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Abstract
This paper focuses on the estimation of distri-
butional treatment effects in randomized experi-
ments that use covariate-adaptive randomization
(CAR). These include designs such as Efron’s
biased-coin design and stratified block random-
ization, where participants are first grouped into
strata based on baseline covariates and assigned
treatments within each stratum to ensure balance
across groups. In practice, datasets often con-
tain additional covariates beyond the strata indica-
tors. We propose a flexible distribution regression
framework that leverages off-the-shelf machine
learning methods to incorporate these additional
covariates, enhancing the precision of distribu-
tional treatment effect estimates. We establish
the asymptotic distribution of the proposed esti-
mator and introduce a valid inference procedure.
Furthermore, we derive the semiparametric effi-
ciency bound for distributional treatment effects
under CAR and demonstrate that our regression-
adjusted estimator attains this bound. Simulation
studies and empirical analyses of microcredit pro-
grams highlight the practical advantages of our
method.

1. Introduction
Randomized experiments have been fundamental in uncover-
ing the impact of interventions and shaping policy decisions
since the seminal work by Fisher (1935). The use of ran-
domized experiments to estimate causal effects has been
extensively adopted across diverse scientific fields (Rubin,
1974; Heckman et al., 1997; Imai, 2005; Imbens & Rubin,
2015) and has also become a widely accepted practice in the
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technology industry (Tang et al., 2010; Bakshy et al., 2014;
Kohavi et al., 2020).

In this paper, we examine the estimation of distributional
treatment effects in randomized experiments that employ
covariate-adaptive randomization (CAR). Under CAR, in-
dividuals are first partitioned into strata based on similar
covariates, and treatments are then assigned within each
stratum to ensure balance across groups. The CAR frame-
work encompasses various randomization schemes, from
stratified block randomization to Efron’s biased coin design
(Imbens & Rubin, 2015), with simple random sampling as a
special case.

We introduce a regression adjustment method for estimating
distributional treatment effects under CAR when auxiliary
data beyond stratum indicators are available. Incorporating
this data enhances estimation precision. While experimental
analyses often focus on the average treatment effect (ATE),
relying solely on the ATE can overlook important insights.
Examining distributional treatment effects provides a more
comprehensive understanding of the treatment impact by
capturing changes in the entire outcome distribution.

Our approach employs a distribution regression framework,
leveraging the Neyman-orthogonal moment condition (Cher-
nozhukov et al., 2018) to ensure first-order insensitivity to
nuisance parameter estimation. These nuisance parame-
ters—conditional outcome distributions given pre-treatment
covariates—are estimated using machine learning tech-
niques such as random forests, neural networks, and gradi-
ent boosting, enabling flexibility in handling complex and
high-dimensional data. Incorporating cross-fitting further
strengthens robustness against estimation errors.

Randomization schemes under CAR are extensively used
across various disciplines. In clinical trials, stratified block
randomization ensures balanced treatment allocation across
key covariates such as age, gender, and disease severity
(Rosenberger & Lachin, 2015). In social experiments, re-
searchers often stratify by geographical regions or socioeco-
nomic characteristics (Duflo et al., 2007; Bruhn & McKen-
zie, 2009), while in the technology sector, covariate-adaptive
designs enhance precision in A/B testing (Xie & Aurisset,
2016).
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Our paper makes several key contributions. First, we extend
the applicability of regression adjustment under CAR to
estimate distributional treatment effects. While regression
adjustment is widely used to reduce variance in ATE esti-
mation under simple random sampling (Freedman, 2008a;
Lin, 2013) and has recently been studied in the context of
CAR (Rafi, 2023; Cytrynbaum, 2024; Wang et al., 2023),
our work advances this framework to accommodate distri-
butional treatment effects. Unlike Jiang et al. (2023), who
focus on regression adjustment for quantile treatment effects
and assume continuous outcomes, our method is applicable
to both discrete and mixed discrete-continuous outcomes.

Second, we establish the limit distribution of our estima-
tor within the asymptotic framework for CAR, extending
beyond the standard i.i.d. treatment assignment structure
in causal inference. Third, we derive the semiparametric
efficiency bound for distributional treatment effects under
CAR and demonstrate that our estimator attains this bound.
Finally, through simulations and an empirical analysis of
microcredit programs, we illustrate the effectiveness of our
approach in practical settings.

The rest of the paper is organized as follows. Section 2
reviews the literature, and Section 3 provides the setup.
Section 4 introduces distributional treatment effect parame-
ters, their identification, and estimation. Section 5 presents
asymptotic results. Section 6 discusses findings from simu-
lated and real data. Section 7 concludes. Appendix contains
notations, proofs, and additional experimental results.

2. Related Literature
Distributional Treatment Effects Distributional and
quantile treatment effects have long been recognized as im-
portant parameters to estimate beyond the mean effects. The
quantile treatment effect was first introduced by Doksum
(1974) and Lehmann & D’Abrera (1975). Subsequently,
estimation and inference methods for distributional and
quantile treatment effects have been developed and applied
in econometrics, statistics and machine learning commu-
nity, including Heckman et al. (1997); Imbens & Rubin
(1997); Abadie (2002); Abadie et al. (2002); Chernozhukov
& Hansen (2005); Koenker (2005); Bitler et al. (2006);
Athey & Imbens (2006); Firpo (2007); Chernozhukov et al.
(2013); Koenker et al. (2017); Callaway et al. (2018); Call-
away & Li (2019); Chernozhukov et al. (2019); Ge et al.
(2020); Zhou et al. (2022); Park et al. (2021); Kallus &
Oprescu (2023); Oka & Yamada (2023); Näf & Susmann
(2024); Xu et al. (2025), among others. Most of this work
explore the conditional distributional and quantile treatment
effects. Oka et al. (2024) and Byambadalai et al. (2024)
consider the estimation of unconditional distributional treat-
ment effects but under simple random sampling. Kallus
et al. (2024) address problems in which nuisance parame-

ters depend on the target parameter itself, as seen in cases
like the quantile treatment effect (QTE) and local QTE. In
contrast, our estimation of the distributional treatment effect
involves nuisance parameters that correspond to conditional
means, which can be effectively estimated using machine
learning algorithms.

Conditional Average Treatment Effects An alternative
method for examining heterogeneity in treatment effects is
to condition on observed variables and estimate the Condi-
tional Average Treatment Effect (CATE) (Imai & Ratkovic,
2013; Athey & Imbens, 2016; Johansson et al., 2016; Shalit
et al., 2017; Alaa & Van Der Schaar, 2017; Wager & Athey,
2018; Chernozhukov et al., 2018; Künzel et al., 2019; Shi
et al., 2019; Nie & Wager, 2021; Guo et al., 2023; Sverdrup
& Cui, 2023; Van Der Laan et al., 2023). CATE quantifies
the ATE within subgroups defined by observed attributes,
such as gender, age, or prior platform use, thereby capturing
the heterogeneity that can be explained by observable infor-
mation. In contrast, our approach is designed to measure
unobserved heterogeneity and can be extended to estimate
distributional parameters conditional on observed data.

Regression adjustment under covariate-adaptive ran-
domization The literature on utilizing pre-treatment co-
variates to reduce variance in estimating the ATE under
simple random sampling is extensive, beginning with Fisher
(1932) and followed by contributions from Cochran (1977);
Yang & Tsiatis (2001); Rosenbaum (2002); Freedman
(2008a;b); Tsiatis et al. (2008); Rosenblum & Van Der Laan
(2010); Lin (2013); Berk et al. (2013); Ding et al. (2019),
among others.

