
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUBSPACE NODE PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficiency of neural network inference is undeniably important in a time where
commercial use of AI models increases daily. Node pruning is the art of removing
computational units such as neurons, filters, attention heads, or even entire layers
to significantly reduce inference time while retaining network performance. In
this work, we propose the projection of unit activations to an orthogonal subspace
in which there is no redundant activity and within which we may prune nodes
while simultaneously recovering the impact of lost units via linear least squares.
We identify that, for effective node pruning, this subspace must be constructed
using a triangular transformation matrix, a transformation which is equivalent to
and unnormalized Gram-Schmidt orthogonalization. We furthermore show that
the order in which units are orthogonalized can be optimised to maximally reduce
node activations in our subspace and thereby form a more optimal ranking of
nodes. Finally, we leverage these orthogonal subspaces to automatically determine
layer-wise pruning ratios based upon the relative scale of node activations in our
subspace, equivalent to cumulative variance. Our proposed method reaches state
of the art when pruning ImageNet trained VGG-16 and rivals more complex state
of the art methods when pruning ResNet-50 networks across a range of pruning
ratios.

1 INTRODUCTION

With significant progress in the development of neural networks by the research community, com-
mercial interest has recently taken off. Evermore capable models spark private and public interest,
excitement, and engagement. However, the computational resources required to train and run these
models are immense and neural networks have long exceeded the computational capacity of general
purpose hardware.

A variety of approaches have been developed to reduce the computational footprint of models without
changing their structure. These range from low-level hardware optimizations (Choquette et al., 2021;
Jouppi et al., 2018) to high-level software developments (Paszke et al., 2019; Abadi et al., 2015;
Bradbury et al., 2018). Additionally, the representations of models in software have been made more
compact with quantization methods (Krishnamoorthi, 2018; Gholami et al., 2022).

More promising are, however, methods which modify and compress neural network models to reduce
computational cost while maintaining accuracy. Network compression is possible due to the fact that
deep neural networks are found to be significantly over-parameterized in practice, with sometimes
orders of magnitude more parameters than should be necessary for computations (Frankle & Carbin,
2018). In this work, we focus on the sub-field of network pruning and develop a new state-of-the-art
method within this domain.

PRUNING NEURAL NETWORKS

The goal of neural network pruning is to reduce the computational execution (inference) time of a
model while maintaining its performance. Unstructured approaches which prune the weights of a
model result in arbitrarily sparse weight matrices whose multiplication cannot easily be accelerated at
compute time – i.e. without translation to real-world inference efficiency. It is therefore desirable to
prune whole nodes, convolutional filters, transformer heads, or other structured groups of parameters.
Herein, we refer to any of these sub-parts of networks as network ‘units’. Thus, the question is posed:
how should one choose which units of a network to prune first? Two different approaches emerged

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to address this question. First, pruning of pre-trained networks and, second, pruning iteratively
while training. While we limit our investigation to the former class that assumes starting out with a
well-performing model, the latter class holds great potential for also reducing the cost of training
next to the cost of inference.

Importance scores When choosing which units of a network to prune, there must first be an attribution
of the relative importance of each network unit. The score computed to measure this is known as
the importance score. Methods which relate the importance score to the magnitude of weights are
prevalent, and these approaches try to minimize the impact of pruning on the network’s computation.
Li et al. (2016) used the total absolute sum (or squared sum) of incident weights to a convolutional
filter as an importance score for that filter. Methods of greater complexity are ‘data-driven’, making
use of training data for forward (and in some cases backward) passes to measure importance scores.
Molchanov et al. (2016; 2019) found that the square summed weight-gradient multiplication of
weights incident to a node can be used as a theoretically justified importance score under a linear
approximation of a network via a 1st-order Taylor-expansion (and similarly for the 2nd-order case).
Theis et al. (2018) extend this notion to using the Fisher information instead, while Yu et al. (2018)
proposed a scaling of the weight-magnitude with downstream importance scores to estimate the
importance of a unit that minimizes the change in loss induced by pruning.

The above methods aim to assign importance scores such that the smallest importance is assigned to
network units which are thought to minimally disturb the network’s computation. Other approaches
deviate from this assumption. For example, Liu et al. (2023) and Zhang et al. (2022) look at feature
maps to determine filters which have greatest task-relevant information. Alternatively, a number
of methods also make use of correlation measures of feature maps or filter/node outputs within or
between layers, with greater correlations equated to lower importance scores due to the redundancy
of these representations (Zhang et al., 2022; Ayinde et al., 2019; Cuadros et al., 2020; Mariet & Sra,
2015; Kim et al., 2020; Goldberg et al., 2022) or a variation thereof (He et al., 2019).

One-step reconstruction Some methods go beyond the step of simply removing nodes when pruning
and additionally carry out a form of ‘one-step reconstruction’. This reconstruction modifies the
parameters of a pruned network such that its nodes approximately output the same values which they
did prior to pruning. This is unlike retraining or finetuning as it is a single step of modification of
the pruned parameters for reconstruction of the pre-pruned outputs. Mariet & Sra (2015) identified
redundant nodes by using determinantal point processes, pruned these nodes, and recovered their
impact on a network by linear least squares (LLS) approximation between the original and pruned
pre-activations. Similarly, He et al. (2017) used LLS to approximate pruned nodes, while selecting
nodes based on LASSO regression.

In contemporary work, Luo et al. (2017) estimated a single scalar value per node to best reconstruct
the lost activity, a method with lower expressiveness than the aforementioned methods. Kim et al.
(2020); Goldberg et al. (2022) chose yet a different, data-free, approach to reconstructing unit activity
by moving weight parameters between layers, however this was only applicable to networks with
rectified linear unit (ReLU) non-linearities. Chin et al. (2018) went further still, into a non-linear
least squares solution attempt using evolutionary algorithms. Similar methods for reconstructing unit
activity for large language models have recently been presented (Li et al., 2024; Frantar & Alistarh,
2023).

Global importance Despite the importance of local scoring (i.e. scoring of units within a layer),
there needs to be a notion of unit importance across layers, a so called ‘global importance’. While
for some approaches such global ranking is a natural consequence of the local importance estima-
tion (Molchanov et al., 2016; 2019; Yu et al., 2018), several methods only provided local importances
and rely on expert knowledge, manual exploration(Wang et al., 2021), or simple assumptions such
as the equivalence of pruning at any layers Li et al. (2016). The most advanced methods rely on
measurement of some form of network ‘sensitivity’ to achieve peak performance(You et al., 2019).

