of the context prompt on CIFAR100 BO Inc10. By varying the
number of ¢ among {1,2,3,4,5,6,7,8,9,10, 30, 50,100}, we report the average performance and
last performance of PROOF in Figure As shown in the figure, the performance of PROOF is
robust with the change of the prompt length, and we set ¢ = 3 as the default length.

5.4 FURTHER ANALYSIS
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Figure 4: (a)(b): experiments on continual cross-modal retrieval task with BEiT-3. (c): experiments on TV100,
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Extending PROOF to other VLMs and other continual learning scenarios: As defined in Eq.
PROOF adds expandable projections on the VLM to trace task-specific features for continual learning.
Hence, PROOF is a general algorithm that does not rely on the CLIP structure or the CIL setting.
Correspondingly, we verify PROOF in the continual cross-modal retrieval (CCMR) setting with
BEIT-3 (Wang et al.,2023b). The cross-modal retrieval task requires the VLM to search for the most
related image given the text description, and vice versa. To construct a CCMR task, we split the
Flickr30K dataset (Plummer et al.,|2015)) into several subsets by matching the description with several
keywords, i.e., {walk, stand, run, ride, play} (as shown in Figure |§[) This enables us to split the large
dataset into several subsets, and continually learning the new CCMR task will result in forgetting
former tasks with different topics. We continually train the model with the CCMR sequence and
evaluate the performance for image—text and text—image with the benchmark metric (Song &
Soleymani, 2019) R@1/5/10. Figures [4(a)}4 (b)|show the image and text retrieval results. We find
other continual learning algorithms (DER and MEMO) face catastrophic forgetting in CCMR, while
PROOF still performs competitively even with different VLMs and continual learning scenarios. We
report more details about the task construction and experimental results in Section [B]

Class-incremental learning with non-overlapping dataset: We have verified PROOF’s performance
on benchmark CIL datasets in Section[5.2] However, one may argue that these benchmark datasets
may have data overlapping with CLIP’s pre-training dataset. Hence, we manually collect a new
dataset for TV series classification with TV series after 2021 (the publication of CLIP), namely
TV100. TV100 contains 100 classes of posters, actor images, and stage photos of the corresponding
TV series, which shares no data overlapping with CLIP’s pre-training data and can be viewed as
totally new knowledge to CLIP. We evaluate the CIL performance with TV100 in Figure where
PROOF still outperforms other competitors by a substantial margin. More details about dataset
collection and selection are reported in Section [D.10]

Exploring Zero-Shot Performance: Apart from the ability to learn new concepts, CLIP is also
known to have a strong zero-shot (ZS) ability. However, continuously updating the model weakens
the generalizability and harms the ZS performance on subsequent tasks. Hence, apart from evaluating
‘seen’ classes () Y1 U ---Y}), we also assess the performance on ‘unseen’ classes ),
Yp4+1 U -+ Yp to investigate the ZS performance, i.e., As (seen classes), Ay (unseen classes), and
Apnm (harmonic mean of Ag and Ay) after each task. We compare the aforementioned measures on
CIFAR100 BO Inc10. Apart from the compared methods in Section[5.2} we also report a variation of
PROOF, namely PROOF'. The only difference lies in the design of the projection, where PROOF uses

a residual format P;(z) = Zb (P™(z) + z) as the output (same for P;). As shown in Figure ,

m=1
most compared methods lose the ZS performance as data evolves, showing poor Ay than ZS-CLIP.

Compared to PROOF, PROOF sacrifices the adaptivity to maintain ZS performance, striking a balance
between seen and unseen classes. Therefore, when ZS performance is essential, using PROOET is the
preferred choice. See more details about the zero-shot performance in Section [C}

6 CONCLUSION

Real-world learning systems necessitate the ability to continually acquire new knowledge. In this
paper, we aim to equip the popular VLM with the CIL ability. Specifically, we learn the expandable
projections so that visual and textual information can be aligned incrementally. This expansion
technique allows for integrating new concepts without compromising previous ones. Additionally, we
enforce cross-modality fusion with the self-attention mechanism, where visual and textual information
are jointly adapted to produce instance-specific embeddings. Extensive experiments validate the
effectiveness of our proposed PROOF in various VLMs and various continual learning scenarios. We
also demonstrate that a simple variation can preserve the model’s zero-shot capability.
Limitations: Possible limitations include the usage of exemplars, where storage constraints and
privacy issues may happen. Future works include extending the model to exemplar-free scenarios.
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Supplementary Material

In the main paper, we present a method to prevent forgetting in vision-language models through
projection expansion and fusion. The supplementary material provides additional details on the exper-
imental results mentioned in the main paper, along with extra empirical evaluations and discussions.
The organization of the supplementary material is as follows:

* Section [A] presents the pseudo code of PROOF, explaining the training and testing pipeline.

* Section [B]extends PROOF to other vision-language models, specifically BEiT-3 (Wang et al.|
2023b)), in the context of continual cross-modal retrieval tasks. This section demonstrates the
generalizability of PROOF by successfully adapting it to various VLMs without encountering
forgetting. Experiments conducted on different VLMs and tasks highlight PROOF as a unified
and versatile framework.

* Section [Cexplores the zero-shot performance of different class-incremental learning algo-
rithms via different measures, i.e., seen and unseen accuracy and LAION score. We also
maintain PROOF’s zero-shot performance with a simple modification.

* Section [D|reports comprehensive experimental results from the main paper, including the
full results of nine benchmark datasets with two data splits, as well as the results obtained
using OpenAl weights and larger backbones. Furthermore, this section includes additional
ablations such as variations of projection types, results from multiple runs, and an analysis
of the number of parameters. We also collect a new dataset that strictly does not overlap
with the existing pre-training dataset, and provide experimental results on it.

* Sections [E]and [F| provide detailed information on the experiments, including dataset and
exemplar selection details, an introduction to the compared methods, and a discussion of the
broader impacts.

A PSEUDO CODE

In this section, we provide a detailed explanation of PROOF by presenting the pseudo-code in Alg[l] In
each incremental stage, we are provided with the training dataset D? and the exemplar set £, with the
objective of updating the current model f(-). Prior to training, we initially extract visual prototypes
for the new classes (Line . These prototypes are calculated using the frozen visual embedding g;(-),
ensuring their stability throughout model updates. Subsequently, we freeze the former projections
and context prompts while initializing new projections and context prompts specifically for the new
incremental task (Line[2]to Line ). These steps represent the model expansion process, which is
followed by the subsequent learning process.