In the context of covariate-adaptive randomization, some re-
cent studies have explored regression adjustment for estimat-
ing the ATE. Recent work by Cytrynbaum (2024) derives an
asymptotically optimal linear covariate adjustment tailored
to a given stratification. Similarly, Rafi (2023) investigates
regression adjustment and establishes the semiparametric
efficiency bound for estimating the ATE under covariate-
adaptive randomization. Bai et al. (2024) examines covari-
ate adjustment within a “matched pairs” design, where each
stratum consists of two observations, with one randomly
assigned to treatment. In biostatistics, Bannick et al. (2023)
and Tu et al. (2023) analyze general approaches to covariate
adjustment under covariate-adaptive randomization, while
Wang et al. (2023) considers parameters defined by estimat-
ing equations. Notably, most of these studies concentrate
on ATE estimation, with the exception of Jiang et al. (2023),
who investigates the estimation of quantile treatment effects
in the same setting.

Semiparametric Estimation Our work builds on the
semiparametric estimation literature, which addresses the
challenge of estimating low-dimensional parameters in the
presence of high-dimensional nuisance parameters. This
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Illustration: Comparison of Randomization Methods
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Figure 1. An illustration of treatment and control assignments under simple random sampling (SRS) and stratified block randomization
(SBR). While both allocate 50 subjects per group, SRS may result in imbalanced group compositions, whereas SBR preserves the
proportional representation of strata in each group, matching the overall sample distribution.

literature includes fundamental contributions from Robin-
son (1988); Bickel et al. (1993); Newey (1994); Robins &
Rotnitzky (1995), and more recent developments by Cher-
nozhukov et al. (2018); Ichimura & Newey (2022). Our
setup can be characterized as a semiparametric problem
with Neyman-orthogonal moment conditions, as outlined in
Neyman (1959); Chernozhukov et al. (2022).

3. Setup and Notation
We consider randomized controlled trials (RCT) with
covariate-adaptive randomization when there are multiple
treatment arms. In covariate-adaptive randomization, indi-
viduals are first grouped into strata based on similar values
of their baseline covariates. Within each stratum, treatments
are assigned to achieve “balance” across groups, typically
using complete randomization within each stratum. This
approach ensures that the treatment allocation accounts for
covariate distributions within strata, thereby improving com-
parability between treatment groups.

Figure 1 provides a simple illustration. Consider an exper-
iment involving 100 subjects, where 50% are assigned to
a treatment group and 50% to a control group. Suppose
the subjects are divided into two strata based on baseline
covariates (e.g., Stratum 1 represents younger individuals,
and Stratum 2 represents older individuals). Stratum 1 com-
prises 30 subjects, while Stratum 2 comprises 70. Under
simple random sampling (SRS), subjects are randomly as-
signed to treatment or control groups without regard to
strata. In contrast, stratified block randomization (SBR) in-
dependently assigns subjects within each stratum, ensuring
proportional representation. While both methods allocate
exactly 50 subjects to each group, SRS does not guaran-
tee that the composition of treatment groups reflects the
overall sample distribution. For example, Figure 1 depicts
one possible outcome, where Stratum 2 (older individuals)

is over-represented in the treatment group under SRS. By
contrast, SBR achieves balance within each stratum and
maintains the same composition in treatment and control
groups as in the full sample.

Let Yi ∈ Y ⊂ R denote the observed outcome of interest for
the ith unit and Wi ∈ W := {1, . . . , |W|} denote the index
of the treatment received by the ith unit for each unit i ∈
[n] := {1, . . . , n}, where n denotes the sample size. Also,
let Si ∈ S := {1, ..., S} denote the stratum variable and
Xi ∈ X ⊂ Rdx denote the extra covariates besides Si. We
allow Xi and Si to be dependent. To rule out empty stratum,
we assume the probability of individuals being assigned to
each stratum is positive, i.e., p(s) := P(Si = s) > 0 for
every s ∈ S. We adapt the potential outcome framework
(Rubin, 1974; Imbens & Rubin, 2015), and let Yi(w) denote
the potential outcome under treatment w ∈ W for the ith
unit. The observed outcome and potential outcomes are
related to treatment assignment by the relationship Yi =
Yi(Wi).

In order to describe the treatment assignment mechanism,
we let πw(s) := P(Wi = w|Si = s) ∈ (0, 1) be the target
assignment probability for treatment w in stratum s, which
may vary across strata. We define sub-sample as nw(s) :=∑n

i=1 1l{Wi = w, Si = s} and n(s) :=
∑n

i=1 1l{Si = s},
where 1l{·} denotes the indicator function. The empirical
analogues of p(s) and πw(s) are given by p̂(s) := n(s)/n
and π̂w(s) := nw(s)/n(s), respectively. In line with Bugni
et al. (2019), we impose the following assumptions on the
treatment assignment mechanism.

Assumption 3.1. We have

(i) {Yi(1), . . . , Yi(|W|), Si, Xi}ni=1 are i.i.d.

(ii) {Yi(1), . . . , Yi(|W|), Xi}ni=1 |= {Wi}ni=1|{Si}ni=1.

(iii) π̂w(s) = πw(s) + op(1) for every (w, s) ∈ W × S .
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Assumption 3.1 (i) allows for cross-sectional dependence
among treatment statuses {Wi}ni=1, thereby accomodating
many covariate-adaptive randomization schemes. Assump-
tion 3.1 (ii) states that the assignment is independent of
potential outcomes and pre-treatment covariates conditional
on strata. Assumption 3.1 (iii) states the assignment prob-
abilities converge to the target assignment probabilities as
sample size increases.

Common randomization schemes satisfying Assumption
3.1 include simple random sampling, stratified block ran-
domization, biased-coin design (Efron, 1971), and adaptive
biased-coin design (Wei, 1978). In Section 6.2, we rean-
alyze a field experiment on microcredit programs, where
stratification occurs at the provincial level, and treatments
are randomly assigned within each province based on target
probabilities.

4. Distributional Treatment Effects
The parameters of interest are based on the distribution
functions of potential outcomes, denoted by

FY (w)(y) := P
(
Y (w) ≤ y

)
,

for y ∈ Y and w ∈ W .

First, we define the distributional treatment effect (DTE)
between treatments w,w′ ∈ W as

∆DTE
w,w′ (y) := FY (w)(y)− FY (w′)(y),

for y ∈ Y . The DTE measures the difference between the
distribution functions of the potential outcomes.

We also define the probability treatment effect (PTE) be-
tween treatments w,w′ ∈ W as

∆PTE
w,w′ (yj) := fY (w)(yj)− fY (w′)(yj),

for each j = 1, . . . , J , where, given a set of points YJ :=
{y1, · · · , yJ} ⊂ Y with y0 = −∞, the probability mass
function fY (w)(·) is defined as

fY (w)(yj) : = P
(
yj−1 < Y (w) ≤ yj

)
= FY (w)(yj)− FY (w)(yj−1).

Each probability fY (w)(yj), which we refer to as the bin
probability, can be obtained as a difference between the
values of the distribution function at yj and yj−1. The PTE
quantifies the difference in probabilities across bins, effec-
tively capturing differences in “histograms” of the potential
outcomes.

4.1. Identification

Although the potential outcomes {Y (w) : w ∈ W} are un-
observed variables, the conditional distribution functions of

these outcomes, FY (w)(·|S = s), can be identified. This is
because, under Assumption 3.1, FY (w)(·|S = s) coincides
with FY (·|W = w, S = s), the conditional distribution
function of the observed outcome given treatment w within
stratum s. By the law of total probability, the distribution
function FY (w)(y) is then expressed as, for any y ∈ Y ,

FY (w)(y) =

S∑
s=1

p(s)FY (w)(y|S = s). (1)

Hence, FY (w)(y) is identifiable under Assumption 3.1.

