
Metric Transforms and Low Rank Representations of
Kernels for Fast Attention

Timothy Chu
Independent Researcher

timothyzchu@gmail.com

Josh Alman
Columbia University

josh@cs.columbia.edu

Gary Miller
Carnegie Mellon University
glmiller@cs.cmu.edu

Shyam Narayanan
Citadel Securities

shyam.s.narayanan@gmail.com

Mark Sellke
Harvard University

msellke@fas.harvard.edu

Zhao Song
Simons Institute for the Theory of Computing, UC Berkeley

magic.linuxkde@gmail.com

Abstract

We introduce a new linear-algebraic tool based on group representation theory, and
use it to address three key problems in machine learning.

1. Past researchers have proposed fast attention algorithms for LLMs by approx-
imating or replace softmax attention with other functions, such as low-degree
polynomials. The key property of these functions is that, when applied entry-
wise to the matrix QK>, the result is a low rank matrix when Q and K are
n× d matrices and n� d.
This suggests a natural question: what are all functions f with this property?
If other f exist and are quickly computable, they can be used in place of
softmax for fast subquadratic attention algorithms. It was previously known
that low-degree polynomials have this property. We prove that low-degree
polynomials are the only piecewise continuous functions with this property.
This suggests that the low-rank fast attention only works for functions approx-
imable by polynomials. Our work gives a converse to the polynomial method
in algorithm design.

2. We prove the first full classification of all positive definite kernels that are
functions of Manhattan or `1 distance. Our work generalizes, and also gives a
new proof for, an existing theorem at the heart of kernel methods in machine
learning: the classification of all positive definite kernels that are functions of
Euclidean distance.

3. The key problem in metric transforms, a mathematical theory used in geome-
try and machine learning, asks what functions transform pairwise distances
in metric space M to metric space N for specified M and N . We prove
the first full classification of functions that transform Manhattan distances to
Manhattan distances. Our work generalizes the foundational work of Schoen-
berg, which fully classifies functions that transform Euclidean to Euclidean
distances.

We additionally prove results about stable-rank preserving functions that are poten-
tially useful in algorithmic design, and more. Our core tool for all our results is a
new technique called the representation theory of the hyperrectangle.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1 Introduction

Kernel methods in linear algebra have numerous applications throughout computer science and
machine learning. Consider the following basic questions in this area.

(A) Given any set of low-dimensional points x1, x2, · · · , xn, y1, y2, . . . , yn ∈ Rd and a function
f : R → R, is there a small k < n and a function F : Rd → Rk such that f(〈xi, yj〉) =
〈F (xi), F (yj)〉 for all i and j? Equivalently, when f is applied entry-wise to a low-rank
(kernel) matrix, is the result always low-rank? What about approximately low-rank?

(B) Given any set of points x1, x2, · · · , xn and a (kernel) function f : R → R, is there some
function F such that f(‖xi − xj‖1) = 〈F (xi), F (xj)〉 for all i and j? Equivalently, is f a
positive definite Manhattan kernel?

(C) Given any set of points x1, · · ·xn, from semi-metric spaces X and Y , for which functions f
does there exist a function F such that f(distX (xi, xj)) = distY(F (xi), F (xj)) for all i
and j? Equivalently, which functions f give a metric transform [DL09] between X and Y?

Question (A) relates to the study and effectiveness of polynomial kernels in machine learning. These
kernels have many applications [Sou10], for instance in speeding up attention in LLMs [AS23,
KMZ23, TBY+19, KVPF20, AS24b, AS24c, SSWZ23a], in NLP for improving the quality of
learning algorithms [KM03, GE08, CHC+10] and basic computations [VSP+17] during training.
Oftentimes, if f is not a polynomial, one may even approximate it by a polynomial (for instance
by truncating its Taylor expansion) or use sketching [HAS20, SWYZ21, SZZ24, SYZ24] in order
to achieve some of the benefits of polynomial kernels in exchange for worse accuracy guarantees.
This has been particularly effective for the neural tangent kernel [JGH18], Gaussian kernel [NJW02,
RR08, AKK+20, HSW+22], generalized T-Student kernel [BTF04], Cauchy kernel [RR08], and
power kernel [FS03].

One can verify that if f is a polynomial, then one can achieve k ≤ ddeg(f) in question (A). Beyond just
kernel methods, this fact has been used to design efficient algorithms throughout computer science
using a technique called ‘the polynomial method in algorithm design’ (see e.g., [AWY14, CW16,
ACW16, Wil18, Alm19, ACSS20, AS23, AS24c, AS24b], and Section 2 below for more examples).
Determining which other functions f have this key property can help to extend these phenomena to
more settings.

Kernel methods, and linear-algebraic computations related to the kernel matrix such as those
involved in Question (B), are very popular in modern machine learning. In some applications,
such as spectral clustering [vL07, NJW02], semi-supervised learning [Zhu05a, Zhu05b, LSZ+19,
SSLL23, SSL24], Laplacian system solving in geometric graphs [ACSS20] and kernel support
vector machines [GSZ23], one needs to explicitly compute the kernel matrix and corresponding
function F . On the other hand, for many other applications such as regression or classification
algorithms, it suffices to implicitly maintain the kernel matrix, or simply prove that the func-
tion F exists [Smo96, SSB+97]; several prominent recent examples are neural tangent kernel
regression [BPSW21, SYZ21, MOSW22, ALS+23, GLS+24, LLSS24], tensor kernel regression
[Zha22, RSZ22, SZZ24], polynomial kernels [SWYZ21, HAS20, AKK+20, SYZ24], and signal
interpolation [CKPS16, SSWZ23b]. This motivates question (B), where we ask whether F exists,
but not how efficient it is.

The metric transforms referenced in Question (C) arise naturally in many settings where one wants to
transform a set of points from a metric space while maintaining some of the metric structure between
them. The field was pioneered by Schoenberg [Sch38, Sch42, Sch35] and Von Neumann [NS41].
Very broadly, this allows one to take advantage of algorithmic tools in both metric spaces simultane-
ously [DL09]. This approach has proven useful in many areas including visualizing the geometry
of BERT [RYW+19], computer vision [FLH15, KZR16, KCC17, WZF05], clustering [MMR19],
sketching and embedding norms [AKR15, IMS17], terminal embedding [MMMR18, NN19, CN21],
low dimensional embeddings via JL transform [AC06, DKS10], mean estimation [LNRW19] nearest
neighbor search [AIR18], generative models [XZZ18], data-sensitive distances in clustering [CMS20],
neural networks [Orr96], harmonic analysis [Aro50, LLLH18, KW71], kernel methods [SSB+97],
distance oracle [DSWZ22], and PDE theory [FS98, CFW12].

Many researchers consider metric transforms when the input and output space are Euclidean, since
more is known about metric transforms in this setting. However, metric transforms between other

2

metrics could have equally rich algorithmic applications, and question (C) generalizes this beyond
just Euclidean metrics. We could think of distance metrics in two semi-metric spaces X and Y , and
the function pair (f, F) can be viewed as a transform from X to Y .

In all these settings, there is a gap in our current understanding of what kernel functions can be
used. For instance, there are a number of functions where it is not known whether they are positive
definite Manhattan kernels which could be used in classification, semi-supervised learning, and other
similar tasks. We will see that a common suite of mathematical tools can be used to address all
these different gaps. Most of our results prove that our understanding is complete, and that, for
instance, the functions we know to be positive definite Manhattan kernels are, in fact, the only ones.
This finally completes our understanding of these important classes of functions. That said, in the
setting of preserving the stable rank of matrices, we will find that there are functions that are not
polynomials, but that surprisingly do preserve the stable ranks of important matrices. Before we get
into our technique in more detail, we first describe our main results in context.

Roadmap. In Section 2, we prove that the only functions which always yield a low-rank matrix
when applied entry-wise to a low-rank matrix are low-degree polynomials, and explain the application
to transformers. In Section 3, we give a classification of positive definite kernels with Manhattan
distance input. In Section 4, we categorize all functions which transform Manhattan distances to
Manhattan distances or squared Euclidean distances. In Section 5, we briefly introduce the core tool
of this work. In Section 6, we give a conclusion of our work. In Section 7, we discuss the limitations
of our work. In Section 8, we discuss the societal impacts of our work.

2 Fast Attention and the Polynomial Method

Fast attention computations in transformers and LLMs [AS23, AS24c, AS24b, AS24a, LSS+24,
HWL+24, LSSZ24a, LSSZ24b, KVPF20, TBY+19] use the polynomial method as a key ingredient.
This is a powerful technique for designing algorithms and constructing combinatorial objects. It
states that applying a low-degree polynomial entry-wise to a low rank matrix yields another low-rank
matrix. Examples of these low rank matrices include QK>/

√
d for n× d matrices Q and K with

n� d, which is a key matrix for attention computations in transformers and LLMs.

Fast attention computations rely on a polynomial approximation to the exponential function [AS23]
combined with the polynomial method. Past researchers [KMZ23, SSWZ23a, TBY+19, KVPF20]
suggested replacing the exponential function in softmax attention with a general kernel function
f . When f is a low-degree polynomial, researchers leveraged the polynomial method to create fast
algorithms for polynomial attention in LLM computations [KMZ23, TBY+19, KVPF20]. The work
of [KMZ23] showed experimentally that polynomial attention has faster training and inference times,
with little loss in quality on large language models.
Fact 2.1 (The polynomial method, folklore; see e.g. [CLP17]). Suppose f : R→ R is a polynomial
of degree d. Then, for any matrix M ∈ Rn×n of rank r, letting

k := 2

(
r + bd/2c − 1

bd/2c

)
,

the matrix Mf ∈ Rn×n given by Mf
i,j := f(Mi,j) has rank(Mf) ≤ k.

For instance, if r = log2 n and d < o(log2 n), then

rank(Mf) < n.

The definition of the polynomial method inspires the following definition:
Definition 2.2 (Preserve low-rank matrices). For a function f : R→ R and positive integer n, we say
f preserves low-rank n×n matrices if, for every matrix M ∈ Rn×n with rank(M) ≤ dlog2(n)e+ 1,
the entry-wise application Mf ∈ Rn×n given by Mf

i,j := f(Mi,j) has

rank(Mf) < n.

It follows from the polynomial method that low-degree polynomials preserve low rank. Fast attention
computations [AS23] rely on this low rank preservation property. For any function f that preserves

3

low rank, if the low rank decomposition of Mf can be efficiently computed, one can create a
replacement for attention that runs in almost linear time in the sequence length n. This is a significant
improvement over the quadratic time algorithms necessary for (unbounded) softmax attention in
LLM models (implicit in [KMZ23, AS23, TBY+19, SSWZ23a]).

This motivates the question:

Question 2.3. Is it possible to generalize the polynomial method (Fact 2.1) to functions f other than
polynomials?

In other words, are there functions f which are not polynomials, but such that if one starts with any
low-rank matrix M , and applies it entry-wise yielding the matrix Mf , then Mf also has low rank?
If such a function existed, it could allow for faster transformers with a wider variety of attention
functions, along with many other algorithmic applications.

We prove that low-degree polynomials are the only piecewise continuous functions f that preserve
low rank. This suggests that the low-rank approach to fast attention calculations [AS23, AS24b,
AS24c] and fast polynomial attention algorithms [KMZ23] can only work for functions that are
approximations of polynomials.

The polynomial method can also be used in algorithm design to design the fastest known algo-
rithms for a variety of different, important problems, including: batch Hamming Nearest Neighbor
Search [ACW16], the Orthogonal Vectors problem from fine-grained complexity [AWY14, CW16],
All-Pairs Shortest Paths [Wil18, CW16], the lightbulb problem in which one wants to find a planted
pair of correlated vectors among a collection of random vectors [Val12, KKK18, Alm19], com-
putational problems related to kernel methods in spectral clustering and semi-supervised learn-
ing [ACSS20], and some stable matching problems [MPS16]. In all these works, one starts with
a matrix M describing the input data which has low rank, and one transforms it into a matrix like
Mf which ‘amplifies’ the key properties of the data while still having low rank. A similar approach
has also been used in the theory of polynomial kernels, such as in algorithms for transformers
in NLP [VSP+17, DCLT18, RNS+18, RWC+19, BMR+20, CND+22, ZRG+22, AS23, AS24c,
KMZ23, HJK+23, HSK+24, HLSL24, HWL+24], and to bound the ranks of matrices which arise
in other settings, such as in the recent resolution of the Cap Set Conjecture from extremal combina-
torics [CLP17, EG17], and in recent proofs that Hadamard and Fourier transforms have low ‘matrix
rigidity’ [AW17, DE19, DL19].

For a function f to be effective in the polynomial method as described above, it is necessary (but
usually not sufficient) that f preserves low-rank n× n matrices in the sense of Definition 2.2. Indeed,
in all the aforementioned applications of the polynomial method, such as the algorithm of [ACW16]
and the application to transformers that we described above, the original matrix M describing the
data can have rank greater than log2 n. The details of how low the rank of Mf must be can vary in the
different applications, but it is always necessary that Mf has less than full rank (i.e., rank(Mf) < n).

2.1 Converse for the Polynomial Method

Our starting point is the recent work in mathematics by Guillot, Khare, and Rajaratnam [GKR17],
which partially answers Question 2.3 negatively. This shows that Fact 2.1 cannot be generalized in
many settings.

Theorem 2.4 ([GKR17, Theorem B], Informal). Recall that in Fact 2.1, k is the target rank of the
matrix Mf . Fact 2.1 is tight, i.e. its converse is true, when either f is (n− 1)-times differentiable
and k < n− 1, or if Mf is required to be positive semi-definite and k < n− 3.

This past work has gaps where f might still result in matrices without full rank, especially since the
requirement that f is (n− 1)-times differentiable is quite restrictive. Common functions in machine
learning like ELU [CUH15, KVPF20, CLD+20], SELU [KUMH17, ZLZ24], and ReLU [HSM+00,
LSS+20, ZZP+21, ZLZ24] are not second-differentiable everywhere, so Theorem 2.4 doesn’t apply
to them. One might imagine getting around this differentiability restriction by using the second
part of Theorem 2.4, but unfortunately the matrices Mf involved in fast attention computations are
not required to be positive semi-definite. So this second part of the theorem does not apply to fast
attention, which is a core application of functions that preserve low rank.

4

Our first result plugs these gaps, showing that Fact 2.1 cannot be generalized in the settings left
open by [GKR17]. (See Section C.8 below where we state [GKR17, Theorem B] more formally and
compare it with our Theorem 2.5 in more detail.)
Theorem 2.5 (Informal statement of Theorem C.11). Suppose the function f : R→ R does not have
any essential discontinuities of the first kind1. If f preserves low-rank n× n matrices, then f is a
polynomial of degree at most dlog2(n)e.

This shows that functions f without essential discontinuities of the first kind, which are also not
polynomials, do not preserve low-rank n × n matrices, and only polynomials of degree less than
dlog2(n)e can preserve low-rank n × n matrices. The class of functions without these essential
discontinuities of the first kind is very rich, and includes all piecewise continuous functions; it is hard
to imagine a reasonable kernel function which is not piecewise continuous. Hence, one cannot hope to
improve on the polynomial method by extending it to other functions without essential discontinuities
of the first kind.

We conjecture that Theorem 2.5 holds for all functions f : R → R (i.e., that if f has an essential
discontinuity of the first kind, then it also does not preserve low-rank matrices). Functions f with an
essential discontinuity of the first kind are not interesting in our setting since they cannot be efficiently
evaluated.

We note that there is a small constant-factor gap between the degree which Fact 2.1 tells us is sufficient
for a polynomial to preserve low-rank n × n matrices, and the degree which Theorem 2.5 says is
necessary: for instance, Fact 2.1 says that polynomials of degree at most 1

2 log2(n) suffice, since(5
4 log2(n)
1
4 log2(n)

)
� n,

whereas Theorem 2.5 says that degree less than log2(n) is necessary. We leave open the question of
closing this gap, although we note that the constant factor in front of the polynomial degree does not
play a major role in most of the aforementioned applications of Fact 2.1.2

2.2 Weaker Polynomial Methods

Fact 2.1 being essentially tight rules out one way to try to generalize the polynomial method. It is
natural to ask whether we can get around this by weakening our constraint on the function f . There
are many properties of matrices which can be taken advantage of in the design of fast algorithms,
and if we can show that Mf has any of these properties, it could still lead to improvements in the
aforementioned applications.

Approximate Low Rank We first study functions f which, when applied entry-wise to a low-
rank matrix M , always result in an approximately low-rank matrix Mf . As we mentioned earlier,
approximating a non-polynomial kernel function f by a polynomial is a common technique for taking
advantage of the properties of polynomial kernels; when f can be well-approximated by a polynomial,
then Mf has approximately low rank for this reason. This raises the question: can functions f which
cannot be well-approximated by a polynomial also result in approximately low-rank matrices?

Our next result answers this question in the negative: the only functions which approximately preserve
low rank are approximate polynomials. In other words, if f is not approximately a polynomial, then
such an algorithmic approach cannot succeed, as f applied entry-wise to a matrix is not close to low
rank.

We say a matrix M is approximately low-rank if the ratio of its smallest and largest eigenvalues is
small; if M were not full rank, then this ratio would be 0. If M is approximately low-rank in this
sense, then fast algorithms for manipulating it follow by using low-rank approximation or approximate

1Recall that f : R → R has an essential discontinuity of the first kind at a point c ∈ R if neither of the
limits limx→c+ f(x), nor limx→c− f(x), converges. By contrast, if exactly one of the two limits converges, it
is called an essential discontinuity of the second kind. If both limits converge, but they don’t both converge to
f(c), then it may be a removable discontinuity or a jump discontinuity.

2For instance, our running example algorithm of [ACW16] only uses an asymptotic bound on how the
degree grows with the dimension of the input points, and the constant factor in front of the polynomial degree is
ultimately subsumed by a ‘O’ in the running time.