During the learning process, we concatenate the training instances from the current dataset and the
exemplar set, initiating a for-loop. For each instance-label pair, we calculate the projected visual
and textual embeddings (Line [¢] to Line [9). Subsequently, we compute the projected matching
loss (Line [I0) to encode task-specific information into the current projection layers. Based on
the projected features, we derive context information and perform cross-modal fusion (Line[TT]to
Line[T3). Consequently, we obtain three logits for model updating and utilize the cross-entropy loss
to update these modules (Line[I4). The updated model is then returned as the output of the training
process.

Discussions: Besides the simple addition operation, there exist alternative methods for aggregating
information from multiple projections. However, due to the requirement of fixed input dimensionality
for cross-modal fusion, we refrain from using concatenation as the aggregation function. Furthermore,
it is worth noting that MEMO (Zhou et al.,|2023b)) can be viewed as a specific case where concate-
nation is employed for aggregation. Nonetheless, its inferior performance (as shown in Table )
suggests that summation is a more favorable choice.

B EXTENSION TO OTHER VISION LANGUAGE MODELS

In the main paper, we use CLIP (Radford et al.,2021) as an exemplar vision-language model due to its
popularity and representativeness. However, the field of vision-language models is rapidly advancing,
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Algorithm 1 Training PROOF for CIL

Input: Training dataset: Db Exemplar set: £; Current model: f(-);
Output: Updated model;

1: Extract prototypes p for each new class in D?;
2: Freeze current projections and context prompts;
3: Initialize new projections for the visual and textual branches, Pib, PP, > Expand projections
4: Initialize new context prompt c’;
5: for (x,y) € D' UE do > Incremental learning
6: Calculate the visual embedding z = ¢;(x);
7 Calculate the projected visual feature P;(z);
8: Calculate the textual embedding w of all seen classes;
9: Calculate the projected textual embeddings of all seen classes P;(w);
10: Calculate the logits for projected matching fpym(x) via Eq. 5; > Projected matching
11: Calculate the projected visual features for all visual prototypes p;
12: Conduct cross-modal fusion via Eq. 7; > Cross-modal fusion
13: Calculate the logits for visual and textual matching via Eq. 8; © Visual & textual matching

14: Calculate the loss via Eq. 9; update the model;
return the updated model;

“Three women in black outfits
hold black umbrellas and signs
while a man stands by

- Four people in casual clothing
are standing outside holding
garbage bags

~AMuslim girl is standing on a
street corner listening to music in
a crowded city

Figure 5: The training protocol of five incremental stages in Flickr30K. We split training instances
into five tasks, i.e., walk, stand, run, ride, and play. The training/testing sets do not include images
that do not fall into these tasks. We use the pre-trained BEiT-3 as the initialization and sequentially
learn cross-modal retrieval. At the end of each task, the model is evaluated on all previously learned
concepts.

and various models are available. Therefore, in this section, we extend our PROOF framework to
another widely used vision-language model, namely BEiT-3 (Wang et al.,[2023b)), focusing on the
cross-modal retrieval task. BEiT-3 is a popular VLM that demonstrates promising performance
across multiple vision-language tasks. When finetuning BEiT-3 for cross-modal retrieval, it functions
as a dual encoder, similar to CLIP, featuring a dual-branch structure. As the retrieval task differs
from classification, we adopt a degradation of PROOF by solely employing the projection expansion
strategy without implementing cross-modal fusion. We refer the readers to the BEiT-3 paper (Wang|
[2023b) for more details about the backbone model.

For evaluation, we employ the Flickr30K dataset (Plummer et al.| [2013)) to assess the performance
of incremental cross-modal retrieval. Flickr30K comprises 31,783 images collected from the Flickr
image-sharing platform, encompassing diverse themes such as daily life, travel, people, food, and
scenes. Each image in the dataset is accompanied by five manually annotated textual descriptions,
which provide descriptive information capturing the main content and context of the images. To
formulate an incremental data stream, we utilize keyword matching to identify images containing
different actions (e.g., walk, stand, run, ride, play). Then, we split the training instances into five
subsets based on these specific actions. Figure [f]illustrates the formulation of the stream, while
images not associated with these actions are excluded from training. To create a balanced testing set,
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Table 2: Average and last performance of different methods. The best is in bold. The first row stands
for the text retrieval task, and the second is the image retrieval task. All methods are based on the
same backbone/weight.

Image — Text
Method Rp@l RGl Rp@5 Ra5 RpQl0 ROI10
Finetune 48.79 62.89 7638 85.04  85.68 91.84
DER (Yan et al.} 2021} 78.37 8448 9634 98.23 99.06 99.59
MEMO (Zhou et al.,[2023b)  83.18 87.79 96.57 9827  99.16 99.66
PROOF 85.68 89.43 97.07 98.68 99.79 99.86
Text — Image
Method Rp@l RGl Rp@5 Ra5 RpQl0 RI10
Finetune 3735 5133 6738 77.77 7795 85.55
DER (Yan et al.} 2021} 66.71 74.18 89.63 93.00 94.84 96.69
MEMO (Zhou et al.,[2023b)  69.53  76.35 91.89 9444  96.09 97.32
PROOF 7210 78.01 93.10 95.27  96.92 97.90
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Figure 6: Incremental performance of each method. IR means the recall of image retrieval, and TR
denotes the recall of text retrieval. PROOF consistently outperforms other compared methods with
a substantial margin on the incremental cross-modal retrieval task.

we maintain a 5:1 training-to-testing ratio for splitting the training and testing pairs. Following the
instructions provided by BEiT, we use ‘beit3_base_itc_patch16_224E|’ as the VLM’s initialization.

For evaluation, we employ standard cross-modal retrieval measures, namely RQ1, RQ5, and RQ10.
The retrieval is conducted in two directions: image — text and text — image. Similarly to the CIL
evaluation, we also report the last recall Rz@1 and the average recall RQ1 across incremental stages.
To provide a comparative analysis, we compare PROOF against typical finetuning as the baseline and
modify MEMO (Zhou et al., 2023b)) and DER (Yan et al., 2021)) for comparison. These methods

1https ://github.com/microsoft/unilm/blob/master/beit3/README.md#
flickr30k-retrieval
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Figure 7: Experiment on zero-shot performance. Left: accuracy on unseen classes during incremental learning.
Middle: LAION score during incremental learning. Right: accuracy of seen, unseen, and harmonic mean (HM)
at the last incremental stage. PROOF! strikes a balance between adaptivity and the ZS performance.

represent state-of-the-art CIL approaches that can be adapted with minor modifications to the current
task. However, methods such as L2P and DualPrompt are unsuitable for cross-modal retrieval tasks
as they do not focus on cross-modal matching.