4.2. Empirical estimator

Under the RCT setting, the distribution function can be
calculated without conditioning on pre-treatment covariates,
unlike observational studies. Under CAR, we define an
empirical estimator of the distribution function FY (w)(y)
for y ∈ Y and treatment w ∈ W as:

F̂ emp
Y (w)(y) :=

1

n

n∑
i=1

1l{Wi = w} · 1l{Yi ≤ y}
π̂w(Si)

. (2)

This estimator aggregates the empirical distribution func-
tions across strata, and takes the form of an inverse-
propensity weighting (IPW) estimator Rosenbaum & Rubin
(1984). The empirical estimator for the DTE is then formed
as

∆̂DTE,emp
w,w′ (y) := F̂ emp

Y (w)(y)− F̂ emp
Y (w′)(y).

While the estimator is unbiased and consistent, its efficiency
can be enhanced by leveraging pre-treatment covariates.

4.3. Regression-adjusted estimator

To incorporate pre-treatment covariates X , we adopt the
distribution regression framework, treating the conditional
distribution function µw(y, s, x) := FY (w)(y|S = s,X =
x) as the mean regression for a binary outcome 1l{Y (w) ≤
y}. Specifically, for each y ∈ Y and w ∈ W , we can write

µw(y, S,X) = E[1l{Y (w) ≤ y}|S,X].

The conditional mean function can be estimated at each
location y ∈ Y using supervised learning algorithms, such
as LASSO, random forests, boosted trees, or deep neural
networks. Let µ̂w(·) be an estimator for µw(·).

The regression-adjusted estimator of FY (w)(y) for eachw ∈
W and y ∈ Y is then defined as

F̂ adj
Y (w)(y) =

1

n

n∑
i=1

Ψi(y), (3)
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where

Ψi(y) :=
1l{Wi = w} ·

(
1l{Yi ≤ y} − µ̂w(y, Si, Xi)

)
π̂w(Si)

+ µ̂w(y, Si, Xi).

The regression-adjusted estimator for DTE can then be
formed as

∆̂DTE,adj
w,w′ (y) := F̂ adj

Y (w)(y)− F̂ adj
Y (w′)(y). (4)

The estimator takes the form of the well-known augmented
inverse-propensity weighting (AIPW) estimator, relying on
a doubly-robust moment condition (Robins et al., 1994;
Robins & Rotnitzky, 1995). Specifically, the moment con-
dition exhibits the Neyman orthogonality property (Cher-
nozhukov et al., 2018; 2022), making our estimator first-
order insensitive to estimation errors in the nuisance pa-
rameters µw(·). To further improve robustness, we apply
cross-fitting as outlined in Chernozhukov et al. (2018). The
estimation procedure is outlined in Algorithm 1.

The empirical and adjusted estimators for the PTE can be
defined in a similar fashion. See Appendix B for the details.

Algorithm 1 ML regression-adjusted DTE estimator with
cross-fitting

Input: Data {(Yi,Wi, Xi, Si)}ni=1 split randomly into
L roughly equal-sized folds (L > 1); M a supervised
learning algorithm
for level y ∈ Y do

for (treatment w∈W , stratum s∈S , fold ℓ=1 toL) do
Train M on data excluding fold ℓ, using observa-
tions in treatment group w within stratum s.
Use M to obtain predictions µ̂w(y, Si, Xi) for all
observations in stratum s for fold ℓ.

end for
Compute F̂ adj

Y (w)(y) according to Eq. (3).

Compute ∆̂DTE,adj
w,w′ (y) using Eq. (4) for w,w′ ∈ W .

end for
Output: DTE estimator {∆̂DTE,adj

w,w′ (y)}y∈Y .

5. Asymptotic Distribution of the DTE
estimator

In this section, we derive the asymptotic distribution of
the proposed estimator, which enables statistical inference
and the construction of confidence intervals. Additionally,
we establish the semiparametric efficiency bound for the
DTE and demonstrate that our estimator achieves this bound
under the specified assumptions. We begin by introducing
some additional notation to formalize our results. Let ∥ ·
∥P,q denote the Lq(P ) norm, and L∞(Y) be the space of

uniformly bounded functions mapping an arbitrary index
set Y to the real line.

Assumption 5.1. (i) For w ∈ W , δw(y, s,Xi) :=
µ̂w(y, s,Xi)− µw(y, s,Xi), we have

sup
y∈Y,s∈S

∣∣∣∣
∑

i∈Iw(s) δw(y, s,Xi)

nw(s)
−
∑

i∈Iw′ (s) δw(y, s,Xi)

nw′(s)

∣∣∣∣
= op(n

−1/2),

where Iw(s) := {i ∈ [n] :Wi = w, Si = s}.

(ii) For w ∈ W , let Fw = {µw(y, s, x) : y ∈ Y} with an
envelope Fw(s, x). Then, maxs∈S E[|Fw(Si, Xi)|q|Si =
s] <∞ for q > 2 and there exist fixed constants (α, v) > 0
such that

sup
Q
N (ε||Fw||Q,2,Fw, L2(Q)) ≤

(α
ε

)v
, ∀ε ∈ (0, 1],

where N(·) denotes the covering number and the supremum
is taken over all finitely discrete probability measures Q.

Assumption 5.1(i) provides a high-level condition on the
estimation of µ̂w(y, s,Xi). Assumption 5.1(ii) imposes
mild regularity conditions on µw(y, s,Xi). Specifically,
Assumption 5.1(ii) holds automatically when Y is a finite
set.

We now establish the weak convergence of our proposed
estimator in the following theorem, which serves as the
theoretical foundation for statistical inference. To that
end, we define the following terms. Letting µw(y, s) :=
E[µw(y, Si, Xi)|Si = s], we define

ζi(y) := µw(y, Si)− µw′(y, Si),

ϕi(y, w) :=
1l{Yi(w) ≤ y} − µw(y, s)

πw(s)

+

(
1− 1

πw(s)

)
(µw(y, s,Xi)− µw(y, s))

− (µw′(y, s,Xi)− µw′(y, s)) .

Theorem 5.2 (Asymptotic Distribution). Suppose Assump-
tion 3.1 and 5.1 hold. Then, for every w,w′ ∈ W , in
L∞(Y), uniformly over y ∈ Y , the regression-adjusted
estimator defined in Algorithm 1 satisfies

√
n
(
∆̂DTE,adj

w,w′ (y)−∆DTE
w,w′ (y)

)
⇝ G(y),

where G(y) is a Gaussian process with covariance kernel
Ω(y, y′), which is given by

Ω(y, y′) := Ω1(y, y
′, w) + Ω1(y, y

′, w′) + Ω2(y, y
′),

with Ω1(y, y
′, w) := E[πw(Si)ϕi(y, w)ϕi(y

′, w)] and
Ω2(y, y

′) := E[ξi(y)ξi(y′)].
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We next derive the semiparametric efficiency bound and
show our estimator achieves this bound in the following
theorem. This implies that the asymptotic variance of any
regular, consistent, and asymptotically normal estimator of
DTE cannot be smaller than this variance.

Theorem 5.3 (Semiparametric Efficiency Bound).
(a) Under Assumption 3.1, the semiparametric efficiency

bound for ∆DTE
w,w′ (y) for a given y ∈ Y is Ω(y), which

is defined by

Ω(y) := Ω1(y, y, w) + Ω1(y, y, w
′) + Ω2(y, y),

where Ω1(·) and Ω2(·) are defined in Theorem 5.2.
(b) Under Assumptions 3.1 and 5.1, the regression-

adjusted estimator ∆̂DTE,adj
w,w′ (y) attains the semipara-

metric efficiency bound.

