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ABSTRACT

Optimising probabilistic models is a well-studied field in statistics. However, its
connection with the training of generative models remains largely under-explored.
In this paper, we show that the evolution of time-varying generative models can be
projected onto an exponential family manifold, naturally creating a link between
the parameters of a generative model and those of a probabilistic model. We then
train the generative model by moving its projection on the manifold according to
the natural gradient descent scheme. This approach also allows us to approximate
the natural gradient of the KL divergence efficiently without relying on MCMC
for intractable models. Furthermore, we propose particle versions of the algo-
rithm, which feature closed-form update rules for any parametric model within
the exponential family. Through toy and real-world experiments, we validate the
effectiveness of the proposed algorithms. The code of the proposed method could
be found at https://github.com/anewgithubname/iNGD.

1 INTRODUCTION

Modern generative models (Goodfellow et al., 2014; Ho et al., 2020; Song et al., 2021b) have be-
come indispensable tools in modern machine learning, achieving remarkable success in applications
(Rombach et al., 2022; Gu et al., 2022; Li et al., 2019a; Tan et al., 2024). These generative models
are neural networks transforming a latent variable to a higher dimensional sample. They overcome
classic restrictions imposed on probability density models, such as positivity, normalization, and
encoding of conditional independence via factorization; thus, they can be designed freely to capture
complex, intricate patterns from the high-dimensional data.

Albeit these models produce highly realistic outputs, they can be hard to train. The model training
requires massive data and maintains a tricky balance between “generators” and “discriminators”
(Goodfellow et al., 2014; Arjovsky et al., 2017; Wang et al., 2023) or building effective “bridges”
between the reference and target dataset (Ho et al., 2020; Song et al., 2021a;b; Lipman et al., 2023;
Liu et al., 2023; Ou et al., 2025), which are quite undesirable in the context of specific domain
applications when these techniques cannot be applied.

Parametric probabilistic models, particularly those in the exponential family (Casella & Berger,
2024; Wainwright et al., 2008), play a central role in modern day’s statistical inference, and have
well-established theoretical framework and training algorithms. These models, characterised by
their sufficient statistics and natural parameters, define a probability distributions manifold. The
geometric structure of which inspired efficient optimisation methods such as natural gradient de-
scent (NGD) Amari (1998), ensuring stable and efficient parameter estimation (Amari & Nagaoka,
2000). However, while exponential family models are versatile in theory, their use may be limited in
practice: the hand-crafted sufficient statistic may fail to capture complex relationships in data; more
flexible sufficient statistics (such as neural nets) result in intractable likelihoods (see Section 2.2).
Thus, parameter estimation that requires a likelihood, such as NGD, cannot be easily applied to fit
the model.
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We aim to unlock the power of modern generative models through the principled training of proba-
bilistic models.

Our work is inspired by two distinct research directions developed in recent years: time-varying
generative models (Ho et al., 2020; Song et al., 2021b; Liu et al., 2023; Lipman et al., 2023) and
Time Score Matching (TSM) (Choi et al., 2022). Time-varying generative models generate samples
progressively, evolving them over time until they match the target distribution. Meanwhile, TSM
learns the instantaneous change of a time-varying distribution from data. Recent work demonstrates
that TSM can “project” temporal variations in a dataset onto the parameter space of exponential
family distributions (Williams et al., 2025).

Figure 1: Technical notions illustrated.
Matching the projected generative model
change δ(w) to the natural gradient descent
meaning reducing the length of the red dot-
ted line. Symbols are defined in Section 3.

The core idea of this paper is to evolve a generative
model such that its projected trajectory on an expo-
nential family manifold aligns with the trajectory in-
duced by NGD.

This way, we get the expressiveness of a mod-
ern generative model, and the training efficiency of
NGD. The exponential family model acts as a guid-
ing framework for the generative model throughout
the training process.

An illustration of this idea could be seen in Fig. 1.
We align the projected changes of the generative
model with the NGD update on a parameter mani-
fold (shrinking the length of the dotted line in Fig. 1).
First, we apply TSM to project the temporal evolu-
tion of the generative model onto the manifold. Sec-
ond, we match this projected evolution to the NGD
update by updating the parameters of the generative
model. Then generating samples from the updated
generator. This process repeats until convergence.

Although this technique applies to all time-varying
generative models, in this paper, we focus on drift-based generative models, where samples are
iteratively perturbed by vector-valued functions. Specifically, we develop two NGD-guided drift-
based generative models: kernel NGD and neural tangent kernel NGD, both of which admit closed-
form expressions for sample updates.

2 BACKGROUNDS

In recent years, it has been recognized that there are many similarities between sampling and opti-
mization (Wibisono, 2018; Chewi, 2024; Cheng et al., 2018; He et al., 2025). Encouraged by these
results, we ask: Given a time-varying generative model gt, where t is time, can we move its output
distribution qgt toward an optimal distribution q∗ using NGD? In contemporary machine learning
literature, generative models are often referred to as implicit models and generative distribution
qgt normally don’t have a parametric density1, thus optimization designed for parametric densities
cannot be directly applied.

In this paper, we propose an alternative: rather than directly optimizing qgt , we move its projection
on a chosen manifold of exponential family distributions toward optimality. We select this exponen-
tial family to be sufficiently expressive, aiming to approximate the full range of distributions that the
generative model can produce.

Before stating our ideas, we first formally introduce the time-varying exponential family, NGD,
and Time Score Matching (TSM), which are essential for understanding the proposed algorithm. A
summary of notation used in this paper can be found in Appendix A.1

1Some generative models, such as normalizing flows (Rezende & Mohamed, 2015), neural ODEs (Chen
et al., 2018), and probability flow models (Song et al., 2021b), do admit explicit parametric forms. However, in
this paper, we consider a more general class of generative models.
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2.1 EXPONENTIAL FAMILY DISTRIBUTION

Definition 2.1. (See, e.g., Section 3.4, Casella & Berger (2024)) A distribution belongs to the
exponential family with sufficient statistic T if and only if its density q can be expressed as:

q(x;θ) = exp
(
⟨θ, T (x)⟩ −A(θ)

)
,

where θ is the natural parameter, and A(θ) is the log-normalisation function, defined as:

A(θ) = log

∫
exp

(
⟨θ, T (x)⟩

)
dx.