This work We propose and demonstrate the efficacy of three novel ideas for improved node pruning.
First, a one-step reconstruction method which relies upon the construction of a subspace in which
unit activations are factorized and made orthogonal. In this subspace, nodes can be pruned with
immediate reconstruction of layer outputs by LLS. Second, a novel importance scoring method based
only upon non-redundant unit activities. Third, the measurement of global unit importance based

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

upon the percent of variance explained within our proposed subspace. Figure 1 illustrates these three
contributions in order.

2 SUBSPACE NODE PRUNING (SNP)

Construction of a
prunable subspace

Importance scoring based upon
non-redundant activities

Cumulative variance ratios as
global importance ratios

10%

Figure 1: Graphical depiction of our main methods and contributions. Left: Our subspace construction
method involves the projection of unit activities to a subspace via a lower-triangular matrix transform.
This induces an intermediate ‘latent’ space of orthogonal activity vectors. Centre: We propose a
manner to isolate non-redundant activities by the measurement and removal of any linearly decodable
information from all other units in a layer. Right: We can interpret the variances of the processed
activities in our subspace as their importance and prune based upon a global variance-based cutoff,
rather than by determining specific numbers of units to remove at each layer.

2.1 FACTORISING NEURAL CONTRIBUTIONS

Consider a typical deep neural network (DNN) architecture, in which the outputs at each layer,
l ∈ {1, . . . , L}, are defined as Xl = fl(Yl) = fl(Wl−1Xl−1), where Xl ∈ Rnl×s is a tensor of
outputs for layer l consisting of nl units for s samples. These layer outputs are composed based
upon a matrix multiplication of the previous layer outputs, from weights Wl ∈ Rnl+1×nl , and by
an element-wise transfer function fl(·). We consider these fully-connected deep neural networks to
introduce our approach, however, we shall also treat convolution in the results that follow.

In a pruning pipeline, assuming that importance scores were already available, the next step would be
to prune m input units and their associated weight vectors, starting with the unit of lowest importance
score. Here we instead propose an intermediate step. We propose that one might remove as much
redundant activity from units in a given layer to ensure that pruning has the least possible impact on
network dynamics.

In the interest of doing so, consider the pre-activations Yl+1 = WlXl ∈ Rnl+1×s at layer l + 1 of
a network in response to the set of inputs (training dataset). Without specifying the transformation
matrix Ml yet, we can equivalently parameterize a layer l as

Yl+1 = WlM
−1
l MlXl = WlM

−1
l X̂l,

where X̂l = MlXl are the original inputs projected into a subspace where there is no redundancy, a
space in which activations are orthogonal latent variables. For an unpruned network, the subspace
transformation has no impact on the network computation due to our inclusion of the inverse
subspace transform, M−1

l . Pruning within the subspace affects the matrices as follows: we prune the
columns of M−1

l , and the rows of Ml. While the shape of the matrix product of the two matrices
remains unaffected, the product will no longer be the identity matrix, unless unit activity was already
orthogonal prior to factorization.

Here, we propose the application of an unnormalized Gram-Schmidt (GS) orthogonalization for the
orthogonalizing transformation, via a lower triangular matrix Ml, to find a subspace in which the
units have no redundancy in their activities. Specifically, one can frame our desired transformation as
one in which we project our unit activity at some layer l to a subspace via a linear projection matrix
X̂l = MlXl with the restriction that we wish for the final dot-product between each pair of vectors
to be zero (orthogonalized) and for the orthogonalizing matrix Ml to have a lower triangular structure
such that

X̂lX̂
⊤
l := diag(X̂lX̂

⊤
l) = MlXlX

⊤
l M

⊤
l .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Pruning a dense matrix Pruning a triangular matrix

Input Dimension Pruned!

Figure 2: Our choice of a subspace which is constructed for lower-triangular matrices is here justified.
Left: If a dense matrix is used to form a subspace, pruning in the dense transformation matrix does
not prune the original input nodes. Right: When pruning a lower-triangular transformation matrix,
pruning the bottom row corresponds to pruning away an entire input node.

Orthogonalization is possible in multiple ways, for example by principle component analysis (PCA),
zero-phase component analysis (ZCA) or otherwise. However, we specifically desire for our orthog-
onalizing transformation matrix, Ml to be lower-triangular. In order to understand why, consider
two aspects. First, a lower-triangular orthogonalizing matrix means that our units are treated as if
they have been ordered by priority, with the first unit orthogonalizing the nl − 1 remaining units, the
second unit orthogonalizing the nl − 2 remaining units and so on. This ensures that the final units
of the layer have had all possible activity which could be explained by earlier units removed - i.e.
that the final units in a layer have had all of the information which could be extracted from other
units subtracted away. Second, this lower-triangular setup allows one to prune the latent variables
whilst also pruning the original input nodes. This prunability is a natural consequence of the zeros
in the upper-triangular section of our transformation matrix, as illustrated in Figure 2, that lead to
removing columns through pruning rows from Ml. Hence, pruning in such subspace ultimately
results in reduced matrix dimensionality that ultimately prunes the corresponding input node. Note
that pruning in alternative subspaces, such as the PCA subspace, does not result in a reduced matrix
dimensionality but instead in a low-rank matrix.

Returning to our problem setup, we therefore wish to solve for a lower-triangular orthogonalizing
matrix Ml. This can be accomplished by LDL-decomposition based on a rearrangement of the
previous equation

XlXl
⊤ = M−1

l Dl

(
M−1

l

)⊤
,

where Dl = diag(X̂lX̂
⊤
l), the variances of our latent variables.

Given our prior setup, our newly determined transformation matrix provides us with a route to a
ranked, orthogonal subspace. In the new subspace, we can now prune from most- to least ‘restricted’
latent variable (restricted by the triangular structure of the matrix Ml). Therefore, we prune Ml by
removing rows from the bottom. If we denote ·∗ as pruning the last rows, and ·∗ as pruning the last
columns of a matrix, we reparameterize the weights as

Ŵl = Wl(M
−1
l)∗(Ml)

∗
∗ .