As a corollary to this theorem, it follows that the variance
of the regression-adjusted estimator with known nuisance
functions is smaller than that of the empirical estimator,
since the latter can be regarded as a special case in which
the adjustment terms µ̂w(·) are set to zero.

Corollary 5.4 (Variance reduction). Under Assumption 3.1,
for each y ∈ Y ,

V ar
(
∆̃DTE,adj

w,w′ (y)
)
≤ V ar

(
∆̂DTE,emp

w,w′ (y)
)
,

where ∆̃DTE,adj
w,w′ (y) is the regression-adjusted DTE estima-

tor that incorporates known adjustment terms.

Theorem 5.3 and Corollary 5.4 indicate that, asymptotically,
regression adjustment enhances the precision of the DTE
estimates compared to the unadjusted empirical estimator.
In the following section, we evaluate the finite sample per-
formance of our estimators using both simulated and real
datasets.

6. Experiments
6.1. Simulation Study

In this section, we examine the finite sample performance
of the estimators through a simulation study. The design
consists of four strata (S = 4) constructed by partition-
ing the support of Zi ∼ U(0, 1) into S equal-length in-
tervals, where Si indicates the interval containing Zi. For
each unit i, we draw a 20-dimensional covariate vector
Xi = (X1,i, . . . , X20,i)

⊤ from a multivariate normal distri-
bution N (0, I20×20). The treatment indicator Wi follows
a Bernoulli distribution with probability 0.5 within each
stratum, maintaining a constant target proportion of treated
units (Wi = 1) across strata with πw(s) = 0.5 for all s ∈ S .
We generate the outcome variable Yi as follows:

Yi = b(Xi) + c(Xi)Wi + γZi + ui,

where b(Xi) is the scaled Friedman (1991) function given
by b(Xi) = sin(πXi1Xi2)+2(Xi3−0.5)2+Xi4+0.5Xi5,
the treatment effect function is c(Xi) = 0.1(Xi1 + log(1 +
exp(Xi2))) and γ = 0.1. The error term is ui ∼ N (0, 1).
This data generating process introduces a complex, highly
nonlinear relationship between covariates and the outcome,
while including many covariates that do not affect the out-
come. The heterogeneous treatment effects are correlated
with specific covariates. This setup is a modified version of
the setups in Nie & Wager (2021) and Guo et al. (2021).

We draw a sample of size 5,000 from the data-generating
process and estimate the DTE at quantiles {0.1, . . . , 0.9}
using empirical and regression-adjusted estimators. To ap-
proximate the ground truth, a separate sample of size 106

is drawn, and the DTE is computed at the same locations.
Linear and machine learning (ML) regression adjustments
are implemented using linear regression and gradient boost-
ing, with 2-fold cross-fitting. Linear regression is included
as a baseline for comparison, as it has traditionally been
widely used for regression adjustment in estimating average
treatment effects.

Figure 2 presents the results from 1,000 simulation runs
with a sample size of n = 1,000. Both the root mean
squared error (RMSE) and the length of the confidence in-
tervals are smaller for the linear adjustment method, and
even further reduced with ML adjustment, compared to
the empirical estimator. The confidence intervals are cal-
culated using sample estimates of the asymptotic variance.
The empirical estimator achieves a 95% confidence interval
coverage close to the nominal level of 0.95. In contrast,
regression-adjusted estimators show slight over-coverage,
with coverage rates ranging from approximately 0.96 to 0.97
for linear adjustment and 0.97 to 0.99 for ML adjustment.
Additional results on RMSE reductions across quantiles for
sample sizes n ∈ {1,000, 5,000, 10,000} are provided in
Appendix Section D.1.

6.2. Real Data: The Impacts of Microfinance

We reexamine the randomized field experiment conducted
by Attanasio et al. (2015) in 2008 to evaluate the impact of
a joint-liability microcredit program targeting women. The
study took place in northern Mongolia, encompassing 40
villages across five provinces. Randomization occurred at
the village level, with three treatment groups: joint-liability
(group) lending, individual lending, and a control group.
Stratification was carried out at the provincial level to en-
sure balance (Si ∈ {1, . . . , 5}), as complete randomization
could have led to some provinces containing only some
particular treatment or control villages. This type of geo-
graphic stratification is commonly employed in social sci-
ences, medicine and other disciplines to facilitate robust
comparisons between treatment groups.
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Figure 2. RMSE, average length and coverage probability of 95% confidence intervals (CI) on simulated data (n = 1,000). Linear
adjustment uses linear regression, and machine learning (ML) adjustment uses gradient boosting, both with 2-fold cross-fitting. Number
of simulations is 1,000.

Figure 3. The Impacts of Microfinance: Distributional Treatment Effect (DTE) and Probability Treatment Effect (PTE) of joint liability
lending on enterprise revenue (in thousand Mongolian Tugriks). The left panels depict empirical estimates, while the right panels present
regression-adjusted estimates obtained using gradient boosting with 10-fold cross-fitting. Shaded regions and error bars represent 95%
confidence intervals. Sample size: n = 611.
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The experiment is one of many studies to evaluate the ef-
fectiveness of microcredit as a tool for alleviating global
poverty. Since the launch of microcredit programs by the
Grameen Bank in Bangladesh, which earned its founder
Muhammad Yunus the Nobel Peace Prize in 2006, skepti-
cism about their impact has grown in later years, fueled by
the publication of findings on the subject. A primary goal
of microcredit programs is to promote investment in and
expansion of small-scale enterprises. However, Attanasio
et al. (2015) found no significant average impact of these
programs on enterprise revenue, profit, or other income
sources.

In this paper, we revisit their analysis to estimate the distribu-
tional treatment effects of the lending program on enterprise
revenue (Yi), aiming to uncover potential heterogeneity be-
yond the average effects across the distribution. Our focus is
on the comparison between joint-liability lending (Wi = 2)
and the control group (Wi = 1), as this was the central
concern of the original study. Notably, group lending was
pioneered by the Grameen Bank in Bangladesh during the
1970s.

Figure 3 depicts the distributional and probability treatment
effects of joint-liability lending on enterprise revenue. The
outcome is measured in thousands of Mongolian Tugriks
(MNT), with an exchange rate of 1 USD = 1150 MNT at
the time of the study. We compute the DTE and PTE for
y ∈ {0, 10, . . . , 200} accounting for the stratified design.
For regression adjustment, we use gradient boosting with
10-fold cross-fitting, with pre-treatment covariates (Xi) in-
cluding enterprise revenue prior to the experiment, house-
hold size, education level, age, etc. The full list of covariates
can be found in Table 3 in the Appendix.

The top-left panel of Figure 3 presents the empirical DTE,
while the top-right panel shows the regression-adjusted DTE.
The shaded areas represent the 95% pointwise confidence
band computed using multiplier bootstrap (Giné & Zinn,
1984; Belloni et al., 2017) with 1000 repetitions. Although
the sample size in the experiment is modest (n = 611),
the regression adjustment reduces the standard errors by
1% to 13% across revenue levels, with an average reduc-
tion of 7%. The bottom-left panel of Figure 3 presents
the empirical PTE, and the bottom-right panel depicts the
regression-adjusted PTE on enterprise revenue. For the
PTE, the effectiveness of regression adjustment is limited
by the small sample size, and it does not consistently reduce
standard errors compared to the empirical estimator.

