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ABSTRACT

Learning quickly from very few labeled samples is a fundamental attribute that
separates machines and humans in the era of deep representation learning. Unsu-
pervised few-shot learning (U-FSL) aspires to bridge this gap by discarding the
reliance on annotations at training time. Intrigued by the success of contrastive
learning approaches in the realm of U-FSL, we structurally approach their short-
comings in both pretraining and downstream inference stages. We propose a novel
Dynamic Clustered mEmory (DyCE) module to promote a highly separable latent
representation space for enhancing positive sampling at the pretraining phase and
infusing implicit class-level insights into unsupervised contrastive learning. We
then tackle the, somehow overlooked yet critical, issue of sample bias at the few-
shot inference stage. We propose an iterative Optimal Transport-based distribution
Alignment (OpTA) strategy and demonstrate that it efficiently addresses the prob-
lem, especially in low-shot scenarios where FSL approaches suffer the most from
sample bias. We later on discuss that DyCE and OpTA are two intertwined pieces
of a novel end-to-end approach (we coin as BECLR), constructively magnifying
each other’s impact. We then present a suite of extensive quantitative and qualita-
tive experimentation to corroborate that BECLR sets a new state-of-the-art across
ALL existing U-FSL benchmarks (to the best of our knowledge), and significantly
outperforms the best of the current baselines (codebase available at GitHub).

1 INTRODUCTION

Figure 1: miniImageNet (5-way, 1-shot, left) and
(5-way, 5-shot, right) accuracy in the U-FSL land-
scape. BECLR sets a new state-of-the-art in all set-
tings by a significant margin.

Achieving acceptable performance in deep repre-
sentation learning comes at the cost of humongous
data collection, laborious annotation, and exces-
sive supervision. As we move towards more com-
plex downstream tasks, this becomes increasingly
prohibitive; in other words, supervised representa-
tion learning simply does not scale. In stark con-
trast, humans can quickly learn new tasks from a
handful of samples, without extensive supervision.
Few-shot learning (FSL) aspires to bridge this fun-
damental gap between humans and machines, us-
ing a suite of approaches such as metric learn-
ing (Wang et al., 2019; Bateni et al., 2020; Yang
et al., 2020), meta-learning (Finn et al., 2017; Ra-
jeswaran et al., 2019; Rusu et al., 2018), and prob-
abilistic learning (Iakovleva et al., 2020; Hu et al.,
2019; Zhang et al., 2021). FSL has shown promis-
ing results in a supervised setting so far on a number of benchmarks (Hu et al., 2022; Singh &
Jamali-Rad, 2022; Hu et al., 2023b); however, the need for supervision still lingers on. This has led
to the emergence of a new divide called unsupervised FSL (U-FSL). The stages of U-FSL are the
same as their supervised counterparts: pretraining on a large dataset of base classes followed by fast
adaptation and inference to unseen few-shot tasks (of novel classes). The extra challenge here is the
absence of labels during pretraining. U-FSL approaches have gained an upsurge of attention most
recently owing to their practical significance and close ties to self-supervised learning.
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The goal of pretraining in U-FSL is to learn a feature extractor (a.k.a encoder) to capture the global
structure of the unlabeled data. This is followed by fast adaptation of the frozen encoder to unseen
tasks typically through a simple linear classifier (e.g., a logistic regression classifier). The body
of literature here can be summarized into two main categories: (i) meta-learning-based pretrain-
ing where synthetic few-shot tasks resembling the downstream inference are generated for episodic
training of the encoder (Hsu et al., 2018; Khodadadeh et al., 2019; 2020); (ii) (non-episodic) transfer-
learning approaches where pretraining boils down to learning optimal representations suitable for
downstream few-shot tasks (Medina et al., 2020; Chen et al., 2021b; 2022; Jang et al., 2022). Re-
cent studies demonstrate that (more) complex meta-learning approaches are data-inefficient (Dhillon
et al., 2019; Tian et al., 2020), and that the transfer-learning-based methods outperform their meta-
learning counterparts. More specifically, the state-of-the-art in this space is currently occupied by
approaches based on contrastive learning, from the transfer-learning divide, achieving top perfor-
mance across a wide variety of benchmarks (Chen et al., 2021a; Lu et al., 2022). The underlying
idea of contrastive representation learning (Chen et al., 2020a; He et al., 2020) is to attract “positive”
samples in the representation space while repelling “negative” ones. To efficiently materialize this,
some contrastive learning approaches incorporate memory queues to alleviate the need for larger
batch sizes (Zhuang et al., 2019; He et al., 2020; Dwibedi et al., 2021; Jang et al., 2022).

Key Idea I: Going beyond instance-level contrastive learning. Operating under the unsupervised
setting, contrastive FSL approaches typically enforce consistency only at the instance level, where
each image within the batch and its augmentations correspond to a unique class, which is an un-
realistic but seemingly unavoidable assumption. The pitfall here is that potential positive samples
present within the same batch might then be repelled in the representation space, hampering the
overall performance. We argue that infusing a semblance of class (or membership)-level insights
into the unsupervised contrastive paradigm is essential. Our key idea to address this is extending the
concept of memory queues by introducing inherent membership clusters represented by dynamically
updated prototypes, while circumventing the need for large batch sizes. This enables the proposed
pretraining approach to sample more meaningful positive pairs owing to a novel Dynamic Clustered
mEmory (DyCE) module. While maintaining a fixed memory size (same as queues), DyCE effi-
ciently constructs and dynamically updates separable memory clusters.

Key Idea II: Addressing inherent sample bias in FSL. The base (pretraining) and novel (inference)
classes are either mutually exclusive classes of the same dataset or originate from different datasets -
both scenarios are investigated in this paper (in Section 5). This distribution shift poses a significant
challenge at inference time for the swift adaptation to the novel classes. This is further aggravated
due to access to only a few labeled (a.k.a support) samples within the few-shot task because the
support samples are typically not representative of the larger unlabeled (a.k.a query) set. We refer to
this phenomenon as sample bias, highlighting that it is overlooked by most (U-)FSL baselines. To
address this issue, we introduce an Optimal Transport-based distribution Alignment (OpTA) add-on
module within the supervised inference step. OpTA imposes no additional learnable parameters, yet
efficiently aligns the representations of the labeled support and the unlabeled query sets, right before
the final supervised inference step. Later on in Section 5, we demonstrate that these two novel
modules (DyCE and OpTA) are actually intertwined and amplify one another. Combining these
two key ideas, we propose an end-to-end U-FSL approach coined as Batch-Enhanced Contrastive
LeaRning (BECLR). Our main contributions can be summarized as follows:

I. We introduce BECLR to structurally address two key shortcomings of the prior art in U-FSL
at pretraining and inference stages. At pretraining, we propose to infuse implicit class-level
insights into the contrastive learning framework through a novel dynamic clustered mem-
ory (coined as DyCE). Iterative updates through DyCE help establish a highly separable
partitioned latent space, which in turn promotes more meaningful positive sampling.

II. We then articulate and address the inherent sample bias in (U-)FSL through a novel add-on
module (coined as OpTA) at the inference stage of BECLR. We show that this strategy helps
mitigate the distribution shift between query and support sets. This manifests its significant
impact in low-shot scenarios where FSL approaches suffer the most from sample bias.

III. We perform extensive experimentation to demonstrate that BECLR sets a new state-of-the-
art in ALL established U-FSL benchmarks; e.g. miniImageNet (see Fig. 1), tieredIma-
geNet, CIFAR-FS, FC100, outperforming ALL existing baselines by a significant margin
(up to 14%, 12%, 15%, 5.5% in 1-shot settings, respectively), to the best of our knowledge.
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2 RELATED WORK

Self-Supervised Learning (SSL). It has been approached from a variety of perspectives (Balestriero
et al., 2023). Deep metric learning methods (Chen et al., 2020a; He et al., 2020; Caron et al., 2020;
Dwibedi et al., 2021), build on the principle of a contrastive loss and encourage similarity between
semantically transformed views of an image. Redundancy reduction approaches (Zbontar et al.,
2021; Bardes et al., 2021) infer the relationship between inputs by analyzing their cross-covariance
matrices. Self-distillation methods (Grill et al., 2020; Chen & He, 2021; Oquab et al., 2023) pass
different views to two separate encoders and map one to the other via a predictor. Most of these
approaches construct a contrastive setting, where a symmetric or (more commonly) asymmetric
Siamese network (Koch et al., 2015) is trained with a variant of the infoNCE(Oord et al., 2018) loss.

Unsupervised Few-Shot Learning (U-FSL). The objective here is to pretrain a model from a large
unlabeled dataset of base classes, akin to SSL, but tailored so that it can quickly generalize to
unseen downstream FSL tasks. Meta-learning approaches (Lee et al., 2020; Ye et al., 2022) gen-
erate synthetic learning episodes for pretraining, which mimic downstream FSL tasks. Here, PsCo
(Jang et al., 2022) utilizes a student-teacher momentum network and optimal transport for creating
pseudo-supervised episodes from a memory queue. Despite its elegant form, meta-learning has been
shown to be data-inefficient in U-FSL (Dhillon et al., 2019; Tian et al., 2020). On the other hand,
transfer-learning approaches (Li et al., 2022; Antoniou & Storkey, 2019; Wang et al., 2022a), follow
a simpler non-episodic pretraining, focused on representation quality. Notably, contrastive learning
methods, such as PDA-Net (Chen et al., 2021a) and UniSiam (Lu et al., 2022), currently hold the
state-of-the-art. Our proposed approach also operates within the contrastive learning premise, but
also employs a dynamic clustered memory module (DyCE) for infusing membership/class-level in-
sights within the instance-level contrastive framework. Here, SAMPTransfer (Shirekar et al., 2023)
takes a different path and tries to ingrain implicit global membership-level insights through message
passing on a graph neural network; however, the computational burden of this approach significantly
hampers its performance with (and scale-up to) deeper backbones than Conv4.

Sample Bias in (U-)FSL. Part of the challenge in (U-)FSL lies in the domain difference between
base and novel classes. To make matters worse, estimating class distributions only from a few
support samples is inherently biased, which we refer to as sample bias. To address sample bias, Chen
et al. (2021a) propose to enhance the support set with additional base-class images, Xu et al. (2022)
project support samples farther from the task centroid, while Yang et al. (2021) use a calibrated
distribution for drawing more support samples, yet all these methods are dependent on base-class
characteristics. On the other hand, Ghaffari et al. (2021); Wang et al. (2022b) utilize Firth bias
reduction to alleviate the bias in the logistic classifier itself, yet are prone to over-fitting. In contrast,
the proposed OpTA module requires no fine-tuning and does not depend on the pretraining dataset.

3 PROBLEM STATEMENT: UNSUPERVISED FEW-SHOT LEARNING

We follow the most commonly adopted setting in the literature (Chen et al., 2021a;b; Lu et al., 2022;
Jang et al., 2022), which consists of: an unsupervised pretraining, followed by a supervised inference
(a.k.a fine-tuning) strategy. Formally, we consider a large unlabeled dataset Dtr = {xi} of so-called
“base” classes for pretraining the model. The inference phase then involves transferring the model to
unseen few-shot downstream tasks Ti, drawn from a smaller labeled test dataset of so-called “novel”
classes Dtst = {(xi, yi)}, with yi denoting the label of sample xi. Each task Ti is composed of two
parts [S,Q]: (i) the support set S, from which the model learns to adapt to the novel classes, and (ii)
the query set Q, on which the model is evaluated. The support set S = {xsi , ysi }NKi=1 is constructed
by drawing K labeled random samples from N different classes, resulting in the so-called (N -way,
K-shot) setting. The query set Q = {xqj}

NQ
j=1 contains NQ (with Q > K) unlabeled samples. The

base and novel classes are mutually exclusive, i.e., the distributions of Dtr and Dtst are different.