We provide the pseudocode to prune a single layer using the proposed method in Algorithm 1. Note
that a similar algorithm can be used to prune entire filters in convolutional networks.

Algorithm 1: Layer-wise subspace node pruning
Input: Data Xl, Weights Wl, Number of units to prune n

Output: Pruned weights Ŵl

Cl = XlX
T
l ▷ Compute dot-product between input feature vectors

M−1
l ,Dl = LDL(Cl) ▷ Decompose matrix Cl

Ŵl = Wl(M
−1
l):,:n(Ml):n,:n ▷ Prune Ml and M−1

l (leading to pruned Wl)
Return: Ŵl

It can be proven that pruning in this subspace automatically reconstructs the output of such a layer by
linear least squares, see Appendix A. This equivalence demonstrates the optimality of our choice of
subspace and highlights that via LLS one recovers input activity that is redundant within the set of
remaining units. Further, we can therefore also posit that any importance scoring method applied

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

outside of this subspace shall overestimate the importance of unit activities due to the existence of
unaccounted redundancies. We address this overestimation in the next section.

2.2 IMPORTANCE SCORING: REORDERING UNITS PRIOR TO FACTORIZATION

As mentioned previously, our method of factorising nodes in the GS subspace holds promise for
ensuring that the units removed (in the subspace) have minimal activations and that all redundant
information is automatically reconstructed. However, we so far have not addressed the question of
how one should choose the order in which units are orthogonalized. In fact, we so far considered a
GS subspace transformation based upon the default ordering of units in a layer, an ordering which
could be much improved.

Generally, the choice of unit ordering is free for a practitioner since it simply changes the order
of units from which we compute the GS subspace (consider that one could permute the matrix
Ml so long as you also unpermute via matrix M−1

l). See Appendix B for the pseudo-code of this
permutation for pruning individual layers in a network. Some orderings are, however, evidently better
than others. Importance scores, as computed by alternative existing work, are good first candidates for
a reordering process, allowing the combination of our subspace method with any existing importance
scoring method. However, as noted before, these methods include recoverable unit activity in their
estimations. In the following, we propose a method to solve this problem at any individual layer.

First, remembering that our subspace construction method aims to orthogonalize units in an ordered
fashion, one can ask: which units are best orthogonalized by all other units in a layer? To calculate
this, we can attempt to measure how much of each unit’s activity variance can be reduced based upon
a linear readout from all other units in a layer.

Assuming that one wishes to find a dense matrix, Rl, which computes the amount of redundant
activity that each unit has relative to each other unit, we are looking to measure X̂l = Xl −RlXl

where the desired outcome is that X̂lX̂
⊤
l is some diagonal matrix of variances, and the diagonal of

the matrix Rl is zeros (i.e. there is no boosting up of a unit’s variance).

To solve for this, we can formalize the desired property that X̂lX̂
⊤
l = diag(X̂lX̂

⊤
l) = S2

l and solve
for the value of Sl. To do so, we can compute, X̂lX̂

⊤
l = (Il − Rl)XlX

⊤
l (Il − Rl)

⊤ = S2
l , and

therefore
XlXl = (Il −Rl)

−1SlS
⊤
l (Il −Rl)

−1⊤.

One may assume that our transformation matrix is symmetric (since the degree to which one node
orthogonalizes another is symmetric), and thus S−1

l (Il −Rl) = (XlX
⊤
l)

−1/2. The transformation is
equivalent to the well known ZCA transform (Krizhevsky et al., 2009) though we have now added a
term representing the scaling applied to reach a whitened state. To find Sl note that diag(Il−Rl) = Il,
as defined earlier, and therefore

Sl = diag((XlX
⊤
l)

−1/2)−1.

The (diagonal) values of the matrix Sl are the novel importance scores which we propose in this work
and we refer to this as the ‘unnormalized-ZCA’ ordering. Concretely, these values are the L2-norms
of each units’ activation after each unit has individually been orthogonalized by all other units. This
effectively means that it is the scale of each units’ activation which is truly unique (non-redundant)
with respect to all other unit activations. Assuming centred data, these values are equivalent to the
standard deviations of each unit.

It is also possible to generalize the idea and to combine this measure with other existing importance
scoring methods in order to discount redundant information when measuring importance. We briefly
describe such an extension in Appendix C but do not explore it any further in this work.

2.3 CUMULATIVE VARIANCES: FROM PRUNING LAYERS TO PRUNING NETWORKS

In the previous section, we described the measurement of an importance score based upon the
remaining norm of a unit’s activity after it has been orthogonalized by all other units within a layer.
However, measuring a local layer-wise importance score is only sufficient for determining how much

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

one might prune a single layer. When pruning a whole network, one must then make a determination
of how much to prune individual layers.

To address this, we build on the fact that our pruning method yields the activity variances of the
latent variables (subspace units) without any extra computation (the diagonal matrix Dl from LDL-
decomposition). With these variances computed, we propose to measure the global importance as the
cumulative variance of a unit and all succeeding units, normalized by the total variance of the layer.
Mathematically speaking, this means that the global variance-based importance score for a given unit
i in layer l is given by

Importanceil =

∑nl

j=i D
jj
l∑nl

k=0 D
kk
l

where the repeated superscripts indicate selection of diagonal elements of our Dl matrices. This
construction allows us to set a single global parameter (the percent variance to be removed from all
layers) which automatically arrives at an individual layer-wise pruning ratio.

3 EXPERIMENTS

We demonstrate the efficacy of our proposed method by application to VGG-11, 16, and 19 as well
as ResNet-50 architectures. We use the networks from PyTorch (Paszke et al., 2019) pre-trained on
the ILSVRC (ImageNet) dataset. The dataset contains 1,281,167 labeled training images and 50,000
labeled validation images. They are split into 1000 object categories that the models try to predict.
When measuring the cross-correlation matrix of every layer’s activations (inputs), we make use of the
full training set images transformed via the test-transforms detailed in Appendix D.