5

subspace finding algorithms to find low-rank approximations for the matrix. Analogously, we say
f is approximately a polynomial if its finite differences are small3; recall that the d-th order finite
differences are 0 for any polynomial of degree < d− 1.
Theorem 2.6 (Main result, informal statement of Theorem D.3). Let d = dlog2 ne, and let δ ∈ (0, 1)
be sufficiently small. Suppose f : R→ R is a real analytic function which δ-approximately preserves

low-rank matrices, i.e., mini∈[d] |λi(M
f)|

maxi∈[d] |λi(Mf)| ≤ δ/n for all rank d+ 1 matrices M .

Then, the dth order finite difference of f , evaluated at a ∈ R, for sufficiently small gaps, is bounded
above by δ ·Ka. Here, Ka > 0 is a scaling factor with the property that if f is rescaled by a factor
of c > 0 then Ka is also rescaled by c.

A dependence on a scaling factor Ka is necessary since, if f is rescaled by c, this rescales the finite
differences of f by c, but does not change the ratio of any two eigenvalues of any matrix Mf . In
Theorem D.3 we also prove a similar result if f is Lipschitz (and not necessarily real analytic).

Stable Rank Our first two results, Theorem 2.5 and Theorem 2.6, both ruled out approaches to
generalizing the polynomial method. Finally, we find one important property of matrices for which
we can strictly generalize the polynomial method: stable rank.

Definition 2.7. For a matrix M ∈ Rn×n, its stable rank is defined as srank(M) :=
‖M‖2F
‖M‖22

, where
‖M‖F denotes the Frobenius norm of matrix M and ‖M‖2 denotes the spectral norm of matrix M .

It is known that srank(M) ≤ rank(M), but there are example matrices where srank(M) �
rank(M). Moreover, matrices with low stable rank can be manipulated quickly in many applications;
for instance, low stable rank matrices are a useful tool in data mining and the study of Banach
spaces [MSS17], and very efficient sketching methods are known for matrices with small stable rank
[CNW15].
Theorem 2.8 (Informal statement of Theorem J.2). Let M ∈ Rn×n>0 be a matrix, and suppose
f : R>0 → R>0 has the property that for any entry z of M , 1√

L
· z ≤ f(z) ≤

√
L · z for some

L ∈ R>0. Then, srank(Mf) ≤ L2 · srank(M).

Consider, for instance, the matrices which arise in polynomial method applications [ACW16]; these
are matrices M ∈ Rn×n where each entry is in the interval [1, O(log n)]. For these matrices,
functions like f(x) = xc, for any constant c > 0, which are not a polynomial when c is not an
integer, still preserve stable rank (they satisfy the condition of Theorem 2.8 with L = poly log(n)).
By contrast, such bounds on the entries of M do not impact our earlier results, and so such functions
do not preserve rank or approximately preserve rank for these matrices.

Unfortunately, it is not clear how to apply this to speed up the polynomial method applications we
discussed earlier. Most known applications of stable rank require one to have access to the entire
matrix Mf (in order to, for instance, apply sketching), whereas we are aiming for algorithms whose
running time is sublinear in the number of entries of Mf . Nonetheless, this is an exciting avenue
where one can strictly generalize the polynomial method, and we believe it will have interesting
algorithmic applications, and further motivates algorithmic applications of stable rank.

Theorem 2.8 tells us that functions which do not grow too quickly preserve stable rank, although the
desired rate of growth depends on the matrix entries. We also prove a complementary result about
functions which do grow very quickly: In Theorem J.5 we prove that any super-polynomial function
which grows like xlog

c(x) for any c > 0 does not preserve low stable rank, and applying it entry-wise
to an n× n matrix of rank O(log n) can result in a matrix of stable rank > n− 1. Hence, there is a
limit to how much one could improve our Theorem 2.8.

3 Kernel Methods

Our second main application of our techniques is to the study of kernel methods in machine learning.
Much of the prior work on kernels methods focuses in the Euclidean distance setting. Our new result

3The d-th order finite difference is the discrete analog of the d-th order derivative. For a formal definition of
finite differences, see the paragraph on finite differences in Section A.2.

6

shows how to classify kernels in the Manhattan distance setting. We start with defining positive
definite kernel.

Definition 3.1 (Positive definite Manhattan/Euclidean kernel). A function f is a positive definite `p
kernel if, for any x1, . . . xn ∈ Rd for any n and d, the matrix M ∈ Rn×n with

Mi,j = f(‖xi − xj‖p)

is positive semi-definite.

For p = 1, we also say f is a positive definite Manhattan kernel, and for p = 2 we call it a positive
definite Euclidean kernel.

Equivalently, f is a positive definite `p kernel if and only if there exists a function F : Rd → H such
that: 〈F (x), F (y)〉 = f(‖x− y‖p) for all x, y ∈ Rd for all d. Note thatH represents Hilbert space.
The proof of the equivalence can be found in [Sch42]. Positive definite kernels are used in machine
learning to separate data embedded in Rd using linear separator techniques, when the initial data is
not linearly separable [Smo96, SSB+97, SOW01, SS01]. In other words, a positive definite kernel
can map points in Rd which are not linearly separable, to points in potentially higher dimensions
which are linearly separable. Finding such an embedding is not an easy task in general, but kernel
methods solve this problem.

Many regression algorithms require the kernel to be positive definite [Cut09, HTF09]. The key idea
is to pick a function f based on the application so that a function F like the one in Definition 3.1
can be found which maps the data points to vectors of possible higher dimensions, after which linear
separation can be performed efficiently on these higher dimensional points.

Interestingly, linear separator algorithms such as the widely used Support Vector Machines
(SVMs) [CV95] can separate the data efficiently as long as 〈F (x), F (y)〉 is easily computed for any
x, y ∈ Rd, even if F itself cannot be easily computed. By definition of the positive-definite kernel f ,
we know that

〈F (x), F (y)〉 = f(‖x− y‖p),

which allows us to compute 〈F (x), F (y)〉 quickly by instead computing f(‖x−y‖p). In other words,
in order to apply linear separator algorithms, it suffices to know that an F exists, and not necessarily
know what it is or how to compute it.

The main known result behind kernel methods is a full classification of all positive-definite Euclidean
kernels in terms of completely monotone functions, which are defined as follows:

Definition 3.2 (Completely monotone functions [Ber29]). A function f : R≥0 → R≥0 is completely
monotone if

(−1)kf (k)(x) ≥ 0

for all k ≥ 0, x > 0, and f(0) ≥ limx→0+ f(x).

An example of a completely monotone function is f(x) = e−x. Prior work [Mer09, Sch42, Sch38,
SSB+97, SSM98, SOW01] shows that function f : R → R is a positive-definite Euclidean kernel
(Definition 3.1) if and only if f(

√
x) is a completely monotone function (Definition 3.2). A natural

question to ask is

Question 3.3. Is there a result that classifies all positive definite Manhattan kernels?

In our paper, we classify all positive-definite Manhattan kernels. These kernels are widely used
in machine learning for physical and chemical applications [FLLA15, Lil18, LRRK15]. A notable
example of such a kernel is the Laplace kernel fσ(x) = e−σx which is commonly used in classification
tasks [BMM18]. However, a full description of all positive-definite Manhattan kernels was not known
before our work. In this work, we answer Question 3.3 positively:

Theorem 3.4 (Main result, informal statement of Theorem G.2). f is a positive definite Manhattan
kernel (Definition 3.1) if only if f(x) is completely monotone (Definition 3.2).

Theorem 3.4 classifies all positive-definite kernels when the input distance is Manhattan. It was
previously known that completely monotone functions are positive definite Manhattan kernels [Sch38,

7

Ass80, DL09], but it was not known these were the only such functions. Interestingly, our new
classification is similar to the classification result for Euclidean kernels, but without a square root
applied to the input. Prior to our result, one could have imagined that there are other positive definite
Manhattan kernels to use in SVMs than were previously known. However, our result shows that there
are no other such kernels.

We note that our proof techniques also give a new proof of the known result classifying all positive
definite Euclidean kernels. This known result is a core insight at the heart of kernel methods in
machine learning [SSB+97, SSM98], but traditional proofs tend to use methods related to infinite
dimensional harmonic analysis [BCR84].

4 Metric Transforms

Our final application of our techniques is to metric transforms, a mathematical notion introduced by
Von Neumann and Schoenberg [NS41].

Definition 4.1 (Metric transform). SupposeX andY are semi-metric spaces4. Function f transforms
X to Y if, for any finite set S ⊆ X , there is a function F : X → Y such that f(dX (x1, x2)) =
dY(F (x1), F (x2)), for all x1, x2 ∈ S.

As we discussed earlier, metric transforms arise naturally in many settings where one wants to
transform a set of points from a metric space while maintaining some of the metric structure between
them, and they have proven useful for algorithm design in many areas.

Typically we have particular metric spaces X and Y of interest, and would like to determine which
functions transform X to Y . This leads to the key question in metric transforms:

Question 4.2. For a given semi-metric space X and a given semi-metric space Y , what is the full
classification of functions f that transform X to Y?

Metric transforms in the special case where X and Y are both Euclidean distances5 or close variants
are well-studied. Related to Schoenberg and Von Neumann’s work [NS41], Schoenberg [Sch38]
classified all functions that transform Euclidean distances to Euclidean distances. One natural
question arises: what is the theory of metric transforms for non-Euclidean metrics?

In the case when X is Manhattan (or `1) distance, and Y is Euclidean distance, Schoenberg [Sch38]
provided a partial categorization of functions that transform Manhattan distance to Euclidean distance.
This was followed by Assouad’s work in 1980, which provided a partial categorization of functions
that transform Manhattan distances to Manhattan distances [Ass80]. This setting is particularly
well-motivated in physical applications. For instance, recent work [GSDV17] studied the problem
of inferring a force vector given a collection of example configurations via kernel ridge regression;
in order to encode certain desired symmetries (‘axis reflections’) in the problem, Manhattan pre-
serving functions must be used to define the kernel. Our work on metric transforms completes the
partial categorizations of Schoenberg and Assouad, and proves their partial categorization is a full
categorization.

Our main result about metric transforms is a complete classification of functions that transform
Manhattan distances to Manhattan distances. First, we need to define Bernstein functions:

Definition 4.3 (Bernstein functions [Ber29]). A function f : R≥0 → R≥0 is Bernstein if f(0) = 0
and its derivative f ′ is completely monotone (see Definition 3.2) when restricted to R+. Equivalently,
a function f is Bernstein if:

• 1. (−1)k dkf(x)
dxk ≤ 0 for all k ≥ 1, x ≥ 0;

• 2. f(x) ≥ 0 for all x ≥ 0; and

4A semi-metric satisfies all the axioms for a metric except possibly the triangle inequality; the square of the
Euclidean distance gives rise to a semi-metric.

5When we refer to Euclidean or Manhattan distance in the remainder of this section, we always refer to
distances in infinite dimensional Euclidean metric space and infinite dimensional Manhattan metric spaces,
respectively.

8

• 3. f(0) = 0.6

Now we are ready to state our main result:

Theorem 4.4 (Main result, classifying all Manhattan metric transforms, informal version and combi-
nation of Theorem E.2 and F.3). For a function f : R≥0 → R≥0, the following are equivalent:

1. f is Bernstein.
2. f transforms Manhattan distances to Manhattan distances.
3. f transforms Manhattan distances to squared Euclidean distances.

It was previously known that Bernstein functions transform Manhattan distances to Manhattan dis-
tances [Ass80], and that they transform Manhattan distances to squared Euclidean distances [Sch38],
but in both cases, it was not previously known that these were the only such functions. It was
previously conceivable that, in situations where one needs a metric transform involving Manhattan
spaces, but Bernstein functions do not suffice, one could find other suitable metric transforms; our
Theorem 4.4 rules out such a possibility. This also has a number of simple consequences, for instance:
given any n points x1, . . . xn in the metric space (Rd, `1) for any d, one can use our construction
in Theorem 4.4 to explicitly calculate a finite dimensional embedding F : Rd → R2d such that
‖F (xi)− F (xj)‖1 = f(‖xi − xj‖1).

5 Core Tool: Representation Theory of the Real Hyperrectangle

Our core mathematical tool to tackle all three problems is a new technique we call the representation
theory of the hyperrectangle. Given a d dimensional hyperrectangle (which is just a high dimensional
rectangle), consider the matrix D where the ijth entry of the matrix is the Manhattan distance
between the ith and jth vertex of the hyperrectangle. We prove this matrix has three key properties:

1. It is a 2d × 2d matrix whose rank is d+ 1, and thus it is a low rank matrix.

2. This matrix is filled with Manhattan distances between points.

3. Applying f entry-wise to this matrix does not change the eigenvectors of this matrix, which
are always the columns of the so-called Hadamard matrices [HW78].

We note that the last property is particularly useful for us: it allows us to provide a closed formula for
the eigenvectors and eigenvalues of Df . This is particularly useful because all of our key questions
(on low rank preservation, kernels, and metric transforms) can be viewed as questions about the
eigenvalues of certain matrices after a function is applied entrywise.

The last property can be verified by linear algebra computation, but it can also be seen as a conse-
quence of group representation theory. Thus, we call our approach the representation theory of the
hyperrectangle. For proofs of all three properties, refer to Appendix B.1 and I.

6 Conclusion

We demonstrate that low-degree polynomials are the only functions that consistently result in a
low-rank matrix when applied entry-wise to an existing low-rank matrix, and discuss applications to
transformers and LLMs. Additionally, we classify all positive definite kernels that utilize Manhattan
distance as their input, enhancing the theoretical framework for applications in various machine learn-
ing tasks. Furthermore, we provide a complete categorization of functions capable of transforming
Manhattan distances into either Manhattan distances or Euclidean distances. We do all three tasks
using a new linear algebraic tool called the representation theory of the hyperrectangle. Our findings
not only advance the theoretical understanding of attention and kernel methods, but also open up new
possibilities for their application in fields such as computational biology and algorithm design. This
work completes the theoretical landscape of Manhattan to Manhattan metric transforms, and utilizes
a sophisticated blend of mathematical techniques from several domains.

6We remark that the special attention on f(0) in the definitions above is a bit non-standard but are convenient
for our purposes.

9

7 Limitations

In this paper, we identify a few areas that require further exploration. Firstly, there remains a small
constant-factor gap between Fact 2.1 and Theorem 2.5 that has not been fully explored; details can
be found in the last paragraph of Section 2.1. Additionally, the application of the stable rank results
presents an ongoing challenge, as discussed in the second-last paragraph of Section 2.2. Finally, our
analysis primarily focuses on LLMs, kernel methods, and metric transforms, potentially limiting its
applicability to other methodologies.

8 Societal Impacts

This paper contributes positively by providing a deeper and more comprehensive study of kernel
functions and completes the theory of Manhattan to Manhattan metric transforms, a problem that
has persisted since 1980 due to Assouad’s work. It opens up numerous algorithmic applications,
potentially including large language models (LLMs), and offers a new direction for designing faster
algorithms using stable rank results. However, the practical application of these results remains an
open area, requiring additional time and effort to fully realize their potential.

9 Acknowledgments

The authors would like to thank Amol Aggarwal, Ainesh Bakshi, Robi Bhattacharjee, Jerry Yao-
Chieh Hu, Rajesh Jayaram, Monique Laurent, Roie Levin, Yingyu Liang, Han Liu, Ryan O’Donnell,
Zhenmei Shi, Kevin Tian, Alex Wang, Yu Wang, Yufa Zhou, Lichen Zhang, Di Zhu, and Goran
Zuzic for support and helpful comments. The authors would like to thank Yufa Zhou for writing
the conclusion and checklist of the paper. This work was mostly done when Timothy Chu was
at Carnegie Mellon University, and later at Google, and when Shyam Narayanan was a student
at MIT. Josh Alman is supported in part by NSF Grant CCF-2238221 and a Google Research
Scholar Award. Gary Miller is supported in part by NSF Grant CCF-1637523. Shyam Narayanan is
supported by an NSF Graduate Fellowship and a Google Fellowship. For more information related
to the paper and adjacent topics, see https://www.youtube.com/@zhaosong2031 and https:
//space.bilibili.com/3546587376650961.

References
[AC06] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast johnson-

lindenstrauss transform. In Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing (STOC), pages 557–563, 2006.

[ACSS20] Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness
for linear algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 541–552. IEEE, 2020.

[ACW16] Josh Alman, Timothy M Chan, and Ryan Williams. Polynomial representations of
threshold functions and algorithmic applications. In 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), pages 467–476. IEEE, 2016.

[AIR18] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor
search in high dimensions. In Proceedings of the International Congress of Mathemati-
cians: Rio de Janeiro 2018, pages 3287–3318. World Scientific, 2018.

[AKK+20] Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Vel-
ingker, David P Woodruff, and Amir Zandieh. Oblivious sketching of high-degree
polynomial kernels. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 141–160. SIAM, 2020.

[AKR15] Alexandr Andoni, Robert Krauthgamer, and Ilya Razenshteyn. Sketching and em-
bedding are equivalent for norms. In Proceedings of the Forty-seventh Annual ACM
Symposium on Theory of Computing (STOC), pages 479–488, 2015.

10

https://www.youtube.com/@zhaosong2031
https://space.bilibili.com/3546587376650961
https://space.bilibili.com/3546587376650961

[Alm19] Josh Alman. An illuminating algorithm for the light bulb problem. In SOSA. arXiv
preprint arXiv:1810.06740, 2019.

[ALS+23] Josh Alman, Jiehao Liang, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass
exponential time preprocessing: Fast neural network training via weight-data correlation
preprocessing. In NeurIPS, 2023.

[Aro50] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American
mathematical society, 68(3):337–404, 1950.

[AS23] Josh Alman and Zhao Song. Fast attention requires bounded entries. In NeurIPS, 2023.

[AS24a] Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method
and fast fourier transform. In manuscript, 2024.