This family includes many known distributions, such as Gaussian, Gamma and Exponential distri-
butions.
Definition 2.2. The parameter manifold of exponential family distributions with a chosen sufficient
statistic T is defined as:

M(T ) =

{
θ ∈ Rd

∣∣∣∣ q(x;θ) > 0,

∫
q(x;θ) dx = 1

}
,

where q(x;θ) depends on T as in Definition 2.1.

More details on the time-varying exponential family can be found in Appendix A.2.

2.2 NATURAL GRADIENT DESCENT AND NATURAL GRADIENT FLOW

Definition 2.3. The natural gradient of a loss function L(θ) is the gradient of the loss function
scaled by the inverse Fisher information matrix F .

∇NL(θ) := F−1∇L(θ).
Assuming θ ∈ M(T ), F = Eqθ

[
−∇2

θ log q(x;θ)
]
= Covqθ [T (x)], describing the curvature of

M(T ) at the neighbourhood of θ (See Section 2.2 in (Amari & Nagaoka, 2000)).
The continuous-time limit of NGD, known as Natural Gradient Flow, describes a time-varying dis-
tribution qθt

, whose parameters trace a trajectory onM(T ) following the steepest descent direction
to minimize L. More discussions can be found in Appendix A.3.

2.3 TIME-VARYING GENERATIVE MODEL

In recent years, there has been a growing trend of designing generative models as functions of time,
in contrast to the classic generative models where the sample generating mechanism is independent
of time. For example, the diffusion generative model (Song et al., 2021b) can be interpreted as the
solution to a Stochastic Differential Equation at time t, with initial samples drawn from a reference
distribution. Similarly, the rectified flow generative model (Liu et al., 2023) can be viewed as the
solution to an Ordinary Differential Equation at time t.
Definition 2.4. A generative model is a data-generating mechanism defined as X = g(Z;w),
where Z is a random variable sampled from a latent distribution pZ , and X is the output of the
deterministic function g applied to Z. The parameters w ∈ W parametrise the generative model g.
A time-varying generative model is a generative model with time dependency, defined as Xt =
g(Z, t;w), where the function g explicitly depends on time t.

2.4 TIME SCORE MATCHING

Now we introduce how to measure the change of distributions over time using samples.
Definition 2.5. Time score is the time derivative of the log density of a time-varying distribution.
Given a time-varying distribution qt, its time score is st := ∂t(log qt).
Given a parametric time score model v(x; t) and a time-varying sample Xt ∼ qt, the time
score can be learned by the Time Score Matching (TSM) which minimizes the objective:∫
t
E
[
λ(t)

∥∥st(Xt)− v
(
Xt; t

)∥∥2] dt, where λ(t) is a weighting function.

The time score plays an important role in the density ratio estimation as log(qt1/qt0) =
∫ t1
t0
stdt.

Choi et al. leverages this fact and estimates the time score at intermediate distributions and aggre-
gates them to obtain the overall ratio. Moreover, Williams et al. (2025) shows that for the special
case where qt(x) ∈M(T ), TSM can directly learn the time differential natural parameter ∂tθ(t).
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3 PROPOSED ALGORITHM: EVOLUTION PROJECTION

Now, we combine the concepts introduced in the earlier sections and propose a novel generative
training method.

Suppose we only have access to a target distribution p through samples Y ∼ p and a latent variable
Z. Our goal is to find a time-varying generative model gt that progressively approximates the target

distribution as t→∞. Informally speaking, we seek a model such that Y
d
≈ g∞(Z).

Note that we do not want to train a generative model using GANs or diffusion models, as these
models require a large number of samples and are hard to train. Instead, given a loss function
L(p, qθt) that measures the difference between p and a time-varying probabilistic model qθt , we
aim to guide the training of the generative model by minimizing the loss L over time.

The key idea of this paper is to align the evolution of the generative model with ∇NL(θ) on the
manifold M(T ). Consequently, minimizing the loss for qθ drives the generative model toward
matching p.

In the section below, we establish a direct correspondence between the instantaneous change in the
generative model and the parametric update onM(T ).

3.1 PROJECTING THE CHANGE

Denote the sample of a time-varying generative model gt as Xt ∼ qgt . We can measure the instan-
taneous change of the generative model via the its time score st := ∂t(log qgt).

At a fixed time t0, we can “project” the time score st onto the manifold M(T ) by minimiz-
ing the squared difference between st and the time score of an exponential family distribution,
∂t(log qθt

), qθt
∈M(T ),

∫
λt0(t)E

[
(st(Xt)− ∂t(log qθt)(Xt))

2
]
dt,

=

∫
λt0(t)E

[
(st(Xt)− ⟨∂tθ(t), T (Xt)− E[T (X ′

t)]⟩)
2
]
dt, (1)

where λt0 = exp(−(t − t0)
2/σ2) and X ′

t is an independent copy of Xt. σ is a hyperparameter
fixed in advance. The second line is due to Eq. (10). The integration is over the entire real number
domain.

Introducing a linear-in-time model θ(t; δ) = tδ, the above objective becomes

J(δ) :=

∫
λt0(t)E

[
(st(Xt)− ⟨δ, T (Xt)− E[T (X ′

t)]⟩)
2
]
dt, (2)

which now depends on the parameter δ. One can view (2) as a local regression at the fixed time
point t0: λ is a time smoothing kernel, Eq. (2) finds the best score model that approximates the
time-varying function st(x) at time t0.

The minimizer to the above objective is a vector in Rd, the tangent vector that best describes the
instantaneous change in the generative model. Now, we provide a closed form expression of such
tangent vector.
Theorem 3.1. Let δt0 := argmin J(δ). Then δt0 is unique if the Fisher information matrix Ft =
Cov[T (Xt)] is invertible and has a closed form expression

δt0 = −
(∫

λt0(t)Cov[T (Xt)]dt

)−1 ∫
∂tλt0(t)E [T (Xt)] dt.

The proof can be found in Appendix B. Notice that Xt is generated through g(Z, t;w), we can
express δt0 as a function of w using the reparameterization trick.