4 PROPOSED METHOD: BECLR
4.1 UNSUPERVISED PRETRAINING

We build the unsupervised pretraining strategy of BECLR following contrastive representation learn-
ing. The core idea here is to efficiently attract “positive” samples (i.e., augmentations of the same
image) in the representation space, while repelling “negative” samples. However, traditional con-
trastive learning approaches address this at the instance level, where each image within the batch
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DyCES

DyCET

Figure 2: Overview of the proposed pretraining framework of BECLR. Two augmented views of the batch
images X{α,β} are both passed through a student-teacher network followed by the DyCE memory module.
DyCE enhances the original batch with meaningful positives and dynamically updates the memory partitions.

has to correspond to a unique class (a statistically unrealistic assumption!). As a result, potential
positives present within a batch might be treated as negatives, which can have a detrimental impact
on performance. A common strategy to combat this pitfall (also to avoid prohibitively large batch
sizes) is to use a memory queue (Wu et al., 2018; Zhuang et al., 2019; He et al., 2020). Exceptionally,
PsCo (Jang et al., 2022) uses optimal transport to sample from a first-in-first-out memory queue and
generate pseudo-supervised few-shot tasks in a meta-learning-based framework, whereas NNCLR
(Dwibedi et al., 2021) uses a nearest-neighbor approach to generate more meaningful positive pairs
in the contrastive loss. However, these memory queues are still oblivious to global memberships
(i.e., class-level information) in the latent space. Instead, we propose to infuse membership/class-
level insights through a novel memory module (DyCE) within the pretraining phase of the proposed
end-to-end approach: BECLR. Fig. 2 provides a schematic illustration of the proposed contrastive
pretraining framework within BECLR, and Fig. 3 depicts the mechanics of DyCE.

Algorithm 1: Pretraining of BECLR
Require: A, θ, ψ, fθ , fψ , gθ , gψ , hθ , µ,m, DyCE(·)

1 X̂ =
[
ζα(X), ζβ(X)

]
for ζα, ζβ ∼ A

2 ZS = hθ ◦ gθ ◦ fθ
(
µ(X̂)

)
3 ZT = gψ ◦ fψ(X̂)

4 ẐS , ẐT = DyCES(ZS), DyCET (ZT )

5 Compute loss: Lcontr. using Eq. 3 on ẐS , ẐT

6 Update: θ ← θ −∇Lcontr., ψ ← mψ + (1−m)θ

Pretraining Strategy of BECLR. The pretrain-
ing pipeline of BECLR is summarized in Al-
gorithm 1, and a Pytorch-like pseudo-code can
be found in Appendix E. Let us now walk you
through the algorithm. Let ζa, ζb ∼ A be two
randomly sampled data augmentations from the
set of all available augmentations,A. The mini-
batch can then be denoted as X̂ = [x̂i]

2B
i=1 =[

[ζa(xi)]
B
i=1, [ζ

b(xi)]
B
i=1

]
, where B the origi-

nal batch size (line 1, Algorithm 1). As shown in Fig. 2, we adopt a student-teacher (a.k.a Siamese)
asymmetric momentum architecture similar to Grill et al. (2020); Chen & He (2021). Let µ(·) be a
patch-wise masking operator, f(·) the backbone feature extractor (ResNets (He et al., 2016) in our
case), and g(·), h(·) projection and prediction multi-layer perceptrons (MLPs), respectively. The
teacher weight parameters (ψ) are an exponential moving averaged (EMA) version of the student
parameters (θ), i.e., ψ ← mψ + (1−m)θ, as in Grill et al. (2020), where m the momentum hyper-
parameter, while θ are updated through stochastic gradient descent (SGD). The student and teacher
representations ZS and ZT (both of size 2B × d, with d the latent embedding dimension) can then
be obtained as follows: ZS = hθ ◦ gθ ◦ fθ

(
µ(X̂)

)
, ZT = gψ ◦ fψ(X̂) (lines 2,3).

Upon extracting ZS and ZT , they are fed into the proposed dynamic memory module (DyCE),
where enhanced versions of the batch representations ẐS , ẐT (both of size 2B(k + 1) × d, with
k denoting the number of selected nearest neighbors) are generated (line 4). Finally, we apply the
contrastive loss in Eq. 3 on the enhanced batch representations ẐS , ẐT (line 5). Upon finishing
unsupervised pretraining, only the student encoder (fθ) is kept for the subsequent inference stage.

Dynamic Clustered Memory (DyCE). How do we manage to enhance the batch with meaningful
true positives in the absence of labels? We introduce DyCE: a novel dynamically updated clustered
memory to moderate the representation space during training, while infusing a semblance of class-
cognizance. We demonstrate later on in Section 5 that the design choices in DyCE have a significant
impact on both pretraining performance as well as the downstream few-shot classification.
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DyCE

Figure 3: Overview of the proposed dynamic clustered
memory (DyCE) and its two informational paths.

Algorithm 2: DyCE
Require: epochthr,M, Γ, Z,B, k

1 if |M| = M then
2 / / Path (i): top-k and batch enhancement)
3 if epoch≥ epochthr then
4 ν = [νi]

2B
i=1 =

[
argmin
j∈[P ]

⟨zi,γj⟩
]2B
i=1

5 Yi ← top-k
(
{zi,Pνi}

)
, ∀i ∈ [2B]

6 Ẑ = [Z,Y1, . . . ,Y2B ]

7 / / Path (ii): iterative memory updating
8 Find optimal plan between Z, Γ: π∗ ← Solve Eq. 2
9 UpdateM with new Z:M← update(M,π∗,Z)

10 Discard 2B oldest batch embeddings: dequeue(M)

11 else
12 Store new batch:M← store(M,Z)

Return: Ẑ

Let us first establish some notation. We con-
sider a memory unit M capable of storing
up to M latent embeddings (each of size d).
To accommodate clustered memberships within
DyCE, we consider up to P partitions (or clus-
ters) Pi inM = [P1, . . . ,PP ], each of which
is represented by a prototype stored in Γ =
[γ1, . . . ,γP ]. Each prototype γi (of size 1× d)
is the average of the latent embeddings stored
in partition Pi. As shown in Fig. 3 and in Al-
gorithm 2, DyCE consists of two informational
paths: (i) the top-k neighbor selection and batch
enhancement path (bottom branch of the fig-
ure), which uses the current state ofM and Γ;
(ii) the iterative memory updating via dynamic
clustering path (top branch). DyCE takes as in-
put student or teacher embeddings (we use Z
here, for brevity) and returns the enhanced ver-
sions Ẑ. We also allow for an adaptation period
epoch < epochthr (empirically 20-50 epochs),
during which path (i) is not activated and the
training batch is not enhanced. To further elab-
orate, path (i) starts with assigning each zi ∈ Z
to its nearest (out of P ) memory prototype γνi
based on the Euclidean distance ⟨·⟩. ν is a vec-
tor of indices (of size 2B×1) that contains these
prototype assignments for all batch embeddings
(line 4, Algorithm 2). Next (in line 5), we se-
lect the k most similar memory embeddings to zi from the memory partition corresponding to its
assigned prototype (Pνi ) and store them in Yi (of size k×d). Finally (in line 6), all Yi,∀i ∈ [2B] are
concatenated into the enhanced batch Ẑ = [Z,Y1, . . . ,Y2B ] of size L× d (where L = 2B(k+1)).
Path (ii) addresses the iterative memory updating by casting it into an optimal transport problem
(Cuturi, 2013) given by:

Π(r, c) =
{
π ∈ R2B × P

+ | π1P = r, π⊤12B = c, r = 1 · 1/2B, c = 1 · 1/P
}
, (1)

to find a transport plan π (out of Π) mapping Z to Γ. Here, r ∈ R2B denotes the distribution of
batch embeddings [zi]2Bi=1, c ∈ RP is the distribution of memory cluster prototypes [γi]Pi=1. The last
two conditions in Eq. 1 enforce equipartitioning (i.e., uniform assignment) of Z into the P memory
partitions/clusters. Obtaining the optimal transport plan, π⋆, can then be formulated as:

π⋆ = argmin
π∈Π(r,c)

⟨π,D⟩F − εH(π), (2)

and solved using the Sinkhorn-Knopp (Cuturi, 2013) algorithm (line 8). Here, D is a pairwise
distance matrix between the elements of Z and Γ (of size 2B × P ), ⟨·⟩F denotes the Frobenius dot
product, ε is a regularisation term, and H(·) is the Shannon entropy. Next (in line 9), we add the
embeddings of the current batch Z toM and use π⋆ for updating the partitions Pi and prototypes
Γ (using EMA for updating). Finally, we discard the 2B oldest memory embeddings (line 10).

Loss Function. The popular infoNCE loss (Oord et al., 2018) is the basis of our loss function, yet
recent studies (Poole et al., 2019; Song & Ermon, 2019) have shown that it is prone to high bias,
when the batch size is small. To address this, we adopt a variant of infoNCE, which maximizes the
same mutual information objective, but has been shown to be less biased (Lu et al., 2022):

Lcontr. =
1

L

L/2∑
i=1

(
d[zS

i ,z
T+
i ] + d[zS+

i ,zT
i ]

)
− λ log

(
1

L

L∑
i=1

∑
j ̸=i,i+

exp(d[zS
i ,z

S
j ]/τ)

)
, (3)

where τ is a temperature parameter, d[·] is the negative cosine similarity, λ is a weighting hyperpa-
rameter, L is the enhanced batch size and z+

i stands for the latent embedding of the positive sample,

5



Published as a conference paper at ICLR 2024

OpTA

Figure 4: Overview of the inference strategy of BECLR. Given a test episode, the support (S) and query (Q)
sets are passed to the pretrained feature extractor (fθ). OpTA aligns support prototypes and query features.

corresponding to sample i. Following (Chen & He, 2021), to further boost training performance, we
pass both views through both the student and the teacher. The first term in Eq. 3 operates on positive
pairs, and the second term pushes each representation away from all other batch representations.

4.2 SUPERVISED INFERENCE

Supervised inference (a.k.a fine-tuning) usually combats the distribution shift between training and
test datasets. However, the limited number of support samples (in FSL tasks) at test time leads
to a significant performance degradation due to the so-called sample bias (Cui & Guo, 2021; Xu
et al., 2022). This issue is mostly disregarded in recent state-of-the-art U-FSL baselines (Chen et al.,
2021a; Lu et al., 2022; Hu et al., 2023a). As part of the inference phase of BECLR, we propose a
simple, yet efficient, add-on module (coined as OpTA) for aligning the distributions of the query (Q)
and support (S) sets, to structurally address sample bias. Notice that OpTA is not a learnable module
and that there are no model updates nor any fine-tuning involved in the inference stage of BECLR.