[AS24b] Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for
training large language models. In NeurIPS. arXiv preprint arXiv:2402.04497, 2024.

[AS24c] Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing
matrix softmax attention to kronecker computation. In ICLR, 2024.

[Ass80] Patrice Assouad. Plongements isométriques dans l1: aspect analytique. Number,
14:1979–1980, 1980.

[AW17] Josh Alman and Ryan Williams. Probabilistic rank and matrix rigidity. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 641–652,
2017.

[AWY14] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the twenty-sixth annual ACM-SIAM
symposium on Discrete algorithms (SODA), pages 218–230. SIAM, 2014.

[Bai99] René Baire. Sur les fonctions de variables réelles. Annali di Matematica Pura ed
Applicata (1898-1922), 3(1):1–123, 1899.

[BCR84] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic analysis on
semigroups: theory of positive definite and related functions, volume 100. Springer,
1984.

[Ber29] Serge Bernstein. Sur les fonctions absolument monotones. Acta Mathematica, 52(1):1–
66, 1929.

[BMM18] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we
need to understand kernel learning. In International Conference on Machine Learning,
pages 541–549. PMLR, 2018.

[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems (NeurIPS), 33:1877–1901, 2020.

[BPSW21] Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (over-
parametrized) neural networks in near-linear time. In 12th Innovations in Theoretical
Computer Science Conference (ITCS), 2021.

[BTF04] Sabri Boughorbel, Jean-Philippe Tarel, and Francois Fleuret. Non-mercer kernels for
svm object recognition. In BMVC, pages 1–10, 2004.

[CDW+21] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatter-
brain: Unifying sparse and low-rank attention approximation. In NeurIPS, 2021.

[CFW12] Ching-Shyang Chen, Chia-Ming Fan, and PH Wen. The method of approximate
particular solutions for solving certain partial differential equations. Numerical Methods
for Partial Differential Equations, 28(2):506–522, 2012.

11

[CHC+10] Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, and Chih-Jen
Lin. Training and testing low-degree polynomial data mappings via linear svm. Journal
of Machine Learning Research, 11(4), 2010.

[CKPS16] Xue Chen, Daniel M Kane, Eric Price, and Zhao Song. Fourier-sparse interpolation
without a frequency gap. In 57th Annual Symposium on Foundations of Computer
Science (FOCS), pages 741–750. IEEE, 2016.

[CLD+20] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,
Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. Rethinking attention with performers. In International Conference
on Learning Representations (ICLR), 2020.

[CLP17] Ernie Croot, Vsevolod F Lev, and Péter Pál Pach. Progression-free sets in are exponen-
tially small. Annals of Mathematics, pages 331–337, 2017.

[CMS20] Timothy Chu, Gary L. Miller, and Donald Sheehy. Exact computation of a manifold
metric, via lipschitz embeddings and shortest paths on a graph. In SODA, 2020.

[CN21] Yeshwanth Cherapanamjeri and Jelani Nelson. Terminal embeddings in sublinear time.
In FOCS, 2021.

[CND+22] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

[CNW15] Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal approximate matrix
product in terms of stable rank. arXiv preprint arXiv:1507.02268, 2015.

[Cop82] Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM Journal on
Computing, 11(3):467–471, 1982.

[Cri88] Frank Critchley. On certain linear mappings between inner-product and squared-
distance matrices. Linear Algebra and its Applications, 105:91–107, 1988.

[CUH15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289,
2015.

[Cut09] Marco Cuturi. Positive definite kernels in machine learning. arXiv preprint
arXiv:0911.5367, 2009.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[CW16] Timothy M Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. In Proceedings of the twenty-seventh
annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 1246–1255.
SIAM, 2016.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[DE19] Zeev Dvir and Benjamin L Edelman. Matrix rigidity and the croot-lev-pach lemma.
Theory of Computing, 15:1–7, 2019.

[Del73] Philippe Delsarte. An algebraic approach to the association schemes of coding theory.
PhD thesis, Philips Research Laboratories, 1973.

[DKS10] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse johnson: Lindenstrauss
transform. In Proceedings of the forty-second ACM symposium on Theory of computing,
pages 341–350, 2010.

12

[DL09] Michel Marie Deza and Monique Laurent. Geometry of Cuts and Metrics. Springer
Publishing Company, Incorporated, 1st edition, 2009.

[DL19] Zeev Dvir and Allen Liu. Fourier and circulant matrices are not rigid. In Computational
Complexity Conference (CCC), volume 137, pages 17:1–17:23, 2019.

[DSWZ22] Yichuan Deng, Zhao Song, Omri Weinstein, and Ruizhe Zhang. Fast distance oracles
for any symmetric norm. arXiv preprint arXiv:2205.14816, 2022.

[EG17] Jordan S Ellenberg and Dion Gijswijt. On large subsets of with no three-term arithmetic
progression. Annals of Mathematics, pages 339–343, 2017.

[EGH+11] Pavel I Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner,
Dmitry Vaintrob, and Elena Yudovina. Introduction to representation theory, volume 59.
American Mathematical Soc., 2011.

[FLH15] Aasa Feragen, Francois Lauze, and Soren Hauberg. Geodesic exponential kernels:
When curvature and linearity conflict. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 3032–3042, 2015.

[FLLA15] Felix Faber, Alexander Lindmaa, O Anatole von Lilienfeld, and Rickard Armiento.
Crystal structure representations for machine learning models of formation energies.
International Journal of Quantum Chemistry, 115(16):1094–1101, 2015.

[Fro12] Georg Frobenius. Über matrizen aus nicht negativen elementen. ., 1912.

[FS98] Carsten Franke and Robert Schaback. Solving partial differential equations by colloca-
tion using radial basis functions. Applied Mathematics and Computation, 93(1):73–82,
1998.

[FS03] François Fleuret and Hichem Sahbi. Scale-invariance of support vector machines
based on the triangular kernel. In 3rd International Workshop on Statistical and
Computational Theories of Vision, pages 1–13, 2003.

[FZS21] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961,
2021.

[GE08] Yoav Goldberg and Michael Elhadad. splitsvm: fast, space-efficient, non-heuristic,
polynomial kernel computation for nlp applications. In Proceedings of ACL-08: HLT,
Short Papers, pages 237–240, 2008.

[GKR17] Dominique Guillot, Apoorva Khare, and Bala Rajaratnam. Preserving positivity
for rank-constrained matrices. Transactions of the American Mathematical Society,
369(9):6105–6145, 2017.

[GLS+24] Jiuxiang Gu, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential pri-
vacy mechanisms in neural tangent kernel regression. arXiv preprint arXiv:2407.13621,
2024.

[GSDV17] Aldo Glielmo, Peter Sollich, and Alessandro De Vita. Accurate interatomic force fields
via machine learning with covariant kernels. Physical Review B, 95(21):214302, 2017.

[GSZ23] Yuzhou Gu, Zhao Song, and Lichen Zhang. Faster algorithms for structured linear and
kernel support vector machines. arXiv preprint arXiv:2307.07735, 2023.

[HAS20] Insu Han, Haim Avron, and Jinwoo Shin. Polynomial tensor sketch for element-wise
function of low-rank matrix. In International Conference on Machine Learning, pages
3984–3993. PMLR, 2020.

[HJK+23] Insu Han, Rajesh Jarayam, Amin Karbasi, Vahab Mirrokni, David P Woodruff, and
Amir Zandieh. Hyperattention: Long-context attention in near-linear time. arXiv
preprint arXiv:2310.05869, 2023.

13

[HLSL24] Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational lim-
its of modern hopfield models: A fine-grained complexity analysis. In Forty-first
International Conference on Machine Learning (ICML), 2024.

[HSK+24] Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational
limits of low-rank adaptation (lora) for transformer-based models. arXiv preprint
arXiv:2406.03136, 2024.

[HSM+00] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas,
and H Sebastian Seung. Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit. Nature, 405(6789):947–951, 2000.

[HSW+22] Baihe Huang, Zhao Song, Omri Weinstein, Hengjie Zhang, and Ruizhe Zhang. A
dynamic fast gaussian transform. arXiv preprint arXiv:2202.12329, 2022.

[HTF09] T Hastie, R Tibshirani, and J Friedman. Data mining, inference, and prediction. the
elements of statistical learning. ., 2009.

[HW78] A Hedayat and Walter Dennis Wallis. Hadamard matrices and their applications. The
Annals of Statistics, 6(6):1184–1238, 1978.

[HWL+24] Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, , Zhao Song, and Han Liu. On
statistical rates and provably efficient criteria of latent diffusion transformers (dits). In
Thirty-eighth Conference on Neural Information Processing Systems (NeurIPS), 2024.

[IMS17] Piotr Indyk, Jiří Matoušek, and Anastasios Sidiropoulos. low-distortion embeddings
of finite metric spaces. In Handbook of discrete and computational geometry, pages
211–231. Chapman and Hall/CRC, 2017.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. In Advances in neural information
processing systems (NeurIPS), pages 8571–8580, 2018.

[KCC17] Irene Kaltenmark, Benjamin Charlier, and Nicolas Charon. A general framework for
curve and surface comparison and registration with oriented varifolds. In Proceedings
of the IEEE conference on computer vision and pattern recognition (CVPR), pages
3346–3355, 2017.

[KKK18] Matti Karppa, Petteri Kaski, and Jukka Kohonen. A faster subquadratic algorithm for
finding outlier correlations. ACM Transactions on Algorithms (TALG), 14(3):1–26,
2018.

[KKL19] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient trans-
former. In International Conference on Learning Representations (ICLR), 2019.

[KM03] Taku Kudo and Yuji Matsumoto. Fast methods for kernel-based text analysis. In Pro-
ceedings of the 41st Annual Meeting of the Association for Computational Linguistics,
pages 24–31, 2003.

[KMZ23] Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast trans-
formers via sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

[KUMH17] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. Advances in neural information processing systems, 30,
2017.

[KVPF20] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Trans-
formers are rnns: Fast autoregressive transformers with linear attention. In International
conference on machine learning, pages 5156–5165. PMLR, 2020.

[KW71] George Kimeldorf and Grace Wahba. Some results on tchebycheffian spline functions.
Journal of mathematical analysis and applications, 33(1):82–95, 1971.

14

[KZR16] Soheil Kolouri, Yang Zou, and Gustavo K Rohde. Sliced wasserstein kernels for
probability distributions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5258–5267, 2016.

[Lax02] Peter Lax. Functional Analysis. Wiley, 1st edition, 2002.

[Lil18] O Anatole Von Lilienfeld. Quantum machine learning in chemical compound space.
Angewandte Chemie International Edition, 57(16):4164–4169, 2018.

[LLLH18] Shaogao Lv, Huazhen Lin, Heng Lian, and Jian Huang. Oracle inequalities for sparse
additive quantile regression in reproducing kernel hilbert space. The Annals of Statistics,
46(2):781–813, 2018.

[LLSS24] Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers of
softmax: Provable optimization, applications in diffusion model, and beyond. arXiv
preprint arXiv:2405.03251, 2024.

[LNRW19] Jerry Li, Aleksandar Nikolov, Ilya Razenshteyn, and Erik Waingarten. On mean
estimation for general norms with statistical queries. In Conference on Learning
Theory, pages 2158–2172. PMLR, 2019.

[LRRK15] O Anatole Von Lilienfeld, Raghunathan Ramakrishnan, Matthias Rupp, and Aaron
Knoll. Fourier series of atomic radial distribution functions: A molecular fingerprint
for machine learning models of quantum chemical properties. International Journal of
Quantum Chemistry, 115(16):1084–1093, 2015.

[LSS+20] Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu. Generalized
leverage score sampling for neural networks. In NeurIPS, 2020.

[LSS+24] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer
transformers gradient can be approximated in almost linear time. arXiv preprint
arXiv:2408.13233, 2024.

[LSSZ24a] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of
cross-attention with provable guarantee. arXiv preprint arXiv:2407.14717, 2024.

[LSSZ24b] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Prov-
ably efficient learning of higher-order transformers. arXiv preprint arXiv:2405.16411,
2024.

[LSZ+19] Xuanqing Liu, Si Si, Xiaojin Zhu, Yang Li, and Cho-Jui Hsieh. A unified framework
for data poisoning attack to graph-based semi-supervised learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

[LWD+23] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali
Shrivastava, Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual
sparsity for efficient llms at inference time. In International Conference on Machine
Learning, pages 22137–22176. PMLR, 2023.

[Mer09] James Mercer. Functions of positive and negative type, and their connection the theory
of integral equations. Philosophical transactions of the royal society of London. Series
A, containing papers of a mathematical or physical character, 209(441-458):415–446,
1909.

[MMMR18] Sepideh Mahabadi, Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn.
Nonlinear dimension reduction via outer bi-lipschitz extensions. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages
1088–1101, 2018.

[MMR19] Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of
johnson-lindenstrauss transform for k-means and k-medians clustering. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages
1027–1038, 2019.

15

[MOSW22] Alexander Munteanu, Simon Omlor, Zhao Song, and David P. Woodruff. Bounding
the width of neural networks via coupled initialization A worst case analysis. In
ICML, volume 162 of Proceedings of Machine Learning Research, pages 16083–16122.
PMLR, 2022.

[MPS16] Daniel Moeller, Ramamohan Paturi, and Stefan Schneider. Subquadratic algorithms
for succinct stable matching. In International Computer Science Symposium in Russia,
pages 294–308. Springer, 2016.

[MSS17] Adam W Marcus, Daniel A Spielman, and Nikhil Srivastava. Interlacing families iii:
Sharper restricted invertibility estimates. arXiv preprint arXiv:1712.07766, 2017.

[NJW02] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in neural information processing systems (NeurIPS), pages
849–856, 2002.

[NN19] Shyam Narayanan and Jelani Nelson. Optimal terminal dimensionality reduction in
euclidean space. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 1064–1069, 2019.

[NS41] J. Von Neumann and I. J. Schoenberg. Fourier integrals and metric geometry. Transac-
tions of the American Mathematical Society, 50(2):226–251, 1941.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New
York, NY, USA, 2014.

[Orr96] Mark JL Orr. Introduction to radial basis function networks, 1996.

[Par12] Pablo A. Parrilo. Algebraic techniques and semidefinite optimization, February 2012.

[Per07] Oskar Perron. Zur theorie der matrices. Mathematische Annalen, 64(2):248–263, 1907.

[RNS+18] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving
language understanding by generative pre-training. 2018.

[RR08] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in neural information processing systems (NIPS), pages 1177–1184, 2008.

[RSZ22] Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic tensor product regression. In
Conference on Neural Information Processing Systems (NeurIPS), pages 4791–4804,
2022.

[RWC+19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[RYW+19] Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Coenen, Adam
Pearce, and Been Kim. Visualizing and measuring the geometry of bert. Advances in
Neural Information Processing Systems, 32, 2019.

[Sch35] I. J. Schoenberg. Remarks to maurice frechet’s article" sur la definition axiomatique
d’une classe d’espace distancies vector! ellement applicable sur l’espace de hilbertl.
Ann. of Math, 36:724–732, 1935.

[Sch37] I. J. Schoenberg. On certain metric spaces arising from euclidean spaces by a change
of metric and their imbedding in hilbert space. Annals of Mathematics, 38(4):787–793,
1937.

[Sch38] I. J. Schoenberg. Metric spaces and positive definite functions. Trans. Amer. Math.
Soc., 44:522–536, 1938.

[Sch42] I Schoenberg. Positive definite functions on spheres. Duke Math. J, 1:172, 1942.

[Smo96] Alex J Smola. Regression estimation with support vector learning machines. PhD
thesis, Master’s thesis, Technische Universität München, 1996.

16

[Sou10] César R Souza. Kernel functions for machine learning applications. Creative Commons
Attribution-Noncommercial-Share Alike, 3:29, 2010.

[SOW01] Alex J Smola, Zoltan L Ovari, and Robert C Williamson. Regularization with dot-
product kernels. In Advances in neural information processing systems (NeurIPS),
pages 308–314, 2001.

[SS01] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2001.

[SSB+97] Bernhard Scholkopf, Kah-Kay Sung, Christopher JC Burges, Federico Girosi, Partha
Niyogi, Tomaso Poggio, and Vladimir Vapnik. Comparing support vector machines
with gaussian kernels to radial basis function classifiers. IEEE transactions on Signal
Processing, 45(11):2758–2765, 1997.

[SSL24] Yiyou Sun, Zhenmei Shi, and Yixuan Li. A graph-theoretic framework for understand-
ing open-world semi-supervised learning. Advances in Neural Information Processing
Systems, 36, 2024.

[SSLL23] Yiyou Sun, Zhenmei Shi, Yingyu Liang, and Yixuan Li. When and how does known
class help discover unknown ones? provable understanding through spectral analysis.
In International Conference on Machine Learning, pages 33014–33043. PMLR, 2023.

[SSM98] Alex J Smola, Bernhard Schölkopf, and Klaus-Robert Müller. The connection between
regularization operators and support vector kernels. Neural networks, 11(4):637–649,
1998.

[SSWZ23a] Tamas Sarlos, Xingyou Song, David Woodruff, and Richard Zhang. Hardness of low
rank approximation of entrywise transformed matrix products. Advances in Neural
Information Processing Systems, 36, 2023.

[SSWZ23b] Zhao Song, Baocheng Sun, Omri Weinstein, and Ruizhe Zhang. Quartic samples suffice
for fourier interpolation. In FOCS, 2023.

[SWYZ21] Zhao Song, David P. Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of
polynomial kernels of polynomial degree. In ICML, 2021.

[SYZ21] Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-
parameterized neural networks? Advances in Neural Information Processing Systems,
34, 2021.

[SYZ24] Zhao Song, Junze Yin, and Lichen Zhang. Solving attention kernel regression problem
via pre-conditioner. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 208–216. PMLR, 2024.

[SZZ24] Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized
neural network in subquadratic time. In ITCS, 2024.

