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Abstract

The fine-tuning of large-scale pre-trained models represents an effective approach
to the transfer of knowledge to new tasks. Nevertheless, this approach typically
necessitates the updating of all model parameters, which can result in considerable
computational and memory costs. We put forth a methodology, designated as TOU,
which employs truncated SVD to decompose weight matrices for comprehensive
model fine-tuning. The objective of this method is to retain the benefits of full
fine-tuning while reducing the computational and memory costs. Rather than
updating the full weight matrices directly, weight matrices are factorized into
low-rank components using truncated SVD, freezing one of two factored matrices,
thereby enabling the efficient adaptation of the entire model. This significantly
reduces the number of trainable parameters, leading to faster training and reduced
memory usage. After fine-tuning, TOU accepts reconstructing to recover the
structure of original model without any loss of performance. TOU utilises low-rank
factorization of a reshaped and reorganised weight matrix to create space-efficient
and expressive linear layers. Experiments on Vision Transformer models show that
our method achieves a 70% reduction in trainable parameters while maintaining
(accuracy drops < 1%), reduces 65% in term of training time, and 27% in term of
memory usage comparable performance to full weight fine-tuning. Furthermore,
TOU yields better performance than LoRA in terms of accuracy, training speed,
and memory usage when setting the same target fine-tuned layers.

1 Introduction

Model fine-tuning is an essential technique for transferring knowledge from large-scale pre-trained
models to new tasks, particularly in natural language processing (NLP) and computer vision . The
traditional approach is full model fine-tuning, whereby all the parameters of the pre-trained model
are updated for the target task. While effective, this approach is not without its drawbacks. It is, after
all, computationally expensive, particularly for large models such as BERT or GPT (1; 2; 3). It also
requires significant memory and training time. While full fine-tuning is expensive, it is essential in
cases where task performance is paramount, when adapting to a domain that is significantly different
from the pre-training data, or when tasks require deep, task-specific knowledge (4). In recent years,
several approaches have been proposed to make fine-tuning more efficient, scalable, and effective.
These address challenges such as computational costs, memory efficiency, and generalization to
new domains (5). Efficient fine-tuning techniques have gained significant attention, especially in the
context of large-scale pre-trained models (6). Early approaches like full fine-tuning, where all model
parameters are updated, were computationally expensive and required extensive resources (7).
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Adapter tuning is one of the first methods to fine-tune pre-trained models by updating a small number
of parameters(6). It introduces adapter layers with a bottleneck structure between the layers of pre-
trained language models (PLMs), and only these newly added layers are adjusted during fine-tuning.
Prefix-tuning fine-tunes PLMs by modifying parameters that are prepended to each transformer layer
(8). Inspired by GPT-3, prompt tuning (3) focuses on adding and updating task-specific parameters in
the input embeddings. BitFit ( (9)) updates only the bias terms in PLMs, leaving the rest of the model
unchanged.

More recent, Low-rank factorization is one of powerful approach to parameter-efficient fine-tuning of
large-scale models (10). By decomposing weight matrices into smaller, low-rank representations,
these techniques reduce memory and computational costs while maintaining or even improving task
performance (11; 12). Shapeshifter, a Parameter-Efficient Transformer using factorized reshaped
matrices presents a groundbreaking approach to reducing the number of parameters in transformers by
factorizing weight matrices into smaller, reshaped components (13). Shapeshifter increases training
time due to several factors related to the method’s use of factorized reshaped matrices (13).

The most prominent methods include adapter modules, Low-Rank Adaptation (LoRA), and parameter-
efficient fine-tuning (PEFT) (14; 10; 15; 16; 17). Adapters are lightweight modules inserted into
transformer layers, which allow fine-tuning by updating only a small portion of the model, while
the rest of the model’s parameters remain frozen (14). They may struggle to fully capture complex
patterns or task-specific features, and they may not generalize well to different tasks without significant
fine-tuning (6; 14; 18). Adapter techniques still add extra parameters to each layer, thereby increasing
inference time. This could become inefficient in scenarios where model size is a critical constraint,
such as in memory-limited edge devices (5). These have emerged as the most effective techniques for
updating only a small subset of model parameters while keeping most weights frozen (19). These
techniques have shown they can perform just as well as other methods while using a lot less computing
power (13). Prompt-based learning is another area of research that has explored conditioning the
model on task-specific prompts without modifying internal parameters (18). Furthermore, methods
like prefix tuning and layer-wise fine-tuning are highly effective in reducing the number of trainable
parameters. They focus on task-relevant layers or add small learnable vectors to the model input
(5). Comparative studies prove that these approaches are not only efficient but also maintain or even
enhance performance across a variety of NLP tasks, making them ideal for real-world applications
where computational efficiency is critical (6).