Optimal Transport-based Distribution Alignment (OpTA). Let T = S ∪ Q be a downstream
few-shot task. We first extract the support ZS = fθ(S) (of size NK × d) and query ZQ = fθ(Q)
(of size NQ × d) embeddings and calculate the support set prototypes P S (class averages of size
N × d). Next, we find the optimal transport plan (π⋆) between P S and ZQ using Eq. 2, with
r ∈ RNQ the distribution of ZQ and c ∈ RN the distribution of P S . Finally, we use π⋆ to map the
support set prototypes onto the region occupied by the query embeddings:

P̂ S = π̂⋆TZQ, π̂⋆i,j =
π⋆i,j∑
j π

⋆
i,j

,∀i ∈ [NQ], j ∈ [N ], (4)

where π̂⋆ is the normalized transport plan and P̂ S are the transported support prototypes. Finally,
we fit a logistic regression classifier on P̂ S to infer on the unlabeled query set. We show in Sec-
tion 5 that OpTA successfully minimizes the distribution shift (between support and query sets) and
contributes to the overall significant performance margin BECLR offers against the best existing
baselines. Note that we iteratively perform δ consecutive passes of OpTA, where P̂ S acts as the in-
put of the next pass. Notably, OpTA can straightforwardly be applied on top of any U-FSL approach.
An overview of OpTA and the proposed inference strategy is illustrated in Fig. 4.

Remark: OpTA operates on two distributions and relies on the total number of unlabeled query
samples being larger than the total number of labeled support samples (|Q| > |S|) for reasonable
distribution mapping, which is also the standard convention in the U-FSL literature. That said, OpTA
would still perform on imbalanced FSL tasks as long as the aforementioned condition is met.

5 EXPERIMENTS

In this section, we rigorously study the performance of the proposed approach both quantitatively as
well as qualitatively by addressing the following three main questions:
[Q1] How does BECLR perform against the state-of-the-art for in-domain and cross-domain settings?
[Q2] Does DyCE affect pretraining performance by establishing separable memory partitions?
[Q3] Does OpTA address the sample bias via the proposed distribution alignment strategy?

We use PyTorch (Paszke et al., 2019) for all implementations. Elaborate implementation and training
details are discussed in the supplementary material, in Appendix A.

Benchmark Datasets. We evaluate BECLR in terms of its in-domain performance on the two most
widely adopted few-shot image classification datasets: miniImageNet (Vinyals et al., 2016) and
tieredImageNet (Ren et al., 2018). Additionally, for the in-domain setting, we also evaluate on two
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Table 1: Accuracies (in % ± std) on miniImageNet and tieredImageNet compared against unsupervised
(Unsup.) and supervised (Sup.) baselines. Backbones: RN: Residual network.†: denotes our reproduc-
tion. ∗: denotes extra synthetic training data used. Style: best and second best.

miniImageNet tieredImageNet
Method Backbone Setting 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
SwAV† (Caron et al., 2020) RN18 Unsup. 59.84 ± 0.52 78.23 ± 0.26 65.26 ± 0.53 81.73 ± 0.24

NNCLR† (Dwibedi et al., 2021) RN18 Unsup. 63.33 ± 0.53 80.75 ± 0.25 65.46 ± 0.55 81.40 ± 0.27

CPNWCP (Wang et al., 2022a) RN18 Unsup. 53.14 ± 0.62 67.36 ± 0.5 45.00 ± 0.19 62.96 ± 0.19

HMS (Ye et al., 2022) RN18 Unsup. 58.20 ± 0.23 75.77 ± 0.16 58.42 ± 0.25 75.85 ± 0.18

SAMPTransfer† (Shirekar et al., 2023) RN18 Unsup. 45.75 ± 0.77 68.33 ± 0.66 42.32 ± 0.75 53.45 ± 0.76

PsCo† (Jang et al., 2022) RN18 Unsup. 47.24 ± 0.76 65.48 ± 0.68 54.33 ± 0.54 69.73 ± 0.49

UniSiam + dist (Lu et al., 2022) RN18 Unsup. 64.10 ± 0.36 82.26 ± 0.25 67.01 ± 0.39 84.47 ± 0.28

Meta-DM + UniSiam + dist∗ (Hu et al., 2023a) RN18 Unsup. 65.64 ± 0.36 83.97 ± 0.25 67.11 ± 0.40 84.39 ± 0.28

MetaOptNet (Lee et al., 2019) RN18 Sup. 64.09 ± 0.62 80.00 ± 0.45 65.99 ± 0.72 81.56 ± 0.53

Transductive CNAPS (Bateni et al., 2022) RN18 Sup. 55.60 ± 0.90 73.10 ± 0.70 65.90 ± 1.10 81.80 ± 0.70

BECLR (Ours) RN18 Unsup. 75.74 ± 0.62 84.93 ± 0.33 76.44 ± 0.66 84.85 ± 0.37

PDA-Net (Chen et al., 2021a) RN50 Unsup. 63.84 ± 0.91 83.11 ± 0.56 69.01 ± 0.93 84.20 ± 0.69

UniSiam + dist (Lu et al., 2022) RN50 Unsup. 65.33 ± 0.36 83.22 ± 0.24 69.60 ± 0.38 86.51 ± 0.26

Meta-DM + UniSiam + dist∗ (Hu et al., 2023a) RN50 Unsup. 66.68 ± 0.36 85.29 ± 0.23 69.61 ± 0.38 86.53 ± 0.26

BECLR (Ours) RN50 Unsup. 80.57 ± 0.57 87.82 ± 0.29 81.69 ± 0.61 87.86 ± 0.32

Table 3: Accuracies (in % ± std) on miniImageNet → CDFSL. †: our reproduc. Style: best and second best.
ChestX ISIC EuroSAT CropDiseases

Method 5 way 5-shot 5 way 20-shot 5 way 5-shot 5 way 20-shot 5 way 5-shot 5 way 20-shot 5 way 5-shot 5 way 20-shot
SwAV† (Caron et al., 2020) 25.70 ± 0.28 30.41 ± 0.25 40.69 ± 0.34 49.03 ± 0.30 84.82 ± 0.24 90.77 ± 0.26 88.64 ± 0.26 95.11 ± 0.21

NNCLR† (Dwibedi et al., 2021) 25.74 ± 0.41 29.54 ± 0.45 38.85 ± 0.56 47.82 ± 0.53 83.45 ± 0.57 90.80 ± 0.39 90.76 ± 0.57 95.37 ± 0.37

SAMPTransfer (Shirekar et al., 2023) 26.27 ± 0.44 34.15 ± 0.50 47.60 ± 0.59 61.28 ± 0.56 85.55 ± 0.60 88.52 ± 0.50 91.74 ± 0.55 96.36 ± 0.28

PsCo (Jang et al., 2022) 24.78 ± 0.23 27.69 ± 0.23 44.00 ± 0.30 54.59 ± 0.29 81.08 ± 0.35 87.65 ± 0.28 88.24 ± 0.31 94.95 ± 0.18

UniSiam + dist (Lu et al., 2022) 28.18 ± 0.45 34.58 ± 0.46 45.65 ± 0.58 56.54 ± 0.5 86.53 ± 0.47 93.24 ± 0.30 92.05 ± 0.50 96.83 ± 0.27

ConFeSS (Das et al., 2021) 27.09 33.57 48.85 60.10 84.65 90.40 88.88 95.34
BECLR (Ours) 28.46 ± 0.23 34.21 ± 0.25 44.48 ± 0.31 56.89 ± 0.29 88.55 ± 0.23 93.92 ± 0.14 93.65 ± 0.25 97.72 ± 0.13

curated versions of CIFAR-100 (Krizhevsky et al., 2009) for FSL, i.e., CIFAR-FS and FC100. Next,
we evaluate BECLR in cross-domain settings on the Caltech-UCSD Birds (CUB) dataset (Welinder
et al., 2010) and a more recent cross-domain FSL (CDFSL) benchmark (Guo et al., 2020). For cross-
domain experiments, miniImageNet is used as the pretraining (source) dataset and ChestX (Wang
et al., 2017), ISIC (Codella et al., 2019), EuroSAT (Helber et al., 2019) and CropDiseases (Mohanty
et al., 2016) (in Table 3) and CUB (in Table 12 in the Appendix), as the inference (target) datasets.

5.1 EVALUATION RESULTS

We report test accuracies with 95% confidence intervals over 2000 test episodes, each with Q = 15
query shots per class, for all datasets, as is most commonly adopted in the literature (Chen et al.,
2021a; 2022; Lu et al., 2022). The performance on miniImageNet, tieredImageNet, CIFAR-FS,
FC100 and miniImageNet→ CUB is evaluated on (5-way, {1, 5}-shot) classification tasks, whereas
for miniImageNet → CDFSL we test on (5-way, {5, 20}-shot) tasks, as is customary across the
literature (Guo et al., 2020; Ericsson et al., 2021). We assess BECLR’s performance against a wide
variety of baselines ranging from (i) established SSL baselines (Chen et al., 2020a; Grill et al., 2020;
Caron et al., 2020; Zbontar et al., 2021; Chen & He, 2021; Dwibedi et al., 2021) to (ii) state-of-the-
art U-FSL approaches (Chen et al., 2021a; Lu et al., 2022; Shirekar et al., 2023; Chen et al., 2022;
Hu et al., 2023a; Jang et al., 2022), as well as (iii) against a set of competitive supervised baselines
(Rusu et al., 2018; Gidaris et al., 2019; Lee et al., 2019; Bateni et al., 2022).

Table 2: Accuracies in (% ± std) on CIFAR-FS and FC100
in (5-way, {1, 5}-shot). Style: best and second best.

CIFAR-FS FC100
Method 1-shot 5-shot 1-shot 5-shot
SimCLR (Chen et al., 2020a) 54.56 ± 0.19 71.19 ± 0.18 36.20 ± 0.70 49.90 ± 0.70

MoCo v2 (Chen et al., 2020b) 52.73 ± 0.20 67.81 ± 0.19 37.70 ± 0.70 53.20 ± 0.70

LF2CS (Li et al., 2022) 55.04 ± 0.72 70.62 ± 0.57 37.20 ± 0.70 52.80 ± 0.60

Barlow Twins (Zbontar et al., 2021) - - 37.90 ± 0.70 54.10 ± 0.60

HMS (Ye et al., 2022) 54.65 ± 0.20 73.70 ± 0.18 37.88 ± 0.16 53.68 ± 0.18

Deep Eigenmaps (Chen et al., 2022) - - 39.70 ± 0.70 57.90 ± 0.70

BECLR (Ours) 70.39 ± 0.62 81.56 ± 0.39 45.21 ± 0.50 60.02 ± 0.43

[A1-a] In-Domain Setting. The results
for miniImageNet and tieredImageNet in
the (5-way, {1, 5}-shot) settings are re-
ported in Table 1. Regardless of backbone
depth, BECLR sets a new state-of-the-art
on both datasets, showing up to a 14%
and 2.5% gain on miniImageNet over the
prior art of U-FSL for the 1 and 5-shot set-
tings, respectively. The results on tiered-
ImageNet also highlight a considerable performance margin. Interestingly, BECLR even outper-
forms U-FSL baselines trained with extra (synthetic) training data, sometimes distilled from deeper
backbones, also the cited supervised baselines. Table 2 provides further insights on (the less com-
monly adopted) CIFAR-FS and FC100 benchmarks, showing a similar trend with up to 15% and 8%
in 1 and 5-shot settings, respectively, for CIFAR-FS, and 5.5% and 2% for FC100.
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Figure 5: BECLR outperforms
all baselines, in terms of U-FSL
performance on miniImageNet,
even without OpTA.