The analysis of DTE and PTE indicates that regression ad-
justment reduces the standard error by approximately 10%
when estimating the probability of revenue being zero, lead-
ing to a statistically significant negative effect. Specifically,
the probability of revenue being zero decreases by 10 per-
centage points (pp), with a standard error of 4.6 pp.

Overall, the evidence points to joint-liability lending mainly
helping individuals move out of the “zero-revenue” trap,
with little discernible effect elsewhere in the distribution.
Economically, this pattern implies that the program acts
more as a hedge against downside risk than as a catalyst for
broad productivity gains, so welfare improvements are likely
to flow from reduced business failure and smoother con-
sumption rather than from large increases in aggregate out-
put. Because the confidence bands remain wide beyond that
lowest bin—even after flexible covariate adjustment—larger
samples or richer, more predictive covariates will be needed
to sharpen estimates across the rest of the revenue range.

7. Conclusion
We introduce a novel regression adjustment method de-
signed to efficiently estimate distributional treatment effects
under covariate-adaptive randomization. Our framework
supports high-dimensional settings with many pre-treatment
covariates and enables flexible modeling through the in-
tegration of off-the-shelf machine learning techniques for
regression adjustment.

Despite its strengths, our method has certain limitations.
First, it assumes experimental data with perfect compliance
and no interference. While this setup is appropriate for some
applications, it may limit applicability in contexts where
these assumptions do not hold. Second, the effectiveness of
our approach relies on the availability of pre-treatment co-
variates that are highly predictive of the outcome. Although
we leverage flexible machine learning techniques to enhance
prediction quality and achieve greater variance reduction
compared to linear regression, the potential for variance
reduction diminishes when covariates provide limited pre-
dictive power. Third, in scenarios with a large number of
strata, improving precision using pre-treatment covariates
becomes increasingly challenging, particularly when the
sample size is modest. These limitations point to several
promising directions for future research, such as designing
methods to handle imperfect compliance and network ef-
fects, as well as enhancing estimation efficiency in settings
with a large number of strata and locations. Additionally,
extending recent advances in kernel mean embeddings to
characterize outcome distributions (e.g., Park et al. (2021);
Näf & Susmann (2024)) to the CAR framework represents
a promising direction for future research.
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Appendix
Appendix is organized as follows. Section A provides a table summarizing the notation. Section B elaborates on the
Probability Treatment Effect. Section C presents all proofs. Finally, Section D offers additional details on the simulation
study and real-data analysis.

A. Summary of Notation

Table 1. Summary of Notation

Xi pre-treatment covariates
Si stratum indicator
Wi treatment variable
Yi outcome variable
Yi(w) potential outcome for treatment group w
p(s) proportion of stratum s
πw(s) treatment assignment probability for treatment group w in stratum s
n sample size
nw(s) number of observations in treatment group w in stratum s
n(s) number of observations in stratum s
p̂(s) n(s)/n, proportion of stratum s in the sample
π̂w(s) nw(s)/n(s), estimated treatment assignment probability for treatment group w in stratum s
FY (w)(y) E[1l{Y (w) ≤ y}], potential outcome distribution function
[K] {1, . . . ,K} for a positive integer K
∥a∥

√
a⊤a, Euclidean norm of a vector a = (a1, . . . , ap)

⊤ ∈ Rp

∥ · ∥P,q Lq(P ) norm
L∞(Y) space of uniformly bounded functions mapping an arbitrary index set Y to the real line
⇝ convergence in distribution or law
d
= equality in distribution
Xn = Op(an) limK→∞ limn→∞ P (|Xn| > Kan) = 0 for a sequence of positive constants an
Xn = op(an) supK>0 limn→∞ P (|Xn| > Kan) = 0 for a sequence of positive constants an
xn ≲ yn for sequences xn and yn in R, xn ≤ Ayn for a constant A that does not depend on n
⌊b⌋ max{k ∈ Z | k ≤ b}, greatest integer less than or equal to b
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B. Probability Treatment Effect
Let ρw(yj , s, x) := P (yj−1 < Y (w) ≤ yj |S = s,X = x) = E[1l{yj−1 < Y (w) ≤ yj}|S = s,X = x] and its estimator
be denoted by ρ̂w(yj , s, x). The empirical estimator for the bin probability for yj ∈ Y is as follows:

f̂emp
Y (w)(yj) :=

S∑
s=1

p̂(s)
{ 1

nw(s)

∑
i:Wi=w,Si=s

1l{yj−1 < Yi ≤ yj}
}

=
1

n

n∑
i=1

1l{Wi = w}
π̂w(Si)

· 1l{yj−1 < Yi ≤ yj}. (B.1)

Also, similarly, the regression-adjusted estimator for the bin probability for yj ∈ YJ is:

f̂adjY (w)(yj) :=
1

n

n∑
i=1

{1l{Wi = w}
π̂w(Si)

·
(
1l{yj−1 < Yi ≤ yj} − ρ̂w(yj , Si, Xi)

)
+ ρ̂w(yj , Si, Xi)

}
. (B.2)

Using these, we can define empirical and regression-adjusted PTE estimators as follows:

∆̂PTE,emp
w,w′ (yj) := f̂emp

Y (w)(yj)− f̂emp
Y (w′)(yj), (B.3)

∆̂PTE,adj
w,w′ (yj) := f̂adjY (w)(yj)− f̂adjY (w′)(yj). (B.4)

Then, the results in the paper also apply to the PTE, as the indicator functions 1l{Y (w) ≤ yj} used in the analysis of DTE
can be replaced with 1l{yj−1 < Y (w) ≤ yj} for the analysis of the PTE.

C. Proofs for Section 5
C.1. Some definitions

We first introduce some definitions from empirical process theory that will be used in the proofs. See also van der Vaart &
Wellner (1996) and Chernozhukov et al. (2014) for more details.

Definition C.1 (Covering numbers). The covering number N(ε,F , ∥ · ∥) is the minimal number of balls {g : ∥g− f∥ < ε}
of radius ε needed to cover the set F . The centers of the balls need not belong to F , but they should have finite norms.

Definition C.2 (Envelope function). An envelope function of a class F is any function x 7→ F (x) such that |f(x)| ≤ F (x)
for every x and f .

Definition C.3 (VC-type class). We say F is of VC-type with coefficients (α, v) and envelope F if the uniform covering
numbers satisfy the following:

sup
Q
N (ε||F ||Q,2,F , L2(Q)) ≤

(α
ε

)v
, ∀ε ∈ (0, 1],

where the supremum is taken over all finitely discrete probability measures.

