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Abstract

For centuries, humans have sought to understand intelligence and its associated
mechanisms that drive how we think. While some have hypothesized that distinct
signals or objectives are required for different types of abilities including learning,
perception, social intelligence, generalization and imitation, others have suggested
that learning through trial and error to maximise rewards can help develop be-
haviours that encompass all of these abilities. In this paper, we posit that while
maximising rewards is central to developing a diverse range of abilities, the way
in which we think about and formulate these rewards has to be re-framed as the
conventional approach to using rewards in reinforcement learning can be prohibitive
and is known to underperform in various settings, including sparse environments
and noisy reward conditions. We suggest that these rewards need to be reformu-
lated to incorporate different notions of i) uncertainty, ii) human preferences, and
iii) nested or mixed compositions, iv) non-stationarity as well as account for v)
situations where no reward is necessary. We suggest that doing so could enable
more powerful reinforcement learning agents as a step towards artificial general
intelligence.

1 Introduction

The richness and diversity of intelligence manifested in both animal and human behavior give rise
to a multitude of associated abilities, ranging from social intelligence and language to perception,
knowledge representation, planning, imagination, memory, and motor control. Exploring what mo-
tivates agents, whether natural or artificial, to display such varied forms of intelligence poses an
intriguing question and is one that has fascinated humans for centuries.

Several researchers have posited that these abilities have emerged as a result of pursuing specific goals
that are tailored to evoke them. For instance, language skills may have emerged from a combination
of parsing, tagging various parts of speech, lexical analysis, and sentiment analysis goals. Similarly,
perception may have developed from skills of recognition, segmentation and recall (Biederman, 1987).
Others such as Silver et al. (2021) have instead suggested that a generic objective of maximising
reward alone is enough to drive behaviour that exhibits most, if not all, abilities studied in both
natural and artificial intelligence. A simple example of this might be how animals and humans
require sophisticated abilities if they seek to survive in a complex world; consequently, achieving
success would require a diverse range of intelligent capabilities and any behaviour that maximises
the reward would thus exhibit those abilities.

Rewards in RL serve two fundamental purposes: first, different reward signals in different environ-
ments might produce different forms of intelligence (Silver et al., 2021), and second, the intelligence
of an individual human or animal consists of a multitude of different skills or abilities. Together
these abilities guide a human towards survival and should thus be consistent with any behaviours
the human adopts.

In our work we posit that while the idea of rewards and reward maximisation might be sufficient to
acquire a diverse range of intelligent abilities, this requires an adequate formulation of rewards. We
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present some ideas on how this might be achieved in the context of several different examples. Our
ideas are built on the premise that rewards should be modular in nature and might be comprised
of different facets that enable accounting for uncertainty, different time horizons, non-stationarity
and incorporating human preferences into RL where necessary. This formulation might also allow
for the possibility of "switching off" all modules of a reward such that some behaviours might be
captured without the need of a reward at all, similar to the notion of exploration in RL (Amin et al.,
2021) and others that discuss reward-free RL e.g. Wagenmaker et al. (2022); Jin et al. (2020). We,
like Silver et al. (2021), believe it is not the maximisation of rewards that limits the application of
RL in practise; however the formulation of these rewards remains a key bottleneck for widespread
application of RL in practice.

2 The Reinforcement Learning Problem Rethought

The reinforcement learning paradigm is commonly described in terms of an agent interacting with
an environment to learn a task (Sutton & Barto, 1998). This is formalised with a Markov Decision
Process (MDP) where an agent is in a state st at any point in time t, performs an action at and
observes a reward from the environment rt which it uses to update its state for the next time t+1, st,
and perform subsequent actions such that the cumulative reward

∑
∀t γtrt is maximised accordingly.

Note that γ ∈ (0, 1] is a discount factor that accounts for whether actions that occur immediately
are prioritised over actions that occur in the future.

Importantly in this formulation, while the agent spends time computing its next action, the environ-
ment continues to process these actions and respond accordingly in terms of the reward produced.
Subsequently, the agent might alter his course of behaviour based on the reward observed or act
accordingly. However, this framing overlooks the fact that the agent too must maintain a mental
model of what how the reward was produced. Though we may not be able to change the way in
which an environment produces rewards, we can change the way we use this information and re-
tain a mental model of the reward itself to guide subsequent behaviour. This mental model should
encompass a variety of different facets or modules that might make learning easier. These include
but are not limited to, accounting for uncertainty in the environment e.g. An et al. (2021) and
incorporating human preferences similar to the way in which Reinforcement Learning with Human
Feedback (RLHF) has done in language modelling e.g. Kirk et al. (2023). We might also consider
whether the reward observed might be relevant for longer term of shorter time horizons so that
we can adjust discounting accordingly e.g. Rathnam et al. (2023) since temporal abstraction plays
a major role in planning and reasoning. We discuss these in the context of learning, perception,
generalisation and imitation.