Figure 6: The dynamic updates of DyCE
allow the memory to evolve into a highly
separable partitioned latent space. Clusters
are denoted by different (colors, markers).

Figure 7: OpTA produces
an increasingly larger perfor-
mance boost as the pretrain-
ing feature quality increases.

[A1-b] Cross-Domain Setting. Following Guo et al. (2020), we pretrain on miniImageNet and
evaluate on CDFSL, the results of which are summarized in Tables 3. BECLR again sets a new
state-of-the-art on ChestX, EuroSAT, and CropDiseases, and remains competitive on ISIC. Notably,
the data distributions of ChestX and ISIC are considerably different from that of miniImageNet. We
argue that this influences the embedding quality for the downstream inference, and thus, the efficacy
of OpTA in addressing sample bias. Extended versions of Tables 1-3 are found in Appendix C.

Table 4: BECLR outperforms enhanced prior art with OpTA.

miniImageNet tieredImageNet
Method 1 shot 5 shot 1 shot 5 shot
CPNWCP+OpTA (Wang et al., 2022a) 60.45 ± 0.81 75.84 ± 0.56 55.05 ± 0.31 72.91 ± 0.26

HMS+OpTA (Ye et al., 2022) 69.85 ± 0.42 80.77 ± 0.35 71.75 ± 0.43 81.32 ± 0.34

PsCo+OpTA (Jang et al., 2022) 52.89 ± 0.71 67.42 ± 0.54 57.46 ± 0.59 70.70 ± 0.45

UniSiam+OpTA (Lu et al., 2022) 72.54 ± 0.61 82.46 ± 0.32 73.37 ± 0.64 73.37 ± 0.64

BECLR (Ours) 75.74 ± 0.62 84.93 ± 0.33 76.44 ± 0.66 84.85 ± 0.37

[A1-c] Pure Pretraining and OpTA.
To substantiate the impact of the de-
sign choices in BECLR, we compare
against some of the most influential con-
trastive SSL approaches: SwAV, Sim-
Siam, NNCLR, and the prior U-FSL
state-of-the-art: UniSiam (Lu et al.,
2022), in terms of pure pretraining performance, by directly evaluating the pretrained model on
downstream FSL tasks (i.e., no OpTA and no fine-tuning). Fig. 5 summarizes this comparison for
various network depths in the (5-way, {1, 5}-shot) settings on miniImageNet. BECLR again out-
performs all U-FSL/SSL frameworks for all backbone configurations, even without OpTA. As an
additional study, in Table 4 we take the opposite steps by plugging in OpTA on a suite of recent
prior art in U-FSL. The results demonstrate two important points: (i) OpTA is in fact agnostic to
the choice of pretraining method, having considerable impact on downstream performance, and (ii)
there still exists a margin between enhanced prior art and BECLR, corroborating that it is not just
OpTA that has a meaningful effect but also DyCE and our pretraining methodology.

[A2] Latent Memory Space Evolution. As a qualitative demonstration, we visualize 30 memory
embeddings from 25 partitions Pi within DyCE for the initial (left) and final (right) state of the latent
memory space (M). The 2-D UMAP plots in Fig. 6 provide qualitative evidence of a significant
improvement in terms of cluster separation, as training progresses. To quantitatively substantiate this
finding, the quality of the memory clusters is also measured by the DBI score (Davies & Bouldin,
1979), with a lower DBI indicating better inter-cluster separation and intra-cluster tightness. The
DBI value is significantly lower between partitions Pi in the final state ofM, further corroborating
DyCE’s ability to establish highly separable and meaningful partitions.

Before OpTA After OpTA

Figure 8: OpTA addresses sample bias, reducing the
distribution shift between support and query sets.

[A3-a] Impact of OpTA. We visualize the UMAP
projections for a randomly sampled (3-way, 1-
shot) miniImageNet episode. Fig. 8 illustrates the
original P S (left) and transported P̂ S (right) sup-
port prototypes (♦), along with the query set em-
beddings ZQ (•) and their kernel density distribu-
tions (in contours). As can be seen, the original
prototypes are highly biased and deviate from the
latent query distributions. OpTA pushes the trans-
ported prototypes much closer to the query distributions (contour centers), effectively diminishing
sample bias, resulting in significantly higher accuracy in the corresponding episode.

[A3-b] Relation between Pretraining and Inference. OpTA operates under the assumption that
the query embeddings ZQ are representative of the actual class distributions. As such, we argue
that its efficiency depends on the quality of the extracted features through the pretrained encoder.

8



Published as a conference paper at ICLR 2024

Table 6: Hyperparameter ablation study for miniImageNet (5-way, 5-shot) tasks. Accuracies in (% ± std).
Masking Ratio Output Dim. (d) Neg. Loss Weight (λ) # of NNs (k) # of Clusters (P ) Memory Size (M ) Memory Module Configuration

Value Accuracy Value Accuracy Value Accuracy Value Accuracy Value Accuracy Value Accuracy Value Accuracy
10% 86.59 ± 0.25 256 85.16 ± 0.26 0.0 85.45 ± 0.27 1 86.58 ± 0.27 100 85.27 ± 0.24 2048 85.38 ± 0.25 DyCE-FIFO 84.05 ± 0.39

30% 87.82 ± 0.29 512 87.82 ± 0.29 0.1 87.82 ± 0.29 3 87.82 ± 0.29 200 87.82 ± 0.29 4096 86.28 ± 0.29 DyCE-kMeans 85.37 ± 0.33

50% 83.36 ± 0.28 1024 85.93 ± 0.31 0.3 86.33 ± 0.29 5 86.79 ± 0.26 300 85.81 ± 0.25 8192 87.82 ± 0.29 DyCE 87.82 ± 0.29

70% 77.70 ± 0.20 2054 85.42 ± 0.34 0.5 85.63 ± 0.26 10 86.17 ± 0.28 500 85.45 ± 0.20 12288 85.84 ± 0.22

Fig. 7 assesses this hypothesis by comparing pure pretraining (i.e., BECLR without OpTA) and
downstream performance on miniImageNet for the (5-way, 1-shot) setting as training progresses.
As can be seen, when the initial pretraining performance is poor, OpTA even leads to performance
degradation. On the contrary, it offers an increasingly larger boost as pretraining accuracy improves.
The key message here is that these two steps (pretraining and inference) are highly intertwined,
further enhancing the overall performance. This notion sits at the core of the BECLR design strategy.

5.2 ABLATION STUDIES

Table 5: Ablating main components of BECLR.
Masking EMA Teacher DyCE OpTA 5-way 1-shot 5-way 5-shot

- - - - 63.57 ± 0.43 81.42 ± 0.28

✓ - - - 54.53 ± 0.42 68.35 ± 0.27

- ✓ - - 65.02 ± 0.41 82.33 ± 0.25

✓ ✓ - - 65.33 ± 0.44 82.69 ± 0.26

✓ ✓ ✓ - 67.75 ± 0.43 85.53 ± 0.27

✓ ✓ ✓ ✓ 80.57 ± 0.57 87.82 ± 0.29

Main Components of BECLR. Let us investigate
the impact of sequentially adding in the four main
components of BECLR’s end-to-end architecture:
(i) masking, (ii) EMA teacher encoder, (iii) DyCE
and OpTA. As can be seen from Table 5, when
applied individually, masking degrades the perfor-
mance, but when combined with EMA, it gives a
slight boost (1.5%) for both {1, 5}-shot settings.
DyCE and OpTA are the most crucial components contributing to the overall performance of BECLR.
DyCE offers an extra 2.4% and 2.8% accuracy boost in the 1-shot and 5-shot settings, respectively,
and OpTA provides another 12.8% and 2.3% performance gain, in the aforementioned settings. As
discussed earlier, also illustrated in Fig. 7, the gain of OpTA is owing and proportional to the perfor-
mance of DyCE. This boost is paramount in the 1-shot scenario where the sample bias is severe.

Other Hyperparameters. In Table 6, we summarize the result of ablations on: (i) the masking ratio
of student images, (ii) the embedding latent dimension d, (iii) the loss weighting hyperparameter λ
(in Eq. 3), and regarding DyCE: (iv) the number of nearest neighbors selected k, (v) the number of
memory partitions/clusters P , (vi) the size of the memory M , and (vii) different memory module
configurations. As can be seen, a random masking ratio of 30% yields the best performance. We find
that d = 512 gives the best results, which is consistent with the literature (Grill et al., 2020; Chen
& He, 2021). The negative loss term turns out to be unnecessary to prevent representation collapse
(as can be seen when λ = 0) and λ = 0.1 yields the best performance. Regarding the number of
neighbors selected (k), there seems to be a sweet spot in this setting around k = 3, where increasing
further would lead to inclusion of potentially false positives, and thus performance degradation. P
and M are tunable hyperparameters (per dataset) that return the best performance at P = 200 and
M = 8192 in this setting. Increasing P , M beyond a certain threshold appears to have a negative
impact on cluster formation. We argue that extremely large memory would result in accumulating
old embeddings, which might no longer be a good representative of their corresponding classes. Fi-
nally, we compare DyCE against two degenerate versions of itself: DyCE-FIFO, where the memory
has no partitions and is updated with a first-in-first-out strategy; here for incoming embeddings we
pick the closest k neighbors. DyCE-kMeans, where we preserve the memory structure and only
replace optimal transport with kMeans (with P clusters), in line 8 of Algorithm 2. The performance
drop in both cases confirms the importance of the proposed mechanics within DyCE.

6 CONCLUDING REMARKS AND BROADER IMPACT

In this paper, we have articulated two key shortcomings of the prior art in U-FSL, to address each
of which we have proposed a novel solution embedded within the proposed end-to-end approach,
BECLR. The first angle of novelty in BECLR is its dynamic clustered memory module (coined as
DyCE) to enhance positive sampling in contrastive learning. The second angle of novelty is an effi-
cient distribution alignment strategy (called OpTA) to address the inherent sample bias in (U-)FSL.
Even though tailored towards U-FSL, we believe DyCE has potential broader impact on generic
self-supervised learning state-of-the-art, as we already demonstrate (in Section 5) that even with
OpTA unplugged, DyCE alone empowers BECLR to still outperform the likes of SwaV, SimSiam
and NNCLR. OpTA, on the other hand, is an efficient add-on module, which we argue has to become
an integral part of all (U-)FSL approaches, especially in the more challenging low-shot scenarios.
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REPRODUCIBILITY STATEMENT.

To help readers reproduce our experiments, we provide extensive descriptions of implementation
details and algorithms. Architectural and training details are provided in Appendices A.1 and A.2,
respectively, along with information on the applied data augmentations (Appendix A.3) and tested
benchmark datasets (Appendix B.1). The algorithms for BECLR pretraining and DyCE are also
provided in both algorithmic (in Algorithms 1, 2) and Pytorch-like pseudocode formats (in Algo-
rithms 3, 4). We have taken every measure to ensure fairness in our comparisons by following the
most commonly adopted pretraining and evaluation settings in the U-FSL literature in terms of:
pretraining/inference benchmark datasets used for both in-domain and cross-domain experiments,
pretraining data augmentations, (N -way,K-shot) inference settings and number of query set images
per tested episode. We also draw baseline results from their corresponding original papers and com-
pare their performance with BECLR for identical backbone depths. For our reproductions (denoted
as †) of SwAV and NNCLR we follow the codebase of the original work and adopt it in the U-FSL
setup, by following the same augmentations, backbones, and evaluation settings as BECLR. Our
codebase is also provided as part of our supplementary material, in an anonymized fashion, and will
be made publicly available upon acceptance. All training and evaluation experiments are conducted
on 2 A40 NVIDIA GPUs.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pp. 5171–
5180. PMLR, 2019.