δt0(w) = −C−1

∫
∂tλt0(t)E [T (g(Z, t;w))] dt, C =

∫
λt0(t)Cov[T (g(Z, t;w))]dt. (3)
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Algorithm 1 Generative Model Training Guided by Natural Gradient Descent

Require: Target samples Y ∼ p, latent samples Z ∼ pZ , step size ϵ, number of iterations n
1: t[0]← 0, initialize w.
2: for i← 1 to n do
3: Sample Xt[i] ← g(Z, t[i];w)

4: Approximate∇NL(θt[i]) with Xt[i] and Y using Monte Carlo.
5: Approximate δ(w) with Xt[i] using Monte Carlo.
6: w ← argmin

w
∥∇NL(θt[i])− δ(w)∥2

7: t[i+ 1]← t[i] + ϵ
8: end for
9: Return: Samples from g(Z, t[n];w)

This expression allows E[·] and Cov[·] to be approximated using samples of Z. The projection
process could be seen from Figure 1 where the downward dotted arrow represents the projection by
TSM.

Remarks: Different time scores can be mapped to the same δt0 , especially when the sufficient
statistic T is restrictive However, if T is chosen such that the exponential family is expressive
enough, we expect to avoid such information collapse. The rigorous proof of this claim is left
as a future work.

The hyperparameter σ in Eq. (1) will introduce additional biases to the estimation, similar to how a
non-zero bandwidth in local regression introduces biases to the estimate. In experiments, we observe
that reasonable σ choices (e.g., 0.1) work well. Moreover, in Section 4, we show how to obtain an
unbiased estimator for a special type of time-varying generative models.

3.2 MATCHING TO NGD

We can see the projection δt0(w) creates a connection between the evolution of a generative model
and those of a probabilistic model. The key idea of this paper is to align the evolution of the gener-
ative model with that of the probabilistic model. In particular, we match δt0(w) to the NGD update
using the following objective

wt0 = argmin
w∈W

∥F−1
t0 ∇θL(θt0)− δt0(w)∥2. (4)

In words, we find the generative model parameter w that results in the projected update δt0(w)
closest to the natural gradient update of the loss function.

In the previous section, we have seen that δt0(w) can be approximated using samples Z. Assume
that at the starting point, the generator g(Z, 0;w0) produces an output distribution q0 on the man-
ifold, and its movement is precisely tracked by the trajectory of its projection, we can expect that
the samples generated from g(Z, t;wt) will be close to the samples generated from qθt . Thus, we
approximate F−1

t0 ∇θ using samples from g(Z, t;wt).

After solving Eq. (4), instead of taking an actual natural gradient step, we directly sample from
g(Z, t0 + ϵ;wt0) using a small ϵ > 0. Since we have already aligned the projected change of our
time-varying generator with the natural gradient step, we can expect that the samples generated from
g(Z, t0 + ϵ;wt0) will be close to the samples generated from q(x;θt0 − ϵ∇NL) by actually taking
a natural gradient step with step size ϵ. We summarize the entire algorithm in Algorithm 1 and name
it implicit NGD (iNGD). A visualization of iNGD is also provided in Appendix E.

4 SPECIAL CASE: DRIFT MODEL

One popular class of generative models is the drift-based generative model. This model iteratively
perturbs samples using a vector-valued function until convergence.
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Algorithm 2 RKHS/Neural Tangent Kernel Implicit Natural Gradient Descent

Require: Target samples Y ∼ p, initial particles X0 ∼ q0, step size ϵ, number of iterations n
1: t[0]← 0
2: for i← 1 to n do
3: Approximate h with Y and Xt[i] using (7) or (9).
4: t[i+ 1] = t[i] + ϵ
5: Xt[i+1] = Xt[i] + ϵh(Xt[i])
6: end for
7: Return: Xt[n] ∼ qt[n]

.

Definition 4.1. At a fixed time t0, suppose we have samples Xt0 , a drift generative model generates
samples at a new time point t via the following scheme:

g(Xt0 , t;w) = Xt0 + (t− t0)h(Xt0 ;w).

This model could be seen as a local linear model and the amount of update h(Xt0 ;w) depends
linearly on t − t0. The input of the model is a sample at the time point t0. To generate samples,
we need to draw a batch of samples from an initial distribution q0 and then successively apply the
drift generative model until convergence. An Euler solver of a flow-based generative model is an
example of a drift generative model, in which case, t − t0 is the step size of the Euler solver. We
can prove that when using a model introduced in Definition 4.1, Eq. (3) has a limiting solution as
σ → 0, which eliminates the bias caused by the time-smoothing kernel λ.
Theorem 4.2. The projection of the time score st of a drift generative model onto the manifold
M(T ) has a closed form expression at the limit of σ → 0, i.e.,

lim
σ→0

δt0(w) = Cov[T (Xt0)]
−1E [∇T (Xt0)h(Xt0 ;w)] = F−1

t0 E [∇T (Xt0)h(Xt0 ;w)] .

The proof can be found in Appendix C. Using this limiting solution, the objective of Eq. (4) can be
rewritten as:

wt0 = argmin
w∈W

∥∇L(θt0)− E
[
∇⊤T (Xt0)h(Xt0 ;w)

]
∥2F−1

t0

. (5)

In our experiments, this objective function is more stable and computationally efficient than (4),
since it does not require back-propagating through a matrix inversion.

4.1 KERNEL NGD

Now let us consider an example of the drift model where the drift function h is defined as the
gradient of a Reproducing Kernel Hilbert Space (RKHS) function.
Example 1 (RKHS Drift Model). A kernel drift function is defined as

h(x;w) := ⟨w,∇xk(·,x)⟩H, w ∈ H,
whereH is an RKHS with a kernel function k.

To align this generative model with the NGD, we introduce a regularized version of Eq. (5)

wt0 = argmin
w∈H

∥∇L(θt0)− E[∇T (Xt0)hw(Xt0)]∥2F−1
t0

+ λ∥w∥2H. (6)

Theorem 4.3. The optimal drift function that minimizes Eq. (6) can be found as

hwt0
(x) = E [∇T (Xt0)∇∇k(Xt0 ,x)]

⊤
Γ−1∇L(θt0) (7)

Γ = λFt0 + E
[
∇T (Xt0)∇∇k(Xt0 , X

′
t0)∇

⊤T (X ′
t0)

]
where X ′

t0 is an independent copy of Xt0 and ∇∇k(x,y) is the short hand for∇x∇yk(x,y).