[TBY+19] Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and
Ruslan Salakhutdinov. Transformer dissection: An unified understanding for trans-
former’s attention via the lens of kernel. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019,
pages 4343–4352. Association for Computational Linguistics, 2019.

[Val12] Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and juntas. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 11–20, 2012.

[vL07] Ulrike von Luxburg. A tutorial on spectral clustering, 2007.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems (NeurIPS), 30, 2017.

17

[Wil18] R Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM Journal
on Computing, 47(5):1965–1985, 2018.

[WLK+20] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer:
Self-attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[WZF05] Liwei Wang, Yan Zhang, and Jufu Feng. On the euclidean distance of images. IEEE
transactions on pattern analysis and machine intelligence, 27(8):1334–1339, 2005.

[XZZ18] Chang Xiao, Peilin Zhong, and Changxi Zheng. Bourgan: generative networks with
metric embeddings. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (NeurIPS), pages 2275–2286, 2018.

[Zha22] Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample
and maintenance. PhD thesis, Master’s thesis, Carnegie Mellon University, 2022.

[ZHDK23] Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating
transformers via kernel density estimation. In ICML. arXiv preprint arXiv:2302.02451,
2023.

[Zhu05a] Xiaojin Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie Mellon
University, language technologies institute, school of Computer Science, 2005.

[Zhu05b] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical report,
University of Wisconsin-Madison Department of Computer Sciences, 2005.

[ZLZ24] Shijun Zhang, Jianfeng Lu, and Hongkai Zhao. Deep network approximation: Beyond
relu to diverse activation functions. Journal of Machine Learning Research, 25(35):1–
39, 2024.

[ZRG+22] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open
pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[ZSZ+23] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai,
Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi
Chen. H _2 o: Heavy-hitter oracle for efficient generative inference of large language
models. In NeurIPS. arXiv preprint arXiv:2306.14048, 2023.

[ZZP+21] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and
Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series
forecasting. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 11106–11115, 2021.

18

Appendix

Contents

1 Introduction 2

2 Fast Attention and the Polynomial Method 3

2.1 Converse for the Polynomial Method . 4

2.2 Weaker Polynomial Methods . 5

3 Kernel Methods 6

4 Metric Transforms 8

5 Core Tool: Representation Theory of the Real Hyperrectangle 9

6 Conclusion 9

7 Limitations 10

8 Societal Impacts 10

9 Acknowledgments 10

A Preliminaries 21

A.1 Notations . 21

A.2 Definitions . 21

A.3 Alternate Classifications of Completely Monotone and Bernstein Functions 22

A.4 Metric Hierarchies . 23

A.5 Negative Type Metrics and Euclidean Embeddability 24

A.6 Schur’s Lemma for Abelian Groups . 24

A.7 Baire Category Theorem . 24

A.8 Applications of Polynomial Methods . 25

B Technique Overview 26

B.1 Starting Point: Eigenvalues of the Kernel Matrix of a Hyperrectangle 26

B.2 Polynomial Method Converse . 27

B.2.1 Exact Low Rank . 27

B.2.2 Approximate Low Rank . 27

B.3 Metric Transforms . 28

B.4 Kernel Methods . 28

C Polynomial Method Converse 29

C.1 Preliminaries . 29

C.2 Functions with Algebraically Zero Eigenvalues 29

19

C.3 Eigenvalues of Low Rank Preserving Functions 30

C.4 Bridging Eigenvalues and Finite Differences . 32

C.5 Function Sums and Finite Differences . 33

C.6 No Functions Other Than Polynomials Preserve Low Rank 34

C.7 Proof of Continuity . 34

C.8 Comparison with Prior Work . 35

D Approximate Polynomial Method Converse 36

D.1 Main Approximate Result . 37

D.2 Real Analytic Functions . 37

D.3 Lipschitz Functions . 38

E Transforming Manhattan to Euclidean 38

E.1 Manhattan to Euclidean Transforms are Increasing 39

E.2 Manhattan to Euclidean Transforms are Bernstein 39

E.3 Manhattan to Euclidean Transforms are Bounded 40

F Transforming Manhattan to Manhattan 41

F.1 Explicit Embeddings for Manhattan to Euclidean Transforms 41

F.2 Manhattan to Manhattan Transforms are Equivalent to Manhattan to Squared-
Euclidean Transforms . 41

F.3 Metric Transforms for Distances with Group Symmetries 42

G Positive Definite Manhattan Kernels 42

G.1 Positive Definite Manhattan Kernels map Positive Reals to Positive Reals 42

G.2 Positive Definite Manhattan Kernels are Completely Monotone 42

H Positive Definite Euclidean Kernels 43

I Eigenvalue of Kernels from the Hyperrectangle 43

I.1 Matrices with Reflectional Symmetries have Hadamard Eigenvectors 43

I.2 Eigenvalues of Kernels from the Hyperrectangle, Restated 43

J Converse to Stable Rank 44

J.1 Lipschitz functions preserve stable rank . 44

J.2 Fast-Growing functions do not preserve stable rank 46

20

Roadmap. In Section A, we define notations, and provide several basic definitions and fundamental
tools. In Section B, we provide several techniques used to prove the theorems. In Section C, we prove
the converse to the polynomial method, proving Theorem 2.5. In Section D, we prove an approximate
converse to the polynomial method, proving Theorem 2.6. In Section E, we prove condition 1 and
condition 2 in Theorem 4.4 on Manhattan metric transforms are equivalent. In Section F, we prove
condition 2 and condition 3 in Theorem 4.4 are equivalent. Overall, Section E and Section F together
prove Theorem 4.4. In Section G, we have a proof of Theorem 3.4 about Manhattan distance kernels.
In Section H, we have a new proof for the known, full classification of Euclidean distance kernels. In
Section I, we prove a slightly different restatement of Lemma B.1. We show our results about stable
rank in Section J.

A Preliminaries

This section is organized as follows:

• In Section A.1, we define several basic notations.

• In Section A.2, we provide some definitions piecewise functions, open/closed/dense sets,
real analytic functions, and finite differences.

• In Section A.3, we provide some previous work about the classifications of completely
monotone and Bernstein function.

• In Section A.4, we state well-known results about metric hierarchies.

• In Section A.5, we define negative metrics and euclidean embeddability.

• In Section A.6, we present previous work about representation theory tools.

• In Section A.7, we present the Baire category theorem.

• In Section A.8, we discuss some applications of polynomial methods.

A.1 Notations

For a vector x, we use ‖x‖1 to denote the entry-wise `1 norm of x. We use ‖x‖2 to denote the
entry-wise `2 norm of x. We use ‖x‖∞ to denote the `∞ norm of x. For two vectors a, b, we use
〈a, b〉 to denote the inner product between a and b. For a vector x, we use x> to denote the transpose
of x. For any matrix A, we use λi’s to denote its eigenvalues. For any square matrix A, we use
det(A) to denote its determinant.

For any d ≥ 1, we define Hadamard matrix Hd ∈ R2d×2d as follows Hd =

[
Hd−1 Hd−1
Hd−1 −Hd−1

]
and

H0 = 1.

Often times in our proof, we may say things like “let x1, . . . x2d be the corners of a d dimensional
hyperrectangle”. For these statements to make sense, we must specify which corner xi refers to. Scale
the d dimensional hyperrectangle to be an axis-aligned hypercube, and place one of the hypercube
corners at the origin. Each corner then has a binary number b as its coordinate bit string. We let xb+1

refer to the original hyperrectangle corner corresponding to b.

A.2 Definitions

Piecewise function A piecewise function is a function defined by multiple sub-functions, where
each sub-function applies to a different interval in the domain.

Open, closed and dense set Open sets are a generalization of open intervals in the real line. In a
metric space (with a pre-defined distance function) open sets are the sets that, with every point P ,
contain all points that are sufficiently near to P (that is, all points whose distance to P is less than
some value depending on P).

A closed set is a set whose complement is an open set. A set that is closed under an operation or
collection of operations is said to satisfy a closure property.

21

A subset A of a topological space X is called dense (in X) if every point x in X either belongs to A
or is a limit point of A; that is, the closure of A constitutes the whole set X .

The interior of a subset S of a topological space X is the union of all subsets of S that are open in X .

Real Analytic Formally, a function f is real analytic on an open set D in the real line if for any
x0 ∈ D one can write

f(x) =

∞∑
n=0

an(x− x0)n = a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + · · ·

in which the coefficients a0, a1, · · · are real numbers and the series is convergent to f(x) for x in a
neighborhood of x0.

The following conditions are equivalent:

• f is real analytic on an open set D.
• There is a complex analytic extension of f to an open set G ⊂ C which contains D.
• f is real smooth and for every compact set K ⊂ D there exists a constant C such that

for every x ∈ K and every non-negative integer k the following bound holds |d
kf

dxk (x)| ≤
Ck+1k!.

Finite Difference A finite difference is a mathematical expression of the form f(x+ b)− f(x+a).

Three basic types are commonly considered: forward, backward, and central finite differences.

A forward difference, denoted ∆h[f], of a function f is a function defined as

∆h[f](x) = f(x+ h)− f(x).

A backward difference uses the function values at x and x− h, instead of the values at x+ h and x:

∇h[f](x) = f(x)− f(x− h) = ∆h[f](x− h).

Finally, the central difference is given by

δh[f](x) = f(x+ h/2)− f(x− h/2) = ∆h[f](x− h/2).

In this paper, we will mainly focus on foward difference.

We use ∆d
h[f](x) to denote d-th difference for any h ∈ Rd at x ∈ R. For each i ∈ [d], we use hi to

denote the i-th entry of h. For each j ∈ [d], the j-th finite difference can be written as the following
recursive way. For j = 1, we have

∆2
h1

[f](x) = f(x+ h1)− f(x).

For j = 2, we have

∆2
h1,h2

[f](x) = ∆h1
[f](x+ h2)−∆h1

[f](x).

For each j ∈ [d], we have

∆j
h1,h2,··· ,hj

[f](x) = ∆j−1
h1,h2,···hj−1

[f](x+ hj)−∆j−1
h1,h2,···hj−1

[f](x).

We will frequently apply these finite differences to functions g : Rd → R of the form g(a) = f(〈a, 1〉)
for a function f : R→ R or similar. In these cases, we will abuse notation and write ∆d

ε [f](〈a, 1〉)
to refer to ∆d

ε [g](a).

A.3 Alternate Classifications of Completely Monotone and Bernstein Functions

Here we recall the classical Bernstein Theorem from analysis constructively classifying completely
monotone (Definition 3.2) and Bernstein functions (Definition 4.3).
Proposition A.1 (Chapter 14, Theorems 3 and 6 in [Lax02]). For a function f : R>0 → R≥0, the
following are equivalent:

22

1. f is completely monotone.

2. Letting (Daf)(x) = f(x+ a)− f(x), for any (a1, . . . , an) non-negative we have

(−1)n

(
n∏
i=1

Dai

)
f(x) ≥ 0

for all x > 0.

3. There exists a positive finite measure µ on R≥0 such that

f(x) =

∫ ∞
0

e−txdµ(t), x > 0.

The part 2 of Proposition A.1 is essentially the definition we gave for completely monotone, except
that it does not assume any smoothness or even continuity a priori. The third shows that all completely
monotone functions are in fact mixtures of decaying exponentials. From the above one easily derives
a corresponding classification of Bernstein functions. If f also has 0 in its domain, then the above
result applies the same way, however (with the same measure µ as in part 3 of Proposition A.1) we
have

f(0) ≥ µ(R≥0)

since we did not require any continuity at 0.
Proposition A.2 (Theorem 6.7 in [BCR84]). For a function f : R≥0 → R≥0 with f(0) = 0, the
following are equivalent:

1. f is Bernstein.

2. Letting (Daf)(x) = f(x+ a)− f(x), for any (a1, . . . , an) non-negative we have

(−1)n

(
n∏
i=1

Dai

)
f(x) ≤ 0, x > 0.

3. There exists a positive measure µ on R+ and a, b ≥ 0 such that

f(x) = a+ bx+

∫
R+

(1− e−tx)dµ(t), x > 0.

Here µ must satisfy
∫
R+

min{1, t}dµ(t) <∞.

Due to the second criterion just above, Bernstein functions are also sometimes called completely
alternating. We remark that these results apply more generally in the setting of abelian semigroups,
where the integral is taken over a measure on the space of positive characters. This general point
of view is explained in [BCR84, Chapter 6], and applies, for instance, to the semigroup of compact
subsets of R under union.

A.4 Metric Hierarchies

Here are well-known facts we will use throughout our proof:
Lemma A.3. For any n points x1, . . . xn in `1, there exist n points y1, . . . yn such that ‖xi−xj‖1 =
‖yi − yj‖1, and y1, . . . yn are a subset of corners of a d dimensional hyperrectangle for some d.

Proof. This follows from the equivalence of the cut cone and `1 distance (Theorem 4.2.2 in [DL09]).

Lemma A.4. The squared Euclidean distance between points in the corners of a hyperrectangle
isometrically embeds into Manhattan distance.

23

Proof. This follows from the Pythagorean theorem.

Lemma A.5. Manhattan distances embed isometrically into squared Euclidean distances.

Proof. This follows from Corollary 6.1.4 and Lemma 6.1.7 in [DL09].

A.5 Negative Type Metrics and Euclidean Embeddability

We now present a criterion by Schoenberg [Sch35] on when a metric is isometrically embeddable
into squared Euclidean distances7.
Definition A.6 (negative type). A matrix D is iff x>Dx ≤ 0 for all x⊥1.
Lemma A.7 (Schoenberg [Sch35]). Consider x1, . . . , xn where di,j is the distance between xi and
xj . Let D be an n by n matrix where Di,j = d2i,j . The distances di,j are isometrically embeddable
into Euclidean space iff the matrix D is negative type.

We note that if D happens to have the all ones vector 1 as an eigenvector, we have a simpler criterion
for testing if D is negative type:
Lemma A.8 (Schoenberg Variant). Consider x1, . . . , xn where di,j is the distance between xi and
xj . Let D be an n by n matrix where Di,j = d2i,j .

If the all ones vector is an eigenvector ofD, then the di,j are isometrically embeddable into Euclidean
space iff every eigenvalue of D, excluding the eigenvalue correseponding to the all ones vector, is
non-positive.

Proof. Lemma A.8 follows from Lemma A.7 and the fact that every symmetric matrix has an
orthonormal set of eigenvectors.

If dij is isometrically embeddable into Euclidean space, we can find an explicit embedding:
Lemma A.9. Consider x1, . . . xn where di,j is the distance between xi and xj . Let D be the matrix
where Di,j = d2i,j . Let Π be the projection matrix off the all ones vector, i.e., Π can be expressed
explicitly as I − J/n, where J is the n× n all-ones matrix, and I is identity matrix.

Let M := − 1
2ΠDΠ.

If y1, . . . yn are such that ‖yi − yj‖2 = di,j and
∑n
i=1 yi = 0, then Mi,j = 〈yi, yj〉. Moreover, if

M = U>U for some U , then the columns of U are an embedding of x1, . . . xn into Euclidean space.

This follows from Eq. 2 in [Cri88]. A longer exposition of the link between distance matrices and
inner product matrices can be found in [Cri88].

A.6 Schur’s Lemma for Abelian Groups

We present Schur’s lemma for Abelian groups G. Schur’s lemma is one of the cornerstones of
representation theory [EGH+11].
Lemma A.10 (Schur’s lemma for Abelian groups). If G is a finite Abelian group of n× n matrices
under multiplication, and M is an n× n diagonalizable matrix satisfying Mg = gM , for all g ∈ G,
then there exists a set of linearly independent vectors v1, . . . vn that are eigenvectors of M and all
g ∈ G. In other words, M and G are simultaneously diagonalizable.

Schur’s Lemma will be useful in proving our key result about representation theory of the real
hyperrectangle, or Lemma B.1.

A.7 Baire Category Theorem

The Baire category theorem (BCT) is an important result in general topology and functional analysis.

A Baire space is a topological space with the property that for each countable collection of open
dense sets (Un)∞n=1, their intersection

⋂
n∈N Unis dense.

7We note that Schoenberg’s criteria has a beautiful proof, which one can find one direction of in [Par12].

24

Theorem A.11 (Baire category theorem [Bai99]). Every complete pseudometric space is a Baire
space. Every locally compact Hausdorff space is a Baire space.

A.8 Applications of Polynomial Methods

Attention Computation: Question 2.3 is also important to the theory of polynomial kernels. A
common computational task which arises when training transformers is to calculate the ‘self attention’
[VSP+17]. Recently, [ZHDK23, AS23] define a formal math computation problem for this attention
mechanism. Formally, in this task, we are given three matrices Q,K, V ∈ Rn×d where n� d,8 and
we would like to compute (QK>)f · V where f : R → R is a non-linear function that we apply
entry-wise to the matrix AB> ∈ Rn×n, then we multiply the result on the right by V . In many
applications, f is the soft-max function, which can be mathematically described as follows (see
[ZHDK23, AS23]):

(QK>)f := D−1 exp(QK>), where D := diag(exp(QK>)1n)

Here exp() is an entry-wise function that exp(QK>)i,j = exp((QK>)i,j) for all i, j ∈ [n] × [n],
D ∈ Rn×n is a diagonal matrix, 1n is a vector that all entries are ones.

Naively evaluating (QK>)f · V takes time O(n2d) (without using fast matrix multiplication).
However, if we can quickly find matrices Q̃, K̃ ∈ Rn×d̃ for some d̃ < n such that (QK>)f =

Q̃ × K̃>, then we can evaluate it more quickly by first computing K̃> × V and then computing
Q̃× (K̃> × V), for a total running time of just O(ndd̃).

Since QK> can be any rank d matrix, and Q̃ × K̃> has rank at most d̃, it follows that an upper
bound on the best d̃ we can achieve is the maximum, over all matrices M of rank d, of rank(Mf).
Question 2.3 asks whether it is possible to achieve d′ < n for functions f like the soft-max function
which are not a polynomial. If not, then we can only hope to carry out this plan of attack if we can
find a low-degree polynomial approximation to our function f .