13



Published as a conference paper at ICLR 2024

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. Advances in neural information processing systems, 32, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
conference on learning representations, 2016.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenenbaum,
Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot classifica-
tion. In 6th International Conference on Learning Representations, ICLR 2018, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In International Conference
on Learning Representations, 2018.

Ojas Shirekar and Hadi Jamali-Rad. Self-supervised class-cognizant few-shot classification. In 2022
IEEE International Conference on Image Processing (ICIP), pp. 976–980. IEEE, 2022.

Ojas Kishorkumar Shirekar, Anuj Singh, and Hadi Jamali-Rad. Self-attention message passing for
contrastive few-shot learning. In Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pp. 5426–5436, 2023.

Anuj Rajeeva Singh and Hadi Jamali-Rad. Transductive decoupled variational inference for few-shot
classification. Transactions on Machine Learning Research, 2022.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual information
estimators. In International Conference on Learning Representations, 2019.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16,
pp. 266–282. Springer, 2020.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Haoqing Wang and Zhi-Hong Deng. Cross-domain few-shot classification via adversarial task aug-
mentation. arXiv preprint arXiv:2104.14385, 2021.

Haoqing Wang, Zhi-Hong Deng, and Haoqing Wang. Contrastive prototypical network with wasser-
stein confidence penalty. In European Conference on Computer Vision, pp. 665–682. Springer,
2022a.

Heng Wang, Tan Yue, Xiang Ye, Zihang He, Bohan Li, and Yong Li. Revisit finetuning strategy
for few-shot learning to transfer the emdeddings. In The Eleventh International Conference on
Learning Representations, 2022b.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Sum-
mers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2097–2106, 2017.

Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Laurens Van Der Maaten. Simpleshot: Re-
visiting nearest-neighbor classification for few-shot learning. arXiv preprint arXiv:1911.04623,
2019.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-ucsd birds 200. 2010.

14



Published as a conference paper at ICLR 2024

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733–3742, 2018.

Hui Xu, Jiaxing Wang, Hao Li, Deqiang Ouyang, and Jie Shao. Unsupervised meta-learning for
few-shot learning. Pattern Recognition, 116:107951, 2021.

Jing Xu, Xu Luo, Xinglin Pan, Yanan Li, Wenjie Pei, and Zenglin Xu. Alleviating the sample
selection bias in few-shot learning by removing projection to the centroid. Advances in Neural
Information Processing Systems, 35:21073–21086, 2022.

Ling Yang, Liangliang Li, Zilun Zhang, Xinyu Zhou, Erjin Zhou, and Yu Liu. Dpgn: Distribution
propagation graph network for few-shot learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 13390–13399, 2020.

Shuo Yang, Lu Liu, and Min Xu. Free lunch for few-shot learning: Distribution calibration. In
International Conference on Learning Representations, 2021.

Han-Jia Ye, Lu Han, and De-Chuan Zhan. Revisiting unsupervised meta-learning via the character-
istics of few-shot tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):
3721–3737, 2022.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
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A IMPLEMENTATION DETAILS

This section describes the implementation and training details of BECLR.

A.1 ARCHITECTURE DETAILS

BECLR is implemented on PyTorch (Paszke et al., 2019). We use the ResNet family (He et al., 2016)
for our backbone networks (fθ, fψ). The projection (gθ, gψ) and prediction (hθ) heads are 3- and 2-
layer MLPs, respectively, as in Chen & He (2021). Batch normalization (BN) and a ReLU activation
function are applied to each MLP layer, except for the output layers. No ReLU activation is applied
on the output layer of the projection heads (gθ, gψ), while neither BN nor a ReLU activation is
applied on the output layer of the prediction head (hθ). We use a resolution of 224 × 224 for
input images and a latent embedding dimension of d = 512 in all models and experiments, unless
otherwise stated. The DyCE memory module consists of a memory unitM, initialized as a random
table (of size M × d). We also maintain up to P partitions inM = [P1, . . . ,PP ], each of which is
represented by a prototype stored in Γ = [γ1, . . . ,γP ]. Prototypes γi are the average of the latent
embeddings stored in partition Pi. When training on miniImageNet, CIFAR-FS and FC100, we use
a memory of size M = 8192 that contains P = 200 partitions and cluster prototypes (M = 40960,
P = 1000 for tieredImageNet). Note that both M and P are important hyperparameters, whose
values were selected by evaluating on the validation set of each dataset for model selection. These
hyperparameters would also need to be carefully tuned on an unknown unlabeled training dataset.

A.2 TRAINING DETAILS

BECLR is pretrained on the training splits of miniImageNet, CIFAR-FS, FC100 and tieredImageNet.
We use a batch size of B = 256 images for all datasets, except for tieredImageNet (B = 512).
Following Chen & He (2021), images are resized to 224 × 224 for all configurations. We use the
SGD optimizer with a weight decay of 10−4, a momentum of 0.995, and a cosine decay schedule
of the learning rate. Note that we do not require large-batch optimizers, such as LARS (You et al.,
2017), or early stopping. Similarly to Lu et al. (2022), the initial learning rate is set to 0.3 for the
smaller miniImageNet, CIFAR-FS, FC100 datasets and 0.1 for tieredImageNet, and we train for
400 and 200 epochs, respectively. The temperature scalar in the loss function is set to τ = 2. Upon
finishing unsupervised pretraining, we only keep the last epoch checkpoint of the student encoder
(fθ) for the subsequent inference stage. For the inference and downstream few-shot classification
stage, we create (N -way, K-shot) tasks from the validation and testing splits of each dataset for
model selection and evaluation, respectively. In the inference stage, we sequentially perform up to
δ ≤ 5 consecutive passes of OpTA, with the transported prototypes of each pass acting as the input
of the next pass. The optimal value for δ for each dataset and (N -way, K-shot) setting is selected
by evaluating on the validation dataset.

Note that at the beginning of pretraining both the encoder representations and the memory embed-
ding space within DyCE are highly volatile. Thus, we allow for an adaptation period epoch <
epochthr (empirically 20-50 epochs), during which the batch enhancement path of DyCE is not
activated and the encoder is trained via standard contrastive learning (without enhancing the batch
with additional positives). On the contrary, the memory updating path of DyCE is activated for ev-
ery training batch from the beginning of training, allowing the memory to reach a highly separable
converged state (see Fig. 6), before plugging in the batch enhancement path in the BECLR pipeline.
When the memory space (M) is full for the first time, a kmeans (Likas et al., 2003) clustering step
is performed for initializing the cluster prototypes (γi) and memory partitions (Pi). This kmeans
clustering step is performed only once during training to initialize the memory prototypes, which
are then dynamically updated for each training batch by the memory updating path of DyCE.

A.3 IMAGE AUGMENTATIONS

The data augmentations that were applied in the pretraining stage of BECLR are showcased in Ta-
ble 7. These augmentations were applied on the input images for all training datasets. The default
data augmentation profile follows a common data augmentation strategy in SSL, including Random-
ResizedCrop (with scale in [0.2, 1.0]), random ColorJitter (Wu et al., 2018) of {brightness, contrast,
saturation, hue} with a probability of 0.1, RandomGrayScale with a probability of 0.2, random
GaussianBlur with a probability of 0.5 and a Gaussian kernel in [0.1, 2.0], and finally, RandomHor-
izontalFlip with a probability of 0.5. Following Lu et al. (2022), this profile can be expanded to
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Table 7: Pytorch-like descriptions of the data augmentation profiles applied on the pretraining phase of BECLR.

Data Augmentation Profile Description

RandomResizedCrop(size=224, scale=(0.2, 1))
RandomApply([ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)], p=0.1)

Default RandomGrayScale(p=0.2)
RandomApply([GaussianBlur([0.1, 2.0])], p=0.5)
RandomHorizontalFlip(p=0.5)

RandomResizedCrop(size=224, scale=(0.2, 1))
RandomApply([ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)], p=0.1)
RandomGrayScale(p=0.2)

Strong RandomApply([GaussianBlur([0.1, 2.0])], p=0.5)
RandAugment(n=2, m=10, mstd=0.5)
RandomHorizontalFlip(p=0.5)
RandomVerticalFlip(p=0.5)

the strong data augmentation profile, which also includes RadomVerticalFlip with a probability of
0.5 and RandAugment (Cubuk et al., 2020) with n = 2 layers, a magnitude of m = 10, and a
noise of the standard deviation of magnitude of mstd = 0.5. Unless otherwise stated, the strong
data augmentation profile is applied on all training images before being passed to the backbone
encoders.

B EXPERIMENTAL SETUP

In this section, we provide more detailed information regarding all the few-shot benchmark datasets
that were used as part of our experimental evaluation (in Section 5), along with BECLR’s training
and evaluation procedures for both in-domain and cross-domain U-FSL settings, for ensuring fair
comparisons with U-FSL baselines and our reproductions (for SwAV and NNCLR).

Table 8: Overview of cross-domain few-shot benchmarks, on which BECLR is evaluated. The
datasets are sorted with decreasing (distribution) domain similarity to ImageNet and miniImageNet.

ImageNet similarity Dataset # of classes # of samples

High CUB (Welinder et al., 2010) 200 11,788

Low CropDiseases (Mohanty et al., 2016) 38 43,456
Low EuroSAT (Helber et al., 2019) 10 27,000
Low ISIC (Codella et al., 2019) 7 10,015
Low ChestX (Wang et al., 2017) 7 25,848

B.1 DATASET DETAILS

miniImageNet. It is a subset of ImageNet (Russakovsky et al., 2015), containing 100 classes with
600 images per class. We randomly select 64, 16, and 20 classes for training, validation, and testing,
following the predominantly adopted settings of Ravi & Larochelle (2016).

tieredImageNet. It is a larger subset of ImageNet, containing 608 classes and a total of 779, 165
images, grouped into 34 high-level categories, 20 (351 classes) of which are used for training, 6 (97
classes) for validation and 8 (160 classes) for testing.

CIFAR-FS. It is a subset of CIFAR-100 (Krizhevsky et al., 2009), which is focused on FSL tasks
by following the same sampling criteria that were used for creating miniImageNet. It contains 100
classes with 600 images per class, grouped into 64, 16, 20 classes for training, validation, and testing,
respectively. The additional challenge here is the limited original image resolution of 32× 32.

FC100. It is also a subset of CIFAR-100 (Krizhevsky et al., 2009) and contains the same 60000
(32 × 32) images as CIFAR-FS. Here, the original 100 classes are grouped into 20 superclasses, in
such a way as to minimize the information overlap between training, validation and testing classes
(McAllester & Stratos, 2020). This makes this data set more demanding for (U-)FSL, since training
and testing classes are highly dissimilar. The training split contains 12 superclasses (of 60 classes),
while both the validation and testing splits are composed of 4 superclasses (of 20 classes).
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CDFSL. It consists of four distinct datasets with decreasing domain similarity to ImageNet, and by
extension miniImageNet, ranging from crop disease images in CropDiseases (Mohanty et al., 2016)
and aerial satellite images in EuroSAT (Helber et al., 2019) to dermatological skin lesion images in
ISIC2018 (Codella et al., 2019) and grayscale chest X-ray images in ChestX (Wang et al., 2017).