The experimental results are presented in Table[2} and the incremental performance of each measure is
depicted in Figure[6] As evident from these figures, finetuning the model with new concepts leads to
catastrophic forgetting in cross-modal retrieval tasks. However, equipping the model with incremental
learning abilities alleviates forgetting. Among all the compared methods, PROOF consistently achieves
the best performance across different retrieval tasks and metrics, thereby verifying its effectiveness
in mitigating forgetting in VLMs. Experiments conducted on different VLMs and tasks establish
PROOF as a unified and general framework. Future work involves extending PROOF to other VLMs
and applications, such as image captioning (Vinyals et al., |2015) and VQA (Antol et al., [2015).

C EXPLORING ZERO-SHOT PERFORMANCE

CLIP is known to have the zero-shot (ZS) ability, i.e., even if the model has not been trained for
recognizing the image, it can still predict the possibility of an image x belonging to the class y by
matching the cosine similarity via Eq. 2] The strong generalizability of CLIP makes it a popular
model in computer vision. However, in CIL, the model is continuously updated with the downstream
task, which weakens the generalizability and harms the ZS performance (Wortsman et al., 2022)) on
subsequent tasks. In this section, we explore the ZS performance degradation of CLIP and propose a
variation of PROOF to maintain the ZS performance.

Evaluation protocol for ZS performance: Current CIL methods focus on evaluating ‘seen’ classes,
i.e., evaluating ), = Y7 U - - - Y}, after learning task b. However, since CLIP exhibits ZS performance,
we can also assess the performance on ‘unseen’ classes ),, = Y41 U - Yp to investigate the
ZS performance. Correspondingly, we can obtain the performance metrics Ag (seen classes), Ay
(unseen classes), and Ay (harmonic mean of Ag and Ay) after each task. Additionally, based
on the LAION400OM (Schuhmann et al., 2021)) pre-trained CLIP, we also utilize a subset of 10,000
image-text pairs from LAION400M, and calculate the matching score of them, i.e., cosine similarity
of image-text embeddings. We denote the average matching score as LAION score, which indicates
the matching degree of the adapted model on the upstream tasks. Given the relationship between
generalizability and the upstream task, the LAION score serves as an effective measure of ZS
performance.

Results: We compare the aforementioned measures on CIFAR100 BO Inc10. Apart from the
compared methods in Section we also report a variation of PROOF, namely PROOF'. The
only difference lies in the design of the projection, where PROOFT uses a residual format P;(z) =

an 1 (P (z) + 2) as the output (same for P;). To investigate the ZS performance as model
updates, we show the accuracy on unseen classes Ay along incremental stages in Figure [7(a)] where
ZS-CLIP shows the best performance. Due to the incorporation of pre-trained information into
the projected features, PROOF! maintains competitive ZS performance. Conversely, other methods
experience a decline in ZS performance as their focus shifts to downstream tasks. We observe a
similar trend in Figure @ where PROOF achieves a LAION score similar to that of ZS-CLIP.
Lastly, we report As, Ay, Aum in the last incremental stage in Figure We can infer a trade-off
between the adaptivity on downstream tasks and the generalizability of ZS performance. Compared

to PROOF, PROOF' sacrifices the adaptivity to maintain ZS performance, striking a balance between
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Figure 8: Results of multiple runs for CIFAR100 and ImageNet-R. The solid line represents the
mean performance, while the shaded area indicates the standard deviation. PROOF consistently and
robustly outperforms other methods by a substantial margin. All methods are based on the
same backbone/weight.

seen and unseen classes. Therefore, when ZS performance is essential, using PROOFT is the preferred
choice.

D ADDITIONAL EXPERIMENTAL RESULTS

This section presents further experimental results of PROOF, including comparisons with multiple
runs, analysis of parameter numbers, and ablations on projection types. Additionally, we report
the results of using OpenAl pre-trained CLIP and provide the full results mentioned in the main
paper. We also report the results with larger backbones and collect a new dataset that strictly has no
overlapping with the pre-training dataset. We report extensive experiments with this new dataset.

D.1 MULTIPLE RUNS

Following (Rebutffi et al.|[2017)), we conduct typical CIL comparisons by randomly splitting the classes
with a fixed seed of 1993, and these results are reported in the main paper. In this supplementary
section, we perform multiple runs by varying the random seed among {1993, 1994, 1995, 1996, 1997}.
We repeat the comparison on CIFAR100 Base50 Inc10 and ImageNet-R Base100 Inc20 five times and
present the results in Figure[8] The solid line represents the mean performance, while the shaded area
indicates the standard deviation. From these figures, it is evident that PROOF consistently outperforms
other methods by a significant margin across different dataset splits. These results validate the
robustness of PROOF.

D.2 PARAMETER ANALYSIS

As mentioned in the main paper, the additional parameters in PROOF come from three sources: the
projections, the fusion module, and the visual prototypes. The projection layers are implemented with
a single linear layer, each containing d x d parameters, where d = 512 is the embedding dimension.
Similarly, the cross-modal fusion is implemented with a single-head self-attention mechanism, and
the number of parameters is determined by the weight matrices W¢, Wi, and Wy, each containing
d x d parameters. The visual prototypes require saving B X d features, where B is the number of all
classes. The number of extra parameters is (2b + 3) x d? + B x d. Hence, these extra parameters are
negligible compared to the large backbone of the pre-trained CLIP model, which has approximately
150 million parameters.
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Figure 9: Left: Final performance comparison of PROOF with and without projection merging.
Merging the projection modules via Eq. [§] during the testing phase does not hurt the performance
but decreases the parameter scale. Right: Number of parameters in different methods. The shaded
area represents the parameters used during training but dropped during inference. PROOF achieves
state-of-the-art performance with a comparable number of parameters to other methods.

Inference Time Merging: As defined in Eq. 4| the projected embeddings are defined as the summa-
tion of all projections. Since these projections are linear layers, we can utilize the associative law of
multiplication to merge these projections:

b b
Pi(z) =Y P"(z)=()_ P")(2) = Fi(2). ®
m=1 m=1
As shown in Eq.[8] we can merge all the projections (Pil7 Pf, S Pib) into a single one (]52-) using

the summation of the weights. Note that P; has the same dimension as the single projection, which
means we can alleviate the storage burden of b projections into a single one. This helps us to decrease
the extra parameters from (2b+3) x d2 + B x d to 5 x d?> + B x d. Since B denotes the total number
of classes (which ranges from 100 to 300 in current CIL benchmarks), the second term is much
smaller than the first term, and the total memory budget is limited by merging all the projections into
a single one.