The proof can be found in Appendix D. This result enables the direct calculation of particle updates
without fitting a generative model first. This inspires us to build a particle evolution strategy guided
by NGD: First, we sample X0 from an initial distribution q0, then we iteratively update each sample
Xt0 using the formula given by Theorem 4.3 until they converge. This algorithm is summarized in
Algorithm 2 and we name this algorithm Kernel implicit NGD (KiNG).
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4.2 NEURAL TANGENT KERNEL NGD

KiNG can be generalized to other types of kernels.

Example 2 (Neural Tangent Drift Model). Given a neural network ϕ : Rdim(x) → Rdim(x), a neural
tangent drift function is defined as

h(x) := ∇βϕ(x;β0)w,

where β0 are intial weights,∇βϕ(x;β0) is called a neural tangent.

Similar to Eq. (6), we can solve the following regularized objective to find the update of the particles

wt0 = argmin
w∈W

∥∇L(θt0)− E[∇T (Xt0)hw(Xt0)]∥2F−1
t0

+ λ∥w∥2. (8)

The optimal drift that minimizes Eq. (8) can be expressed using the neural tangent kernel (Jacot
et al., 2018):

hwt0
(x) = E [∇T (Xt0)KNTK(Xt0 ,x)]

⊤
Γ−1∇L(θt0) (9)

Γ := λFt0 + E
[
∇T (Xt0)KNTK(Xt0 , X

′
t0)∇

⊤T (X ′
t0)

]
,

where KNTK is the matrix-valued neural tangent kernel, defined as KNTK(x,y) :=
∇βϕ(x)∇⊤

βϕ(y). In this paper, we use empirical and a finite-width NTK for simplicity, but
NTKs that are infinitely wide can be efficiently computed using off-the-shelf package such as
neural-tangents (Novak et al., 2020) for a variety of neural network architectures. We name
this variant of KiNG as ntKiNG.

Remark: Eq. (9) requires computing a matrix-valued kernel, which may be computationally
demanding if the dimensionality of Xt0 is high. However, in experiments, we observe that the
formulation works well with a diagonalized scalar kernel, i.e.,

[K(Xt0 , X
′
t0)]l,m∈[1,dim(x)] :=

{
k(Xt0 , X

′
t0), l = m

0, l ̸= m,

where k is any scalar kernel function. As both KiNG and ntKiNG involve matrix inversion of Γ, the
computation complexity of Algorithm 2 is O(dim(T )3#particles2).

5 EXPERIMENTS

5.1 ILLUSTRATIVE EXAMPLES

In Fig. 2a, we plot the trajectories of KiNG with different one-dimensional initial and target distribu-
tions. We chooseM(T ) to be a Gaussian manifold, i.e., T (x) = [x, x2]⊤. Note that in the right plot,
the particles do not converge to the bi-modal target distribution, since the movements of our particles
are restricted by the Gaussian manifold, and in this case, the best approximation is a Gaussian with
a larger standard deviation. This example shows that the particles sticks to the Gaussian manifold
throughout the generative process. This phenomenon could be beneficial in some applications, if the
target is to find the best approximation within a given family.

This behaviour could be changed by replacing the Gaussian manifold with a more expressive man-
ifold. In the left plot of Fig. 2b, we run a similar experiments by letting T be the Radial Basis
Functions (RBFs) and we can see that indeed the particles bifurcate and converge to both modes.
The right plot of Fig. 2c shows the particle trajectory of a neural tangent KiNG with T as RBF basis.

5.2 COMPARISON WITH REVERSE KL WASSERSTEIN GRADIENT FLOW AND MMD FLOW

In this experiment, we compare KiNG, ntKiNG, with reverse KL Wasserstein Gradient Flow (WGF)
(Gao et al., 2019; Liu et al., 2024) and Maximum Mean Discrepancy (MMD) flow (Hagemann et al.,
2024) on small datasets with different dimensions. See Appendix F for more explanations.
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(a) Gaussian Manifold, KiNG (b) KiNG (c) ntKiNG

Figure 2: (a) The evolution of particles Xt under KiNG on the manifold of Gaussian distribu-
tions. Each red line is a trajectory of a particle in the space-time. The initial distribution q0
is plotted on the left as black dotted lines, while the target distribution p is plotted on the right
as blue dotted lines. (b, c) Particle trajectories when using more expressive manifold, i.e.,
T (x) := [k(x1, b1), k(x1, b2), · · · ]⊤, where k is a RBF basis function and bi are kernel basis ran-
domly chosen from samples of Xt0 . (b) KiNG, (c) ntKiNG.

Figure 3: MMD[Y,Xt] over iterations, the lower the better.
Left: 5 dimensions, Right: 20 dimensions. The error bar
indicates the standard error.

Since they all minimize different di-
vergences, we measure their perfor-
mance using MMD (Gretton et al.,
2012) between a fresh batch of tar-
get samples and Xt. Let p =
0.5N (−2, I) + 0.5N (2, I). We
draw 100 samples from p as Y , 100
samples from N (0, I) as X0, and
run Algorithm 2, WGF, MMD flow
to evolve particles Xt. We plot
MMD(Y,Xt) over iterations.

For all methods, we set the learning
rate to be 1, which is the largest learn-
ing rate without causing numerical
instability. It can be seen that when
dimension is small (5), all methods work relatively well and ntKiNG and KiNG can reduce MMD
faster, but when we increase the dimension to 20 the performance gap widens. However, ntKiNG
and KiNG still have a commanding lead.

5.3 GRAPHICAL MODEL RECOVERY USING INFORMATIVE SUFFICIENT STATISTICS

In this experiment, we demonstrate how an informative sufficient statistic could help acclerate the
training of the generative model using ntKiNG. Details can be found in Appendix G.

5.4 COVARIATE SHIFT BY DISTRIBUTION MATCHING

We further test our algorithm on the Office+Caltech dataset (Gong et al., 2012) which is an object
recognition dataset with photos collected from four different places: amazon, dslr, webcam,
caltech. The task is to train a source classifier using one of the places, and test it on samples
from another place. We test the performance of ntKiNG against two other particle-based transport
methods WGF and MMD flow by matching qt with pX . Further details can be found in Appendix H.

6 RELATED WORKS

We compare our proposal with some related works in Appendix J.