LoRA is a popular method for fine-tuning large pre-trained models efficiently by introducing low-rank
updates to the weight matrices. LoRA offers a compelling approach for fine-tuning large models
efficiently, but it is not without trade-offs. The primary disadvantages include limited capacity for
complex tasks, challenges in selecting the appropriate rank, potential performance degradation in
certain layers, and added memory overhead from low-rank matrices (19). Moreover, its task-specific
nature can limit transferability, making it less suitable for multi-task or highly dynamic applications
(2). These drawbacks must be carefully considered, especially when applying LoRA in high-stakes,
complex, or resource-constrained environments.

Adapters and LoRA assume that only a small portion of the model needs to be fine-tuned. This
assumption may not hold for tasks that are highly complex, domain-specific, or significantly different
from the pre-training data. In such cases, full fine-tuning of the entire model may still be necessary to
achieve the best results

To solve these problems, we proposed a new Efficient Fine-Tuning method called TOU. Inspired by
Shapeshifter using Low-rank Decomposition to reduce the size of trainable parameters. We proposed
a method that factorized pretrained weight into the two smaller matrices, finetuning with new tasks,
finally reconstruct to recover the structure of original model. The main contributions of this paper are
summarized as follows:

(i) The proposed model for fine-tuning.

(ii) To illustrate the performance of our proposed method, a comprehensive evaluation is conducted
on real dataset and various evaluation metrics.

The paper is organized as follows: Section 1 introduces the research motivation and related works.
Section 2 explains the methodology. Section 3 discusses the experimental results. Section 4 concludes
the work and points out future works.
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2 TOU Fine-tuning method

2.1 Low-Rank Factorization with Truncated SVD

To enhance the efficiency and compactness of our model, we employ truncated singular value
decomposition (truncated SVD) to factorize a 2D tensor (matrix) into two smaller matrices (20).
Truncated SVD is a powerful technique for dimensionality reduction that retains only the most
significant singular values and vectors, providing a high-quality approximation of the original matrix
while significantly reducing its size (21). Truncated SVD is a powerful technique for dimensionality
reduction that retains only the most significant singular values and vectors, providing a high-quality
approximation of the original matrix while significantly reducing its size(20):

X ≈ UkSkV
T
k

Where:

• Uk ∈ Rm×k contains only the top k left singular vectors.
• Sk ∈ Rk×k contains only the top k left singular value.
• Vk ∈ Rn×k contains only the top k right singular vectors.

2.2 Low-Rank Factorization and Re-factorization of Weight Matrices

Define a weight matrix as W ∈ Rm×n. The matrix W can be factored into low-rank decomposition
W = AB, where A ∈ Rm×r, B ∈ Rr×n, and the rank r ≤ min(m,n). The low-rank factorization
is optioned by truncated SVD, where A = UkSk and B = V T

k . The root layer then is replaced
by sequence with two smaller size layer whose weights are A and B. To minimize the error after
factorization, we add small noise to two smaller weights as A = A + N

(
0, α2

)
and B = B +

N
(
0, α2

)
. This helps to prevent overfitting and improve generalization. During training, all layers,

including low-rank factors, are updated. After fine-tuning, we restore the original structure of the
model by replacing the sequence of updated A and B by a single layer with weight Wr = AB.

Algorithm 1 outlines the general process of TOU fine-tuning. It injects trainable rank-decomposition
matrices into each layer then reconstructs. This workflow works without altering the original
architecture’s fundamental structure. This allows for easy implementation and compatibility with
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Figure 1: Compared to prior adaptation methods, LoRA, our approach is computationally efficient
in the fine-tuning stage. More importantly, it does not suffer an accuracy loss because training after
reconstruction is not required.