In the implementation, we adopt the projection merging after the last incremental stage and replace
the projections with a single one for both visual and textual branches. We show the performance
comparison in Figure 9(a)]by comparing the model with and without such projection merging. As
we can infer from the figure, since these projections are linear ones, merging them via Eq. [§]at the
testing stage achieves the same performance as using multiple projections. It must be noted that the
merging process can also be done after each incremental stage, while we only conduct it after model
training for simplification.

To provide a clear comparison of the parameter numbers for each method, we present the details in
Figure[0(b) using CIFAR100 BO Inc10 as an example. The figure illustrates that PROOF has a similar
parameter scale to other finetune-based methods while achieving significantly stronger performance.
SimpleCIL, which only utilizes the vision branch, requires fewer parameters for the textual branch
but lacks the zero-shot capability. L2P and DualPrompt also only require the vision branch but need
an additional encoder to identify the appropriate prompt, resulting in a higher parameter count than
PROOF. Additionally, PROOF with projection merging further restricts the number of parameters to
be similar to a zero-shot CLIP.

D.3 RUNNING TIME COMPARISON

Apart from model size, another important factor for real-world applications is the running time. An
ideal continual learning algorithm should perform quickly to efficiently tackle the incoming tasks.
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Figure 10: Variations of projection layers. The choice of using a single linear layer as the projection
layer achieves the best performance.

Table 3: Running time comparison (second) of different methods (lower is better). All methods are
implemented with a single Tesla V100 GPU.

Method CIFAR100 BO Inc10  Food BO Inc10
Finetune 5052 8794
CoOp 7433 12997
DualPrompt 6230 10370
L2P 6742 10752
iCaRL 10678 17109
MEMO 7046 11853
DER 9102 15825
PROOF 4518 8697

Hence, we measure the running time of different methods in Table 3] We implement all methods
with a single Tesla V100 GPU. As we can infer from the table, PROOF has the lowest running
time compared to other competitors. It indicates that PROOF has the potential to run efficiently in
real-world applications.

D.4 VARIATION OF PROJECTION TYPES

Apart from simple linear layers, there are other methods to implement the projection layers, such
as layer-wise rescale (SSF) (Lian et al.,|2022)) and Adapter (Houlsby et al., 2019). SSF learns a d-
dimensional rescale parameter to project the features, while Adapter learns both the down-projection
and up-projection for feature mapping. In this section, we explore the performance of these projection
methods on CIFAR100 B0 Inc10 and present the results in Figure[T0] The figure clearly demonstrates
that using a single linear layer as the projection layer achieves the best performance among all
methods, indicating its superiority. Furthermore, this result suggests that a simple linear mapping can
effectively bridge the gap between visual and textual domains.

D.5 VARIATION OF CONTEXT INFORMATION

In the main paper, we discuss the composition of the context information Context, which should
include information from visual prototypes, textual classifiers, and context prompts. In this section,
we conduct ablations to demonstrate the effectiveness of constructing Context with [P, W, C].
Specifically, we perform experiments on CIFAR100 BO Inc10 and change the context construction
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Figure 11: Variations of context information. The choice of using visual prototypes, textual
prototypes, and context prompts as the context information achieves the best performance.

to Context = P (visual prototypes only), Context = W (textual prototypes only), Context =
[P, W] (visual and textual prototypes), and Context = [P, W, C] (current choice). We keep
the same classification rule for these ablations, i.e., classification via Eq. 9. When visual/textual
prototypes are not included in the context, we use the projected features without adaptation as the
matching target in Eq. 8. The results are presented in Figure

From the results, we observe that using visual prototypes or textual prototypes alone yields similar
performance, and the impact of adjustment is marginal. However, when both visual and textual
prototypes are jointly utilized as context information, the model can learn from cross-modality and
achieve better performance. Lastly, the introduction of context prompts into the context further
enhances the performance of PROOF, resulting in the best performance among all variations.

D.6 DIFFERENT PRE-TRAINED WEIGHTS

In the main paper, we discussed two popular weights for pre-trained CLIP: OpenAl (Radford et al.|
2021 f] and OpenCLIP (Ilharco et al.,|2021 ﬂ We primarily presented the results of the OpenCLIP
pre-trained model in the main paper, while providing the results of the OpenAl weights using a radar
chart. In this section, we present the full results of the OpenAl pre-trained CLIP on nine benchmark
datasets in Figure The results demonstrate that PROOF consistently achieves the best performance
among all methods, regardless of the pre-trained weights used. This highlights the robustness of
PROOF in the learning process.

D.7 LARGER BACKBONES

In the main paper, we mainly compare different methods with CLIP ViT-B/16 backbone and show
PROOF outperforms other competitors by a substantial margin. To verify the effectiveness of PROOF
with larger backbones, we also conduct experiments with CLIP ViT-L/14 (LAION 400M pre-trained).
It is a much larger backbone (427 million parameters) than CLIP ViT-B/16 (149 million parameters)
adopted in the main paper. We report the results of different methods in Figure T3]

We can summarize two main conclusions from the figures: 1) Using stronger backbones results in
better performance for all compared methods. Since CLIP with ViT-Large contains 427 million
parameters, it performs better than ViT-Base. Hence, all of these methods perform better when

https://github.com/openai/CLIP
*https://github.com/mlfoundations/open_clip
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Figure 12: Incremental performance of different methods when using OpenAl weights. All methods
are based on the same backbone/weight. We report the performance gap after the last incremental
stage of PROOF and the runner-up method at the end of the line. PROOF consistently achieves the
best performance regardless of the pre-trained weights used.

changing from ViT-B/16 to ViT-L/14. 2) Given various backbones, PROOF still outperforms these
compared methods substantially.

D.8 EXPERIMENTS WITH IMAGENET

Before the prosperity of pre-trained models, class-incremental learning is mainly evaluated with
CIFAR100 (for small-scale evaluation) and ImageNet-100/1000(for large-scale evaluation). Recently,
L2P (Wang et al.l [2022d) firstly introduces pre-trained models into the class-incremental learning
setting. These pre-trained models are often pre-trained with ImageNet-21K, a super-set of ImageNet.
Hence, evaluating the incremental learning performance on its subset (i.e., ImageNet 1K) is less
meaningful. By contrast, the authors in (Wang et al.| 2022d) suggest using datasets that with large
domain gap to ImageNet for evaluation, e.g., ImageNet-R (Hendrycks et al., 2021).

Since pre-trained CLIP can achieve around 80% zero-shot accuracy on ImageNet, we can assume
incremental learning on ImageNet is relatively easy for CLIP. However, we also supply the experi-
mental results on ImageNet100 to make the experiments compatible with former CIL works. We
report the experimental results against two typical CIL methods, i.e., FOSTER (Wang et al, 2022a))
and DER in Figure[T4]
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Figure 13: Incremental performance comparison using CLIP with ViT-Large/14 LAION 400M. All
methods are based on the same pre-trained weight and the same backbone.
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Figure 14: Results on ImageNet100 dataset. PROOF still works competitively on this dataset. All
methods use CLIP with ViT-B/16 OpenAl weight for a fair comparison.