8



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

REFERENCES

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. American
Mathematical Soc., 2000.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the
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A PRELIMINARIES

A.1 NOTATIONS

Vectors (x) and matrices (X) are denoted in bold. Random variables (X) are non-bold, capital
letters. Euclidean norms are denoted as ∥ · ∥, and for elements in a Hilbert space, the Hilbert
norm is written as ∥ · ∥H. Expectations and covariances under q are denoted as Eq[·] and Covq[·],
respectively. ∇f(x) = [∂1f(x), ∂2f(x), · · · ]⊤. ∇f(x0) means the gradient of f evaluated at x0.
Suppose f : Rm → Rn,∇f(x) denotes the Jacobian of f and is a matrix of size n×m.

A.2 TIME-VARYING EXPONENTIAL FAMILY

Time-varying exponential family distributions refers to exponential family distributions whose
natural parameter is a continuous function of time, i.e., qθt = q(x;θ(t)). Moreover, the time
derivative of log qt is:

∂t log qθt
= ⟨∂tθ(t), T (x)⟩ − ∂tA(θ(t)).

Equivalently, this can be expressed as the inner product between the rate of change of the natural
parameter and the centered sufficient statistic (Proposition 3.1 in Williams et al. (2025)):

∂t log qθt
= ⟨∂tθ(t), T (x)− Eqθt

[T (x)]⟩. (10)
By definition, the time-varying process θ(t) is a curve onM(T ) and ∂tθ(t) is the tangent vector of
such curve.

A.2.1 INFINITE-DIMENSIONAL EXPONENTIAL FAMILY

One important class of exponential family is infinite dimensional exponential family.
Example 3. An infinite-dimensional exponential family is an exponential family with a sufficient
statistic T (x) := k(x, ·):

q(x; θ) = exp
(
⟨θ, k(x, ·)⟩ −A(θ)

)
,

where A(θ) :=
∫
exp

(
⟨θ, k(x, ·)⟩ −A(θ)

)
dx and θ is in an RKHSH with kernel k.

Given a dataset of n data points {xi}ni=1 ∼ qθ, the empirical natural gradient is defined as
Definition A.1.

NGD := argmax
f∈H

⟨f,∇L(θ)⟩H −
1

2
⟨f, Σ̂f⟩H − λ∥f∥2H, (11)

where Σ̂ is the empirical covariance operator defined as

Σ̂ :=
1

n

n∑
i=1

ϕ(xi)
⊤Hϕ(xi),

and H is a centering matrix and λ > 0.

Due to the Representer Theorem, we can see that the optimal solution takes the form NGD :=∑
i αiϕ(xi, ·).

Since our aim is to match the projection δ ∈ H to the natural gradient, we let δ =
∑n

i=1 αik(xi, ·).
The regularized objective of Eq. (2) takes the form

J(α) :=

∫
λt0(t)E

[
(st(Xt)− ⟨α,k(Xt)− E[k(X ′

t)]⟩)
2
]
dt+ λαKα (12)

where k(X) := [k(x1, X), k(x2, X), . . . ]. The limiting solution of Eq. (12) is

lim
σ→0

αt0(w) = (Cov[k(Xt0)] + λK)
−1 E

[
∇k(Xt0)h

⊤(Xt0 ;w)
]
.

Substituting the form of NGD and solving (11) for α, we get

α∗ = (Cov[k(Xt0) + λK])
−1

(Ep[k(x)]− Eq[k(x)]) .

Thus, the optimal drift parameter could be obtained via w∗ := argmin
w

∥α∗ − limσ→0 αt0(w)∥2,

which has a similar solution to Eq. (7) or Eq. (9) depending on which model is used for the drift.
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A.3 THE NATURAL GRADIENT OF KL DIVERGENCE

For easier conceptualization, we here provide a concrete example of NGD for KL divergence.
Example 4. Suppose L is a KL divergence from p to q.

L = KL[p, q] = Ep[log p(x)− log q(x)].

Suppose q is an exponential family distribution with sufficient statistic T . Then the natural gradient
of L is given by

NGDKL := −F−1Ep[∇θ log q]

= −Covqθ [T (x)]−1 {Ep[T (x)]− Eqθ [T (x)]} . (13)

Except for certain specific choices of T , NGDKL does not admit a closed-form solution, as neither
Eqθ [T (x)] nor Covqθ [T (x)] can be expressed in closed form for a general T . If we could sample
from qθ, these expectations and covariances could be approximated using Monte Carlo methods.
However, generating samples from a complex distribution qθ itself remains a challenging problem.

B PROOF OF THEOREM 3.1

Theorem B.1. (Theorem 4.1 in (Williams et al., 2025)) Eq. (2) can be rewritten as the following
form

L(δ) =
∫ 1

0

λt0(t)E
[
⟨δ, T (Xt)− E[T (X ′

t)]⟩2
]
dt+ 2

∫ 1

0

∂tλt0(t)E [⟨δ, T (Xt)⟩] dt+ const.

(14)

Let Bt = T (Xt)−E[T (X ′
t)]. Firstly, we find the derivative of the quadratic term. For each t, since

d
dδ

(
⟨δ,Bt⟩2

)
= 2 ⟨δ,Bt⟩Bt, it follows that

∂

∂δ

∫
t

λt0(t)E
[
⟨δ,Bt⟩2

]
dt = 2

∫
t

λt0(t)E
[
⟨δ,Bt⟩Bt

]
dt.

Since E[Bt] = 0, one has E
[
⟨δ,Bt⟩Bt

]
= Cov[Bt] δ = Cov[T (Xt)] δ.

Hence this part becomes

2

∫
t

λt0(t) Cov[T (Xt)] δ dt.

Derivative of the linear-in-δ term. The term
∫
t
2 ∂tλt0(t)E

[
⟨δ, T (Xt)⟩

]
dt is linear in δ. Its gradient

w.r.t. δ is simply

2

∫
t

∂tλt0(t)E[T (Xt)] dt.

Putting these together, the gradient of L(δ) is

∇δ L(δ) = 2

∫
t

λt0(t) Cov[T (Xt)] δ dt + 2

∫
t

∂tλt0(t)E[T (Xt)] dt.

To find the minimizer, set this gradient to zero:

0 = 2

∫
t

λt0(t) Cov[T (Xt)] δ dt + 2

∫
t

∂tλt0(t)E[T (Xt)] dt.

which can be rewritten as(∫
t

λt0(t) Cov[T (Xt)] dt
)
δ = −

∫
t

∂tλt0(t)E[T (Xt)] dt.