3 Reward is (almost) enough for knowledge and learning

Certain environments necessitate innate knowledge, crucial for immediate responses in novel situa-
tions. However, the capacity for innate knowledge is constrained by the agent’s limitations and the
challenge of constructing useful prior knowledge. Unlike other abilities, such as perception or action,
innate knowledge cannot be operationalized and must precede experience.

Alternatively, environments may demand learned knowledge when future experiences are uncertain,
leading to a vast array of potential knowledge requirements. In rich and complex environments,
the space of potential knowledge surpasses the agent’s capacity. Therefore, knowledge acquisition
becomes a function of the agent’s experience, necessitating learning processes.

Environments may require a combination of both innate and learned knowledge, with the balance
shifting towards learned knowledge in richer and more extended environments. Reward maximising
agents can integrate this innate and learned knowledge provided is adequately represented and
adapts according to non-stationarity of changing environments. This may require rethinking how
rewards are traditionally framed in terms of only state and action based information and adapt
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these to account for other types of information including, but not limited to latent parameters and
potential confounders.

4 Reward is (almost) enough for perception

In the human world, a range of perceptual abilities is crucial for obtaining rewards, with examples
including image segmentation for safety, object recognition for food classification, face recognition
for social interactions, scene parsing while driving, and speech recognition for immediate response
(Silver et al., 2021). These abilities, spanning visual, auditory, olfactory, somatosensory, and pro-
prioceptive senses, were traditionally approached as separate problems. However, recent advances
in machine learning have aimed to unify them under supervised learning frameworks, effectively
minimizing classification errors in test sets using labeled training data. An alternative view is that
perception may be better understood as reward maximisation (Silver et al., 2021). This perspective
aligns with observations in animals and could lead to more versatile perceptual behaviors. Active
perception, context-dependent utility, information acquisition costs, contextual data distribution,
and the absence of labeled data in many scenarios underscore the complexity and adaptive nature of
perception. As a result, the way in which rewards are formulated for learning needs to be carefully
considered. Given that as humans have a range of ways in which to perceive information based on
our advanced sensory systems, it is unsurprising that for any reward model to be useful to guide
behaviours, it too should capture a range of diverse information such as that used in perception.
Some of this information might be more accessible than others, while in the absence of such infor-
mation, we might need to draw on techniques such as reward shaping to assist in guiding behaviours
in sparse reward situations. It should be noted however, that different situations may require varied
degrees of shaping and adaptive forms of shaping should be considered, rather than traditional works
for reward shaping that focus solely on defining reward shaping functions based on state and action
information alone.

5 Reward is (almost) enough for generalisation

Generalization is commonly described as the capacity to apply a solution learned in one scenario
to solve another (Pan & Yang, 2009; Taylor & Stone, 2009). For instance, in supervised learning,
generalization may involve applying a solution acquired from one dataset, like photographs, to
another dataset, such as paintings. In meta-learning, recent efforts have concentrated on transferring
an agent from one environment to another.

Generalization may also be viewed in terms of maximising the reward based on a series of interactions
with an agent and an environment. Based on the fact that the agent might encounter different
aspects of the environment at different times, the agent will have to adapt accordingly and their
behaviours will have to generalise in these situations. For this to work however, the agent must be
able to adequately capture thee diverse aspects of the environment and retain this information in
their mental model of the reward. Some ways of doing this might be to formalise rewards in terms
of hierarchies where different elements of the hierarchy might be achieved as the agent acquires
different skills to reach an overall goal (Shi et al., 2022). An alternative might be to consider a
framing similar to options (Stolle & Precup, 2002) for rewards where, upon accounting some new
information, the agent determines whether this information should be combined with a variety of
elements that overlap and recur at different time-scales, or whether it should be ignored.

6 The Biological Perspective

The brain’s complexity is evident in its myriad systems involved in cognition and behavior. Under-
standing these systems is crucial for building on learning processes and reward mechanisms.

Learning fundamentally relies on predicting the occurrence of rewards or penalties. Systems evolve
to maximize reward probability. (Schultz, 2006) demonstrates that dopaminergic neurons reflect an
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error signifying the difference between predicted and received rewards. These predictions manifest
in various forms. The simplest is a passive prediction: an association between a stimulus and reward
based on prior experience. Conversely, an active prediction is constructed upon learning associations
between stimuli, responses, and rewards, encompassing the actions necessary to obtain the reward
(O’Doherty, 2011).

6.1 Reward Prediction Error

Reward prediction error (RPE) manifests differently in the brain for various reward types. Stimulus-
bound reward prediction error activates in the central and lateral orbitofrontal cortex, amygdala,
and ventral striatum ((Shidara et al., 1998), (Gottfried et al., 2002), (Cromwell & Schultz, 2003),
(Day et al., 2006)). Instrumental-action outcome associations are present in the vmPFC, medial
OFC, medial prefrontal cortex, and anterior medial striatum ((Carmichael & Price, 1995), (Daw
et al., 2006), (Hampton et al., 2006), (Kim et al., 2006), (Valentin et al., 2007), (Tanaka et al.,
2008), (Gläscher et al., 2009)).