To evaluate model performance, we show results in two cases. The first case considers VGG networks
before any retraining. We compare our method against reimplementations of the method of Li
et al. (2016), which uses the sum of absolute weights (SAW), as well as the unstructured absolute
weight magnitude pruning method (Han et al., 2015). Further, we reimplement and compare against
ThiNet (Luo et al., 2017) and PFA-EN (Cuadros et al., 2020). Due to limited computational resources
and the cost of performing pruning across these baselines, we make re-implemented comparisons
of these baseline method on VGG networks only. The SAW, AW, and ThiNet methods provide
no guidance on the global ranking of units, instead assuming that a practitioner might uniformly
prune all layers by the same amount. Therefore we employ a uniform pruning ratio across layers
when implementing these methods. This means that all layers are pruned by the same ratio of units,
referred to as a uniform pruning (uni) in all relevant figures. In contrast, PFA-EN performs PCA
to decide a global ranking of units on top of their local importance structure. Notably we apply
PFA-EN’s PCA measure at input nodes, rather than output activations, finding that this produces best
performance. We re-implemented all baselines due to unavailable code or outdated packages and
have code available for reproduction of all experiments at <SEE ATTACHED ZIP>.

We furthermore compare our method with three variations in importance scoring. We compare against
random importance measurement (SNP-random), the SAW importance measure (SNP-SAW), and
our proposed unnormalized-ZCA ranking (SNP-ZCA). Here, SNP refers to the subspace construction
and pruning therein. We further combine with our global importance measurement via cumulative
variance estimation (var). The exact pruning ratios for our experiments can be found in Appendix E.

The second part of our results investigates performance after retraining. We evaluate the efficacy
of our methods on VGG-16 and ResNet-50. For these experiments, we use the retraining recipes
detailed in Appendix D. We compare the SNP-SAW/ZCA methods against a selection of baselines
copied from literature. So far, we have only described pruning of single-branch networks such as
VGG networks. Dealing with networks with multiple branches such as ResNets is not trivial. We
show how to prune multi-branch networks in Appendix F.

Due to the prohibitive computational cost involved for retraining all these methods, we retrain only
SNP-ZCA var on three different seeds to generate an estimate of the variation in performance. Since
all methods are deterministic, however, variation is only introduced based upon the shuffling of data
presentation during training.

We report the performance measured as Top-1 test accuracy of the pruned networks in terms of
parameter count, FLOPs, runtime and energy consumption. The parameter count and number of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

FLOPs are measured using the fvcore package (https://github.com/facebookresearch/fvcore). A
FLOP is counted as a multiply-add operation. All performance evaluations are run on 16 threads on
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz CPUs and a Quadro RTX 6000 GPU on a compute
cluster. The retraining is performed on a faster compute cluster with a Nvidia A100 GPU and 18
CPU cores of Intel Xeon Platinum 8360Y processors.

4 RESULTS

PRUNING WITHOUT RETRAINING

0 100 200 300 400 500
Latent

100

2 × 100

3 × 100

4 × 100

Va
ria

nc
e

(in
 G

S
su

bs
pa

ce
s)

Random ordered

0 100 200 300 400 500
Latent

SAW ordered

0 100 200 300 400 500
Latent

ZCA ordered

Figure 3: Latent unit variances in our subspace after Gram-Schmidt orthogonalization of layer 12
from VGG-16. Prior to the orthogonalization, the units are ordered either randomly (left), ordered
using the SAW importance measure (middle) and ordered using out novel proposed ordering by
unnormalized-ZCA (right) variances.

We start our analysis of VGG net pruning by assessing and verifying the efficacy of the proposed
reordering strategies. Figure 3 shows the variances of the latent variables, our network units after
they have been orthogonalization by our proposed (unnormalized) Gram-Schmidt method. We see
that a random ordering of units gives highly noisy variances across a layer. If we permute the unit
order according to the importance scores of SAW (prior to GS orthogonalization) the variances
remain noisy, but a stronger ranking across units emerges. This indicates that the choice of unit
ordering given by the SAW method does measurably help to extract units with the most redundant
activities (those which end up with low variance on the far right). In contrast, re-ordering according
to our unnormalized-ZCA importance scoring method leads to a very smooth ranking of variances.
We hypothesise that this ought to be attributed with better performance since the better units are
approximated using preceding units, the lower the approximation error during pruning. We test this
hypothesis by application of our method on VGG-11/16 and 19.

1007550250
FLOP reduction (%)

0

20

40

60

Ac
cu

ra
cy

VGG-11

1007550250
FLOP reduction (%)

VGG-16

1007550250
FLOP reduction (%)

VGG-19
ThiNet
PFA-EN
SAW
SNP-SAW
SNP-ZCA

uniform
var

Figure 4: Pruning performance of VGG-11, 16, 19 networks without retraining. Test accuracy against
reduction in FLOPs. We compare baseline pruning methods to both our proposed method (SNP-ZCA)
and to the combination of our subspace-construction method with the SAW importance ordering
(SNP-SAW). Furthermore, we show results both for uniform pruning per-layer (dashed lines) and our
proposed global variance-based pruning (solid lines).

7

https://github.com/facebookresearch/fvcore

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4 shows post-pruning accuracies of the VGG-11/16/19 networks using both our proposed
method along with various baselines. In these plots, we also compare our proposed global variance-
based pruning determination (labelled ‘var’) against a uniform pruning process which prunes the
same ratio of units at every network layer.

As one can observe, the subspace methods (SNP-SAW and SNP-ZCA) are the most performant,
retaining much of the initial performance with a degradation at greater pruning levels. Alternative
methods suffer to a much greater degree with significant reductions in test accuracy with even small
FLOP reduction. However, the inclusion of a global variance-based cutoff for determining does not
show major benefits before retraining. The question remains as to which methods will perform best
once these networks are retrained to regain performance post-pruning.

RE-TRAINING AFTER PRUNING

0255075100
FLOPs (%)

67

68

69

70

71

72

73

74

Ac
cu

ra
cy

ThiNet
PFA-EN
SAW
ZCA
SNP-SAW
SNP-ZCA

uniform
var

Figure 5: A comparison of our reconstruction method indicated by ‘SNP’ with our global variance
cutoff based importance (var) vs baseline methods. We show VGG-16 networks Top-1 accuracy after
retraining against the amount of retained FLOPs. The black strided horizontal line shows the initial
network performance before pruning. SNP-ZCA has error bars on top of the datapoints from three
randomly seeded training runs, though these are barely distinguishable. Dotted lines refer to using the
same pruning ratio for all layers, whereas solid lines refer to our global variance-based importance
scoring. PFA-EN is the only unique method which uses PCA to determine global importance.