Algorithm Design:

For one example of polynomial method in algorithm design, consider the fastest known algorithm
for batch Hamming Nearest Neighbor Search due to Alman, Chan, and Williams [ACW16]. In this
problem, one is given as input 2n vectors

x1, . . . , xn, y1, . . . , yn ∈ {0, 1}d

for d = Θ(log n), and a threshold value t ∈ {0, 1, . . . , d}, and one wants to find a pair (i, j) ∈
[n]× [n] such that the Hamming distance between xi and yj is at most t. [ACW16] takes an algebraic
approach to this problem, by first considering the matrix M ∈ Rn×n where Mi,j is the Hamming
distance between xi and yj . One can see that rank(M) ≤ 2d, and one could use fast matrix
multiplication to quickly compute all the entries of M .9 However, since M itself has n2 entries, this
could not improve much on the straightforward O(n2 log n) time algorithm. They instead take the
following approach.

First, pick a parameter g = nδ for a constant δ > 0, and a function f : R→ R such that f(x) > g2

for all x ∈ {0, 1, . . . , t}, and f(x) ∈ [0, 1] for all x ∈ {t+1, t+2, . . . , d}. [ACW16] use Chebyshev
polynomials to construct such an f which is a low-degree polynomial, so that the matrix Mf has low
rank by Fact 2.1. Next, let S1, . . . , Sn/g be a partition of [n] into n/g groups of size g, and consider
the matrix F ∈ R

n
g×

n
g given by

Fa,b =
∑
i∈Sa

∑
j∈Sb

Mf
i,j .

8The matrices Q,K and V correspond to the query, key, and value matrices, respectively, when training
transformers in NLP applications. For more background, we refer the reader to [VSP+17, DCLT18, RNS+18,
RWC+19, BMR+20, KKL19, CLD+20, FZS21, WLK+20, CDW+21, ZSZ+23, LWD+23]. The n � d is a
reasonable assumption in long sequence model problems, since n is the length of documents and d is size of
each word embedding.

9We first construct the matrices X ∈ Rn×2d and Y ∈ R2d×n such that M = X × Y . We can then compute
the product X × Y in Õ(n2) time using fast rectangular matrix multiplication [Cop82, Wil18] as long as
d < n0.1. The reason of obtaining 2d (instead of d) is due to the construction of [ACW16].

25

It is not hard to verify that rank(F) ≤ rank(Mf). Moreover, by the way f was defined, an entry
Fa,b is larger than g2 if and only if there is an (i, j) ∈ Sa × Sb such that the Hamming distance
between xi and yj is at most t.

There is a trade-off between the parameter δ and the degree of f , and hence the rank of F . [ACW16]
balance this trade-off to yield a matrix F of low rank10 and dimensions n1−δ × n1−δ for some δ > 0.
Since F now has a subquadratic total number of entries, fast matrix multiplication can be used to
compute all its entries and solve the problem, in roughly O(n2−2δ) time.

B Technique Overview

In this section, we describe the techniques used to prove our main theorems. In Section B.1, we
introduce the eigenvalue properties of kernel matrices derived from hyperrectangles. In Section B.2,
we introduce the techniques used to prove Theorem 2.5 and 2.6. In Section B.3, we introduce
techniques used to prove Theorem 4.4. In Section B.4, we introduce techniques used to prove
Theorem 3.4.

B.1 Starting Point: Eigenvalues of the Kernel Matrix of a Hyperrectangle

All of our proofs start by using a simple but powerful technique. This technique computes eigenvectors
and eigenvalues of the kernel matrix for any set of points which arise as the vertices of a hyperrectangle
(d-dimensional rectangle). After describing the technique in more detail, we will explain how it leads
to our applications by demonstrating why these matrices and their eigenvalues are relevant to the
three main questions we stated in Section 1.

The eigenvectors of the family of matrices we define shortly will come from columns of Walsh-
Hadamard matrices. For a positive integer d, let v1, . . . v2d ∈ {0, 1}d be the enumeration of all n-bit
vectors in lexicographical order. The Walsh-Hadamard matrix Hd is the 2d × 2d matrix defined by
Hd(vi, vj) := (−1)〈vi,vj〉. The technique is as follows:
Lemma B.1 (Eigenvalue of Manhattan Kernels, informal version of Lemma I.2). For a vector
a ∈ Rd>0, let p1, . . . , p2d ∈ Rd denote the vertices (±a1/2,±a2/2, . . . ,±ad/2) of a hyperrectangle
in lexicographical order. For any f : R → R, let D be the 2d by 2d matrix given by Di,j =
f(‖pi − pj‖1). Then, the columns of the Hadamard matrix Hn are the eigenvectors of D.

For i ∈ [2d], let B(i) ∈ {0, 1}d be the binary representation of i. Then, the eigenvalue corresponding
to column i of Hn is: λi =

∑
b∈{0,1}d(−1)〈B(i),b〉 · f(〈b, a〉).

We will see shortly that this expression for the eigenvalue λi can also be rewritten in terms of integrals
and derivatives of the function f , allowing us to use analytic techniques when computing or applying
these eigenvalues.

Lemma B.1 can be proved using a direct calculation, although its inspiration comes from repre-
sentation theory. The matrix D has the property that: for any permutation matrix σ corresponding
to a reflection about one of the hyperrectangle’s axes, we have σD = Dσ. Schur’s lemma from
representation theory (see Lemma A.10 below) states that D and all σ in the reflectional symmetry
group of the hyperrectangle have a common set of eigenvectors. It is not hard to verify that the only
common set of eigenvectors for all σ is the columns of the Hadamard matrix, and thus D must have
the columns of Hd as its eigenvectors.

Our analysis of eigenvalues in Lemma B.1 is closely related to the Fourier analysis of the Boolean
hypercube, which has been studied for decades in computer science theory [O’D14]. Fourier analysis
of the Boolean hypercube can be seen as an instance of our technique, by setting a to be the all ones
vector in d dimensions. It is important in some of our proofs that a is not the all ones vector: kernel
matrices from a hyperrectangle with varying side lengths have eigenvectors that approximate finite
differences. This is key for our proofs of Theorem 4.4 and 3.4. See Section E.2 for details.

We next give an overview of how we use Lemma B.1 to derive our three applications. We focus on
explaining how the matrices described by Lemma B.1 and their eigenvalues arise in each setting.

10They pick rank ≈ n0.1 in order to apply fast rectangular matrix multiplication as in footnote 9, although
different applications of the polynomial method have aimed for different target ranks.

26

B.2 Polynomial Method Converse

B.2.1 Exact Low Rank

We begin by explaining our techniques for the exact low rank case (Theorem 2.5). This theorem
seems hard to prove for a number of reasons.

First, we assume very little structure on f : in particular, we do not asssume f is differentiable or even
continuous. Rather, we assume a much weaker condition than continuity: indeed, Theorem 2.5 holds
for all piecewise continuous functions f . This is a large space of functions, and in particular covers
all non-differentiable continuous functions including oddities such as the everywhere-continuous and
nowhere-differentiable Weirstrauss function.

Second, to prove a matrix Mf is low rank, one might typically compute either the determinant or an
eigenvalue and show they must be 0. However, explicit formulas for determinants and eigenvalues
can often be complicated, large algebraic expressions in terms of f and elements of M . We overcome
this barrier by selecting a special family of matrices M whose eigenvalues can be expressed as a
simple sum. This family of matrices is restrictive enough to have a set of common eigenvectors (and
thus easily computable eigenvalues), but expansive enough to express all finite differences of f in
terms of these eigenvalues. Our proof proceeds as follows.

Step 1: We begin by showing that if f : R → R preserves low-rank n × n matrices, and does
not have any essential discontunuities of the first kind, then f must be continuous. We do this by
constructing a family of n× n matrices of rank at most 5 such that, for any jump, point, removeable,
or essential-of-second-kind discontinuity that the function f has, one can pick a corresponding matrix
from our family that f maps to a full-rank matrix. In other words, such functions f are very far from
preserving n× n low-rank matrices.

Step 2: We next show that if a continuous function f preserves low-rank n× n matrices, then it
must be a piecewise polynomial function. We will do this by considering the family of n× n kernel
matrices of a hyperrectangle, from Section B.1. If f preserves low-rank matrices, then it must, in
particular, map all these matrices to matrices which do not have full rank.

For any fixed i, we will show that the d-th order finite difference of f at point x can be written
as a linear combination of the i-th eigenvalue λi, of a number of different matrices in our family
(see Lemma B.1 for definition of λi and our kernel matrices). Hence, if λi is 0 for all of the above-
mentioned kernel matrices, this will imply that the d-th order finite difference of f is 0 at every point
x, and thus f is a polynomial of degree at most d.

Although we are guaranteed that one of the eigenvalues of each kernel matrix is 0, we are not
guaranteed that there is a fixed i such that it is always the i-th eigenvalue which is 0.

In order to address this, we apply the Baire Category Theorem from topology to the zero-sets of λi
for each fixed i. Roughly, this theorem allows us to show that for all x ∈ R (except for a set whose
intersection with any finite interval is finite), one can manipulate which matrices determine the finite
difference of f at x to ensure that they all have the same eigenvalue λi equal to 0. Working through
the details, this implies that f is a piecewise polynomial.

Step 3: Next, we show that the function f must be exactly a polynomial. From step 2, we know
that f is piecewise polynomial. We then use a series of algebraic manipulations, and the fact that a
linear combination of λi from different matrices gives the finite difference of f , to show that each
d-th finite difference of f evaluated at any point for any gap is 0. This implies that f is a polynomial,
finishing our proof.

B.2.2 Approximate Low Rank

Our proof of Theorem 2.6 is similar to the exact setting (Theorem 2.5). The main new technical
difficulty which arises is that we must more carefully bound the finite differences in terms of the
eigenvalues; in the previous proof, we could assume one of the eigenvalues is 0 and so many terms
cancelled out. We omit further details here in the interest of space, but refer the reader to Section D
for more details.

27

B.3 Metric Transforms

At the onset, Theorem 4.4 seemed difficult to prove for a number of reasons.

It is known, and not hard to show, that any Bernstein function transforms squared Euclidean distances
to squared Euclidean distances [BCR84]. It was also known that Manhattan distances isometrically
embed into squared Euclidean distances. Thus Theorem 4.4 immediately implies that Bernstein
functions are equivalent to functions that transform squared Euclidean to squared Euclidean distances.
This equivalence is Schoenberg’s foundational theorem on Euclidean metric transforms [Sch37],
which is considered difficult to prove from scratch.

Schoenberg’s proof uses multivariable calculus and complex analysis in Hilbert space, which has a
natural Euclidean distance structure; Manhattan distances do not have such structure, so we cannot
proceed in this way to prove Theorem 4.4. Our proof takes an entirely new approach, and our result
is stronger than Schoenberg’s.

Moreover, we note that most squared Euclidean distances are not Manhattan distances: indeed, most
squared Euclidean distances are not even metrics. Thus, it was highly conceivable before our work
that non-Bernstein functions could transform Manhattan distances to squared Euclidean distances.
Our work rules this possibility out. It was also unclear prior to our work why functions transforming
Manhattan to Manhattan, and functions transforming Manhattan to squared Euclidean, should be the
same set of functions.

Notably, we do not assume any kind of structure on metric transforms f : we do not assume f
is bounded, continuous, Fourier-transformable, and so forth. Thus, our theorem applies to any
conceivable function with no underlying structure assumed at all.

Step 1: First, we show that a function transforms Manhattan distances to squared Euclidean
distances, if and only if f applied entrywise to our kernel matrices from hyperrectangles (see
Lemma B.1 for how these are defined) always results in a matrix whose eigenvalues are all negative
except for λ1. Here λi is defined as in Lemma B.1. This follows from the well-known fact that
all Manhattan distances can be isometrically embedded into Manhattan distances between points
on a hyperrectangle, combined with a criterion of Schoenberg [Sch35] on when a given set of

(
n
2

)
distances can be realized as pairwise squared Euclidean distances from n points.

Step 2: Next, we show that only Bernstein functions transform Manhattan distances to squared
Euclidean distances. We do this by showing the d-th order finite difference of f evaluated at x, can
be written as (−1)d times the limit of a sequence of eigenvalues of well-chosen kernel matrices
from hyperrectangles. We can bound this limit using step 1, to show that if f transforms Manhattan
distances to squared Euclidean distances, then the d-th order finite difference for f have the opposite
sign as (−1)d. This property implies that f is Bernstein, even without assuming a priori that f is
bounded or continuous.

Step 3: We will then show that any function that transforms Manhattan distance to squared Eu-
clidean distance, must transform Manhattan distances to Manhattan distances.

We first show that f transforms Manhattan distances to squared Euclidean distances if and only
if it transforms Manhattan distances from hyperrectangle corners to squared Euclidean distances.
We then find the explicit embedding of these squared Euclidean distances via a classic idea of
Schoenberg [Sch35], which will reveal that these transformed distances can be embedded as squared
Euclidean distances from corners on a different, higher dimensional hyperrectangle. Squared Eu-
clidean distances from corners of a hyperrectangle are isometric to Manhattan distances, by the
Pythagorean theorem.

B.4 Kernel Methods

Theorem 3.4 represents a non-trivial advance in kernel theory for the following reason:

One of the fundamental results of kernel methods is a classification of all Euclidean kernels. From
this, one can deduce that a function is a squared Euclidean kernel if and only if it is a completely
monotone function. Since Manhattan distances are a measure-zero set of squared Euclidean distances,

28

it is clear that completely monotone functions are Manhattan kernels, but it is not at all clear that all
Manhattan kernels should be completely monotone.

The proof steps for kernel methods are very similar to those for metric transforms. The reason is that
there is a known connection between matrices of squared Euclidean distances between pairs of points,
and matrices of inner products between pairs of points.

The main difference between the proof of Theorem 3.4 on kernels and the proof of Theorem 4.4 on
metric transforms (whose steps are listed in Section B.3) is that in Step 1 of our proof on kernels, we
show that a function is a Manhattan distance kernel if and only if f applied entrywise to our kernel
matrices from hyperrectangles always results in a matrix whose eigenvalues are all non-negative. We
propagate this change through the proof steps accordingly.

C Polynomial Method Converse

The major goal of this section is to prove Theorem C.11, the formal restatement of Theorem 2.5. This
section is organized as follows

• In Section C.1, we restate some preliminaries about kernel matrices from real hyperrectan-
gles. We define matrices M(a),Mf (a), and eigenvalues λfi (a).

• In Section C.2, we prove that low degree polynomials are the only functions such thatMf (a)
has an eigenvalue that is the zero function in terms of a ∈ Rd.

• In Section C.3, we show that for any function that preserves low rank, one eigenvalue of
Mf (a) must be zero in terms of a.

• In Section C.4, we provide an algebraic computation, which is a key step for equating a sum
of eigenvalues with the formula for finite differences.

• In Section C.5, we formally relate a key sum of f evaluated at various points, with the finite
differences of f .

• In Section C.6, we prove that only low-degree polynomials preserve low rank. This proves
the main result of this section, Theorem C.11, which is a formal restatement of Theorem 2.5.

• In Section C.7, we show a large class of discontinuous functions do not preserve low-rank
matrices.

C.1 Preliminaries

We start by defining the matrix M(a) from the real hyperrectangle, and its eigenvalues.

Definition C.1 (Matrix M(a)). Consider a mapping B : {0, 1, . . . 2d−1} → {0, 1}d corresponding
to the conversion of integers into d-digit binary strings, which we interpret as d dimensional 0− 1
vectors. For any fixed vector a ∈ Rd, we define matrix M(a)

M(a)i,j := 〈a,B(|i− j|)〉.

Definition C.2 (Eigenvalues of M(a)). For each matrix M(a) ∈ Rn×n, we established previ-
ously that f(M(a)) ∈ Rn×n has eigenvectors equal to the Hadamard matrix columns, and the
corresponding eigenvalues are:

λfi (a) =
∑

b∈{0,1}d
(−1)〈B(i),b〉 · f(〈b, a〉)

We also give the following definition:

Definition C.3 (Real hyperrectangle). The d-dimensional real hyperrectangle parameterized by d
variables a1, . . . ad > 0 is the convex hull of the 2d points {±a1/2, . . .± ad/2}.

C.2 Functions with Algebraically Zero Eigenvalues

The goal of this section is prove Lemma C.4.

29

Lemma C.4 (Only polynomials have a zero eigenvalue). For any function f , any n that is a power
of 2, and d := log n+ 1: we can find M : Rd → Rn×n and λfi : Rd → R satisfying:

1. M(a) has rank ≤ d for all a ∈ Rd

2. λf1 (a) . . . λfn(a) is the full set of eigenvalues of f(M(a)), for all a ∈ Rd.

3. If there exists i ∈ [n] such that λfi (a) = 0 for all a ∈ Rd, then f is a degree d ≤ log n+ 1
polynomial.

Proof. We note that for any ε > 0,

(−1)〈B(i),1〉
∑

b∈{0,1}d
(−1)‖b‖1 · λfi (a+ εb) =

∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ εb,1〉 (1)

by the following computation:

(−1)〈B(i),1〉
∑

b∈{0,1}d
(−1)‖b‖1 · λfi (a+ εb)

= (−1)〈B(i),1〉
∑

b1∈{0,1}d
(−1)‖b1‖1 ·

 ∑
b2∈{0,1}d

(−1)〈B(i),b2〉f(〈b2, a+ εb1〉)


= (−1)2〈B(i),1〉

∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ εb,1〉)

=
∑

b∈{0,1}d
(−1)‖b‖1 · f(〈a+ εb,1〉

where the first equality follows from the definition of λfi and the second equality follows from
Lemma C.9.