Instrumental-action outcome associations can be further categorized into goal-directed and habit-
directed reward predictions. Goal-directed learning is observed in the vmPFC and medial OFC,
while habit-directed reward predictions appear more prominent in the dorsolateral striatum, though
this latter area warrants further investigation (Tanaka et al., 2008).

While our understanding of brain components related to RPEs remains nascent, this framework
offers potential inspiration for artificial agent design. Agents could compute RPEs in diverse manners
corresponding to different reward types within a task, potentially offering greater insight into agent
cognition and learning processes. It is worth noting that this categorization of agent RPEs need
not be limited to stimulus-bound and action-outcome associations; rather, it serves as an initial
framework. Furthermore, this concept could extend to task hierarchies necessitating similar or
distinct types of RPEs. We can extend this sentiment to hierarchical rewards.

6.2 Hierarchical Rewards

A critical aspect of human reward and penalty perception lies in the hierarchies comprising targeted
actions or goals. Tasks can be made of different hierarchies of subgoals that help one achieve a larger
goal, or subroutines that should be avoided to ensure completion.

The hierarchical nature of the human experience is mirrored in neural reward processing. (Ribas-
Fernandes et al., 2011) conducted an experiment involving a delivery task game with a subgoal of
envelope retrieval. Their study revealed RPE signals in the medial prefrontal cortex for both subgoals
and superordinate goals. (Diuk et al., 2013) demonstrated that RPEs arise at different task levels
in the basal ganglia, with the ventral striatum (VS) responding to both subgoal and goal-related
prediction errors. (Ribas Fernandes et al., 2018) later expanded on their initial work, reaffirming that
mPFC activity correlated with prediction errors specific to changes in goal and subgoal distances.
Their experiments suggested that mPFC’s subgoal or goal-related PE is task-specific and appears
to be modulated by attentional factors. The study contrasted PE signaling between mPFC and VS,
with VS exhibiting sensitivity only to money-driven PEs when a monetary incentive for efficient game
completion was introduced. This finding suggests that mPFC is more engaged in tasks involving
extended sequences and intentional behavior, aligning with earlier discussions on stimulus-bound
predictions versus instrumental action-outcome associations.

Similarly to the types of learning, different hierarchical forms necessitate distinct types of PE sig-
naling, and these hierarchies manifest in various learning contexts. Research efforts have aimed to
isolate the roles of different brain regions with respect to these PEs and the hierarchies they influ-
ence. Future research should explore tasks of greater complexity to understand how different brain
regions interact and the types of PE signals that emerge in such contexts.Adapting to computational
systems would allow agents to further structure their RPEs in different types of hierarchies.
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6.3 Putting things together

While these two concepts act as frameworks that help dictate the form of learning, there are charac-
teristics within the system that can be integrated as well. Distributional rewards could assist with
learning to give better context to agents. Biological systems have been seen to produce multiple
RPEs, varying in magnitude or optimism (Dabney et al., 2020). Humans from a young age can learn
causal structures. (McCormack et al., 2016) showed children’s ability to perform interventions in
simple models to demonstrate learning causal structures behaviourally. Further studies have aimed
at mapping causality with neuroimaging and other electrophysiology techniques (Siddiqi et al., 2022),
though much is yet to be understood. Causality extends far past just rewards, encompassing a great
deal of state and action information as well as types of memory. There are methods to integrate
these structures into these reward environments as well. One can consider Bayesian approaches to
introducing priors an agent may have within the framework of various types of RPEs at different
hierarchies. While models and neuroscience also maintain clear differences for good reason, inspi-
ration can also flow in both directions. Much of modern reinforcement learning has been adapted
from neuroscience and psychology, though further experimentation on models could help inspire
theories and explanations as to how the brain functions so well. Given the immense complexity
of systems like these, modularity is incredibly important. The ability to easily reshape as well as
interpret these neurologically inspired structures is key to understanding how and why both models
and brains function as they do.

7 Final Thoughts

Our exploration into the nature of intelligence and its underlying mechanisms underscores the on-
going quest to comprehend the complexities of human cognition. While historical perspectives have
debated the necessity of distinct signals or objectives for various cognitive abilities, we propose an
alternative viewpoint: that the pursuit of reward maximization can serve as a unifying framework
for developing a spectrum of intelligent behaviors. However, our analysis suggests that the tradi-
tional approach to formulating rewards in reinforcement learning may hinder progress, particularly
in challenging environments. We advocate for a paradigm shift in reward formulation, emphasizing
considerations such as uncertainty, human preferences, dynamic environments, and scenarios where
rewards may not be applicable. By reimagining rewards in this manner, we envision the potential for
more robust reinforcement learning agents, representing a significant stride towards the realization
of artificial general intelligence.
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