CUB. It consists of 200 classes and a total of 11, 788 images, split into 100 classes for training
and 50 for both validation and testing, following the split settings of Chen et al. (2018). Additional
information on the cross-domain few-shot benchmarks (CUB and CDFSL) is provided in Table 8.

B.2 PRETRAINING AND EVALUATION PROCEDURES

For all in-domain experiments BECLR is pretrained on the training split of the selected dataset
(miniImageNet, tieredImageNet, CIFAR-FS, or FC100), followed by the subsequent inference stage
on the validation and testing splits of the same dataset for model selection and final evaluation,
respectively. In contrast, in the cross-domain setting BECLR is pretrained on the training split of
miniImageNet and then evaluated on the validation and test splits of either CDFSL (ChestX, ISIC,
EuroSAT, CropDiseases) or CUB. We report test accuracies with 95% confidence intervals over 2000
test episodes, each with 15 query shots per class, for all tested datasets, as is most commonly adopted
in the literature (Chen et al., 2021a; 2022; Lu et al., 2022). The performance on miniImageNet,
tieredImageNet, CIFAR-FS, FC100 and miniImageNet→ CUB is evaluated on (5-way, {1, 5}-shot)
classification tasks, while on miniImageNet→ CDFSL we evaluate on (5-way, {5, 20}-shot) tasks,
as is customary across the literature (Guo et al., 2020).

We have taken every measure to ensure fairness in our comparison with U-FSL baselines and our
reproductions. To do so, all compared baselines have the same pretraining and testing dataset (in
both in-domain and cross-domain scenarios), follow similar data augmentation profiles as part of
their pretraining and are evaluated in identical (N -way, K-shot) FSL settings, on the same number
of query set images, for all tested inference episodes. We also draw baseline results from their corre-
sponding original papers and compare their performance with BECLR for identical backbone depths
(roughly similar parameter count for all methods). For our reproductions (SwAV and NNCLR), we
follow the codebase of the original work and adopt it in the U-FSL setup, by following the same
augmentations, backbones, and evaluation settings as BECLR.

C EXTENDED RESULTS AND VISUALIZATIONS

This section provides extended experimental findings, both quantitative and qualitative, comple-
menting the experimental evaluation in Section 5 and providing further intuition on BECLR.

(a) (b) (c)

Figure 9: (a, b): All 3 support images (•), for all 3 classes, get assigned to a single class-representative memory
prototype (■). (c): A cluster can be split into multiple subclusters, without degrading the model performance.
Colors denote the classes of the random (3-way, 3-shot) episode and the assigned memory prototypes.

C.1 ANALYSIS ON PSEUDOCLASS-COGNIZANCE

As discussed in Section 5, the dynamic equipartitioned updates of DyCE facilitate the creation of
a highly separable latent memory space, which is then used for sampling additional meaningful
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positive pairs. We argue that these separable clusters and their prototypes capture a semblance of
class-cognizance. As a qualitative demonstration, Fig. 9 depicts the 2-D UMAP (McInnes et al.,
2018) projections of the support embeddings (•) for 3 (Figs. 9a, 9b, 9c) randomly sampled mini-
ImageNet (3-way, 3-shot) tasks, along with 50 randomly selected memory prototypes (□) from the
last-epoch checkpoint of DyCE. Only memory prototypes assigned to support embeddings (■) are
colored (with the corresponding class color). As can be seen in Figs. 9a, 9b, all 3-shot embeddings
for each class are assigned to a single memory prototype, which shows that the corresponding pro-
totype, and by extension memory cluster, is capable of capturing the latent representation of a class
even without access to base class labels. Note that as the training progresses, a memory cluster can
split into two or more (sub-)clusters, corresponding to the same latent training class. For example,
Fig. 9c illustrates such a case where the fox class has been split between two different prototypes.
This is to be expected since there is no “one-to-one” relationship between memory clusters and
latent training classes (we do not assume any prior knowledge on the classes of the unlabeled pre-
training dataset and the number of memory clusters is an important hyperparameter to be tuned).
Notably, BECLR still treats images sampled from these two (sub-)clusters as positives, which does
not degrade the model’s performance assuming that both of these (sub-)clusters are consistent (i.e.,
contain only fox image embeddings).

Table 9: Extended version of Table 1. Accuracies (in % ± std) on miniImageNet and tieredImageNet com-
pared against unsupervised (Unsup.) and supervised (Sup.) baselines. Encoders: RN: ResNet, Conv:
convolutional blocks. †: denotes our reproduction. ∗: extra synthetic training data. Style: best and second best.

miniImageNet tieredImageNet
Method Backbone Setting 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
ProtoTransfer (Medina et al., 2020) Conv4 Unsup. 45.67 ± 0.79 62.99 ± 0.75 - -
Meta-GMVAE (Lee et al., 2020) Conv4 Unsup. 42.82 ± 0.45 55.73 ± 0.39 - -
C3LR (Shirekar & Jamali-Rad, 2022) Conv4 Unsup. 47.92 ± 1.20 64.81 ± 1.15 42.37 ± 0.77 61.77 ± 0.25

SAMPTransfer (Shirekar et al., 2023) Conv4b Unsup. 61.02 ± 1.05 72.52 ± 0.68 49.10 ± 0.94 65.19 ± 0.82

LF2CS (Li et al., 2022) RN12 Unsup. 47.93 ± 0.19 66.44 ± 0.17 53.16 ± 0.66 66.59 ± 0.57

CPNWCP (Wang et al., 2022a) RN18 Unsup. 53.14 ± 0.62 67.36 ± 0.5 45.00 ± 0.19 62.96 ± 0.19

SimCLR (Chen et al., 2020a) RN18 Unsup. 62.58 ± 0.37 79.66 ± 0.27 63.38 ± 0.42 79.17 ± 0.34

SwAV† (Caron et al., 2020) RN18 Unsup. 59.84 ± 0.52 78.23 ± 0.26 65.26 ± 0.53 81.73 ± 0.24

NNCLR† (Dwibedi et al., 2021) RN18 Unsup. 63.33 ± 0.53 80.75 ± 0.25 65.46 ± 0.55 81.40 ± 0.27

SimSiam (Chen & He, 2021) RN18 Unsup. 62.80 ± 0.37 79.85 ± 0.27 64.05 ± 0.40 81.40 ± 0.30

HMS (Ye et al., 2022) RN18 Unsup. 58.20 ± 0.23 75.77 ± 0.16 58.42 ± 0.25 75.85 ± 0.18

Laplacian Eigenmaps (Chen et al., 2022) RN18 Unsup. 59.47 ± 0.87 78.79 ± 0.58 - -
PsCo† (Jang et al., 2022) RN18 Unsup. 47.24 ± 0.76 65.48 ± 0.68 54.33 ± 0.54 69.73 ± 0.49

UniSiam + dist (Lu et al., 2022) RN18 Unsup. 64.10 ± 0.36 82.26 ± 0.25 67.01 ± 0.39 84.47 ± 0.28

Meta-DM + UniSiam + dist∗ (Hu et al., 2023a) RN18 Unsup. 65.64 ± 0.36 83.97 ± 0.25 67.11 ± 0.40 84.39 ± 0.28

MetaOptNet (Lee et al., 2019) RN18 Sup. 64.09 ± 0.62 80.00 ± 0.45 65.99 ± 0.72 81.56 ± 0.53

Transductive CNAPS (Bateni et al., 2022) RN18 Sup. 55.60 ± 0.90 73.10 ± 0.70 65.90 ± 1.10 81.80 ± 0.70

MAML (Finn et al., 2017) RN34 Sup. 51.46 ± 0.90 65.90 ± 0.79 51.67 ± 1.81 70.30 ± 1.75

ProtoNet (Snell et al., 2017) RN34 Sup. 53.90 ± 0.83 74.65 ± 0.64 51.67 ± 1.81 70.30 ± 1.75

BECLR (Ours) RN18 Unsup. 75.74 ± 0.62 84.93 ± 0.33 76.44 ± 0.66 84.85 ± 0.37

SwAV† (Caron et al., 2020) RN50 Unsup. 63.34 ± 0.42 82.76 ± 0.24 68.02 ± 0.52 85.93 ± 0.33

NNCLR† (Dwibedi et al., 2021) RN50 Unsup. 65.42 ± 0.44 83.31 ± 0.21 69.82 ± 0.54 86.41 ± 0.31

TrainProto (Li & Liu, 2021) RN50 Unsup. 58.92 ± 0.91 73.94 ± 0.63 - -
UBC-FSL (Chen et al., 2021b) RN50 Unsup. 56.20 ± 0.60 75.40 ± 0.40 66.60 ± 0.70 83.10 ± 0.50

PDA-Net (Chen et al., 2021a) RN50 Unsup. 63.84 ± 0.91 83.11 ± 0.56 69.01 ± 0.93 84.20 ± 0.69

UniSiam + dist (Lu et al., 2022) RN50 Unsup. 65.33 ± 0.36 83.22 ± 0.24 69.60 ± 0.38 86.51 ± 0.26

Meta-DM + UniSiam + dist∗ (Hu et al., 2023a) RN50 Unsup. 66.68 ± 0.36 85.29 ± 0.23 69.61 ± 0.38 86.53 ± 0.26

BECLR (Ours) RN50 Unsup. 80.57 ± 0.57 87.82 ± 0.29 81.69 ± 0.61 87.86 ± 0.32

Table 10: Extended version of Table 2. Accuracies in (% ± std) on CIFAR-FS and FC100 of different U-FSL
baselines. Encoders: RN: ResNet. †: denotes our reproduction. Style: best and second best.

CIFAR-FS FC100
Method Backbone Setting 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
Meta-GMVAE (Lee et al., 2020) RN18 Unsup. - - 36.30 ± 0.70 49.70 ± 0.80

SimCLR (Chen et al., 2020a) RN18 Unsup. 54.56 ± 0.19 71.19 ± 0.18 36.20 ± 0.70 49.90 ± 0.70

MoCo v2 (Chen et al., 2020b) RN18 Unsup. 52.73 ± 0.20 67.81 ± 0.19 37.70 ± 0.70 53.20 ± 0.70

MoCHi (Kalantidis et al., 2020) RN18 Unsup. 50.42 ± 0.22 65.91 ± 0.20 37.51 ± 0.17 48.95 ± 0.17

BYOL (Grill et al., 2020) RN18 Unsup. 51.33 ± 0.21 66.73 ± 0.18 37.20 ± 0.70 52.80 ± 0.60

LF2CS (Li et al., 2022) RN18 Unsup. 55.04 ± 0.72 70.62 ± 0.57 37.20 ± 0.70 52.80 ± 0.60

CUMCA (Xu et al., 2021) RN18 Unsup. 50.48 ± 0.12 67.83 ± 0.18 33.00 ± 0.17 47.41 ± 0.19

Barlow Twins (Zbontar et al., 2021) RN18 Unsup. - - 37.90 ± 0.70 54.10 ± 0.60

HMS (Ye et al., 2022) RN18 Unsup. 54.65 ± 0.20 73.70 ± 0.18 37.88 ± 0.16 53.68 ± 0.18

Deep Eigenmaps (Chen et al., 2022) RN18 Unsup. - - 39.70 ± 0.70 57.90 ± 0.70

BECLR (Ours) RN18 Unsup. 70.39 ± 0.62 81.56 ± 0.39 45.21 ± 0.50 60.02 ± 0.43
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Table 11: Extended version of Table 3. Accuracies (in % ± std) on miniImageNet → CDFSL. †: denotes our
reproduction. Style: best and second best.