C.2. Asymptotic Distribution

Proof of Theorem 5.2. Recall the notation µw(y, s) = E[µw(y, Si, Xi)|Si = s]. Additionally, denote ηi,w(y, s) :=
1l{Yi(w) ≤ y} − µw(y, s) and Dw(s) :=

∑n
i=1(1l{Wi = w} − πw(s)) · 1l{Si = s}. Note that we have π̂w(s)− πw(s) =

Dw(s)
n(s) . We start with the linear expansion of F̂ adj

Y (w) for treatment w and decompose it into two terms I1(y) and I2(y) as
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follows:
√
n(F̂ adj

Y (w)(y)− FY (w)(y)) =
1√
n

n∑
i=1

[
1l{Wi = w} ·

(
1l{Yi ≤ y} − µ̂w(y, Si, Xi)

)
π̂w(Si)

+ µ̂w(y, Si, Xi)

]
−

√
nFY (w)(y)

=
1√
n

n∑
i=1

[
1l{Wi = w}
π̂w(Si)

· 1l{Yi ≤ y}
]
−

√
nFY (w)(y)︸ ︷︷ ︸

≡I1(y)

− 1√
n

n∑
i=1

[
(1l{Wi = w} − π̂w(Si))

π̂w(Si)
· µ̂w(y, Si, Xi)

]
︸ ︷︷ ︸

≡I2(y)

Then, for the first term, we have

I1(y) =
1√
n

n∑
i=1

∑
s∈S

1l{Wi = w}
πw(s)

1l{Si = s}1l{Yi ≤ y}

− 1√
n

n∑
i=1

∑
s∈S

1l{Wi = w}1l{Si = s}(π̂w(s)− πw(s))

π̂w(s)πw(s)
1l{Yi ≤ y} −

√
nFY (w)(y)

=
1√
n

n∑
i=1

∑
s∈S

1l{Wi = w}
πw(s)

1l{Si = s}1l{Yi ≤ y}

−
n∑

i=1

∑
s∈S

1l{Wi = w}1l{Si = s}Dw(s)

n(s)
√
nπ̂w(s)πw(s)

ηi,w(y, s)−
∑
s∈S

Dw(s)µw(y, s)

n(s)
√
nπ̂w(s)πw(s)

Dw(s)−
∑
s∈S

Dw(s)µw(y, s)√
nπ̂w(s)

=
∑
s∈S

1√
n

n∑
i=1

1l{Wi = w}1l{Si = s}
πw(s)

ηi,w(y, s) +
∑
s∈S

Dw(s)√
nπw(s)

µw(y, s) +

n∑
i=1

µw(y, Si)√
n

−
n∑

i=1

∑
s∈S

1l{Wi = w}1l{Si = s}Dw(s)

n(s)
√
nπ̂w(s)πw(s)

ηi,w(y, s)−
∑
s∈S

Dw(s)µw(y, s)

n(s)
√
nπ̂w(s)πw(s)

Dw(s)−
∑
s∈S

Dw(s)µw(y, s)√
nπ̂w(s)

=
∑
s∈S

1√
n

n∑
i=1

1l{Wi = w}1l{Si = s}
πw(s)

ηi,w(y, s) +

n∑
i=1

µw(y, Si)√
n

+ I1,1(y),

where

I1,1(y) =−
n∑

i=1

∑
s∈S

1l{Wi = w}1{Si = s}Dw(s)

n(s)
√
nπ̂w(s)πw(s)

ηi,w(y, s)−
∑
s∈S

Dw(s)µw(y, s)

n(s)
√
nπ̂w(s)πw(s)

Dw(s)

+
∑
s∈S

Dw(s)µw(y, s)√
n

(
1

πw(s)
− 1

π̂w(s)

)

= −
n∑

i=1

∑
s∈S

1l{Wi = w}1l{Si = s}Dw(s)

n(s)
√
nπ̂w(s)πw(s)

ηi,w(y, s).

Note that the class {1l{Yi(w) ≤ y} − µw(y, Si) : y ∈ Y} is of the VC-type with fixed coefficients (α, v) and bounded
envelope, and E[1l{Yi(w) ≤ y} − µw(y, Si)|Si = s] = 0. Therefore,

sup
y∈Y,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

1l{Wi = w}1l{Si = s}ηi,w(y, s)

∣∣∣∣∣ = Op(1).

By Assumption 3.1, for all w ∈ W , we have maxs∈S |Dw(s)/n(s)| = op(1), maxs∈S |π̂w(s) − πw(s)| = op(1), and
mins∈S πw(s) > c > 0, which imply supy∈Y |I1,1(y)| = op(1).
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Next, we analyze the second term I2(y).

I2(y) =
1√
n

∑
s∈S

n∑
i=1

1l{Wi = w}
π̂w(s)

µw(y, s,Xi)1l{Si = s} − 1√
n

n∑
i=1

µw(y, Si, Xi)

+
1√
n

∑
s∈S

1

π̂w(s)

n∑
i=1

(1l{Wi = w} − π̂w(s)) (µ̂w(y, s,Xi)− µw(y, s,Xi)) 1l{Si = s}

=
1√
n

∑
s∈S

n∑
i=1

1l{Wi = w}
π̂w(s)

(µw(y, s,Xi)− µw(y, s))1l{Si = s} − 1√
n

n∑
i=1

(µw(y, Si, Xi)− µw(y, Si))

+
1√
n

∑
s∈S

1

π̂w(s)

n∑
i=1

(1l{Wi = w} − π̂w(s)) (µ̂w(y, s,Xi)− µw(y, s,Xi)) 1l{Si = s}

=
1√
n

∑
s∈S

n∑
i=1

1l{Wi = w}
πw(s)

(µw(y, s,Xi)− µw(y, s))1l{Si = s} − 1√
n

n∑
i=1

(µw(y, Si, Xi)− µw(y, Si))

+
1√
n

∑
s∈S

(
πw(s)− π̂w(s)

π̂w(s)πw(s)

)( n∑
i=1

1l{Wi = w}(µw(y, s,Xi)− µw(y, s))1l{Si = s}

)
︸ ︷︷ ︸

≡I2,1(y)

+
1√
n

∑
s∈S

1

π̂w(s)

n∑
i=1

(1l{Wi = w} − π̂w(s)) (µ̂w(y, s,Xi)− µw(y, s,Xi)) 1l{Si = s}︸ ︷︷ ︸
≡I2,2(y)

where the second equality holds because

∑
s∈S

n∑
i=1

1l{Wi = w}
π̂w(s)

µw(y, s)1l{Si = s} =
∑
s∈S

n(s)µw(y, s) =

n∑
i=1

µw(y, Si).

For the first term I2,1(y), we have

sup
y∈Y

∣∣∣∣∣ 1√
n

∑
s∈S

(
πw(s)− π̂w(s)

π̂w(s)πw(s)

)( n∑
i=1

1l{Wi = w}(µw(y, s,Xi)− µw(y, s))1l{Si = s}

)∣∣∣∣∣
≤
∑
s∈S

∣∣∣∣ Dw(s)

nw(s)πw(s)

∣∣∣∣ sup
y∈Y,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

1l{Wi = w}1l{Si = s}(µw(y, s,Xi)− µw(y, s))

∣∣∣∣∣ .
Assumption 5.1 implies that the class {µw(y, s,Xi)− µw(y, s) : y ∈ Y} is of the VC-type with fixed coefficients (α, v)
and an envelope Fi such that E(|Fi|d|Si = s) <∞ for d > 2. Therefore,

sup
y∈Y,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

1l{Wi = w}1l{Si = s}(µw(y, s,Xi)− µw(y, s))

∣∣∣∣∣ = Op(1).

It is also assumed that Dw(s)/n(s) = op(1) and n(s)/nw(s)
p−→ 1/πw(s) <∞. Therefore, we have

sup
y∈Y

|I2,1(y)| = op(1).

As for the second term I2,2(y), using the notation δw(y, s,Xi) = µ̂w(y, s,Xi)− µw(y, s,Xi), by Assumption 5.1(i), we
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have

sup
y∈Y

∣∣∣∣∣ 1√
n

∑
s∈S

1

π̂w(s)

n∑
i=1

(1l{Wi = w} − π̂w(s))δw(y, s,Xi)1l{Si = s}

∣∣∣∣∣
≤ 1√

n

∑
s∈S

n(s) sup
y∈Y

∣∣∣∣
∑

i∈Iw(s) δw(y, s,Xi)

nw(s)
−
∑

i∈Iw′ (s) δw(y, s,Xi)

nw′(s)

∣∣∣∣ = op(1).

Therefore, we have

sup
y∈Y

|I2,1(y) + I2,2(y)| = op(1).