If the matrix
∫ 1

0
λt0(t) Cov[T (Xt)] dt is invertible—which is precisely the non-degeneracy (invert-

ibility) of the Fisher information—then we can solve uniquely for δ:

δt0 =
(∫

t

λt0(t) Cov[T (Xt)] dt
)−1(

−
∫
t

∂tλt0(t)E[T (Xt)] dt
)
.

We can conclude

δt0 =
(∫

t

λt0(t) Cov[T (Xt)] dt
)−1

∫
t

∂tλt0(t)E[T (Xt)] dt. (15)
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C PROOF OF THEOREM 4.2

Recall:

δt0(w) = C−1

∫ ∞

−∞
∂tλ(t, t0)E [T (g(Z, t;w))] dt, C =

∫ ∞

−∞
λ(t, t0)Cov[T (g(Z, t;w))]dt.

The first lemma states a few properties of the Gaussian kernel.
Lemma C.1.

∫∞
−∞ ∂tλ(t, t0)dt = 0.

∫∞
−∞(t− t0) ∂tλσ(t, t0) dt = −1.

Proof. The first result is due to the Fundamental Theorem of Calculus and the fact that λ(t, t0)→ 0
as |t| → ∞. Now, we prove the second statement. Since

λσ(t, t0) =
1√
2π σ2

exp
(
− (t− t0)2

2σ2

)
,

we have ∫ ∞

−∞
λσ(t, t0) dt = 1, and ∂tλσ(t, t0) = − (t− t0)

σ2
λσ(t, t0).

We then have with integration by parts∫ ∞

−∞
(t− t0) ∂tλσ(t, t0) dt = (t− t0)λσ(t, t0)

∣∣∣∞
−∞
−

∫ ∞

−∞
λσ(t, t0) dt = 0 − 1 = −1. (16)

the last equality is due to lim|t|→∞(t− t0)λσ(t, t0) = 0.

First, we inspect
∫∞
−∞ ∂tλ(t, t0)E

[
T
(
g(Z, t;w)

)]
dt. Using the Taylor expansion on

E
[
T
(
g(Z, t;w)

)]
at t0, we obtain

E
[
T
(
g(Z, t;w)

)]
= E

[
T
(
Xt0

)]
+ (t− t0)E

[
∇T

(
Xt0

)⊤
h
(
Xt0 ;w

)]
.

Note that we don’t have higher order terms as the drift model g(Z, t;w) is a linear function of t by
definition (see Definition 4.1).

Thus, due to Lemma C.1, we have∫ ∞

−∞
∂tλσ(t, t0)

[
E
(
T
(
Xt0

))
+ (t− t0)E

(
∇T

(
Xt0

)⊤
h
(
Xt0 ;w

))]
dt = −E

[
∇T

(
Xt0

)⊤
h
(
Xt0 ;w

)]
.

(17)

Now we shift our focus on

C =

∫ ∞

−∞
λσ(t, t0) Cov

[
T
(
g(Z, t;w)

)]
dt.

As σ → 0, λσ(t, t0) converges to δ(t− t0), so limσ→0

(∫
λ(t, t0)f(t)dt

)
= f(t0). Hence

lim
σ→0

C = lim
σ→0

∫ ∞

−∞
λσ(t, t0) Cov

[
T
(
g(Z, t;w)

)]
dt = Cov

[
T (Xt0)

]
. (18)

Finally, combining Eq. (17) and Eq. (18) we have the desired result.

D PROOF OF THEOREM 4.3

Proof. First, we introduce Welling’s Woodbury identity (Welling, 2019):

(P−1 +BTR−1B)−1BTR−1 = PBT (BPBT +R)−1.

Recall that we try to minimize Eq. (6)

∥∇L(θt0)− E[∇T (Xt0)∇hw(Xt0)]∥2F−1
t0

+ λ∥w∥2H. (19)
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Expanding the first square, up to a constant that does not depend on w, we obtain

E[∇T (xt0)hw(Xt0)]
⊤F−1

t0 E[∇T (xt0)hw(Xt0)]−2∇⊤L(θt0)F−1
t0 E[∇T (xt0)hw(Xt0)]+λ∥w∥2H.

(20)
By definition, hw(Xt0) = ⟨w,∇k(Xt0 , ·)⟩H, we obtain a quadratic form with respect to w,

⟨w,E[∇T (Xt0)∇k(Xt0 , ·)]⊤F−1
t0 E[∇T (Xt0)∇k(Xt0 , ·)]w⟩
− ⟨w, 2E[∇T (Xt0)∇k(Xt0 , ·)]⊤F−1

t0 ∇L(θt0)]⟩+ λ∥w∥2H, (21)

where we used a⊤BCd = (a⊤BCd)⊤ = (BCd)⊤a = d⊤(BC)⊤a = ⟨d,C⊤B⊤a⟩ and the fact
that the inverse of Fisher Information Matrix Ft0 is a symmetric matrix. Differentiating both sides
by w and setting the derivative to zero, we obtain the following optimality condition of the least
squares:

2E[∇T (Xt0)∇k(Xt0 , ·)]⊤F−1
t0 E[∇T (Xt0)∇k(Xt0 , ·)]w−

2E[∇T (Xt0)∇k(Xt0 , ·)]⊤F−1
t0 ∇L(θt0)] + 2λw = 0. (22)

Thus, the closed-form solution of the optimal solution w∗ isE[∇T (Xt0)∇k(Xt0 , ·)]⊤ F−1
t0︸︷︷︸

R−1

E[∇T (Xt0)∇k(Xt0 , ·)]︸ ︷︷ ︸
B

+ λI︸︷︷︸
P−1


−1

E[∇T (Xt0)∇k(Xt0 , ·)]⊤F−1
t0 ∇L(θt0).

(23)

Applying Woodbury’s identity, we get:

E[∇T (Xt0)∇k(Xt0 , ·)]⊤
(
λFt0 + E[∇T (Xt0)∇k(Xt0 , ·)]E[∇T (Xt0)∇k(Xt0 , ·)]⊤

)−1∇L(θt0).
(24)

Note that product

E[∇T (Xt0)∇k(Xt0 , ·)]E[∇T (Xt0)∇k(Xt0 , ·)]⊤ = E[∇T (Xt0)∇∇k(Xt0 , X
′
t0)∇

⊤T (X ′
t0)],

we obtain the desired result.