ChestX ISIC EuroSAT CropDiseases
Method 5 way 5-shot 5 way 20-shot 5 way 5-shot 5 way 20-shot 5 way 5-shot 5 way 20-shot 5 way 5-shot 5 way 20-shot
ProtoTransfer (Medina et al., 2020) 26.71 ± 0.46 33.82 ± 0.48 45.19 ± 0.56 59.07 ± 0.55 75.62 ± 0.67 86.80 ± 0.42 86.53 ± 0.56 95.06 ± 0.32

BYOL (Grill et al., 2020) 26.39 ± 0.43 30.71 ± 0.47 43.09 ± 0.56 53.76 ± 0.55 83.64 ± 0.54 89.62 ± 0.39 92.71 ± 0.47 96.07 ± 0.33

MoCo v2 (Chen et al., 2020b) 25.26 ± 0.44 29.43 ± 0.45 42.60 ± 0.55 52.39 ± 0.49 84.15 ± 0.52 88.92 ± 0.41 87.62 ± 0.60 92.12 ± 0.46

SwAV† (Caron et al., 2020) 25.70 ± 0.28 30.41 ± 0.25 40.69 ± 0.34 49.03 ± 0.30 84.82 ± 0.24 90.77 ± 0.26 88.64 ± 0.26 95.11 ± 0.21

SimCLR (Chen et al., 2020a) 26.36 ± 0.44 30.82 ± 0.43 43.99 ± 0.55 53.00 ± 0.54 82.78 ± 0.56 89.38 ± 0.40 90.29 ± 0.52 94.03 ± 0.37

NNCLR† (Dwibedi et al., 2021) 25.74 ± 0.41 29.54 ± 0.45 38.85 ± 0.56 47.82 ± 0.53 83.45 ± 0.57 90.80 ± 0.39 90.76 ± 0.57 95.37 ± 0.37

C3LR (Shirekar & Jamali-Rad, 2022) 26.00 ± 0.41 33.39 ± 0.47 45.93 ± 0.54 59.95 ± 0.53 80.32 ± 0.65 88.09 ± 0.45 87.90 ± 0.55 95.38 ± 0.31

SAMPTransfer (Shirekar et al., 2023) 26.27 ± 0.44 34.15 ± 0.50 47.60 ± 0.59 61.28 ± 0.56 85.55 ± 0.60 88.52 ± 0.50 91.74 ± 0.55 96.36 ± 0.28

PsCo (Jang et al., 2022) 24.78 ± 0.23 27.69 ± 0.23 44.00 ± 0.30 54.59 ± 0.29 81.08 ± 0.35 87.65 ± 0.28 88.24 ± 0.31 94.95 ± 0.18

UniSiam + dist (Lu et al., 2022) 28.18 ± 0.45 34.58 ± 0.46 45.65 ± 0.58 56.54 ± 0.5 86.53 ± 0.47 93.24 ± 0.30 92.05 ± 0.50 96.83 ± 0.27

ConFeSS (Das et al., 2021) 27.09 33.57 48.85 60.10 84.65 90.40 88.88 95.34
ATA (Wang & Deng, 2021) 24.43 ± 0.2 - 45.83 ± 0.3 - 83.75 ± 0.4 - 90.59 ± 0.3 -
BECLR (Ours) 28.46 ± 0.23 34.21 ± 0.25 44.48 ± 0.31 56.89 ± 0.29 88.55 ± 0.23 93.92 ± 0.14 93.65 ± 0.25 97.72 ± 0.13

C.2 IN-DOMAIN SETTING

Here, we provide more extensive experimental results on miniImageNet, tieredImageNet, CIFAR-FS
and FC100 by comparing against additional baselines. Table 9 corresponds to an extended version
of Table 1 and, similarly, Table 10 is an extended version of Table 2. We assess the performance of
BECLR against a wide variety of methods: from (i) established SSL baselines (Chen et al., 2020a;
Caron et al., 2020; Grill et al., 2020; Kalantidis et al., 2020; Chen et al., 2020b; Zbontar et al., 2021;
Xu et al., 2021; Chen & He, 2021; Dwibedi et al., 2021) to (ii) state-of-the-art U-FSL approaches
(Hsu et al., 2018; Khodadadeh et al., 2019; Medina et al., 2020; Lee et al., 2020; Chen et al., 2021b;
Li & Liu, 2021; Ye et al., 2022; Shirekar & Jamali-Rad, 2022; Li et al., 2022; Wang et al., 2022a;
Chen et al., 2022; Lu et al., 2022; Jang et al., 2022; Shirekar et al., 2023; Hu et al., 2023a). Fur-
thermore, we compare with a set of supervised baselines (Finn et al., 2017; Snell et al., 2017; Rusu
et al., 2018; Gidaris et al., 2019; Lee et al., 2019; Bateni et al., 2022).

C.3 CROSS-DOMAIN SETTING

Table 12: Accuracies in (% ± std) on miniImageNet
→ CUB. †: denotes our reproduction. Style: best and
second best.

miniImageNet → CUB
Method 5-way 1-shot 5-way 5-shot
Meta-GMVAE (Lee et al., 2020) 38.09 ± 0.47 55.65 ± 0.42

SimCLR (Chen et al., 2020a) 38.25 ± 0.49 55.89 ± 0.46

MoCo v2 (Chen et al., 2020b) 39.29 ± 0.47 56.49 ± 0.44

BYOL (Grill et al., 2020) 40.63 ± 0.46 56.92 ± 0.43

SwAV† (Caron et al., 2020) 38.34 ± 0.51 53.94 ± 0.43

NNCLR† (Dwibedi et al., 2021) 39.37 ± 0.53 54.78 ± 0.42

Barlow Twins (Zbontar et al., 2021) 40.46 ± 0.47 57.16 ± 0.42

Laplacian Eigenmaps (Chen et al., 2022) 41.08 ± 0.48 58.86 ± 0.45

HMS (Ye et al., 2022) 40.75 58.32
PsCo (Jang et al., 2022) - 57.38 ± 0.44

BECLR (Ours) 43.45 ± 0.50 59.51 ± 0.46

We also provide an extended version of the
experimental results in the miniImageNet →
CDFSL cross-domain setting of Table 3, where
we compare against additional baselines, as
seen in Table 11. Additionally, in Table 12
we evaluate the performance of BECLR on
the miniImageNet → CUB cross-domain set-
ting. We compare against any existing unsuper-
vised baselines (Hsu et al., 2018; Khodadadeh
et al., 2019; Chen et al., 2020a; Caron et al.,
2020; Medina et al., 2020; Grill et al., 2020;
Chen et al., 2020b; Zbontar et al., 2021; Ye
et al., 2022; Chen et al., 2022; Lu et al., 2022;
Shirekar et al., 2023; Shirekar & Jamali-Rad,
2022; Jang et al., 2022; Lee et al., 2020), for which this more challenging cross-domain experiment
has been conducted (to the best of our knowledge).

D COMPLEXITY ANALYSIS

In this section, we analyze the computational and time complexity of BECLR and compare with
different contrastive learning baselines, as summarized in Table 13. Neither DyCE nor OpTA in-
troduce additional trainable parameters; thus, the total parameter count of BECLR is on par with
standard Siamese architectures and dependent on the backbone configuration. BECLR utilizes a
student-teacher EMA architecture, hence needs to store separate weights for 2 distinct networks,
denoted as ResNet 2×, similar to BYOL (Grill et al., 2020). A batch size of 256 and 512 is used for
training BECLR on miniImageNet and tieredImageNet, respectively, which again is standard prac-
tice in the U-FSL literature. However, DyCE artificially enhances the batch, on which the contrastive
loss is applied, to k + 1 times the size of the original, in effect slightly increasing the training time
of BECLR. OpTA also introduces additional calculations in the inference time, which nevertheless
results in a negligible increase in terms of the average episode inference time of BECLR.
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Table 13: Comparison of the computational complexity of BECLR with different contrastive SSL approaches
in terms of parameter count, training, and inference times. †: denotes our reproduction.

Method Backbone Architecture Backbone Parameter Count (M) Training Time (sec/epoch) Inference Time (sec/episode)

SwAV† (Caron et al., 2020) ResNet-18 (1×) 11.2 124.51 0.213
NNCLR† (Dwibedi et al., 2021) ResNet-18 (2×) 22.4 174.13 0.211
UniSiam (Lu et al., 2022) ResNet-18 (1×) 11.2 153.37 0.212
BECLR (Ours) ResNet-18 (2×) 22.4 190.20 0.216

SwAV† (Caron et al., 2020) ResNet-50 (1×) 23.5 136.82 0.423
NNCLR† (Dwibedi et al., 2021) ResNet-50 (2×) 47.0 182.33 0.415
UniSiam (Lu et al., 2022) ResNet-50 (1×) 23.5 167.71 0.419
BECLR (Ours) ResNet-50 (2×) 47.0 280.53 0.446

E PSEUDOCODE

This section includes the algorithms for the pretraining methodology of BECLR and the proposed
dynamic clustered memory (DyCE) in a Pytorch-like pseudocode format. Algorithm 3 provides an
overview of the pretraining stage of BECLR and is equivalent to Algorithm 1, while Algorithm 4
describes the two informational paths of DyCE and is equivalent to Algorithm 2.

Algorithm 3: Unsupervised Pretraining of BECLR: PyTorch-like Pseudocode
# {f, g, h} student: student backbone, projector, and predictor
# {f, g} teacher: teacher backbone and projector
# DyCE {student, teacher}: our dynamic clustered memory module for student and teacher paths (see Algorithm. 4)
def BECLR(x): # x: a random training mini-batch of L samples

x = [x1, x2] = [aug1(x), aug2(x)] # concatenate the two augmented views of x
z s = h student( g student( f student( mask(x)))) # (2B× d): extract student representations
z t = g teacher( f teacher(x)).detach() # (2B× d): extract teacher representations
z s, z t = DyCE student(z s), DyCE teacher(z t) # update memory via optimal transport & compute enhanced batch (2B(k+1)× d)
loss pos = - (z s ∗ z t).sum(dim=1).mean() # compute positive loss term
loss = loss pos + (matmul(z s, z t.T) ∗ mask).div(temp).exp().sum(dim=1)).div(n neg).mean().log() # compute final loss term
loss.backward(), momentum update( student.parameters, teacher.parameters) # update student and teacher parameters

Algorithm 4: Dynamic Clustered Memory (DyCE): PyTorch-like Pseudocode
# z: batch representations (2B×d)
# self.memory: memory embedding space (M×d)
# self.prototypes: memory partition prototypes (P×d)
def DyCE(self, z):

if self.memory.shape[0] == M:
# - - - - - Path I: Top-k NNs Selection and Batch Enhancement - - - - -
if epoch≥ epoch thr

batch prototypes = assign prototypes(z, self.prototypes) # (2B×d): find nearest memory prototype for each batch embedding
y mem = topk(self.memory, z, batch prototypes) # (2Bk×d): find top-k NNs, from memory partition of nearest prototype
z = [z, y mem] # (2B(k+1)×d): concatenate batch and memory representations to create the final enhanced batch

# - - - - - Path II: Iterative Memory Updating - - - - -
opt plan = sinkhorn( D(z, self.prototypes)) # get optimal assignments between batch embeddings and prototypes (Solve Eq. 2)
self.update(z, opt plan) # add latest batch to memory and update memory partitions and prototypes, using the optimal assignments
self.dequeue() # discard the 2B oldest memory embeddings

else:
self.enqueue(z) # simply store latest batch until the memory is full for the first time

return z

F IN-DEPTH COMPARISON WITH PSCO

In this section we perform an comparative analysis of BECLR with PsCo (Jang et al., 2022), in terms
of their motivation, similarities, discrepancies, and performance.