Combining the two terms, we have

√
n(F̂ adj

Y (w)(y)− FY (w)(y)) =
∑
s∈S

1√
n

n∑
i=1

1l{Wi = w}1l{Si = s}
[
ηi,w(y, s)

πw(s)
+

(
1− 1

πw(s)

)
(µw(y, s,Xi)− µw(y, s))

]

+
∑
s∈S

1√
n

n∑
i=1

(1− 1l{Wi = w})1l{Si = s} (µw(y, s,Xi)− µw(y, s))

+

n∑
i=1

µw(y, Si)√
n

+R1,1(y),

where supy∈Y |R1,1(y)| = op(1).

Define

ϕw(y, Si, Yi(w), Xi) :=
ηi,w(y, s)

πw(s)
+

(
1− 1

πw(s)

)
(µw(y, s,Xi)− µw(y, s))− (µw′(y, s,Xi)− µw′(y, s)) , (C.5)

ζi(y) :=µw(y, Si)− µw′(y, Si).

Taking the difference between treatments w and w′, we obtain

√
n
(
∆̂DTE,adj

w,w′ (y)−∆DTE
w,w′ (y)

)
=
∑
s∈S

1√
n

n∑
i=1

1l{Wi = w}1l{Si = s}ϕw(y, Si, Yi(w), Xi)

−
∑
s∈S

1√
n

n∑
i=1

1l{Wi = w′}1l{Si = s}ϕw′(y, Si, Yi(w
′), Xi)

+
1√
n

n∑
i=1

ζi(y) +R(y),

where supy∈Y |R(y)| = op(1). Denote

φn,1(y) :=
∑
s∈S

1√
n

n∑
i=1

1l{Wi = w, Si = s}ϕw(y, s, Yi(w), Xi)−
∑
s∈S

1√
n

n∑
i=1

1l{Wi = w′, Si = s}ϕw′(y, s, Yi(w
′), Xi),

and

φn,2(y) :=
1√
n

n∑
i=1

ζi(y).

Then, uniformly over y ∈ Y , we first show that

(φn,1(y), φn,2(y))⇝ (G1(y),G2(y)),
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where (G1(y),G2(y)) are two independent Gaussian processes with covariance kernels Ω1(y, y
′) and Ω2(y, y

′), respectively,
such that

Ω1(y, y
′) =E[πw(Si)ϕw(y, Si, Yi(w), Xi)ϕw(y

′, Si, Yi(w), Xi)]

+ E[πw′(Si)ϕw′(y, Si, Yi(w
′), Xi)ϕw′(y′, Si, Yi(w

′), Xi)],

and

Ω2(y, y
′) = E[ζi(y)ζi(y′)].

The following argument follows the argument provided in the proofs of Bugni et al. (2018, Lemma B.2) and Bugni et al.
(2019, Lemma C.1). We first argue that, uniformly over y ∈ Y ,

(φn,1(y), φn,2(y))⇝ (φ⋆
n,1(y), φn,2(y)),

where φ⋆
n,1(y) |= φn,2(y) and φ⋆

n,1(y)⇝ G1(y) uniformly over y ∈ Y .

Under Assumption 3.1, the distribution of φn,1(y) is the same as the distribution of the same quantity with units ordered by
strata s ∈ S and then ordered by treatment assignmentw ∈ W within strata. In order to exploit this observation, we introduce
the following notations. Define N(s) :=

∑n
i=1 1l{Si < s}, Nw(s) :=

∑n
i=1 1l{Wi < w,Si = s}, F (s) := P(Si < s), and

Fw(s) := P(Wi < w,Si = s) for all (w, s) ∈ W × S. Furthermore, let {(Xs
i , Y

s
i (1), . . . , Y

s
i (|W|)) : 1 ≤ i ≤ n} be a

sequence of i.i.d. random variables with marginal distributions equal to the distribution of (Xi, Yi(1), . . . , Yi(|W|))|Si = s
and

φn,1(y)|{(Wi, Si)i∈[n]}
d
= φ̃n,1(y)|{(Wi, Si)i∈[n]}

where

φ̃n,1(y) :=
∑
s∈S

1√
n

N(s)+Nw+1(s)∑
i=N(s)+Nw(s)+1

ϕw(y, s, Y
s
i (w), X

s
i )−

∑
s∈S

1√
n

N(s)+Nw′+1(s)∑
i=N(s)+Nw′ (s)+1

ϕw′(y, s, Y s
i (w

′), Xs
i ).

As φn,2(y) is only a function of {Si}i∈[n], we have

(φn,1(y), φn,2(y))
d
= (φ̃n,1(y), φn,2(y)).

Next, define

φ⋆
n,1(y) :=

∑
s∈S

1√
n

⌊n(F (s)+Fw+1(s))⌋∑
i=⌊nF (s)+Fw(s)⌋+1

ϕw(y, s, Y
s
i (w), X

s
i )−

∑
s∈S

1√
n

⌊n(F (s)+Fw′+1(s)⌋∑
i=⌊n(F (s)+Fw′ (s))⌋+1

ϕw′(y, s, Y s
i (w

′), Xs
i ).

Note φ⋆
n,1(y) is a function of (Y s

i (1), . . . , Y
s
i (|W|), Xs

i )i∈[n],s∈S , which is independent of {Wi, Si}i∈[n] by construction.
Therefore,

φ⋆
n,1(y) |= φn,2(y).

Note that

N(s)

n

p−→ F (s),
Nw(s)

n

p−→ Fw(s), and
n(s)

n

p−→ p(s).

We shall show that

sup
y∈Y

|φ̃n,1(y)− φ⋆
n,1(y)| = op(1) and φ⋆

n,1(y)⇝ G1(y).

Since S and W have finite cardinality, we fix (s, w) ∈ S ×W in the remainder of the proof. We define

Γn(t, ϕw) :=
1√
n

n∑
i=1

1l{i ≤ ⌊nt⌋} · ϕw
(
y, s, Y s

i (w), X
s
i

)
,
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for t ∈ (0, 1]. The function ϕw(y, s, Y s
i (w), X

s
i ) defined in (C.5) can be decomposed as a weighted sum of bounded random

functions indexed by y ∈ Y with bounded weight functions. More precisely, the class F :=
{
ϕw
(
y, s, Y s

i (w), X
s
i

)
: y ∈ Y

}
consists of functions from the following function classes: F1 := {y 7→ ηi,w(y, s)}, F2,w := {y 7→ µw(y, s,Xi)} and
F3,w := {y 7→ µw(y, s)}. We can show that the class F1 is Donsker, for instance, by using the bounded, monotone property
as established in Theorem 2.7.5 of van der Vaart & Wellner (1996). Also, under Assumption 5.1(ii), Theorem 2.5.2 of
van der Vaart & Wellner (1996) yields that F2,w and F3,w are Donsker. Since all the random weights are uniformly bounded,
Corollary 2.10.13 of van der Vaart & Wellner (1996) shows that F is Donsker. Also, the class {t 7→ 1l{i ≤ ⌊nt⌋} is VC class
and hence Donsker. Since Theorem 2.10.6 of van der Vaart & Wellner (1996) shows that products of uniformly bounded
Donsker classes are Donsker, we conclude that the indexed process {Γn(t, ϕw) : t ∈ (0, 1], ϕw ∈ F} is Donsker. Hence,
the result follows.