E VISUALIZATION OF INGD ON GAUSSIAN MANIFOLD

Figure 4: The evolution of parametric distributions under iNGD and classic NGD on the manifold of
Gaussian distributions, i.e.,M([x,x⊤x]), starting from N (0, I). Each ellipse represents the 95%
confidence interval of the parametric distribution at the current step. As t increases, the ellipse turns
from blue to red. Black dotted line marks the confidence interval the target distribution p. For iNGD,
the ellipses are approximated by fitting a Gaussian model to samples generated by g(Z, t;w).

In Fig. 4, we show an example of the iNGD and compare it with the actual NGD on a Gaussian
manifold T (x) = [x,xx⊤],x ∈ R2. In this example, the generative model is an MLP with one
hidden layer consisting of 67 neurons. We can see that the samples generated from iNGD accurately
retrace the steps of the classic NGD, ultimately producing a set of samples (red dots) that resemble
the target distribution (black dotted line).
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Figure 5: Sparsity pattern of Θ recovered by graphical lasso, using samples trained by ntKiNG with
different sufficient statistics and number of iterations (red boxes indicate missing edges, the less
boxes the better)

F REVERSE KL WASSERSTEIN GRADIENT FLOW AND MMD FLOW

The WGF dynamics that minimize KL[qt, p] move particles Xt using a simple velocity field:

dXt

dt
= ∇ (log p) (Xt)−∇ (log qt) (Xt),

where the gradient of log density could be easily estimated via kernel density estimation and the
MMD flow minimizes MMD[Y,Xt] using the following velocity field:

dXt

dt
= N∇

 1

N

n∑
i=1

∥Xt −X(i)
t ∥ −

1

M

M∑
j=1

∥Xt − Y (j)∥

 .

G GRAPHICAL MODEL RECOVERY WITH INFORMATIVE SUFFICIENT
STATISTICS

In this experiment, we showcase how much improvement we can get when using informative suffi-
cient statistics. Exponential family are commonly used to encode graphical models. For example,
a Gaussian graphical model is a Gaussian density p = N (0,Θ−1), where the sparsity pattern of Θ
encodes an undirected graph, describing the interactions of the random variables. One can imagine
that if the generated samples approximate p well, we should recover the correct graphical model
from these samples. In this experiment, we let p be a 30-dimensional Gaussian graphical model, and
draw 200 samples Y ∼ p, 200 samples X0 ∼ N (0, I), and move the X0 toward p using ntKiNG
algorithm. Finally we apply the graphical lasso (Friedman et al., 2007) to estimate graphical models
displayed in the left and middle plots of Fig. 5. Here T (x) := [RBF basis].

Since our methods use a probabilistic model to guide its training process, one may wonder if know-
ing the graphical model structure would improve the performance of the algorithm. To test this,
we design a new sufficient statistic T (x) := [RBF basis,∀(i, j) ∈ {(i, j)|Θi,j ̸= 0}, xixj ], i.e., we
added pairwise potential functions that corresponds to pairwise factors in this graphical model. We
ran the ntKiNG again with this new, better informed sufficient statistic for 30 runs. The graphical
lasso estimate is shown in the right plot of Fig. 5. It can be seen that, when using the informed
sufficient statistics, ntKiNG could recover the almost-correct graphical structure in only 30 itera-
tions, while it takes the regular ntKiNG much longer. This suggests, our methods can indeed use a
pre-existing probabilistic model to accelerate its generative model training process.

H COVARIATE SHIFT BY DISTRIBUTION MATCHING

In domain adaptation tasks, samples are drawn from the source distribution pXY and the target
distribution qXY where X,Y are covariates and label respectively. The problem is that a classifier
trained on source distribution samples may not work on target distribution samples. Covariate shift
(Sugiyama et al., 2008; Quiñonero-Candela et al., 2009) refers to a special case where pX ̸= qX
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Figure 6: The inverse mapping ψ−1 found by KiNG. The classification boundary of a source clas-
sifier trained on p is depicted in four distinct colors. Target domain samples are marked with •,
and KiNG transforms these samples to new positions indicated by ×. Notably, many samples—
especially those in the cyan and blue classes—are transported from the incorrect side of the classifi-
cation boundary to the correct side and the test accuracy increases as a result.

Src. → Tar. base (%) ntKiNG WGF MMD
amz→ dslr 69.50 +13.75 -0.50 +2.75
amz→ web 72.75 +8.25 -2.00 +0.75
amz→ cal 91.50 -0.75 -5.75 +0.00
dslr→ amz 86.00 +1.27 -6.37 +1.27
dslr→ web 98.09 +0.00 -0.64 +0.00
dslr→ cal 84.08 +5.73 -7.64 +0.64
web→ amz 77.97 +3.39 -2.71 +1.02
web→ dslr 91.19 +3.39 -4.07 +1.36
web→ cal 76.61 +3.39 -3.73 +0.34
cal→ amz 82.00 -2.50 -4.50 -0.25
cal→ dslr 58.25 +16.50 +7.00 +3.25
cal→ web 65.50 +10.25 +1.00 +2.00
Average 79.45 +5.22 -2.49 +1.09

Table 1: Comparison of Testing Accuracy Differences (in %) Relative to the Base Classifier

but pY |X = qY |X . We adopt a “marginal transport” assumption (Courty et al., 2016) that X ∼ qX
are generated as X = ψ(X ′) where X ′ ∼ pX . It means, samples are generated from the source
distribution and then “transported” to the target domain. For example, images in the source domain
contains photos of objects, while in the target domain, photos contain the same objects but are
filtered to reflect certain styles.

In the covariate shift setting, we observe joint samples from the source pX,Y , but only have target co-
variates qX . The goal is to find ψ−1. In this paper, we propose to reverse the process by minimizing
KL[pX , qt] using Algorithm 2, where X0 ∼ q0 are set to be the target domain covariates.

We demonstrate the effectiveness of this algorithm in Fig. 6, where the transfer ψ is a clockwise
rotation on samples by 45 degrees. An inverse ψ−1 is a counter-clockwise rotation and has been
correctly identified by ntKiNG.