Figure 5 shows the performance comparison of our models and the baselines after retraining. Table 1
shows final accuracy of the tested methods for various pruning ratios. Most crucially, our global
variance-based cutoff (var) for automated layer-wise pruning shows significant performance gain
over uniform pruning for FLOP reduction of 2× and greater, demonstrating its efficacy and suitability
for network-wide pruning. We see that our SNP-ZCA and SNP-SAW are very similar in performance
and outperform all other methods by an increasingly wide margin as we increase the FLOP reduction.

We include also an example of our proposed ZCA-based importance scoring without the subspace
reconstruction (see ZCA var), as well as the SAW baseline with subspace reconstruction (see SNP-
SAW uniform). These results show that our reconstruction has a measurable but small impact when
retraining is done to convergence. This suggests that subspace-based reconstruction might be most
useful in cases where retraining is prohibitively expensive or when a marginal gain in retraining speed
is desired.

All methods apart from ThiNet are deterministic. We therefore assume little variation between
different retraining runs. To verify this, we retrain the SNP-ZCA method with three random seeds
and see very little deviation in the performance (shown by the almost invisible error bars). ThiNet is
non-deterministic due to its sampling process when collecting data for activity reconstruction.

Regarding our baselines, we find that PFA-EN initially is at an advantage over the other baselines,
but is caught up by SAW after pruning roughly 50% of FLOPs (2× FLOP speedup). The initial high
performance of PFA-EN is competitive with our SNP-ZCA and SNP-SAW for the first two pruning

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: VGG-16 (ImageNet): The final accuracies, FLOP count, and Parameter count for our
method along with re-implemented alternative methods applied to the VGG-16 network. See Figure 4
for these results in training curve form. To ensure a fair comparison of our results and those in
the literature, we group the results into blocks with similar FLOP speed-ups. Each of these blocks
naturally has results which are obtained by pruning at different ratios. Groups are separated by dashed
lines.

Importance Final %Acc ∆Acc FLOP speedup #Params

ThiNet (reimpl.) 71.36 -0.23 2.02× 68.79M
PFA-EN (reimpl.) 71.69 0.10 1.97× 76.97M
SAW (reimpl.) 71.58 -0.01 2.02× 68.79M
SNP-SAW uniform (ours) 71.50 -0.09 2.02× 68.79M
ZCA var (ours) 72.03 0.44 1.97× 83.89M
SNP-SAW var (ours) 71.67 0.08 2.14× 75.58M
SNP-ZCA var (ours) 72.08 (±0.02) 0.49 1.97× 83.89M
ThiNet (reimpl.) 69.68 -1.91 2.74× 50.93M
PFA-EN (reimpl.) 70.11 -1.48 2.75× 53.58M
SAW (reimpl.) 70.02 -1.57 2.74× 50.93M
SNP-SAW uniform (ours) 70.00 -1.59 2.74× 50.93M
ZCA var (ours) 70.71 -0.88 2.75× 63.05M
SNP-SAW var (ours) 70.53 -1.06 2.90× 57.57M
SNP-ZCA var (ours) 70.77 (±0.06) -0.82 2.75× 63.05M

ratios, but then suffers from the stark drop-off. ThiNet is largely outperformed by the other methods
under this training recipe, see Appendix D.

Lastly, it is notable that all models far outperform the pre-trained model for small amounts of pruning.
This is in line with existing work and shows that pruning in small amounts can act as a regularization
to improve the model’s generalization performance.

Table 2: ResNet-50 (ImageNet): The final accuracies, FLOP speed-up, and Parameter count for our
method along with referenced alternatives from the literature. ‘Regular Retraining’ indicates whether
methods use a regular post-pruning training cycle or if pruning is performed during retraining. To
ensure a fair comparison of our results and those in the literature, we group the results into blocks
with similar FLOP speed-ups. Each of these blocks naturally has results which are obtained by
pruning at different ratios. Groups are separated by dashed lines.

Importance Pre-prune Final FLOP #Params Regular
%Acc %Acc ∆Acc speedup Retraining

FPGM(He et al., 2019) 76.15 74.13 -2.02 2.13× - ✓
SFP (He et al., 2018) 76.15 74.61 -1.54 1.72× - ✗
Taylor-FO (Molchanov et al., 2019) 76.18 74.50 -1.68 1.82× 14.2M ✗
SAW (Wang et al., 2023a) 76.13 75.24 -0.89 2.31× - ✓
GReg-2 (Wang et al., 2021) 76.13 75.36 -0.77 2.31× - ✗
TPP(Wang & Fu, 2023) 76.13 75.60 -0.53 2.31× - ✗
SNP-ZCA uniform (ours) 76.13 75.18 -0.95 2.34× 11.24M ✓
SNP-ZCA var (ours) 76.13 75.43 -0.70 2.30× 13.76M ✓
LFPC (He et al., 2020) 76.15 74.46 -1.69 2.55× - ✗
SAW (Wang et al., 2023a) 76.13 74.77 -1.36 2.56× - ✓
GReg-2 (Wang et al., 2021) 76.13 74.93 -1.20 2.56× - ✗
TPP (Wang & Fu, 2023) 76.13 75.12 -1.01 2.61× - ✗
SNP-ZCA uniform (ours) 76.13 74.67 -1.46 2.63× 10.00M ✓
SNP-ZCA var (ours) 76.13 75.08 -1.05 2.60× 12.37M ✓
Taylor-FO (Molchanov et al., 2019) 76.18 71.69 -4.49 3.05× 7.9M ✗
SAW (reimpl.) 76.13 74.13 -2.00 3.03× 8.77M ✓
GReg-2 (Wang et al., 2021) 76.13 73.90 -2.23 3.06× - ✗
TPP (Wang & Fu, 2023) 76.13 74.51 -1.62 3.06× - ✗
SNP-ZCA uniform (ours) 76.13 74.36 -1.77 3.03× 8.77M ✓
SNP-ZCA var (ours) 76.13 74.43 -1.70 3.04× 10.74M ✓

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

EXTENDING RESULTS TO RESNET-50

Having demonstrated the benefit of our method in VGG network pruning, along with re-implemented
baselines we further prune ResNet-50 architectures and compare against reported accuracies achieved
in the literature. As before, a pre-trained model is loaded, the training dataset used to compute
activity correlations at all layers of the network and thereafter subspace construction, unnormalized-
ZCA importance measurement, and global variance-based cutoffs used for layer-wise pruning. The
retraining recipe used is given in Appendix D. Note, that as in the previous simulations, our pruning
method first prunes and then re-trains with no further pruning during retraining.