It follows that if λfi = 0, then ∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ εb,1〉 = 0

for all ε and a. By Lemma C.10, the above equation implies that ∆d
ε [f](〈a, 1〉) = 0 for all ε. If all

dth order finite differences are equal to 0 at a, then the dth derivative of f at a exists and is also equal
to 0.

Therefore, f is at most a degree d polynomial as desired. Thus, we complete the proof.

We conjecture that the above lemma is true without requiring n to be a power of 2, but it is not
necessary for our other results.

C.3 Eigenvalues of Low Rank Preserving Functions

The goal of this section is to prove Lemma C.5.

Lemma C.5 (One Eigenvalue is identically zero). If n is a power of 2 and given:

1. A function f : R→ R with no essential discontinuities of the first type

2. A function M : Rd → Rn×n, mapping d := dlog ne dimensional vectors to n dimensional
matrices.

3. A set of n functions λf1 , λ
f
2 , · · · , λfn such that each λfi : Rd → R, and λf1 (a) . . . λfn(a) is

the full set of eigenvalues of f applied entry-wise to M(a) for all a ∈ Rd,

30

Then if f transforms matrices M(a) to rank < n for all a ∈ Rd, then there exists i ∈ [n] where
function λfi = 0.

Proof. Lemma C.8 says that if f preserves low rank and has no essential discontinuities of the first
type, then it is piecewise polynomial. We will prove that if it preserves low rank and is piecewise
polynomial, it must be polynomial.

We consider the family of matrices (J +M(a))f , where J ∈ Rn×n is the all ones matrix. Note that
M(a) has rank at most d + 1 and one of the eigenvectors is all ones vector. Thus, matrices of the
form J +M(a) have rank at most d+ 1.

Suppose otherwise, that f preserves low rank and is piecewise polynomial but not polynomial.
Without loss of generality, we can assume that f(x) = P1(x) on [r, s] and f(x) = P2(x) on [s, t] for
some r < s < t, for some polynomials P1 6= P2.

There exists an open set X ⊂ R and an open set Y ⊂ Rd such that x ∈ [r, s] and x + 〈y, a〉 is
in [s, t] for all x ∈ X, y ∈ Y, and non-zero a ∈ {0, 1}d. X,Y can be attained by choosing X to
be the set of x satisfying s − ε < x < s, and and Y to be the set of y with ε < yj < 2ε, for any
0 < ε < (t− s)/(2d), for all 1 ≤ j ≤ d.

We use our eigenvalue computation in Definition C.2 to see that:

λfi (xJ +M(y)) = P1(x) +
∑

a∈{0,1}d\0d

(−1)〈B(i),a〉P2(x+ 〈y, a〉). (2)

Here, B(i) is the d dimensional binary representation of i ∈ [n] in Eq. (2).

If f preserves low rank, then for each x ∈ X and for each y ∈ Y , there exists an i such that the RHS
of Eq. (2) identically zero. Since X × Y is an open set in Rd+1, there exists i such that the roots of
the RHS of Eq. 2 has non-zero measure. Since this RHS is a multivariate polynomial in x and yk for
1 ≤ k ≤ d, and since the only multivariate polynomial with non-zero measure is 0 everywhere, then
λfi (xJ + M(y)) must be 0 for all x ∈ Rd and y ∈ Rd for our chosen value of i, and thus for this
value of i, λfi (M(a)) = 0 for all a.

We conjecture that Lemma C.5 is true for all n, not just powers of 2. However, that is not necessary
for our other results.

The proof above holds assuming Lemma C.8. We now build up a series of Lemmas leading up to that
point. First, we need a technical lemma.
Lemma C.6 (Locally Zero Eigenvalue Implies Vanishing dth Derivative). Let n be a power of 2 and
d = dlog ne+ 1. If there exists i ∈ [n] such that, for fixed a ∈ Rd, we have

λfi (a+ h) = 0

for all h ∈ Rd with ‖h‖∞ < Ha for some Ha > 0, then ∆d
h[f](〈a, 1〉) = 0 for all ‖h‖∞ < Ha and

thus f (d)(〈a, 1〉) exists and is equal to 0.

Proof. For fixed a, d, and i, we know by Eq. (1) and Lemma C.10 that ∆d
h[f](a) can be written as a

linear combination of
∑
k∈K ckλi(a+ hk) for some c ∈ R|K| and hk < Ha for all k. Lemma C.6

follows.

Lemma C.7. Let T1, . . . Tk ⊂ Rd be closed sets such that

∪i∈[k]Ti = Rd.

Let Ri be the interior of Ti. Then when taking the union of the projections of Ri onto the line
c · 1d ∈ Rd for c ∈ R, the result is the entire line except for a set Q of points, where Q intersected
with any finite interval contains only finitely many points.

Proof. First, we prove that this holds when d = 1 and Ti are the closure of open sets. We will reduce
the general case to the case in the previous sentence.

31

One-dimensional case If Ti is the closure of open sets in one dimension, then it is the union of
disjoint closed sets where each finite interval on the real line contains only finitely many closed sets
contained in Ti. We can assume without loss of generality that the interiors of Ti are disjoint. In this
case, the set Ti \ Ri is the union (over all i) of endpoints of closed intervals in Ti. It follows that
Ti \Ri is a set Q of points such that every finite interval on the real line contains only finitely many
elements of Q, as desired.

Reduction to one-dimensional case. We will reduce to the case where each Ti is the closure of its
interior. Once we have this, we can project Ti and Ri onto the line ` = c · 1d, c ∈ R) and thus reduce
to the one dimensional case.

First, we show that all points q of the form (c, c, . . . c) ∈ Rd that are not in the union of Ri, must be
on the boundary of some Ri. This will prove that we do not lose any generality by considering the
case when Ti is the closure of its interior Ri.

If not, then there is some open set S containing q that avoids all Ri, so now S is covered by one of
the Ui := Ti \ Ri. The Ui are all closed and have empty interior, so their complements Vi are all
open and dense since the Ui cover S.

Since the Ui cover S, the intersection of the Vi must be empty. However this contradicts the Baire
Category theorem (Theorem A.11), which states that the intersection of a family of open and dense
sets is also open and dense (and in particular nonempty). This means that q must be on the boundary
of some Ri, and thus we have proven that we can reduce to the case when Ti is the closure of its
interior Ri.

Reduction to the one dimensional case. Since we only need to concern with the case where Ti is
the closure of its interior Ri, this means each point in Ti \Ri is the limit of a sequence of points in
Ri for each i. Therefore, the projection of each point in Ti \Ri is the limit of a sequence of points in
the projection of Ri, and thus the projection of Ti onto the line (c, c, . . . c) ∈ Rd is contained in the
closure of the projection of Ri. This reduces the problem to the one dimensional case where each Ti
is the closure of its interior.

Lemma C.8 (Piecewise Polynomial). If f preserves low rank for all n× n matrices where n is any
power of 2, and has no essential discontinuities of the first type, then f must be piecewise polynomial.

Since f preserves low rank, we know that for any a, there exists an i ∈ [n] such that λfi (M(a)) = 0.
By Lemma C.13, we know that f must be continuous. Therefore, the Ti of a where λfi (M(a)) = 0
must satisfy

∪i∈[n]Si = Rd.

Because f is continuous, λfi is continuous for all i, and so each Ti is closed. Let Ri be the interior
of each Ti. We know by Lemma C.6 that for each point a′ in Ri, we know that f (d)(〈a, 1〉) = 0.
By Lemma C.7, this implies f (d)(x) = 0 for all x ∈ R \Q, where Q ⊂ R has the property that its
intersection with any finite interval is finite. This implies that f is a piecewise polynomial.

C.4 Bridging Eigenvalues and Finite Differences

The goal of this section is to prove Lemma C.9, a key lemma which is used to relate eigenvalues and
finite differences.
Lemma C.9 (Rewriting the sum).

∑
b1∈{0,1}d

(−1)‖b1‖1

 ∑
b2∈{0,1}d

(−1)〈B(i),b2〉f(〈b2, a+ εb1〉)


= (−1)〈B(i),1〉

∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ εb,1〉)

where a and b are d-dimensional vectors.

32

Proof. First, we can show: If b2 is a d dimensional vector with any 0s in its vector notation, we know∑
b1∈{0,1}d

(−1)‖b1‖1f(〈b2, a+ εb1〉) = 0 (3)

for any ε, and any constant d dimensional vector a. The reason is if b2 has any 0’s in its vector
notation, then flipping the corresponding bit in b1 causes (−1)‖b1‖1 to change sign, while leaving
〈b2, a+ εb1〉 unchanged.

Now, we know that:

∑
b1∈{0,1}d

(−1)‖b1‖1

 ∑
b2∈{0,1}d

(−1)〈B(i),b2〉f(〈b2, a+ εb1〉)


=

∑
b2∈{0,1}d

(−1)〈B(i),b2〉

 ∑
b1∈{0,1}d

(−1)‖b1‖1f(〈b2, a+ εb1〉)


= (−1)〈B(i),1〉

 ∑
b1∈{0,1}d

(−1)‖b1‖1f(〈1, a+ εb1〉)

 .

where the first equality follows by rearranging sums, and the second equality follows from Eq. (3).
This completes the proof.

C.5 Function Sums and Finite Differences

The goal of this section is to prove Lemma C.10.

Lemma C.10 (Function Sums and Finite Differences). Part 1. Suppose the dth derivative of f ,
denoted as f (d), is continuous. Then, we have

lim
ε→0

ε−d
∑

b∈{0,1}d
(−1)‖b‖1 · f(〈a+ εb,1〉) = f (d)(〈a,1〉).

Part 2. Suppose ∆d
ε [f](z) is the d-th finite difference of function f , then we have∑

b∈{0,1}d
(−1)‖b‖1 · f(〈a+ εb,1〉) = ∆d

ε [f](〈a,1〉).

Proof. We have:

∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ εb,1〉) =

d∑
s=0

(−1)s
(
d

s

)
· f(〈a+ εb,1〉)

=

d∑
s=0

(−1)s
(
d

s

)
· f(〈a,1〉+ sε)

=

∫
[0,ε]d

f (d)(〈a+ x,1〉)dx (4)

= ∆d
ε [f](〈a,1〉)

where the first and second equality follow from grouping b by the number of ones it has, which we
denote as s, the third step follows from the fundamental theorem of calculus, and the last step follows
from definition of finite difference.

In addition, we note that the above calculation is independent of i.

33

Thus:

lim
ε→0

ε−d
∑

b∈{0,1}d
(−1)‖b‖1 · f(〈a+ εb,1〉)

= lim
ε→0

ε−d
∫ ε

0

∫ ε

0

. . .

∫ ε

0

f (d)(〈a+ x,1〉)dx1 . . . dxd

= f (d)(〈a,1〉)

where the first equality follows from Eq. (4) and the last equality follows from the continuity of f (d).
This completes the proof of Lemma C.10.

C.6 No Functions Other Than Polynomials Preserve Low Rank

In this section, we prove main result Theorem C.11 using Lemma C.4 and Lemma C.5.

Theorem C.11 (Formal statement of Theorem 2.5). Suppose the function f : R→ R does not have
any essential discontinuities of the first kind. For any positive integer n ≥ 2, the function f preserves
low rank matrices if and only if f is a polynomial of degree less than dlog2(n)e.

Proof. First, we prove it for n as powers of 2, and then we generalize to all n.

For now, suppose n is a power of 2. Suppose f is a function without essential discontinuities of the
first type. By Lemma C.4, we can find M : Rd → Rn×n and λfi : Rlogn+1 → R such that the image
of M has rank ≤ log n+ 1, and {λfi (a)}i∈[n] is the full set of eigenvalues of M(a). Further, if there
exists i ∈ [n] with function λfi (a) = 0 for all a, then f is a degree d ≤ log n+ 1 polynomial.

Now, suppose that f is a function that transforms all rank log n+ 1 matrices to rank < n matrices.
Then it must transform all matrices M(a) to rank < n matrices. By Lemma C.5, it must follow that
λfi = 0 for some i. However, we just established via Lemma C.4 that if λfi = 0, then f is a degree
d ≤ log n+ 1 polynomial. This completes the proof of Theorem C.11 if n is a power of 2.

The statement for all n follows directly from the statement for n a power of 2. This is because of
the fact from linear algebra that if an N × N matrix M has full rank, then for any fixed n ≤ N ,
there exists an n × n minor of M with full rank. (This follows, for instance, from expansion by
minors.) Suppose n is not a power of 2, and let 2d be the smallest power of 2 bigger than n. If f is
not a low-degree polynomial, our work as-stated proves that there exists a low rank 2d × 2d matrix
M where Mf is full rank. By the previous, there exists an n× n minor Mn of M (with low rank,
since its rank is less than that of M) where Mf

n is full rank. Therefore, f cannot preserve low rank
matrices of dimension n× n, if f is not a low degree polynomial.

C.7 Proof of Continuity

The goal of this section is to prove the following lemma, which shows that a large class of functions
f : R→ R do not preserve low-rank matrices.

Lemma C.12. Suppose f : R → R has any point c ∈ R such that limx→c+ f(x) exists and
f(c) 6= limx→c+ f(x). Then, f does not preserve low-rank matrices. The same is true with ‘c+’
replaced by ‘c−’.

Lemma C.12 will follow from Lemma C.15, which we now build up to and prove.

Lemma C.13. Suppose that f : R → R satisfies: limx→0 f(x) 6= f(0). Then, for any positive
integer n, there is a rank-2 matrix M ∈ Rn×n such that Mf has full rank.

Proof. Let a = f(0) and b = limx→0 f(x). By assumption, a 6= b. We define the n× n matrix A as
follows

Ai,j =

{
a if i = j;

b otherwise.

34

The definition of b means that, for all ε > 0, there is a δ > 0 such that if x ∈ R satisfies 0 < |x| < δ,
then |f(x)− b| < ε. Let us pick ε > 0 to be sufficiently small so that

0 < ε ≤ 0.1

n · n! ·max{|a|, |b|, |b+ ε|, |b− ε|}n−1
· det(A),

and let δ > 0 be the corresponding value.

Let Mi,j = δ
n · (i− j). We can see that rank(M) = 2.

From assumption, we have

Mf
i,j =

{
a if i = j;

∈ [b− ε, b+ ε] otherwise.

We can upper bound

|det(Mf)− det(A)| =
∣∣∣ ∑
σ∈Sn

sgn(σ)

n∏
i=1

Mf
i,σi
−
∑
σ∈Sn

sgn(σ)

n∏
i=1

Ai,σi

∣∣∣
≤
∑
σ∈Sn

∣∣∣ n∏
i=1

Mf
i,σi
−

n∏
i=1

Ai,σi

∣∣∣
≤
∑
σ∈Sn

ε · n · (max{|a|, |b|, |b− ε|, |b+ ε|})n−1

≤ n! · ε · n · (max{|a|, |b|, |b− ε|, |b+ ε|})n−1

where the first step follows from definition of matrix determinant.

Then we can bound

det(Mf) = det(A) + det(Mf)− det(A)

≥ det(A)− | det(Mf)− det(A)|
≥ det(A)− 0.1 det(A)

= 0.9 det(A)

> 0.

By picking a matrix M whose entries are all nonnegative, we can extend the same idea to functions f
where only one side of limx→0 f(x) must exist:
Lemma C.14. Suppose that f : R → R satisfies: limx→0+ f(x) 6= f(0). Then, for any positive
integer n, there is a rank-4 matrix M ∈ Rn×n such that Mf has full rank.

Proof. The matrix we use is Mi,j = δ
n · (i− j)

2, which has rank(M) = 4. We then proceed exactly
as in Lemma C.13.

Lemma C.15. Suppose that f : R → R and c ∈ R satisfy: limx→c+ f(x) 6= f(c). Then, for any
positive integer n, there is a matrix M ∈ Rn×n of rank at most 5 such that Mf has full rank.

Proof. The matrix we use is Mi,j = δ
n · (i− j)

2 + c, which has rank(M) ≤ 5. Again, proceed as in
Lemma C.13.

C.8 Comparison with Prior Work

The work of [GKR17] classifies what functions transform low rank matrices into low rank matrices.
They show:
Theorem C.16 (Theorem B in [GKR17]). For integers n ≥ 2, 1 ≤ k < n − 1, and 2 ≤ l ≤ n,
suppose f has k derivatives. Then the following are equivalent:

35

1. f transforms rank l PSD n by n matrices into matrices whose rank is upper bounded by k.

2. f is a polynomial
∑r
t=1 atx

it for some at ∈ R and some it ∈ N such that
r∑
t=1

(
it + l − 1

l − 1

)
≤ k

Moreover, if k ≤ n− 3, we don’t need the assumption that f has k derivatives.

This is a near-full classification of functions that transform low rank matrices into low rank matrices,
with a few holes: first, the primary piece of the theorem requires k-fold differentiability of f ,
something that doesn’t hold true for commonly used functions such as the ReLU function. The
part of the theorem which doesn’t require k-fold differentiability forces k ≤ n − 3. As discussed
in [GKR17], these existing techniques are fundamentally incapable of extending to the settings when
to k = n− 2, n− 1.

In contrast to Theorem C.16, our Theorem C.11 uses very different techniques, and addresses the case
where k = n− 1 when f is not required to be differentiable, which is not covered by Theorem C.16.
The consequence of extending to k = n− 1 is that we have less control over l; our results primarily
hold for l = lg n+ 1 whereas Theorem C.16 applies for more general l. Additionally, our result is
not exact: we show that if f preserves low rank, then f must be a polynomial, but we only bound the
degree of this polynomial up to a factor of 2, whereas theorem C.16 has tighter control over what
kind of polynomial f is. Thus, Theorem C.16 is tighter, but their methods are fundamentally unable
to handle the case when k = n− 2 or k = n− 1 without assuming k-fold differentiability. Our result
is able to handle the k = n− 1 case, at the expense of tight bounds on the polynomial degree of f
and at the expense of requiring that l > lg n+ 1.