3



Algorithm 1 TOU fine-tuning algorithm
for module in θ do

W ← module.weight
A,B ← truncatedSVD(W, r)
layerA ← Linearlayer(A+ noise)
layerB ← Linearlayer(B + noise)
frozen(layerA)
module← sequence(layerA, layerB)

end for
Fine-tune θ with D in 12 epochs
for module in θ do

A← module(layerA).weight
B ← module(layerB).weight
layer ← Linearlayer(AB)
module← layer

end for
Return θ

a wide range of pre-trained models. TOU is on par with LoRA in maintaining the original model
structure, inferior in the number of trainable parameters, but superior in inference speed. We illustrate
our fine-tuning pipeline in Figure 1.

2.3 Objective to apply TOU for transformer model

A Transformer (22) is a stack of layers composed of two sub-layers: four weight matrices in
multi-head self-attention (Wq,Wk,Wv,Wo) followed by a FFN sub-layer with two weight matrices
(fca, fcb). As LoRA technique, we trick all Wq,Wk,Wv,Wo as single matrix of dimension dmodel×
dmodel . In LoRA, authors focused on only adapting the attention weights for downstream tasks and
freezing the MLP modules (10). However, unlike LoRA, TOU does not restrict its modifications to
the attention sub-layer. Instead, TOU can be applied to any layer in the Transformer model, including
the FFN sub-layer. This flexibility allows for more comprehensive adaptation to downstream tasks.

By applying TOU to the entire Transformer model, we can potentially achieve better performance
compared to LoRA, which only focuses on adapting the attention weights. This is because TOU can
capture more complex relationships and interactions between different parts of the model.

3 Experiments

3.1 Experimental Setup

Foundation model and datasets . The experiments utilized fine-tuning a Vision Transformer (ViT)
architecture on CIFAR100 dataset. We start from the ViT-B-16 pretrained on ImageNet dataset.

• Model: Vision Transformer (ViT) architecture, specifically ViT-B-16, pre-trained on Ima-
geNet.

• Dataset: CIFAR-100.

Baseline . For the baseline methods, we compare with full weights fine-tuning and LoRA. Fine-tune
is a common approach for adaptation. During fine-tuning, the model is initialized to the pre-trained
weights and biases, and all model parameters undergo gradient updates. In the experiments, we use
entire model fine-tuning. LoRA adds trainable pairs of rank decomposition matrices in parallel to
existing weight matrices. For fair comparison, we set up two trajectories to apply LoRA just same as
our proposed method. The number of trainable parameters is determined by the rank r and the shape
of the original weights. The only different parameter setting is LoRA can use the smaller rank r than
TOU.

Comparison matrices . We use number of trainable parameters, total of parameters, training
time, accuracy and peak memory for evaluating the proposed work. Total parameters are the full
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Table 1: Metrics of different efficient fine-tuning methods training on pretrained ViT for 10k time
steps (approximately 12 epochs).

Methods Trainable params (M) Total params (M) Accuracy (%) Time Memory usage (MiB)

FT 85.55 85.55 92.06 2h33m 11982
LoRA 0.59 86.47 89.46 1h13m 10976
Full TOU 24.83 48.72 91.09 53m 9752
TOU frozen FFN 11.51 48.72 90.40 52m 9408

training-time size of the model. Training time is measured as wall-clock time. Peak memory is
measured using CUDA calls in PyTorch, which report the maximum amount of memorial located
during fine-tuning.

Training details . All weights matrices are adapted for factorization tasks and frozen the first
factorized matrix. We designed to adapt TOU in two trajectories to make a fair comparison with
LoRA.

Trajectory 1. Adapt the full fine-tuning techniques with all layers in multi-head self-attention and
MLP for downstream tasks.

Trajectory 2. Adapt the fine-tuning techniques with only layers in multi-head self-attention and freeze
the FFN sub-layer.