Table 2 shows the results of applying our proposed pruning method to the ILSVRC (ImageNet) trained
ResNet-50 architecture. As can be seen, our method is highly competitive with existing methods
in the range of 2-3× FLOP reduction, consistently in second place and only being outperformed
by TPP (Wang & Fu, 2023). We see the performances achieved as a significant accomplishment
considering that almost all competitive methods not only prune networks but also carry out some
pruning during retraining in order to more carefully remove nodes (including TPP). Furthermore,
most alternative methods have fixed layer-wise pruning ratios, determined heuristically or otherwise,
unlike ours which has a single global variance-based cutoff which automatically determines unique
layer-wise pruning ratios.

5 DISCUSSION

In this work, we introduced a novel, often state of the art, method for structured pruning of pre-trained
deep networks with one-step reconstruction and focus upon the non-redundant variance of each unit’s
activation. Research into such approaches holds promise for the potential future of pruning without
considering redundant activity within a neural network. However, a number of additional areas of
exploration remain open, including the conditions in which retraining can be ignored, how to best
treat non-redundant unit activations, as well as how to apply such methods during training.

On the first note, we find our proposed method to be somewhat successful when pruning networks
without retraining. However, to reach competitive performance, retraining is nonetheless essential
when significantly pruning networks. This finding is in contrast with recent work which attempted a
related reconstruction method for LLMs (Li et al., 2024), where it was claimed that retraining could
be unnecessary. Future work should consider determining how significantly our findings apply to
such alternative model types.

Second, we make use of unit activities within our subspace to compute layer-wise pruning ratios
based upon a global variance-based cutoff. However, this does not at all consider the downstream
sensitivity of a network to these activations, implicitly assuming that all unit variances are equally
useful. Combining our measure with unit-wise sensitivity measures has the potential to further boost
performance. Furthermore, alternative importance measures which focus on non-redundant neural
contributions (within our proposed subspace) may hold significant potential, by avoiding allocation
of importance to redundant components unit activities.

Finally, we restricted ourselves in this work to examining the pruning of pre-trained networks. A
promising extension of this work would be to additionally prune networks during training and
retraining. The most competitive methods which we could identify all make use of such a during
(re)training adjustment of pruned units. Our method could also benefit from such a treatment by
maintenance of an orthogonalizaed subspace during training and a more gradual pruning arrangement.
This could force a network to encode information in a ranked fashion during training and potentially
enable far greater final performance.

In conclusion, we see the subspace node pruning method described herein as a new perspective on
the problem of pruning. This method can be combined with any existing method for node selection
and importance scoring and has the potential to significantly improve existing node pruning methods.
However, there also remain some wide open areas to be explored, including the application to
alternative models and during training of models from scratch. Beyond the models investigated
here, it also remains to be seen how and whether pruning approaches can truly impact the most
energy-expensive of models, such as generative pre-trained transformer models which are currently
in vogue.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martín Abadi, Ashish Agarwal, et al. TensorFlow: Large-scale machine learning on heteroge-
neous systems, 2015. URL https://www.tensorflow.org/. Software available from
tensorflow.org.

Nasir Ahmad. Correlations are ruining your gradient descent. ArXiv Preprint arXiv:2407.10780,
2024.

Babajide O Ayinde, Tamer Inanc, and Jacek M Zurada. Redundant feature pruning for accelerated
inference in deep neural networks. Neural Networks, 118:148–158, 2019.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Ting-Wu Chin, Cha Zhang, and Diana Marculescu. Layer-compensated pruning for resource-
constrained convolutional neural networks. ArXiv Preprint arXiv:1810.00518, 2018.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky. Nvidia a100
tensor core gpu: Performance and innovation. IEEE Micro, 41(2):29–35, 2021.

Xavier Suau Cuadros, Luca Zappella, and Nicholas Apostoloff. Filter distillation for network
compression. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 3140–3149, 2020.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. ArXiv Preprint arXiv:1803.03635, 2018.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Felix Goldberg, Yackov Lubarsky, Alexei Gaissinski, Dan Botchan, and Pavel Kisilev. Pruning neural
nets by optimal neuron merging. In International Conference on Pattern Recognition and Artificial
Intelligence, pp. 688–699. Springer, 2022.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in Neural Information Processing Systems, 28, 2015.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4340–4349, 2019.

Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter pruning
criteria for deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2009–2018, 2020.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397, 2017.

Norman Jouppi, Cliff Young, Nishant Patil, and David Patterson. Motivation for and evaluation of
the first tensor processing unit. IEEE Micro, 38(3):10–19, 2018.

11

https://www.tensorflow.org/
http://github.com/google/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Woojeong Kim, Suhyun Kim, Mincheol Park, and Geunseok Jeon. Neuron merging: Compensating
for pruned neurons. Advances in Neural Information Processing Systems, 33:585–595, 2020.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. ArXiv Preprint arXiv:1806.08342, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. ArXiv Preprint arXiv:1608.08710, 2016.

Jianwei Li, Yijun Dong, and Qi Lei. Greedy output approximation: Towards efficient structured
pruning for LLMs without retraining. ArXiv Preprint arXiv:2407.19126, 2024.

Yajun Liu, Kefeng Fan, Dakui Wu, and Wenju Zhou. Filter pruning by quantifying feature similarity
and entropy of feature maps. Neurocomputing, 544:126297, 2023.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 5058–5066, 2017.

Zelda Mariet and Suvrit Sra. Diversity networks: Neural network compression using determinantal
point processes. ArXiv Preprint arXiv:1511.05077, 2015.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. ArXiv Preprint arXiv:1611.06440, 2016.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11264–11272, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32,
2019.

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction with
dense networks and Fisher pruning. ArXiv Preprint arXiv:1801.05787, 2018.

Huan Wang and Yun Fu. Trainability preserving neural pruning. In International Conference on
Learning Representations, 2023.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. In
International Conference on Learning Representations, 2021.