We further test our algorithm on the Office+Caltech dataset(Gong et al., 2012) which is an object
recognition dataset with photos collected from four different places: amazon, dslr, webcam,
caltech. The task is to train a source classifier using one of the places, and test it on samples from
another place. We test the performance of ntKiNG against two other particle-based transport meth-
ods WGF and MMD that also matches qt with pX . The performance is measured by the percentage
gains compared with directly applying the source classifier to the target samples. The results show
that our method achieves the most accuracy gains comparing to WGF and MMD. In 10 out of 12
domain adaptations settings, ntKiNG improves the testing accuracy.
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I EXPERIMENT SETUP

We summarize the experiments’ setup details in this section. For each experiment, we provide details
of the dataset and pre-processing procedure, as well as the details of tuning parameters.

I.1 COMPARISON WITH REVERSE KL WASSERSTEIN GRADIENT FLOW AND MMD FLOW

I.1.1 DATASET AND PRE-PROCESSING

In this experiments, we let p = 0.5N (−2, I) + 0.5N (2, I). We draw 100 samples from p as the
target samples Y , 100 samples from N (0, I) as the initial samples X0. No further processing is
required.

I.1.2 PARAMETER TUNING

The main tuning parameter are kernel bandwidth and step sizes.

For all methods that uses RBF kernel/basis, we set the bandwidth to be the median pairwise distance
of all samples.

For all methods, we use step size 1, as any larger learning rate would result in numerical instability
for each method.

For all methods, we run 100 particle updates.

The performance metric MMD uses a Gaussian kernel and the bandwidth is set as the median of
pairwise distances of all samples Y and Xt.

I.2 GRAPHICAL MODEL RECOVERY

I.2.1 DATASET AND PRE-PROCESSING

In this experiment, we let p be a 30-dimensional Gaussian graphical model, and draw 200 samples
Y ∼ p, 200 samples X0 ∼ N (0, I). The graphical model Θ is generated as a random graph,
with edge probability 0.05. For each non-zero off-diagonal entry, we set Θi,j = 0.3. No further
processing is required.

I.2.2 PARAMETER TUNING

For all methods, we use the median of sample pairwise distances as the bandwidth.

For all methods, we set the step size to be 1.

Parameter tuning of Graphical Lasso is handled by sklearn internally using 5-fold cross validation
and the sparse graph in graphical model is obtained by truncating all values smaller than 0.1. Below
are the Python code.

# Fit with cross-validation to select alpha
model_cv = GraphicalLassoCV(alphas=10, # number of alphas or list of alphas

cv=5, # how many folds in cross-validation
max_iter=100,
tol=1e-4)

model_cv = model_cv.fit(x1_test.cpu().numpy())
Theta_cv = model_cv.precision_
Theta_cv = Theta_cv > 1e-1
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I.3 EXPERIMENT 2: COVARIATE SHIFT

I.3.1 DATASET AND PRE-PROCESSING

We validate our method on the dataset Office+Caltech2, which is a dataset for domain adaptation,
consisting of Office 10 and Caltech 10 datasets. It contains the 10 overlapping categories between
the Office dataset and Caltech256 dataset (Gong et al., 2012).

The original features are extracted using a DECAF network, and are 4096 dimensional. We apply
PCA on the source and target domain to reduce the dimension to 50 with Python code

from sklearn.decomposition import PCA
pca = PCA(n_components=50)
pca.fit(X)
X = pca.transform(X)
X = X / 100

Due to memory space limit, we also randomly pick 200 samples from all target domains as X0.

I.3.2 PARAMETER TUNING

For all methods, we set step size to 0.1.

For ntKiNG, we run 100 steps due to reduce the computation cost.

For WGF and MMD flow, we run 1000 steps.

The source classifier is an RBF kernel Support Vector Machines with all hyper-parameters chosen
by cross-validation with the following python code:

# Split the data into training and test sets (optional)
X_train, X_test, y_train, y_test = train_test_split(x, y,

test_size=0.3, random_state=42)

# Define parameter grid
param_grid = {

’C’: np.logspace(-3, 3, 5),
’gamma’: np.linspace(.2, 5, 5) * gamma,
’kernel’: [’rbf’]

}

# Create a SVC classifier
svc = SVC()

# Initialize GridSearchCV
grid_search = GridSearchCV(svc, param_grid, refit=True, verbose=2, cv=5)

# Fit the model
grid_search.fit(X_train, y_train)

where gamma is the inverse of the median pairwise distances of all inputs.

J RELATED WORKS

Our methods bridge the gap between generative model training/sampling and parametric model
optimization. Both domains are extensively studied in the machine learning community.

There has been a trend toward using optimization techniques to sample from unknown distributions.
These methods first draw samples from an initial distribution and then move them according to a

2https://github.com/jindongwang/transferlearning/blob/master/data/
dataset.md#office+caltech
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time-dependent velocity field (Liu, 2017; Chewi et al., 2020; Maurais & Marzouk, 2024). A typical
family of such gradient flows is the Wasserstein Gradient Flow (Ambrosio et al., 2008), which has
found various applications outside of sampling, such as generative modelling (Gao et al., 2019; Choi
et al., 2024) and missing data imputation (Chen et al., 2024). Our method falls within this family of
algorithms, and we compared two of its variants in our experiments. To the best of our knowledge,
none of the existing approaches could leverage a pre-existing probabilistic model to guide the flow of
particles. Our framework is also more general: Algorithm 1 works for non-particle based generative
models as well.

Another trend in generative modelling is “flow matching”, where one aligns the drift function with a
pre-constructed flow (Lipman et al., 2023; Liu et al., 2023). In a similar spirit, our method also aligns
the instantaneous change of the generative distribution with a prescribed dynamics (NGD). However,
instead of directly matching the velocity field in the sample space, we match the projections of
these changes in the parametric space. This approach avoids building arbitrary ”bridges” between
the reference and target distributions in sample space and instead leverages an effective parametric
optimization algorithm to guide the training of the generative model.

In recent years, there has also been efforts to accelerate and approximate NGD using kernel methods,
for example, (Arbel et al., 2020; Li et al., 2019b) propose to approximate the natural gradient by
optimizing a dual formulation. However, both methods consider optimizing a probabilistic model,
rather than a generative model as described in this paper. Performing NGD requires inverting a large
matrix. Many research on NGD focuses on approximating the inverse the Fisher Information Matrix
(Martens & Grosse, 2015; Grosse & Martens, 2016; George et al., 2018). Our particle update, e.g.,
Theorem 4.3 also requires us inverting a matrix with the dimension of the sufficient statistic. It
would be an interesting future work to see if these techniques could be adapted to our approach.
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