F.1 MOTIVATION AND DESIGN CHOICES

BECLR and PsCo indeed share some similarities, in that both methods utilize a student-teacher
momentum architecture, a memory module of past representations, some form of contrastive loss,
and optimal transport (even though for different purposes). Note that none of these components are
unique to neither PsCo nor BECLR, but can be found in the overall U-FSL and SSL literature (He
et al., 2020; Dwibedi et al., 2021; Lu et al., 2022; Wang et al., 2022a; Ye et al., 2022).
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Let us now expand on their discrepancies and the unique aspects of BECLR: (i) PsCo is based on
meta learning, constructing few-shot classification (i.e., N -way K-shot) tasks, during meta-training
and relies on fine-tuning to rapidly adapt to novel tasks during meta-testing. In contrast, BECLR is
a contrastive framework based on metric/transfer learning, which focuses on representation quality
and relies on OpTA for transferring to novel tasks (no few-shot tasks during pretraining, no fine-
tuning during inference/testing). (ii) PsCo utilizes a simple FIFO memory queue and is oblivious
to class-level information, while BECLR maintains a clustered highly-separable (as seen in Fig. 6)
latent space in DyCE, which, after an adaptation period, is used for sampling meaningful positives.
(iii) PsCo applies optimal transport for creating pseudolabels (directly from the unstructured mem-
ory queue) forN ∗K support embeddings, in turn used as a supervisory signal to enforce consistency
between support (drawn from teacher) and query (student) embeddings of the created pseudolabeled
task. In stark contrast, BECLR artificially enhances the batch with additional positives and applies an
instance-level contrastive loss to enforce consistency between the original and enhanced (additional)
positive pairs. After each training iteration, optimal transport is applied to update the stored clusters
within DyCE in an equipartitioned fashion with embeddings from the current batch. (iv) Finally,
BECLR also incorporates optimal transport (in OpTA) to align the distributions between support and
query sets, during inference, which does not share similarity with the end-to-end pipeline of PsCo.

F.2 PERFORMANCE AND ROBUSTNESS

Table 14: Accuracies in (% ± std) on miniImageNet. †:
denotes our reproduction. Style: best and second best.

Method Backbone 5 way 1 shot 5 way 5 shot
PsCo (Jang et al., 2022) Conv5 46.70 ± 0.42 63.26 ± 0.37
PsCo† (Jang et al., 2022) RN18 47.24 ± 0.46 65.48 ± 0.38
PsCo+† (Jang et al., 2022) RN18 47.86 ± 0.44 65.95 ± 0.37
PsCo++† (Jang et al., 2022) RN18 47.58 ± 0.45 65.74 ± 0.38
PsCo w/ OpTA† (Jang et al., 2022) RN18 52.89 ± 0.61 67.42 ± 0.51
PsCo+ w/ OpTA† (Jang et al., 2022) RN18 54.43 ± 0.59 68.31 ± 0.52
PsCo++ w/ OpTA† (Jang et al., 2022) RN18 54.35 ± 0.60 68.43 ± 0.52
BECLR (Ours) RN18 75.74 ± 0.62 84.93 ± 0.33
BECLR- (Ours) RN18 74.37 ± 0.61 84.19 ± 0.31
BECLR-- (Ours) RN18 73.65 ± 0.61 83.63 ± 0.31
BECLR w/o OpTA (Ours) RN18 66.14 ± 0.43 84.32 ± 0.27
BECLR- w/o OpTA (Ours) RN18 65.26 ± 0.41 83.68 ± 0.25
BECLR-- w/o OpTA (Ours) RN18 64.68 ± 0.44 83.45 ± 0.26

We conduct an additional experiment, sum-
marized in Table 14, to study the impact
of adding components of BECLR (symmet-
ric loss, masking, OpTA) to PsCo and the
robustness of BECLR. For the purposes of
this experiment, we reproduced PsCo on a
deeper ResNet-18 backbone, ensuring fair-
ness in our comparisons. Next, we modi-
fied its loss function to be symmetric (allow-
ing both augmentations ofX to pass through
both branches) similar to BECLR, (this is de-
noted as PsCo+). Next, we also add patch-
wise masking to PsCo (denoted as PsCo++)
and as an additional step we have also added
our novel module OpTA on top of all these models (PsCo w/ OpTA), during inference. We observe
that neither the symmetric loss nor masking offer meaningful improvements in the performance of
PsCo. On the contrary, OpTA yields a significant performance boost (up to 6.5% in the 1-shot set-
ting, in which the sample bias is most severe). This corroborates our claim that our proposed OpTA
should be considered as an add-on module to every (U-)FSL approach out there.

As an additional robustness study we take the opposite steps for BECLR, first removing the patch-
wise masking (denoted as BECLR-) and then also the symmetric loss (denoted as BECLR--), notic-
ing that both slightly degrade the performance, as seen in Table 14, which confirms our design
choices to include them. Similarly, we also remove OpTA from BECLR’s inference stage. The most
important takeaway here is that the most degraded version of BECLR (BECLR-- w/o OpTA) still
outperforms the best enhanced version of PsCo ( PsCo++ w/ OpTA), which we believe offers an
additional perspective on the advantages of adopting BECLR over PsCo.

F.3 COMPUTATIONAL COMPLEXITY

Finally, we also compare BECLR and PsCo in terms of model size (total number of parameters in
M) and inference times (in sec/episode), when using the same ResNet-18 backbone architecture.
The results are summarized in Table 15. We notice that BECLR’s total parameter count is, in fact,
lower than that of PsCo. Regarding inference time, BECLR is slightly slower in comparison, but this
difference is negligible in real-time inference scenarios.
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Table 15: Comparison of the computational complexity of BECLR with PsCo (Jang et al., 2022) in terms of
total model parameter count and inference times.

Method Backbone Model Total Parameter Count (M) Inference Time (sec/episode)

PsCo (Jang et al., 2022) RN18 30.766 0.082
BECLR (Ours) RN18 24.199 0.216

G COMPARISON WITH SUPERVISED FSL

In this work we have focused on unsupervised few-shot learning and demonstrated how BECLR
sets a new state-of-the-art in this exciting space. In this section, as an additional study, we are also
comparing BECLR with a group of most recent supervised FSL baselines, which also have access to
the base-class labels in the pretraining stage.

G.1 PERFORMANCE EVALUATION

In Table 16 we compare BECLRwith seven recent baselines from the supervised FSL state-of-the-art
(Lee et al., 2019; Bateni et al., 2022; He et al., 2022; Hiller et al., 2022; Bendou et al., 2022; Singh
& Jamali-Rad, 2022; Hu et al., 2023b), in terms of their in-domain performance on miniImageNet
and tieredImageNet. As can be seen, some of these supervised methods do outperform BECLR, yet
these baselines are heavily engineered towards the target dataset in the in-domain setting (where the
target classes still originate from the pretraining dataset). Another interesting observation here is that
it turns out the top performing supervised baselines are all transductive methodologies (i.e., learn
from both labeled and unlabeled data at the same time), and such a transductive episodic pretraining
cannot be established in a fully unsupervised pretraining strategy as in BECLR Notice that BECLR
can even outperform recent inductive supervised FSL approaches, even without access to base-class
labels during pretraining.

Table 16: Accuracies (in % ± std) on miniImageNet and tieredImageNet compared against supervised FSL
baselines. Pretrainig Setting: unsupervised (Unsup.) and supervised (Sup.) pretraining. Approach: Ind.:
inductive setting, Transd.: transductive setting. Style: best and second best.

miniImageNet tieredImageNet
Method Setting Approach 5 way 1 shot 5 way 5 shot 5 way 1 shot 5 way 5 shot
BECLR (Ours) Unsup. Ind. 80.57 ± 0.57 87.82 ± 0.29 81.69 ± 0.61 87.86 ± 0.32

MetaOptNet (Lee et al., 2019) Sup. Ind. 64.09 ± 0.62 80.00 ± 0.45 65.99 ± 0.72 81.56 ± 0.53

HCTransformers (He et al., 2022) Sup. Ind. 74.74 ± 0.17 85.66 ± 0.10 79.67 ± 0.20 89.27 ± 0.13

FewTURE (Hiller et al., 2022) Sup. Ind. 72.40 ± 0.78 86.38 ± 0.49 76.32 ± 0.87 89.96 ± 0.55

EASY (inductive) (Bendou et al., 2022) Sup. Ind. 70.63 ± 0.20 86.28 ± 0.12 74.31 ± 0.22 87.86 ± 0.15

EASY (transductive) (Bendou et al., 2022) Sup. Transd. 82.31 ± 0.24 88.57 ± 0.12 83.98 ± 0.24 89.26 ± 0.14

Transductive CNAPS (Bateni et al., 2022) Sup. Transd. 55.60 ± 0.90 73.10 ± 0.70 65.90 ± 1.10 81.80 ± 0.70

BAVARDAGE (Hu et al., 2023b) Sup. Transd. 84.80 ± 0.25 91.65 ± 0.10 85.20 ± 0.25 90.41 ± 0.14

TRIDENT (Singh & Jamali-Rad, 2022) Sup. Transd. 86.11 ± 0.59 95.95 ± 0.28 86.97 ± 0.50 96.57 ± 0.17

G.2 ADDITIONAL INTUITION

Let us now try to provide some high-level intuition as to why BECLR can outperform such super-
vised baselines. We argue that self-supervised pretraining helps generalization to the unseen classes,
whereas supervised training heavily tailors the model towards the pretraining classes. This is also ev-
idenced by their optimization objectives. In particular, supervised pretraining maximizes the mutual
information I(Z,y) between representations Z and base-class labels y, whereas BECLRmaximizes
the mutual information I(Z1,Z2) between different augmented views Z1,Z2 of the input images
X , which is a lower bound of the mutual information I(Z,X) between representations Z and raw
data/ images X . As such, BECLR potentially has a higher capacity to learn more discriminative and
generalizable features. By the way, this is not the case only for BECLR, many other unsupervised
FSL approaches report similar behavior, e.g. (Chen et al., 2021a; Lu et al., 2022; Hu et al., 2023a).
Next to that, pure self-supervised learning approaches also report a similar observation where they
can outperform supervised counterparts due to better generalization to different downstream tasks,
e.g. (Hénaff et al., 2021; Zhang et al., 2022).

23



Published as a conference paper at ICLR 2024

Another notable reason why BECLR can outperform some of its supervised counterparts is our novel
module OpTA specifically designed to address sample bias, a problem that both supervised and
unsupervised FSL approaches suffer from and typically overlook. So comes our claim that the
proposed OpTA should becomes an integral part of all (U-)FSL approaches, especially in low-shot
scenarios where FSL approaches suffer from samples bias the most.
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