We can summarize two main results from the table. First, the performance of zero-shot CLIP is
relatively high, indicating that the pre-trained model can already handle the current problem on
ImageNet100. Second, our proposed method still outperforms these state-of-the-art methods by a
substantial margin, verifying the effectiveness of our method on traditional CIL benchmarks.
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Figure 15: Comparison to zero-shot CLIP with larger backbones. PROOF uses CLIP with ViT-B/16
(156 million), while ZS-CLIP uses CLIP ViT-L/14 (427 million). Both of them are pre-trained with
LAION 400M. However, PROOF outperforms ZS-CLIP using only 36% parameters.

D.9 COMPARISON TO ZERO-SHOT CLIP WITH LARGER BACKBONE

As discussed in Section[D.2] PROOF only adds a limited number of parameters (i.e., less than 5%) to
a vanilla CLIP. In this section, we compare PROOF to a much larger zero-shot CLIP model to show
the effectiveness of these parameters. Specifically, we choose CLIP with ViT-L/14 for the zero-shot
CLIP model for comparison, which has 427 million parameters. As we can infer from Figure [T5]
PROOF beats zero-shot CLIP even only using a much smaller backbone.

D.10 EXPERIMENTS ON TV100, A STRICTLY NON-OVERLAPPING DATASET TO CLIP

In the main paper, we mainly conduct experiments on benchmark datasets that pre-trained CLIP
cannot handle, e.g., Aircraft (highly specialized), Food and CUB (fine-grained), and ImageNet-R
(out-of-distribution instances). These datasets are popularly adopted as benchmark datasets in tuning
pre-trained models (Wang et al.l |2022c; [Zhou et al., [2022bja). However, one may still argue that
these pre-trained models may have class overlapping with the pre-training context. To tackle this
problem, we collect a new dataset called TV100.

Dataset Construction: As we all know, CLIP (Radford et al., 2021} is proposed in ICML 2021,
which is trained with image-text pairs (before the year 2021) collected from the Internet. Hence, if
we can collect a new dataset after 2021, then we can tell that CLIP does not know the new knowledge.
To achieve this goal, we select a field with new classes emerging every day, i.e., the TV series.
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Figure 16: The collection process of TV100. To maintain a non-overlapping knowledge with pre-
trained CLIP, we first collect a list of TV series after 2021 (the publication of CLIP). Afterward,
we collect data by searching images from Google. However, there may still exist some classes that
pre-trained CLIP may know, e.g., “The Kardashians” and “The Snoopy Show”. To check whether
CLIP knows them, we use a pre-trained CLIP as the filter and delete classes with high zero-shot
accuracy. Only hard classes that pre-trained CLIP show limited accuracy are selected in the dataset.
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Figure 17: Experiments on TV100. All methods are based on the same pre-trained weight (CLIP
ViT-B/16 LAION400M) and the same backbone. TV100 is a non-overlapping dataset containing
images of TV series after 2021 (the release of CLIP), which properly evaluates the ability of different

continual learning algorithms to learn new knowledge. PROOF outperforms other compared methods
by a substantial margin.

Specifically, we manually search for TV series from IMDB and collect the items released after 202
Afterward, we download the related images on Google by searching the keyword “[NAME] TV
Series,” where [NAME] is the name of the TV series. The downloaded images are then processed

manually to delete repeated and meaningless ones. Hence, we can get a large dataset that contains
around 800 classes.

*For those series with multiple seasons, we directly drop them since CLIP may have seen a former season,

e.g., Stranger Things Season 4 is released in 2022, while Stranger Things Seasons 1, 2, and 3 are released before
2021.
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However, some of these classes may not be “new” for a pre-trained CLIP, e.g., “The Kardashians”
was released in 2022 while it is not a new concept for CLIP because the Kardashian—Jenner family
has been popular in America since the last century. A similar phenomenon also occurs in “The
Snoopy Show” (Snoopy is a famous cartoon character) and “The Cuphead Show” (Cuphead is a
video game released in 2017). Hence, we need to select some challenging classes that CLIP
does not know from the TV series pool. Correspondingly, we use a pre-trained CLIP to rank the
difficulty of these classes by measuring the zero-shot accuracy of each image and the text “a photo
of the TV series [CLASS].” We choose the top-100 hard classes based on the zero-shot accuracy
and construct the TV100 dataset. The collection process is summarized in Figure[I6] Surprisingly, a
pre-trained CLIP only achieves around 10% accuracy on this dataset, verifying that CLIP does not
master these classes. Besides, since the dataset is collected after the publication of CLIP, there is
no class overlapping between pre-trained CLIP and TV100. We will make this dataset publicly
available upon acceptance.

Correspondingly, we also conduct experiments on this new dataset. With the other settings the same
as the main paper, we select two dataset splits (i.e., BaseO Inc10 and Base50 Inc10) and report the
results in Figure We can summarize two main conclusions from the figure. Firstly, zero-shot
CLIP performs poorly on this dataset, verifying that this dataset perfectly serves as the benchmark to
evaluate the continual learning ability of pre-trained CLIP. Secondly, PROOF still outperforms other
competitors by a substantial margin, verifying its strong performance in real-world continual learning
tasks.

D.11 FULL RESULTS

We provide the complete results of the benchmark comparison in the main paper, which are presented
in Table[d]and Figures[I8and[T9] These results are obtained using OpenCLIP pre-trained weights
on LAION-400M (Ilharco et al., 2021). Table ] displays the average and last accuracy for the nine
benchmark datasets. Figures [18|and |19|illustrate the incremental performance with varying numbers
of base classes. Across all these evaluations, PROOF consistently outperforms the compared methods,
demonstrating its superior performance.

E EXPERIMENTAL DETAILS

This section provides detailed information about the experiments conducted, including the introduc-
tion of datasets, exemplar selection, and the methods compared in the paper.

E.1 DISCUSSIONS ABOUT DATASET SELECTION

In the main paper, we evaluate different CIL algorithms on nine datasets, which are selected based on
the following criteria:

* CIL Benchmark: We follow the benchmark pre-trained model-based CIL method (Wang
et al., [2022c), where data with a large domain gap to the pre-train model is used for
continual learning. For example, ImageNet-R contains art, cartoon, and sketch-style images
that are out-of-the distribution of the pre-trained model. Similarly, ObjectNet contains
objects from new viewpoints on new backgrounds that are hard for the pre-trained model.
Given the domain gap, directly applying zero-shot learning on these datasets performs
poorly.