D Approximate Polynomial Method Converse

In this section, we generalize the proof in Section C from exact to approximate here.

In Section C, we claim that if a function, when applied termwise, transforms a low rank matrix
to a low rank matrix, then it must be a low degree polynomial. We will define a function that
approximately preserves low rank, and then prove that if a function approximately preserves low
rank, then its dth order finite differences must be bounded in two settings: when f is analytic, and
when f is Lipschitz.
Definition D.1. Let f : R→ R and δ > 0. We say f δ-approximately preserves low rank matrices if,
for every matrix M ∈ Rn×n with rank(M) < log n, the matrix f(M) has at least one eigenvalue in
[−δ/n, δ/n].

It is not hard to show the following fact,
Fact D.2. For a fixed vector a ∈ Rd, let matrix M(a) ∈ Rn×n be defined as Definition C.1. Let
f : R→ R+, then we have

max
i∈[d]
|λi(M(a))| =

∑
b∈{0,1}d

f(〈a, b〉)

Proof. By definition of eigenvalue of matrix M(a), we have

max
i∈[d]
|λi(M(a))| ≤

∑
b∈{0,1}d

|f(〈a, b〉)| =
∑

b∈{0,1}d
f(〈a, b〉)

where the second step follows from f is a positive function.

On the other hand, we also know there is an eigenvalue is equal to
∑
b∈{0,1}d f(〈a, b〉). Thus,

max
i∈[d]
|λi(M(a))| ≥

∑
b∈{0,1}d

f(〈a, b〉).

36

D.1 Main Approximate Result

Let d ∈ Z+, a ∈ Rd, ha ∈ R, n = 2d.

Theorem D.3. Let d = log n. Let δ ∈ (0, 1) denote some sufficiently small parameter. Let function
f satisfy:

mini∈[n] |λfi (M)|
maxi∈[n] |λfi (M)|

≤ δ/n (5)

for all rank d+ 1 matrices M . Let Ka =
∑
b∈{0,1}d f(〈a, b〉).

Part 1. If f is real analytic, there exists an Ha > 0 such that for all h < Ha, we have

∆d
h[f](〈a,1〉) ≤ δKa

Part 2. If f is an L-Lipschitz function, then for all h ≥ 0, we have

∆d
h[f](〈a,1〉) ≤ δKa + hLdn.

Proof. We will consider two regimes separately:

• Not assuming f is Lipschitz (Lemma D.4).

• Assuming f is (Lipschitz D.5).

D.2 Real Analytic Functions

Lemma D.4 (real analytic functions with no Lipschitz assumption, part 1 of Theorem D.3). We have

lim
h→0

∆d
h[f](〈a, 1〉) ≤ δKa.

Proof. Let h = ε. By Lemma C.10∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ εb,1〉) = ∆d
ε [f](〈a,1〉).

By proof of Lemma C.4, we have∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ ε,1〉) = (−1)〈B(i),1〉
∑

b∈{0,1}d
(−1)‖b‖1 · λfi (a+ εb)

Let us pick i∗ ∈ [d] to be the index that λfi∗(a) is the smallest eigenvalue for matrix M(a). Choose
Ha to be such that λfi∗(M(a+ ε′b)) ≤ δn for all ε′ < Ha.

Thus, we have

∆d
ε [f](〈a,1〉) = (−1)〈B(i∗),1〉

∑
b∈{0,1}d

(−1)‖b‖1 · λfi∗(a+ εb)

≤ 2d · |λfi∗(a)|
≤ 2dKaδ/n

= δKa

. where the second step follows from the fact that Ha is chosen so that λfi∗(a + εb) ≤ δ/n for all
ε < Ha. This is doable for all real analytic functions f .

37

D.3 Lipschitz Functions

The goal of this section is to prove the following lemma,

Lemma D.5 (f is L-Lipschitz, part 2 of Theorem D.3). Suppose f is L-Lipschitz, we can show

∆d
h[f](〈a,1〉) ≤ δKa + hLdn (6)

Proof. In the proof, we let h = ε. By Lemma C.10, we have∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ εb,1〉) = ∆d
ε [f](〈a,1〉).

By proof of Lemma C.4, we have∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ ε,1〉) = (−1)〈B(i),1〉
∑

b∈{0,1}d
(−1)‖b‖1 · λfi (a+ εb)

Let us pick i∗ ∈ [d] to be the index that λfi∗(a) is the smallest eigenvalue for matrix M(a).

Thus, we have

∆d
ε [f](〈a,1〉) = (−1)〈B(i∗),1〉

∑
b∈{0,1}d

(−1)‖b‖1 · λfi∗(a+ εb)

= (−1)〈B(i∗),1〉
∑

b∈{0,1}d
(−1)‖b‖1λi∗(a)

+ (−1)〈B(i∗),1〉
∑

b∈{0,1}d
(−1)‖b‖1 · (λfi∗(a+ εb)− λfi∗(a))

≤ 2d|λi∗(a)|+
∑

b∈{0,1}d
|λfi∗(a+ εb)− λfi∗(a)|

For the first term in the above equation, we can show

2d|λi∗(a)| ≤ 2d ·max
i∈[d]
|λi(a)|δ/n = 2d ·Kaδ/n = δ ·Ka

where the first step follows from Assumption, and the second step follows from Fact D.2 and definition
of Ka, and the last step follows from n = 2d.

For the second term in the above equation, we can show∑
b∈{0,1}d

|λfi∗(a+ εb)− λfi∗(a)| ≤
∑

b∈{0,1}d

∑
c∈{0,1}d

|f(〈a+ εb, c〉)− f(〈a, c〉)|

≤
∑

b∈{0,1}d

∑
c∈{0,1}d

L · 〈εb, c〉

= L · ε · 〈
∑

b∈{0,1}d
b,

∑
c∈{0,1}d

c〉

= L · ε · d · 2d

= L · ε · d · n

where the second step follows from function f is L-Lipschitz.

Thus, we complete the proof.

E Transforming Manhattan to Euclidean

In this section, we prove Theorem E.2, which states that functions f that transform Manhattan
distances to squared Euclidean distances are Bernstein. This section is organized as follows

38

• In Section E.1, we show that any function f : R≥0 → R≥0 transforming Manhattan to
squared Euclidean is increasing. This serves as a warm-up for our main theorem.

• In Section E.2, we prove the main result of this section, Theorem E.2. We do this by
showing that there is a sequence of d-dimensional hyperrectangles such that the kernel
matrix associated with them has an eigenvalue which converges to the dth order finite
difference of f .

• In Section E.3, Lemma E.3 shows f must be bounded and continuous. This lemma is used
in the proof of our main result.

E.1 Manhattan to Euclidean Transforms are Increasing

Lemma E.1. If f transforms Manhattan to squared Euclidean, then f is increasing on R+.

Proof. We fix c > 0 and show f ′(c) ≥ 0. Consider χ : [d] → {0, 1} which transforms 1 to 1 and
everything else to 0. Let a1 = ε and a2, . . . ad = 2c

d . Here, ε is a constant which we will adjust later.

The eigenvalue corresponding to χ (by Lemma I.2) is, by straightforward calculation:

d−1∑
s=0

(
d− 1

s

)(
f

(
2cs

d

)
− f

(
2cs

d
+ ε

))
(7)

If we divide by 2d−1 and take d to to infinity, the quantity in Eq. (7) becomes
f(c)− f(c+ ε)

for continuous functions f . Indeed, nearly all of the probability mass in the binomial coefficients
concentrates around s = d/2 by the law of large numbers and the limit follows from continuity of f
and the boundedness of f on bounded sets established below in Lemma E.3.

Applying Lemma A.8, we see that if f transforms Manhattan to squared Euclidean distances, then
f(c)− f(c+ ε) ≤ 0 for any ε > 0. This implies the desired result.

E.2 Manhattan to Euclidean Transforms are Bernstein

The goal of this section is to prove Theorem E.2.
Theorem E.2 (Manhattan to squared Euclidean, formal version of part (1)⇔ part (3) of Theorem 4.4).
If f transforms Manhattan distances to squared Euclidean distances, it must be Bernstein.

Proof. Fix a k-tuple ε = (ε1, . . . , εk) of positive real numbers and define

∆k
ε (f, t) := f(t)−

∑
i1∈[k]

f(t+ εi1) +
∑

i1<i2∈[k]

f(t+ εi1 + εi+2) + . . .+ (−1)kf

(
t+

k∑
i=1

εi

)
.

Consider χ that transforms 1, 2, . . . k to 1 and everything else to 0. Let ai = εi for i ∈ [k] and
ak+1 . . . ad = 2c

d where c, k and ε are fixed.

The eigenvalue corresponding to χ is, by direct calculation using Lemma I.2:

λχ =

d−k∑
s=0

(
d− k
s

)
∆k
ε (f, 2sc/d). (8)

Eq. (8) is the d-dimensional analog of Eq. (7), and this eigenvalue must satisfy λχ ≤ 0 by Lemma A.8.
Dividing by 2d−k and taking d to infinity, we obtain:

∆k
ε (f, c) ≤ 0.

This is because again the probability mass in the binomial coefficients in Eq. (8) concentrates
around the s = d/2 coefficient, where we use continuity and boundedness of f for any compact set
(guaranteed by Lemma E.3). By Proposition A.2 this implies f is Bernstein (Definition 4.3) since
k, c were arbitrary. This completes the proof.

39

E.3 Manhattan to Euclidean Transforms are Bounded

The goal of this section is to prove Lemma E.3.
Lemma E.3. Any function f : R≥0 → R≥0 that transforms Manhattan to squared Euclidean is
bounded on bounded sets and continuous on (0,∞).

Proof. By the triangle inequality, f(x) ≤ f(1/2) + f(1/2) for all 0 ≤ x ≤ 1, so f is bounded on
[0, 1]. By scaling, from now on we assume f is bounded by 1 on [0, 1].

Now, we show f is continuous on (0, 1). Suppose there is a discontinuity at some point 0 < p < 1.
This means that there exists some ε such that for all δ > 0, there are a, b ∈ [p− δ, p+ δ] such that
f(a) − f(b) ≥ ε. Since f(x) ≤ 1 for all x ∈ [0, 1], this means that for all δ < min{p, 1 − p}, we
have that f(a)f(b) > 1 + ε.

Now, fix some ε satisfying the above, and some n = 2k. Consider points x1, . . . , xn partitioned
into sets A = x1, . . . , xk and B = xk+1, . . . , xn. For some small δ that we will choose later, pick
a, b ∈ [p− δ, p+ δ] such that f(a)f(b) > 1 + ε, and define the metric

d(xi, xj) :=


0 i = j

a i, j ∈ A, i 6= j

b i or j is in B, i 6= j

Now apply f : this gives us some metric d′(xi, xj) such that

d′(xi, xj) :=


0 i = j

f(a) i, j ∈ A, i 6= j

f(b) i or j is in B, i 6= j

We show that matrix D′i,j := d′(xi, xj) is not negative type if n is sufficiently large (as a function of
ε). Consider the vector

v = (1, 1, . . . 1,−1,−1, . . .− 1)

with the first k coordinates are ones and the last k coordinates are negative ones. This is orthogonal
to the all ones vector, but

v>D′v = k(k − 1)f(a)− 2k2f(b) + k(k − 1)f(b)

= k(k − 1)f(a)− k(k + 1)f(b).

Since f(a)
f(b) > 1 + ε, if we choose n > 100/ε, we will have that

k(k − 1) · f(a)− k(k + 1) · f(b) > 0.

Therefore, by Lemma A.7, d′ does not embed into `22, Squared Euclidean space.

However, we show that if δ is sufficiently small (in terms of n, p), then d(xi, xj) is embeddable
into `1. First note that the metric d1(i, j) which equals 0 if i = j and c for some constant c > 0 is
embeddable into `1, by transforming i to xi = c

2 · ei for all i, where ei is the ith unit vector. Likewise,
the metric dk,`(i, j) which equals 0 if i = j or if i = k, j = ` or i = `, j = k and c otherwise is also
embeddable into `1, by transforming i to xi = c

2 · ei, except ` which is sent to x` = xk = c
2 · ek.

Now, it is trivial to see that by adding a finite number of these metrics, we still get a metric that is
embeddable into `1.

But, if a
b ∈

[
1− 1

10n2 , 1 + 1
10n2

]
, then any metric such that d(i, j) ∈ {a, b} for all a, b can be

written as some positive finite combination of d1 and dk,` over all 1 ≤ k < ` ≤ n.

Therefore, if f is discontinuous at p, we can set n = 100
ε , δ = min(p,1−p)

100n2 , and the metric on
x1, . . . , xn as defined previously. We will have that

a

b
∈
[
1− 1

10n2
, 1 +

1

10n2

]

40

whereas f(a)
f(b) > 1 + ε, which means that while d is embeddable into `1, d′ = f(d) is not embeddable

into `22. Thus, if f is discontinuous at p, we have that f cannot transform Manhattan Distances to
Squared Euclidean distances.

By scaling the x-axis, we have that f is bounded on any interval [0, a] and that f is continuous at all
x > 0.

F Transforming Manhattan to Manhattan

This section is organized as follows:

• Section F.1 shows how to compute an explicit Euclidean embedding for the distances
obtained after applying a Manhattan-to-Euclidean transform to a set of Manhattan distances.

• In Section F.2, we prove Theorem F.3, which states that Manhattan to Manhattan transforms
are equivalent to Manhattan to Squared Euclidean transforms. This may be surprising since
Squared Euclidean distances are much more general than Manhattan distances.

• Section F.3 gives a discussion for how to generalize our result if the initial metric space
was any metric with a vertex-transitive symmetry group, instead of Manhattan distance. We
emphasize the importance of vertex transitivity of the symmetry group, and explain why
that feature is important for our techniques to apply.

F.1 Explicit Embeddings for Manhattan to Euclidean Transforms

Suppose f transforms Manhattan distance to squared Euclidean distance. By definition, f satisfies
the following: for any n and any x1, . . . xn ∈ (RN, `1), there exist p1, . . . pn ∈ (RN, `2) such that
f(‖xi − xj‖1) = ‖pi − pj‖22. We can assume without loss of generality that points x1, x2, . . . xn are
distinct corners of a d dimensional hyperrectangle (Definition C.3), and n = 2d. This is because any
point set in `1 can be embedded isometrically into `1 on corners of a hyperrectangle (Lemma A.3).

Lemma F.1. Let D be the matrix where Di,j = f(‖xi − xj‖1), and let M := − 1
2ΠDΠ. Then M

has eigenvectors Hd.

Proof. This follows from Lemma B.1 and the definition of M . It is critically important that the
columns of Hd are orthogonal to the all ones vector (with the exception of the all ones column in
Hd).

Lemma F.2. LetM = HdΣHd be an eigendecomposition ofM , whereM is defined as in Lemma F.1.
If f transforms `1 to `22, then Σ has entirely non-negative entries.

For each i, we use pi to denote the i-th column of P =
√

ΣHd, we have 〈pi, pj〉 = Mi,j and
f(‖xi − xj‖1) = ‖pi − pj‖22.

Proof. This follows from Lemma A.9 and Lemma F.1.

F.2 Manhattan to Manhattan Transforms are Equivalent to Manhattan to
Squared-Euclidean Transforms

The goal of this section is to prove Theorem F.3.

Theorem F.3 (Manhattan to squared Euclidean, formal version of part (2)⇔ part (3) of Theorem 4.4).
Any function that transforms Manhattan distances to squared Euclidean distances must transform
Manhattan distances to Manhattan distances, and vice versa.

Proof. Let pi be defined as in Lemma F.2. By construction, the vectors pi are a subset of the
corners of a 2d-dimensional hyperrectangle, with side lengths

√
Σi,i. Thus, the pairwise squared

Euclidean distances between pi are isometrically embeddable into `1 by Lemma A.4. In other words,
f(‖xi − xj‖1) = ‖pi − pj‖22 = ‖qi − qj‖1 for some qi ∈ `1 for all i, j. This shows that any f that
transforms `1 to `22 transforms `1 to `1 as desired.

41

Note that for any xi, the vectors qi are finite dimensional and can be explicitly written down in closed
form.

F.3 Metric Transforms for Distances with Group Symmetries

In our proof of Theorem F.3, we exploited that our points x1, . . . xn are points in a hyperrectangle,
which has a vertex transitive group symmetry. Similar theories can be generated when the point set
lives on any object with a vertex-transitive group symmetry, and the distance measure between points
is some function of the Euclidean distance. Such objects include higher dimensional platonic solids,
spheres, equilateral triangular prisms, and more.

We remark that the group symmetry must be vertex-transitive to ensure the matrix D in Lemma B.1
has an eigenvector equal to the all ones vector. If this were not the case, Lemma F.1 would no longer
hold.

G Positive Definite Manhattan Kernels

The goal of this section is to prove Theorem G.2, a formal restatement of Theorem 3.4.

The section is organized as follows:

• In Section G.1, we show that positive definite Manhattan kernels map positive numbers to
positive numbers. This will be used in our proof of Theorem G.2.

• In Section G.2, we present and prove Theorem G.2. This result classifies all positive definite
Manhattan kernels (Definition 3.1), and proves that positive definite Manhattan kernels are
equivalent to completely monotone functions.

G.1 Positive Definite Manhattan Kernels map Positive Reals to Positive Reals

First, we prove the following lemma.
Lemma G.1. If f is a positive definite Manhattan kernel (Definition 3.1), then f(t) ≥ 0 for all
t ≥ 0.

Proof. Let X denote metric space (RN , `1). For any N ≥ 0 we consider the points xi = t
2ei ∈ X

for i ∈ [N] where ei = (0, . . . , 0, 1, 0, . . . , 0) is a standard basis vector, so that ‖xi − xj‖1 = t for
any i 6= j. Since the matrix of values (f(‖xi − xj‖1)i,j∈[N] must be positive semidefinite, the sum
of all its entries must be positive, hence:

N(f(0) + (N − 1)f(t)) ≥ 0.