We named these techniques correspond with trajectories as full TOU, and TOU frozen FFN from now.
Following LoRA (10), we use a paged AdamW optimizer, and a batch size of 64 in the tuning period.
We choose the constant learning rate schedule and set the learning rate to be 5 × 10−5 all LoRA
and TOU fine-tuning experiments. The number of fine-tuning steps is 12 epochs. We use the same
training configuration for all the experiments in this paper and avoid any hyperparameter screening to
ensure a fair comparison. All experiments are conducted on NVIDIA GeForce RTX 4070Ti GPU.

3.2 Main results and efficiency

The comparison of the results for TOU and baseline methods is presented in Table 1. Across full
fine-tuning or frozen FFN trajectory, the TOU consistently demonstrates outperformance to other
methods in term of fine-tuning time.

Compared to full weight fine-tuning, TOU is memory efficient by significantly reducing the amount
of trainable parameters (reduce 70%). Although TOU cannot achieve the same reduction ratio as
LoRA. However, while LoRA can reduces 99.6% trainale parameters, TOU still dominates in terms
of total number of parameters. On full weights fine-tuning, our full TOU achieves better training
speed (66% speedup) and drops 0.97% accuracy.

On frozen FFN trajectory, our TOU achieves better accuracy (2.13% improvement) with comparable
training time to LoRA. In terms of trainable parameters, our TOU could not reach the small number
as LoRA, TOU frozen FFN reduced 87% trainble parameter compared to full model.

In terms of memory overhead, our TOU can reduce the overall memory cost by up to 27% and 16%,
compared to full fine-tuning and LoRA, respectively. It means we can use a lower resource budget
(e.g., cheaper GPU services with smaller memory size) to achieve the better fine-tuning performance
compare with LoRA. In term of full fine-tuning, TOU is an effective method when full fine-tuning is
necessary but there are constraints on available resources.

LoRA only works well when adapting LoRA with attention layers and frozen FFN. LoRA’s effec-
tiveness is limited to scenarios where only the attention layers are adapted and the FFN sub-layer is
frozen. When adapted to the entire model, TOU outperforms LoRA regarding training speed and
accuracy. This highlights the effectiveness of TOU, which solves the LoRA problem when LoRA
assumes that only a small portion of the model needs to be fine-tuned. This assumption may not
hold for highly complex, domain-specific, or significantly different tasks from the pre-training data.
In such cases, full fine-tuning of the entire model may still be necessary to achieve the best results.
When adapting LoRA and TOU for only multi-head and frozen FFN, TOU continues to yield better
accuracy with similar training time. TOU is only slightly faster than LoRA by 6 minutes in this case.
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Figure 2: Train LoRA and full TOU, TOU frozen FFN for 12 epochs. The accuracy of vavidation
were calculated every epochs.

Figure 2 shows that TOU consistently outperforms the ordinary LoRA method in the early stages of
training. As depicted in Figure 2, TOU frozen FFN achieves considerably lower loss than LoRA at
time step 2k, and higher accuracy from epoch 2 performance. Additionally, the figure shows a loss
function converge better in TOU’s performance. When increasing the number of epochs in training,
we observed that full TOU tends to have lower training losses and higher accuracy compared to TOU
frozen FFN towards the end approximately 5 epoch’s completion time frame.

4 Conclusion and future works

We proposed TOU, a novel approach for efficient full-weight fine-tuning that leverages low-rank
factorization using truncated SVD. TOU is straightforward to implement, applied across different
foundation models, and highly efficient in both full-weight fine-tuning and small set-weight updates.
Our experimental results demonstrate that TOU outperforms LoRA and traditional fine-tuning in
terms of speed, memory efficiency, and overall performance.

To further enhance TOU, we propose two promising areas for future exploration: (i) Adaptive Rank
Selection for factorized matrices - TOU directly replaces the pre-trained matrix with smaller matrices,
which means that the information from the original weight is lost. To address this, we suggest
exploring element-wise factorization and adaptive rank selection. By factorizing each element of the
weight matrix individually, we can more precisely determine the optimal rank for each layer. This
approach allows for a more flexible and efficient representation of the model; (ii) Combining with
Other Efficient Methods - TOU can be combined with other efficient fine-tuning methods to achieve
even greater performance gains. For example, we could combine quantization techniques or optimize
the training process to further reduce the number of trainable parameters.
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