¢ VLM-Tuning Benchmark: We also follow the typical VLM-tuning benchmark (Zhou
et al.| [2022alb) to use specialized or fine-grained datasets that pre-trained VLM cannot
handle. For example, pre-trained CLIP cannot differentiate a “Boeing 707" from a “Boeing
7477, while our proposed method improves its performance from 20% to 60%. Similar cases
also include the classification between “Audi 100 Sedan 1994 and “Audi 100 Wagon 1994”,
where our method boosts the performance by 15%.

* Non-overlapping Data: Apart from the above nine benchmarks from CIL and VLM
tuning, we have also collected a new dataset (i.e., TV100 in Section@]) that has no data
overlapping to pre-trained CLIP. This dataset’s collection is strictly after CLIP’s publication,
which is clearly “new” and proper to serve as the dataset for pre-trained CLIP.
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Table 4: Average and last performance comparison of different methods. The first and second columns
represent the methods with and without exemplars. The performance of L2P and DualPrompt are
reproduced with the source code with exemplars. The best performance is shown in bold. All
methods are based on the same backbone/weight.

Aircraft CIFAR100 Cars

Method Exemplar B0 Inc10 B50 Inc10 B0 Inc10 B50 Inc10 BO Inc10 B50 Incl10

A Ap A Ap A Ap A Ap A Ap A Ap

Finetune X 316 096 172 105 7.84 444 530 246 314 110 154 113
Finetune LiT (Zhai et al.}|2022) X 2774 1428 25.10 13777 44.66 14.69 27.69 7.67 84.12 7237 83.08 78.23
Finetune CoOp (Zhou et al.;[2022b) X 1454 7.4 1305 7.77 4700 2424 4123 2412 3646 21.65 37.40 20.87
SimpleCIL (Zhou et al.[[2023c) X 59.24 4809 53.05 4809 8415 76.63 8020 76.63 92.04 86.85 88.96 86.85
ZS-CLIP (Radford et al.]|2021) X 2666 1722 21.70 17.22 81.81 7138 7649 7138 82.60 7637 7832 76.37
CoOp (Zhou et al.||2022b) v 4426 39.87 41.81 39.18 8337 7336 7834 73.04 89.73 8491 87.98 86.60
iCaRL (Rebutfi et al.[[2017) v 53.60 4398 5040 4533 7991 6394 7194 63.00 8938 8495 86.71 84.19
MEMO (Zhou et al.||2023b) v 4224 2541 38.16 27775 84.67 7498 80.75 7534 8823 8131 8490 81.83
L2P (Wang et al.|[2022d) v 55.06 4488 47778 4337 7642 6621 7267 6788 8381 7244 79.76 73.47
DualPrompt (Wang et al.||2022c) v 5595 46.53 5093 46.50 79.07 7006 7481 70.75 8530 7435 81.32 75.85
PROOF v 61.00 53.59 59.99 5890 86.70 79.05 8292 78.87 9326 89.84 90.53 89.54

ImageNet-R CUB UCF

Method Exemplar B0 Inc20 B100 Inc20 BO Inc20 B100 Inc20 BO Inc10 B50 Inc10

A Ap A Ap A Ap A Ap A Ap A Ap
Finetune X 137 043 101 088 206 064 056 047 451 1.59 121 0.80
Finetune LiT (Zhai et al.;|2022) X 64.88 3042 5775 2977 5815 3528 5195 3596 79.25 64.84 81.79 6540
Finetune CoOp (Zhou et al.[[2022b) X 60.73 3752 5420 39.77 27.61 857 2403 10.14 4785 3346 4202 2474
SimpleCIL (Zhou et al.[[2023c) X 81.06 7448 7684 7448 8381 7752 79.75 7752 9044 85.68 88.12 85.68
ZS-CLIP (Radford et al.[|[2021) X 8337 7717 79.57 7717 7438 63.06 67.96 63.06 7550 67.64 7144 67.64
CoOp (Zhou et al.||2022b) v 8240 7620 79.76 77.13 77.34 68.70 74.09 6747 90.13 86.24 8836 85.71
iCaRL (Rebutffi et al.[[2017) v 7222 5438 68.67 60.15 8204 7474 7857 7507 89.47 8434 8851 8411
MEMO (Zhou et al.||2023b) v 80.00 74.07 76.72 7395 7732 65.69 72.88 6641 84.02 74.08 8258 7548
L2P (Wang et al.|[2022d) v 7573 6722 7415 7120 7923 6854 7585 71.12 8871 8393 8651 83.22
DualPrompt (Wang et al.||2022c) v 7847 70.82 7298 69.18 8321 7494 7806 7427 89.48 8541 86.96 84.65
PROOF v 85.34 80.10 8232 80.30 84.93 7943 81.67 79.18 92.34 89.92 91.70 89.16

SUN Food ObjectNet

Method Exemplar BO Inc30 B150 Inc30 B0 Inc10 B50 Inc10 B0 Inc20 B100 Inc20

A Ap A Ap A Ap A Ap A Ap A Ap

Finetune X 4.51 1.59 078 072 349 171 214 152 134 047 069 054
Finetune LiT (Zhai et al.!||2022) X 79.25 64.84 3823 20.00 40.62 1296 29.74 1205 4327 1746 3285 17.17
Finetune CoOp (Zhou et al.[[2022b) X 4593 23.11 3933 2489 36.01 1418 33.13 18.67 2124 629 1621 6.82
SimpleCIL (Zhou et al.[[2023c) X 82.13 7558 78.62 7558 87.89 81.65 84.73 81.65 52.06 40.13 45.11 40.13
ZS-CLIP (Radford et al.[|2021) X 7942 7211 7495 7211 8786 8192 8475 8192 3843 2643 31.12 2643
CoOp (Zhou et al.||2022b) v 80.46 7344 77.68 73.06 8538 76.15 81.74 7635 46.16 33.81 4040 3447
iCaRL (Rebutffi et al.[[2017) v 78.56 6730 7474 69.07 84.12 7168 7886 70.64 4528 2697 3722 26.15
MEMO (Zhou et al.|[2023b) v 8148 7345 78.00 7387 89.18 8285 86.50 83.08 46.98 3337 41.62 34.67
L2P (Wang et al.|[2022d) v 79.83 7214 76.16 7232 8448 7522 8504 80.56 46.18 34.00 43.90 39.57
DualPrompt (Wang et al.|2022c) v 80.14 73.06 7725 73.82 87.12 81.27 8537 8236 53.13 40.59 45.84 40.37
PROOF v 83.57 7728 80.70 7749 90.04 84.73 87.52 84.74 5528 44.36 49.64 43.65

In summary, the datasets adopted in this paper are based on the popularly acknowledged bench-
mark (Zhou et al.| [2022ajb; [Wang et al.| [ 2022c)). These datasets are known to have a large domain
gap to the pre-trained data or highly specialized and fine-grained. Directly conducting zero-shot
learning works poorly or even fails on these datasets. Hence, they are proper to be adopted to
evaluate the continual learning algorithm of a pre-trained model. Additionally, we also evaluate
the performance of different methods on a dataset with no data overlapping to the pre-trained CLIP.
Extensive experiments on these ten datasets verify the effectiveness of the proposed method.