Huan Wang, Can Qin, Yue Bai, and Yun Fu. Why is the state of neural network pruning so
confusing? on the fairness, comparison setup, and trainability in network pruning. ArXiv Preprint
arXiv:2301.05219, 2023a.

Maolin Wang, Yu Pan, Zenglin Xu, Xiangli Yang, Guangxi Li, and Andrzej Cichocki. Tensor networks
meet neural networks: A survey and future perspectives. ArXiv Preprint arXiv:2302.09019, 2023b.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao,
Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score
propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 9194–9203, 2018.

Haonan Zhang, Longjun Liu, Hengyi Zhou, Liang Si, Hongbin Sun, and Nanning Zheng. Fchp:
Exploring the discriminative feature and feature correlation of feature maps for hierarchical DNN
pruning and compression. IEEE Transactions on Circuits and Systems for Video Technology, 32
(10):6807–6820, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A RELATION TO LINEAR LEAST SQUARES

So far, we have introduced a method where pruning latent variables within a GS subspace corresponds
to pruning unit inputs. This approach is based on the assumption that pruning within the subspace has
minimal impact on the subsequent layer, without any notion of what ‘minimal impact’ means. In the
following, we seek to demonstrate the efficacy of this subspace pruning by proving its equivalence to
LLS approximation for recovering the original inputs from their pruned counterparts. Thereby, we
show that ‘minimally impacting’ means to minimize the sum-squared difference of the unit inputs
from their pruned counterparts. For clarity, we omit the layer subscript in the following, as the
computation is fully contained within each layer.

We start by defining the recovery matrix A as

arg min
A

∥X−AX∗∥22.

SNP uses a linear projection M to project inputs onto an orthogonal subspace. We may rewrite

arg min
A

∥X−AX∗∥22 = arg min
A

∥X−A(M∗
∗)

−1X̂∗∥22.

Solving for A(M∗
∗)

−1 by traditional LLS, we get

A(M∗
∗)

−1 = X(X̂∗)⊤(X̂∗(X̂∗)⊤)−1.

We observe that our latent variables X̂ are orthogonal by definition of SNP. Therefore, we may
rewrite the equation using X̂∗(X̂∗)⊤ = D∗

∗. Note that pruning the row dimension of the left, and
column dimension of the right matrix in a product may be expressed by pruning its product in both
dimensions.

A(M∗
∗)

−1 = X(X̂∗)⊤(D∗
∗)

−1 = M−1X̂(X̂∗)⊤(D∗
∗)

−1,

where we used the definition of our GS transformation to obtain the last equation. Given that
X̂(X̂∗)⊤ = D∗,

A(M∗
∗)

−1 = M−1D∗(D
∗
∗)

−1 = M−1I∗ = (M−1)∗,

where I is the identity matrix. We find that a matrix a matrix A = (M−1)∗M
∗
∗ optimally minimizes

the squared approximation error of the unpruned inputs and the approximation from the pruned inputs.
Notably, the recovery matrix A is precisely equivalent to the product of the pruned subspace transfor-
mation matrices as outlined earlier. Consequently, instead of computing the LLS approximation, the
same recovery matrix can be obtained by employing the SNP method.

With this equivalence established, we demonstrate that our method optimally approximates the
original inputs from their pruned counterparts in a linear manner, thereby proving the efficacy of our
approach in reducing the error induced by pruning. Moreover, it underscores that the approximation
process is independent of the specific ordering of units within the pruned and retained sets – a result
that is not immediately apparent from our approach of pruning within a ranked subspace.

In comparison to existing literature, our method focuses on recovering the inputs, whereas approaches
by Mariet & Sra (2015) and He et al. (2017) employ LLS to derive a new weight tensor. Despite this
distinction, the resulting reparameterized weights are fundamentally equivalent. If we recast the LLS
problem in their framework as one of approximating the layer outputs from pruned inputs, we seek to
optimize a novel weight matrix Ŵ through the following minimization:

arg min
Ŵ

∥Y − ŴX∗∥22.

By decomposing Ŵ = WA, we may equivalently optimize for A in:

arg min
A

∥WX−WAX∗∥22.

The remainder of the proof follows trivially from our proof above, with the only difference being the
inclusion of the weight term. The resulting recovery matrix A is identical to that obtained before,
thereby demonstrating that these methods for recovery are equivalent.

By revealing these insights, we further solidify the robustness and generality of our method.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B ALGORITHM INCLUDING PERMUTATIONS

Below is described the same steps as outlined in the main text, but now including a permutation matrix
by which the data could be re-organised prior to subspace node pruning. Note that the permutation
matrix is defined based upon any additional importance scoring which is combined with our method.

We adapt Algorithm 1 to choose a particular importance score, by simply permuting the input features
in Xl, such that the features are sorted from most- to least important. In order to keep the adjacent
layers unaffected, we unpermute the subspace transformation and its inverse after pruning and prior
to the weight matrix multiplication. See Algorithm 2 for the algorithm description.

Algorithm 2: Layer-wise subspace node pruning with permutation
Input: Data Xl, Permutation Matrix Pl, Weights Wl, Number of units to prune n

Output: Pruned weights Ŵl

Cl = (PlXl)(PlXl)
T ▷ Compute dot-product between (permuted) input feature vectors

M−1
l ,Dl = LDL(Cl) ▷ Decompose matrix C

Ŵl = WlP
−1
l (M−1

l):,:n(Ml):n,:n(Pl):n,∗ ▷ Prune M and M−1 (leading to pruned Wl)
▷ Note: * indicates non-zero columns only

Return: Ŵl

C RECONSTRUCTION-AWARE IMPORTANCE SCORING

In the main text, we have discussed a reordering strategy based on the diagonal elements of the un-
normalized ZCA matrix that describe the latent variances in an orthogonal subspace. The orthogonal
subspace ensures that we only estimate importance from information that we cannot recover via LLS
and our reconstruction method. Here, we show that instead of a ranking based on the variances, we
can use a wider range of importance scoring methods while disregarding recoverable information. In
particular, we demonstrate how the simple summed absolute weights (SAW) importance measure
possibly benefits from this idea.