The above equation implies the following:

f(0)

N − 1
+ f(t) ≥ 0

for all integer N ≥ 0 and real t ≥ 0.

Since N can be arbitrarily large, therefore we conclude f(t) ≥ 0 as claimed.

G.2 Positive Definite Manhattan Kernels are Completely Monotone

The goal of this section is to prove Theorem G.2.
Theorem G.2 (Formal statement of Theorem 3.4). f : R≥0 → R is a positive definite Manhattan
kernel (Definition 3.1) if and only if f(x) is completely monotone (Definition 3.2).

Proof. First, we prove that if f is a positive definite Manhattan kernel, then f must be completely
monotone. The converse direction is previously known, and is a consequence of Lemma A.5 and
Theorem 3 of [SOW01]11.

11Theorem 3 of [SOW01] is a modern restatement of Schoenberg’s work in [Sch42].

42

Suppose that f is a positive definite Manhattan kernel (Definition 3.1). Cauchy-Schwarz easily
implies that f(t) ≤ f(0) for all t, so f is bounded.. Now, if x1, . . . , xn correspond to y1, . . . , yn
then

f(‖xi − xj‖1) = 〈yi, yj〉

= f(0)− 1

2
‖yi − yj‖22.

Therefore 2(f(0)−f(t)) (equivalently, f(0)−f(t)) sends Manhattan distances to squared Euclidean
distances. Therefore f(0) − f(t) is Bernstein (Definition 4.3), by Theorem 4.4. Combining with
Lemma G.1 we conclude that f must be completely monotone (Definition 3.2).

H Positive Definite Euclidean Kernels

The goal of this section is to prove the foundational classification of positive definite Euclidean
kernels [Smo96, SOW01, Sch42]. We focus on proving the ‘hard’ direction, that a function f
is a positive definite Euclidean kernel only if f(

√
x) is completely monotone. Such a proof is

straightforward from Theorem G.2, as seen below. For the other simpler direction, see the simple
proof in Proposition 11 of [SSB+97].
Theorem H.1. [Sch42] f : R≥0 → R is a positive definite Euclidean kernel (Definition 3.1) only if
f(
√
x)) is a completely monotone function (Definition 3.2).

Proof. Theorem G.2 combined with the fact that Manhattan distances isometrically embed into
squared Euclidean distances (see [DL09]) prove that f(

√
x) must be completely monotone if it is a

positive definite Euclidean kernel.

I Eigenvalue of Kernels from the Hyperrectangle

In this section, we prove Lemma I.2, a variation of Lemma B.1. This lemma uses representation
theoretic ideas to compute the eigenvalues of matrices arising from the real hyperrectangle. We use
this modified formulation in our proofs of Theorems 4.4 and 3.4. We introduce Lemma I.3, which
expresses these same eigenvalues in terms of integrals, a lemma of independent interest.

I.1 Matrices with Reflectional Symmetries have Hadamard Eigenvectors

Lemma I.1. Let g : (Rd × Rd)→ R such that g(x, y) is invariant under axis reflection. Consider
a d-dimensional hyperrectangle with corners x1, . . . x2d . Let D be a 2d by 2d matrix such that
Dij = g(xi, xj). Then there is an eigendecomposition of D into HdΣHd where Σ is a diagonal
matrix.

Proof. This lemma can be proven directly via computation. However, it is more instructive to view
this through the representation theoretic lens. We note thatD has the property that for any permutation
matrix σ corresponding to a reflection about one of the hyperrectangle’s axes, we have σD = Dσ.
Schur’s lemma from representation theory (see Lemma A.10) states thatD and all σ in the reflectional
symmetry group of the hyperrectangle have a common set of eigenvectors. It is straightforward to
verify that the only common set of eigenvectors for all σ is the columns of the Hadamard matrix, and
thus D must have the columns of Hd as its eigenvectors.

We note that variants of this lemma are used to prove Delsarte’s linear programming bound in error
correcting codes [Del73, O’D14].

I.2 Eigenvalues of Kernels from the Hyperrectangle, Restated

Lemma I.2 (Eigenvalue of Manhantan Kernels, formal version of Lemma B.1). Consider a d-
dimensional hyperrectangle (Definition C.3) parameterized by a1, . . . ad > 0. Enumerate the vertices
in lexicographical ordering as p1, . . . p2d .

43

For any f : R→ R, let D be the 2d by 2d matrix given by Di,j = f(‖pi − pj‖1). Then:

1. Σ := HdDHd is a diagonal matrix whose entries are the eigenvalues of D multiplied by 2d,
and D = 4−d ·HdΣHd.

2. Let χ : [d]→ {0, 1}. Let k equal the integer corresponding to transforming χ (written as
a d dimensional binary vector) into an integer via binary conversion. For each χ, there is
an eigenvector of D equal to the k-th column of Hadamard matrix Hd, and its associated
eigenvalue is:

∑
T⊆[d]

(−1)
∑

t∈T χ(t)f

(∑
t∈T

at

)
. (9)

The second part of this theorem on its surface differs from that in Lemma B.1, but the statements are
in fact identical via straightforward computation.

Proof. By Lemma I.1, we know that the Hadamard matrix columns are eigenvectors of the matrix D.
The result follows by direct computation.

We now give an alternate formulation of the eigenvalues in Lemma I.2. This lemma is of independent
interest.

Lemma I.3. Given a box with side lengths a1, . . . ad, each eigenvalue corresponds to a function
χ : [d]→ {0, 1}. Let Q = {q1, . . . qk} be the full set of values on which χ is 1. Then the Eigenvalues
in Eq. (9) equal:∑

T⊆[d]\Q

∫ aq1+
∑

t∈T at∑
t∈T at

. . .

∫ aqk+
∑

t∈T ak∑
t∈T at

(−1)k
dkf

dxk

(∑
q∈Q

sq

)
ds1 . . . dsk.

Proof. The proof follows directly from Lemma I.2 combined with the fundamental theorem of
calculus.

J Converse to Stable Rank

Recall Definition 2.7, for a matrix A, we use srank(A) to denote the stable rank of A. For a matrix
A, we use ‖A‖F to denote its Frobenius norm. We use ‖A‖ to denote its spectral norm.

J.1 Lipschitz functions preserve stable rank

Definition J.1. We say function f is (L, `)-Lipshitz on on entries of matrix A, if for any x ≥ 0 in
entries of A such that

1√
`
x ≤ f(x) ≤

√
Lx

Theorem J.2. We define B ∈ Rn×n≥0 as follows Bi,j = f(Ai,j) for all i ∈ [n] and for all j ∈ [n].

If function f is (L, `)-Lipschitz on A ∈ Rn×n≥0 , then we have the following

• Part 1. 1/
√
l · ‖A‖F ≤ ‖B‖F ≤

√
L · ‖A‖F .

• Part 2. 1/
√
l · ‖A‖ ≤ ‖B‖ ≤

√
L · ‖A‖.

• Part 3. L−1 · `−1 · srank(A) ≤ srank(B) ≤ L · ` · srank(A).

Proof. Proof of Part 1.

44

We can upper bound ‖B‖2F as follows

‖B‖2F =

n∑
i=1

n∑
j=1

f(Ai,j)
2

≤ L ·
n∑
i=1

n∑
j=1

A2
i,j

= L · ‖A‖2F (10)

where the first step follows from definition of ‖·‖F , the second step follows from f(Ai,j)
2 ≤ L ·A2

i,j ,
and the last step follows from definition of ‖ · ‖F norm.

We can lower bound ‖B‖2F as follows

‖B‖2F =

n∑
i=1

n∑
j=1

f(Ai,j)
2

≥ l−1 ·
n∑
i=1

n∑
j=1

A2
i,j

= l−1 · ‖A‖2F (11)

where first step follows from definition of ‖ · ‖F norm, the second step follows from f(Ai,j)
2 ≥

l−1 ·A2
i,j , and the last step follows from definition of ‖ · ‖F norm.

Proof of Part 2.

We can upper bound on ‖B‖ = σ(B) as follows

σ(B)2 = max
‖v‖2=1

(v>Bv)2

= max
‖v‖2=1

(

n∑
i=1

n∑
j=1

vivjf(Ai,j))
2

≤ max
‖v‖2=1

(

n∑
i=1

n∑
j=1

vivjAi,j)
2 · L

= σ(A)2 · L (12)

where the first step follows definition of spectral norm, the third step follows from f(Ai,j)
2 ≤ A2

i,j ·L.

We can lower bound on ‖B‖ = σ(B) as follows

σ(B)2 = max
‖v‖2=1

(v>Bv)2

= max
‖v‖2=1

(
∑
i,j

vivjf(Ai,j))
2

≥ max
‖v‖2=1

(
∑
i,j

vivjAi,j)
2/`

= σ(A)2/` (13)

where the third step follows from f(Ai,j)
2 ≥ A2

i,j/`.

Proof of Part 3.

45

We can upper bound srank(B) as follows

srank(B) =
‖B‖2F
σ(B)2

≤ L · ‖A‖2F
σ(B)2

≤ L · ‖A‖2F
σ(A)2/`

= L · ` · srank(A)

where the first step follows from definition of stable rank, the second step follows from Eq. (10), the
third step follows from Eq. (13), and the last step follows from stable rank.

We can lower bound srank(B) as follows

srank(B) =
‖B‖2F
σ(B)2

≥ ‖A‖
2
F /`

σ(B)2

≥ ‖A‖
2
F /`

σ(A)2L

= L−1 · `−1 · srank(A)

where the first step follows from definition of stable rank, the second step follows from Eq. (11), the
third step follows from Eq. (12), and the last step follows from definition of stable rank.

J.2 Fast-Growing functions do not preserve stable rank

We start with presenting a tool for symmetric matrix.
Lemma J.3. Consider a symmetric matrix M with non-negative entries, with the all ones vector as
an eigenvector. The eigenvalue of this vector is the largest eigenvalue of M

Proof. This follows from the Perron Froebenius formula [Per07, Fro12] on non-negative matrices.

For a matrix M , we use Mi,j to denote the entry at i-th row and j-th column in the matrix.
Lemma J.4. Let M be a n by n matrix with non-negative entries, with an eigenvector that is the
alll ones vector. Suppose that there exists permutation σ : [n]→ [n] such that Mi,σ(i) is the unique
largest element in row i for all i ∈ [n]. Suppose that k := Mi,σ(i) which is independent of i, and all
other entries are less than s where s < k.

Then, we have

srank(M) ≥ nk2

(k + ns)2

Proof. By Lemma J.3, the eigenvalue of M corresponding to the all ones vector, is the largest
eigenvalue of M . Recall that the stable rank of M is defined as the Froebenius norm squared, divided
by the spectral norm squared.

The largest eigenvalue of M is
∑
iMi1 which is bounded above by k + sn. Meanwhile, the squared

Froebenius norm of M is bounded above by nk2, which is the sum of squares of the diagonal
elements. This completes the proof. Dividing our two bounds gives our lemma.

Now, consider the distance matrix M arising from f applied entry-wise to the matrix arising from the
hypercube with side lengths β (this is the hyperrectangle where all side lengths are the same). We

46

note that the hypercube matrix has rank log n+ 1, and thus its stable rank is also bounded by this
quantity.

In this case, we note that M has non-negative entries, has the all ones vector as an eigenvector, and
has the property that there exists a permutation σ such that Mi,σ(i) is β log n. Meanwhile, all the
other entries are less than β log n− β.

We note that if k/s > n0.5, then the stable rank of M is Ω(n).

The rest of the proof is devoted to understanding when k/s > n0.5.

This is equivalent to:

f(β log n)

f(β log n− β)
≥ n0.5 (14)

Since β can be set to anything, we define γ := β log n, and thus Eq. (14) is equivalent to

f(γ(1 +
1

log n
)) ≥ n0.5f(γ). (15)

Theorem J.5 (Superpolynomials don’t preserve stable rank). f(x) = xlog
c x + o(xlog

c x) does not
preserve stable rank for any c > 0.

Proof. It is sufficient to show that

f(γ(1 + ε))

f(γ)
(16)

is unbounded for fixed ε and variable γ > 0.

Substituting f(x) = xlog
c x, we get

γlog
c(γ+γε)

γlog
c γ

= 2(log γ)·(log
c(γ+γε)−logc(γ)) (17)

Next, we need to show that

lim
γ→∞

Eq. (17) =∞.

We define function

F (x) = logc(x).

and compute

F ′(x) = c · 1

x
logc−1(x),

F ′′(x) = c · (c− 1)
1

x2
logc−2(x)− c 1

x2
logc−1(x)

= c
1

x2
((c− 1) logc−2(x)− logc−1(x))

Using mean-value forms of Taylor’s theorem,

F (y) = F (x) + F ′(x) · (y − x) +
1

2
F ′′(z) · (y − x)2

where z ∈ [x, y].

We can compute

F ′(x) · (y − x) = c
1

γ
logc−1(γ)(εγ)

= εc logc−1(γ)

47

We can compute

1

2
F ′′(z) · (y − x)2 =

1

z2
((c− 1) logc−2(z)− logc−1(z)) · (εγ)2

=
ε2

(1 + α)2
((c− 1) logc−2(z)− logc−1(z))

where choosing z = αγ (where α ∈ [1, (1 + ε)]).

Then it is obvious to see that | 12F
′′(z) · (y − x)2| ≤ 1

10F
′(x) · (y − x).

Finally, we can lower bound

F (γ(1 + ε))− F (γ) ≥ F ′(γ) · ελ− 1

2
|F ′′(z)| · (εγ)2

≥ 1

2
F ′(γ) · ελ

=
1

2
εc logc−1(γ)

where z ∈ [γ, (1 + ε)γ]

Thus, we have

lim
γ→∞

Eq. (17) = lim
γ→∞

2(log γ)·(log
c(γ+γε)−logc(γ))

= lim
γ→∞

2(log γ)·
1
2 εc log

c−1(γ)

=∞.

Thus, we complete the proof.

48

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In our research, we establish that low-degree polynomials are the exclusive
functions that consistently yield a low-rank matrix when applied entry-wise to another low-
rank matrix, comprehensively categorize functions that transform Manhattan distances into
either Manhattan or squared Euclidean distances, and classify all positive definite kernels
using Manhattan distance as input. The abstract and introduction accurately reflect our main
results, introduce some background, and emphasise the importance of our work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

49

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All our main results in the paper have formal versions and verified formal
proofs.

• For Theorem 2.5, see Theorem C.11 for formal statement and Section C for formal
proofs.

• For Theorem 2.6, see Theorem D.3 for formal statement and Section D for formal
proofs.

• For Theorem 2.8, see Theorem J.2 for formal statement and Section J for formal proofs.
• For Theorem 4.4, see Theorem E.2 and F.3 for formal statement and Section E and F

for formal proofs.
• For Theorem 3.4, see Theorem G.2 for formal statement and Section G for formal

proofs.
• The proofs of all other theoretical results are below the statements.

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This is a theoretical paper and does not conduct any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

50

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This is a theoretical paper and does not conduct any experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This is a theoretical paper and does not conduct any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

51

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [NA]

Justification: This is a theoretical paper and does not conduct any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This is a theoretical paper and does not conduct any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our paper
complies with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

52

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts are discussed in Section 8.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theoretical paper and does not conduct any experiments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This is a theoretical paper and does not conduct any experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.

53

• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This is a theoretical paper and does not conduct any experiments.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This is a theoretical paper and does not conduct any experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This is a theoretical paper and does not conduct any experiments.

54

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

55

	Introduction
	Fast Attention and the Polynomial Method
	Converse for the Polynomial Method
	Weaker Polynomial Methods

	Kernel Methods
	Metric Transforms
	Core Tool: Representation Theory of the Real Hyperrectangle
	Conclusion
	Limitations
	Societal Impacts
	Acknowledgments
	Preliminaries
	Notations
	Definitions
	Alternate Classifications of Completely Monotone and Bernstein Functions
	Metric Hierarchies
	Negative Type Metrics and Euclidean Embeddability
	Schur's Lemma for Abelian Groups
	Baire Category Theorem
	Applications of Polynomial Methods

	Technique Overview
	Starting Point: Eigenvalues of the Kernel Matrix of a Hyperrectangle
	Polynomial Method Converse
	Exact Low Rank
	Approximate Low Rank

	Metric Transforms
	Kernel Methods

	Polynomial Method Converse
	Preliminaries
	Functions with Algebraically Zero Eigenvalues
	Eigenvalues of Low Rank Preserving Functions
	Bridging Eigenvalues and Finite Differences
	Function Sums and Finite Differences
	No Functions Other Than Polynomials Preserve Low Rank
	Proof of Continuity
	Comparison with Prior Work

	Approximate Polynomial Method Converse
	Main Approximate Result
	Real Analytic Functions
	Lipschitz Functions

	Transforming Manhattan to Euclidean
	Manhattan to Euclidean Transforms are Increasing
	Manhattan to Euclidean Transforms are Bernstein
	Manhattan to Euclidean Transforms are Bounded

	Transforming Manhattan to Manhattan
	Explicit Embeddings for Manhattan to Euclidean Transforms
	Manhattan to Manhattan Transforms are Equivalent to Manhattan to Squared-Euclidean Transforms
	Metric Transforms for Distances with Group Symmetries

	Positive Definite Manhattan Kernels
	Positive Definite Manhattan Kernels map Positive Reals to Positive Reals
	Positive Definite Manhattan Kernels are Completely Monotone

	Positive Definite Euclidean Kernels
	Eigenvalue of Kernels from the Hyperrectangle
	Matrices with Reflectional Symmetries have Hadamard Eigenvectors
	Eigenvalues of Kernels from the Hyperrectangle, Restated

	Converse to Stable Rank
	Lipschitz functions preserve stable rank
	Fast-Growing functions do not preserve stable rank