E.2 DATASET INTRODUCTION

In our evaluation, we utilize nine datasets, which are introduced in Table|§]in the main paper. It is
worth noting that some of these datasets have a larger number of classes, but we select a subset of
classes for ease of data split and evaluation.

Exemplar Selection: As mentioned in the main paper, we follow the exemplar selection approach in
(Rebuffi et al.L 2017; Wu et al.,|2019; Hou et al.| 2019)) to utilize herding algorithm (Welling, [2009).
In addition, there are two typical methods (Zhou et al.,[2023a)) to store these exemplars in memory.

1. Fixed Memory Budget: In this approach, a fixed memory budget of K instances is allocated.
Given the number of seen classes denoted as | )|, the model selects i exemplars per class

R
after each incremental stage.
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Figure 18: Incremental performance of different methods. We report the performance gap after the
last incremental stage of PROOF and the runner-up method at the end of the line. All methods are
based on the same backbone/weight.

2. Expandable Exemplar Set: In this method, an expandable exemplar set is maintained as
the data evolves. With the number of exemplars per class denoted as k, the model stores
| V| x k exemplars in total after each incremental stage.

We evaluate both protocols using these benchmark datasets in our experiments. Specifically, we
employ the first policy for CIFAR100 and Food, keeping a total of 2,000 exemplars. Since these
datasets consist of 100 classes, the average number of exemplars per class after the last incremental
stage is 20. We adopt the second policy for the other datasets and store 20 exemplars per class.

E.3 COMPARED METHODS INTRODUCTION AND COMPARISON FAIRNESS

This section provides an overview of the compared methods discussed in the main paper. Please note
that all compared methods are based on the same pre-trained CLIP model. In other words,
we have adapted these original algorithms with pre-trained CLIP for a fair comparison. These
methods, listed in the order presented in Table EL include:

* Finetune: This baseline method involves finetuning the pre-trained CLIP model using

contrastive loss. No regularization terms are set, and no part of the model is frozen, allowing
us to observe the forgetting phenomenon in sequential learning.
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Figure 19: Incremental performance of different methods with large base classes. We report the
performance gap after the last incremental stage of PROOF and the runner-up method at the end of
the line. All methods are based on the same backbone/weight.

Table 5: Introduction about benchmark datasets.

Dataset # training instances  # testing instances  # Classes  Link
CIFAR100 50,000 10,000 100 Link
CUB200 9,430 2,358 200 Link
ImageNet-R 24,000 6,000 200 Link
ObjectNet 26,509 6,628 200 Link
Aircraft 6,667 3,333 100 Link
Cars 4,135 4,083 100 Link
UCF 10,053 2,639 100 Link
SUN 72,870 18,179 300 Link
Food 79,998 20,012 100 Link

* Finetune LiT (Zhai et al., 2022): Following LiT, which freezes the image encoder and
only finetunes the text encoder, we design Finetune LiT with CIL. Similar to finetune, we
sequentially tune the pre-trained CLIP with contrastive loss while the image encoder is
frozen during optimization.
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* Finetune CoOp (Zhou et al., 2022b): Following the CoOp method, this approach freezes
both the image encoder and text encoder of the pre-trained CLIP. It optimizes a learnable
prompt tensor t (as in Eq.4) using contrastive loss without utilizing any historical data for
rehearsal.

e SimpleCIL (Zhou et al.,2023c): This method relies on the pre-trained image encoder and
does not involve the text encoder. Hence, in the pre-trained CLIP, we drop the text branch
and only use the visual branch for evaluation. The frozen image encoder extracts class
centers (prototypes) for each new class, and a cosine classifier is utilized for classification.
Since the model is not updated via backpropagation, it showcases the generalizability of the
pre-trained vision encoder on downstream tasks.

e ZS-CLIP (Radford et al., 2021): This baseline freezes the pre-trained CLIP and predicts
the logits of each incoming class using cosine similarity (Eq.[2). It serves as a reference for
the performance of pre-trained CLIP on downstream tasks.

* CoOp (with exemplars): This method combines the CoOp approach with exemplar re-
hearsal. During learning new classes, the model utilizes a combination of the current dataset
and exemplar set to optimize the learnable prompt.

e iCaRL (Rebuffi et al., 2017): iCaRL is a typical class-incremental learning algorithm
that employs knowledge distillation and exemplar replay to mitigate forgetting. To make it
compatible with the CLIP backbone, we combine the contrastive loss with distillation loss
to learn new classes while retaining knowledge of old classes. The distillation loss is built
between the predicted logits of the old and new model in order to reflect the old model’s
behavior in the updated model.

* LUCIR (Hou et al.,2019): is a typical class-incremental learning algorithm that combines
feature distillation and metric learning. To make it compatible with CLIP’s structure, we
apply feature distillation for both visual and textual branches in order to resist forgetting
former knowledge.

* DER (Yan et al., 2021): a state-of-the-art class-incremental learning algorithm. When
facing a new task, it creates a new backbone and concatenates the features of the old and
new backbone to train a new FC layer. The memory budget will linearly increase as data
evolves since it keeps B backbones in memory. To make it compatible with pre-trained
CLIP, we expand both the visual and textual branch for a new task. During inference, we
concatenate all the visual branches for the image embedding and concatenate all the textual
branches for the textual information. The inference function is still the same with Eq. [2|by
matching the visual-textual embeddings.

* MEMO (Zhou et al., 2023b): MEMO extends DER by decoupling the backbone into
generalized and specialized blocks and only expanding specialized blocks for new tasks
based on the shared generalized blocks. As a state-of-the-art class-incremental learning
algorithm based on network expansion, MEMO is modified to be compatible with the pre-
trained CLIP. The image and text encoders are expanded for new tasks, and the concatenated
features are used for prediction based on cosine similarity. In the implementation, we treat
the last transformer block of the visual and textual branches as generalized blocks and
expand them for each new task.