First, we need to note that we cannot reconstruct any activity from unit inputs that are already
orthogonal. If all inputs were orthogonal, Xl = X̂l and subsequently Ml = Il. Therefore, if we
assumed all inputs to be orthogonal, we could prune with minimal impact on the subsequent layer
and consequently estimate importance without considering the unit activity that we may recover.

In the following, we assume that any weight tensor may be decomposed into an input orthonormaliza-
tion matrix and a transformation of the latent variables within that orthonormal subspace. We have
Wl = W̃l(XlX

⊤
l)

− 1
2 = W̃lΣ

− 1
2

l , with orthonormalization matrix Σ
− 1

2

l obtained by ZCA and the
underlying weight transformation to the latent variables W̃l (Ahmad, 2024). Therefore, given a linear
layer parameterized as Yl+1 = WlXl, we equivalently write as Yl+1 = W̃lΣ

− 1
2

l Xl. A look at the
cross-correlations of the unit outputs

Yl+1Y
⊤
l+1 = W̃lΣ

− 1
2

l XlX
⊤
l (Σ

− 1
2

l)⊤W̃⊤
l = W̃lW̃

⊤
l ,

reveals that they are now fully defined by the transformation W̃l. Hence, our proposal to measure the
SAW measure of W̃l = WΣ

1
2

l , instead of the weights.

Now, we compare the efficacy by pruning VGG networks without retraining. We refer to this novel
method as SNP-SAW-tilde and compare its performance to the original SNP-SAW before retraining.

Figure 6 shows that this novel method of importance scoring cannot keep up with the good perfor-
mance of SNP-SAW.

Since this measure is still a very novel measure, it requires further analysis, including retraining.
Compared to SNP-SAW, our novel scoring first removes the scaling inherent to each unit, such that
all latent variables have unit scaling. Therefore, the scaling measured by SAW is independent from
the initial scaling of the inputs. This is different from SNP-SAW and SNP-ZCA that both perform

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1007550250
FLOP reduction (%)

0

20

40

60

Ac
cu

ra
cy

VGG-11

1007550250
FLOP reduction (%)

VGG-16

1007550250
FLOP reduction (%)

VGG-19
SNP-SAW
SNP-SAW-tilde

uniform
var

Figure 6: Similar to Figure 4, we compare SNP-SAW-tilde against SNP-SAW on VGG-16 without
retraining.

superior to all our other methods after retraining. We hypothesize that a measure of this unit scaling
may increase the performance. Furthermore, ZCA is a way of all-to-all orthonormalization. Therefore,
this overestimates ability to reconstruct upon pruning as pruned units no longer contribute to the
orthonormalization. This overestimation may be, albeit very costly, circumvented by recomputing the
measure after each pruning step. Note that this equally applies to our SNP-ZCA measure.

While this measure has not yet been proven to improve upon other measures evaluated herein, it is
certainly interesting for future work.

D HYPERPARAMETER OVERVIEW

The retraining recipe is a significant contributing factor for network performance after retraining
(Wang et al., 2023a). In order to keep fair comparisons, we re-implemented a few important baselines
in the literature on VGG-16 and compared their performance under the same retraining recipe. For
VGG-16 we empirically found that our models performed best under the initial training recipe for the
networks by (Paszke et al., 2019).

For ResNet-50, we used the recipe by (Wang et al., 2023a;b) to ensure a comparison to the novel
methods under the same retraining recipe. Table 3 shows these recipes we used.

Table 3: Hyperparameter overview for retraining VGG-16 and ResNet-50 on ImageNet with PyTorch.

Hyperparameter VGG-16 ResNet-50
Optimizer SGD with momentum
Learning Rate 0.01
Momentum 0.9
Weight Decay (L2 Regularization) 5× 10−4

Batch Size 256
Number of Epochs 90
Learning Rate Scheduler StepLR MultiStepLR
Steps at Epochs 30 / 60 30 / 60 / 75
Learning Rate Decay Factor 0.1
Data Augmentation RandomResizedCrop, RandomHorizontalFlip
Normalization Mean: [0.485, 0.456, 0.406]

Std: [0.229, 0.224, 0.225]
Loss Function CrossEntropyLoss

E PRUNING RATIOS

For our analysis on VGG networks without retraining, we incremented the global pruning ratios in
steps of 0.01 until 0.1, 0.025 until 0.3 and then used steps of 0.1. For ThiNet, we used a stepsize of
0.1 throughout.

For our retraining analysis, the we used the following pruning ratios for uniform pruning: [0.1, 0.2,
0.3, 0.4, 0.5].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4 shows the pruning ratios for the variance and PCA heuristics. We used the ratio with the
closest FLOP count compared to the uniform pruning ratios. We similarly evaluated the FLOP count
of pruned ResNet-50 models. Here we incremented the pruning ratio by 0.01 until the desired FLOP
count was reached.

Table 4: Pruning ratios for VGG-16 retraining experiments.

Method Pruning ratios

SAW [0.04, 0.1, 0.175, 0.25, 0.3]
ZCA [0.03, 0.8, 0.125, 0.2, 0.275]
C [0.03, 0.08, 0.15, 0.225, 0.3]
PFA-EN [0.01, 0.04, 0.06, 0.1, 0.15]

F RESNET PRUNING

To prune networks with skip connections, we adapt the Dependency Graph (DepGraph) framework
(Fang et al., 2023). DepGraph groups layers so that when a node is pruned in one layer, the
corresponding nodes in related layers are pruned as well. In ResNets, information flows through
two parallel branches: the residual branch and the main branch. These branches merge by summing
their outputs elementwise, meaning both pathways must have the same output dimensionality to fully
take advantage of pruning a node. DepGraph ensures that when a node is pruned, the corresponding
input and output connections are also removed in computationally adjacent layers. Consequently,
it is not clear which layer of a group to use for importance scoring. In this work, we prune nodes
based upon the input activity. Naturally, this extends to scoring group-wise input activities for our
unnormalized-ZCA importance and the global variance-based pruning cutoffs.

16

	Introduction
	Subspace node pruning (SNP)
	Factorising neural contributions
	Importance scoring: Reordering units prior to factorization
	Cumulative variances: From pruning layers to pruning networks

	Experiments
	Results
	Discussion
	Relation to linear least squares
	Algorithm including permutations
	Reconstruction-aware importance scoring
	Hyperparameter overview
	Pruning Ratios
	ResNet pruning