* L2P (Wang et al.,|[2022d): L2P is a state-of-the-art class-incremental learning algorithm
utilizing pre-trained vision transformers. In this case, the text encoder of pre-trained CLIP is
dropped, and a prompt pool is learned to adapt to evolving data. Another pre-trained image
encoder is required to select the appropriate prompt during inference.

* DualPrompt (Wang et al., 2022¢): DualPrompt is an extension of L2P that incorporates
two types of prompts: general and expert prompts. It also relies on another pre-trained
image encoder for prompt retrieval.

Comparison Fairness: It is clear that all these methods are compared fairly, i.e., initialized with
the same pre-trained weights and using the same number of exemplars for incremental learning.
Although some algorithms are proposed for CNN, the basic idea is still compatible with the CLIP
structure, and we modify their backbone into the pre-trained CLIP for a fair comparison among
different algorithms.
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Table 6: Forgetting measure of different methods (lower is better). All methods use the same
backbone and same number of exemplars.

Method  Aircraft BO Inc10  Cars BOInc10 CIFAR100 BO Inc10  UCF BO Inc10

CoOp 28.20 743 20.74 10.81
iCaRL 13.44 4.18 3145 6.66
MEMO 17.34 4.77 12.40 9.78
PROOF 9.41 3.51 8.02 4.07
- // //‘
77.51
g 841 27501
g 2 ;3; 725
B § 70.0
<< 807 — COOp < —— CoOp
—-—MEMO 675 ——MEMO
781 ——PROOF 65.01 ——PROOF
500 1000 1500 2000 500 1000 1500 2000
Number of Exemplars Number of Exemplars
(a) Average accuracy (b) Final accuracy

Figure 20: Accuracy trend with different number of exemplars.

In summary, all the compared methods are initialized with the same backbone (i.e., pre-trained CLIP
with the same initial weight), with no exception. Hence, experimental results perfectly and fairly
reflect the continual learning ability of different algorithms with new classes.

E.4 FORGETTING MEASURE

Apart from the commonly adopted measure Az and A, we can also measure the forgetting degree of
different methods using the Forgetting metric (Wang et al., 2023a}; Mai et al., 2022)). Specifically,

we use ay, ; to denote the performance of task j after learning task k. The forgetting measure after
learning task k is defined as:

k—1
, 1
Forgetting, = p— z; Fik s 9)
j:
where f; 1 is defined as:
Tik = o max (aij —ak;),Vj <k. (10)

Hence, Forgetting measures the gap between the best performance and the final performance, and a

lower forgetting measure denotes better performance in resist forgetting. We report Forgetting 5 of
different methods in Table[6]for a comparison.

As we can infer from the table, PROOF shows the lowest forgetting among all competitors, indicating
its best performance to resist catastrophic forgetting.

E.5 PERFORMANCE CHANGE WITH EXEMPLAR NUMBER

In the main paper, we mainly follow the benchmark setting (Rebuffi et al.l 2017) to utilize 2000
exemplars in total. In this section, we conduct experiments by changing the number of exemplars to
show the performance trend. We conduct experiences on CIFAR100 B0 Inc10, and vary the number
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of exemplars among {500, 1000, 1500, 2000}. We report the average accuracy and final accuracy of
PROOF , CoOp, and MEMO in Figure 20}

As we can infer from the figure, there are two main conclusions. 1) All methods facilitate from more
exemplars, and they achieve better performance as exemplar increases. 2) However, PROOF consis-
tently achieves the best performance among all methods at different exemplar scales. Experiments
verify the effectiveness of PROOF in various settings.

E.6 DISCUSSIONS OF RELATED WORKS

In this paper, we design PROjectiOn Fusion (PROOF) that enables vision-language models to learn
without forgetting. Given a pre-trained vision-language model, we freeze the visual and textual
embedding functions and learn expandable projections upon them. During the optimization process,
we encode task-specific information into these projection layers to extract more adaptive features
of downstream tasks. On the other hand, we also freeze prior projections when learning new ones,
which enables the latest projection to learn the most effective residual features to capture all seen
classes. Hence, catastrophic forgetting can be alleviated during the projection expansion process.

Different from the “feature projection” in this paper, there are some works (Deng et al} 2021} [Sahal
let all, 2021} [Cin et all, 2022) addressing “gradient projection” or “parameter projection” in the
continual learning field. Among them, (Saha et al, 2021)) suggests taking gradient steps in the
orthogonal direction to the gradient subspaces deemed important for the past tasks. Based on this,
introduces a soft weight to represent the importance of each basis representing past
tasks in gradient projection memory. Similarly, [2022) introduces a notion of ‘trust region’
to select the most related old tasks for the new task in a layer-wise and single-shot manner, using
the norm of gradient projection onto the subspace spanned by task inputs. As we can infer from
these works, although both talk about “projection”, the ideas and operations between PROOF
and these works are essentially different. Specifically, these works (Deng et all,[2021};[Saha et al}
2021}, [Lin et al.| 2022)) aim to project gradient updating directions not to harm existing knowledge.
By contrast, PROOF works on feature projection, which projects the pre-trained features into parallel
subspaces to build task-specific features. Hence, they differ substantially from the motivation to the
operation, except for the similar name of “projection.”

Apart from these differences, we highlight the contributions of PROOF in this section. Through
expandable task-specific projections, we enable a pre-trained vision-language model for continual
learning. We also design a cross-modal fusion module to contextualize the embeddings and less
forgetting. The ideas of learning task-specific projections, learning cross-modal fusion with context
information, and joint adaptation with context prompts are innovative and have not been explored by
any prior work. PROOF is a unified framework that can be applied to various continual learning scenar-
ios (e.g., class-incremental learning and continual cross-modal retrieval) and various vision-language
models (e.g., CLIP and BEiT-3), showing strong performance in various applicative scenarios.

F BROADER IMPACTS

In this work, we address the class-incremental learning problem with vision-language models, which
is a fundamental challenge in machine learning. Our focus is on tackling the forgetting problem
that arises when sequentially finetuning a vision-language model. We propose solutions to project
and integrate features from multiple modalities for unified classification. Our research provides
valuable insights for applications that struggle with managing the forgetting issue in large pre-trained
vision-language models. However, there are still ample opportunities for further exploration in this
field. Therefore, we aspire to stimulate discussions on class-incremental learning in real-world
scenarios and encourage more research to develop practical models for this purpose.

We also acknowledge the ethical considerations associated with this technology. It is crucial to
recognize that individuals expect learning systems to refrain from storing any personal information
for future rehearsal. While there are risks involved in Al research of this nature, we believe that
developing and demonstrating such techniques are vital for comprehending both the beneficial and
potentially concerning applications of this technology. Our aim is to foster discussions regarding best
practices and controls surrounding these methods, promoting responsible and ethical utilization of
technology.
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