Next, for a given y, by the triangular array central limit theorem,

φ⋆
n,1(y)⇝ N(0,Ω1(y, y)),

where

Ω1(y, y) = lim
n→∞

∑
s∈S

(⌊n(F (s) + Fw+1(s))⌋ − ⌊n(F (s) + Fw(s))⌋)
n

E[ϕ2w(y, s, Y s
i (w), X

s
i )]

+ lim
n→∞

∑
s∈S

(⌊n(F (s) + Fw′+1(s))⌋ − ⌊n(F (s) + Fw′(s))⌋)
n

E[ϕ2w′(y, s, Y s
i (w

′), Xs
i )]

=
∑
s∈S

p(s)E[πw(s)ϕ2w(y, Si, Yi(w), Xi) + πw′(s)ϕ2w′(y, Si, Yi(w
′), Xi)|Si = s]

= E[πw(Si)ϕ
2
w(y, Si, Yi(w), Xi)] + E[πw′(Si)ϕ

2
w′(y, Si, Yi(w

′), Xi)].

Using the Cramér–Wold device to verify finite-dimensional convergence, we find that the covariance kernel can be written as

Ω1(y, y
′) =E[πw(Si)ϕw(y, Si, Yi(w), Xi)ϕw(y

′, Si, Yi(w), Xi)]

+ E[πw′(Si)ϕw′(y, Si, Yi(w
′), Xi)ϕw′(y′, Si, Yi(w

′), Xi)].

Finally, since {µw(y, Si) : y ∈ Y} is of the VC-type with fixed coefficients (α, v) and a constant envelope function,
{µw(y, Si)− µw′(y, Si) : y ∈ Y} is a Donsker class and we have

φn,2(y)⇝ G2(y),

where G2(y) is a Gaussian process with covariance kernel

Ω2(y, y
′) = E[(µw(y, Si)− µw′(y, Si)) (µw(y

′, Si)− µw′(y′, Si))] ≡ E[ζi(y)ζi(y′)].

Therefore, combining the results, we have, uniformly over y ∈ Y ,
√
n
(
∆̂DTE,adj

w,w′ (y)−∆DTE
w,w′ (y)

)
⇝ G(y),

where G(y) is a Gaussian process with covariance kernel

Ω(y, y′) =E[πw(Si)ϕw(y, Si, Yi(w), Xi)ϕw(y
′, Si, Yi(w), Xi)]

+E[πw′(Si)ϕw′(y, Si, Yi(w
′), Xi)ϕw′(y′, Si, Yi(w

′), Xi)]

+E[ζi(y)ζi(y′)].

This concludes the proof.
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C.3. Semiparametric Efficiency Bound

Proof of Theorem 5.3. Part (a). We follow the approach used in Hahn (1998) and calculate the semiparametric efficiency
bound of the DTE: ∆DTE

w,w′ (u) for a given u ∈ Y . Throughout the proof of part (a), we use u to indicate this evaluation
location to keep the notation clear. First, we characterize the tangent space. To that end, the joint density of the observed
variables (Y,W,X, S) can be written as:

f(y, w, x, s) = f(y|w, x, s)f(w|x, s)f(x|s)f(s) =
K∏

w=1

{fw(y|x, s)πw(s)}1l{W=w}f(x|s)f(s),

where fw(y|x, s) := P (Y = y|W = w,X = x, S = s) and πw(s) := P (W = w|X = x, S = s) for all x ∈ X .

Consider a regular parametric submodel indexed by θ:

f(y, w, x, s; θ) :=

K∏
w=1

{fw(y|x, s; θ)πw(s; θ)}1l{W=w}f(x, s; θ)f(s; θ),

which equals f(y, w, x, s) when θ = θ0.

The corresponding score of f(y, w, x; θ) is given by

s(y, w, x, s; θ) :=
∂ ln f(y, w, x, s; θ)

∂θ

=

K∑
w=1

(
1l{W = w}ḟw(y|x, s; θ) + 1l{W = w}π̇w(s; θ)

)
+ ḟ(x, s; θ) + ḟ(s; θ),

where ḟ denotes a derivative of the log, i.e, ḟ(x; θ) = ∂ ln f(x;θ)
∂θ .

At the true value, the expectation of the score equals zero. The tangent space of the model is the set of functions that are
mean zero and satisfy the additive structure of the score:

T =
{ K∑

w=1

(
1l{W = w}aw(y|x, s) + 1l{W = w}aπ(s)

)
+ ax(x, s) + as(s)

}
, (C.6)

where aw(y|x, s), aπ(s), ax(x, s) and as(s) are mean-zero functions.

The semiparametric variance bound of ∆DTE
w,w′ (u) is the variance of the projection on T of a function ψu(Y,W,X, S) (with

mean zero and finite second order moment) that satisfies for all regular parametric submodels

∂∆DTE
w,w′ (u;Fθ)

∂θ

∣∣∣
θ=θ0

= E[ψu(Y,W,X, S) · s(Y,W,X, S)]
∣∣∣
θ=θ0

(C.7)

If ψu itself already lies in the tangent space, the variance bound is given by E[ψ2
u].

Now, the DTE is

∆DTE
w,w′ (u;Fθ) =

∫∫∫
1l{y ≤ u}fw(y|x, s; θ)f(x|s; θ)f(s; θ)dydxds

−
∫∫∫

1l{y ≤ u}fw′(y|x, s; θ)f(x|s; θ)f(s; θ)dydxds.
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We thus have

∂∆DTE
w,w′ (u;Fθ)

∂θ
|θ=θ0 =

∫∫∫
1l{y ≤ u}ḟw(y|x, s; θ)fw(y|x, s)f(x|s)f(s)dydxds

+

∫∫
µw(u, s, x)ḟ(x|s; θ)f(x|s)f(s)dxds

+

∫
µw(u, s, x)f(x|s)ḟ(s; θ)f(s)ds

−
∫∫∫

1l{y ≤ u}ḟw′(y|x, s; θ)fw′(y|x, s)f(x|s)f(s)dydxds

−
∫∫

µw′(u, s, x))ḟ(x|s; θ)f(x|s)f(s)dxds

−
∫
µw′(u, s, x)f(x|s)ḟ(s; θ)f(s)ds.

Letting µw,w′(u, S,X) := µw(u, S,X)− µw′(u, S,X), we choose ψu(Y,W,X, S) as

ψu(Y,W,X, S) =
1l{W = w}
πw(S)

(1l{Y ≤ u} − µw(u, S,X))− 1l{W = w′}
πw′(S)

(1l{Y ≤ u} − µw′(u, S,X))

+ µw,w′(u, S,X)−∆DTE
w,w′ (u).

Notice that ψu satisfies equation (C.7) and that ψu lies in the tangent space T given in equation (C.6). Since ψu lies in the
tangent space, the variance bound is given by the expected square of ψu:

Ω(u) := E
[
ψu(Y,W,X, S)

2
]

= E
[(1l{W = w}

πw(S)
(1l{Y ≤ u} − µw(u, S,X))− 1l{W = w′}

πw′(S)
(1l{Y ≤ u} − µw′(u, S,X))

+µw,w′(u, S,X)−∆DTE
w,w′ (u)

)2]
= E[πw(S)ϕ2w(u, S, Y (w), X)] + E[πw′(S)ϕ2w′(u, S, Y (w′), X)] + E[ζ2i (u)].

This concludes the proof of part (a).

Next, for part (b), under Assumption 5.1, the regression-adjusted estimator defined in Algorithm 1 satisfies the following
asymptotic distribution for any given y ∈ Y:

√
n
(
∆̂DTE,adj

w,w′ (y)−∆DTE
w,w′ (y)

)
⇝ N (0,Ω(y)),

where Ω(y) is the semiparametric efficiency bound derived in part (a). This completes the proof of part (b).

Proof of Corollary 5.4. The result follows directly from the fact that, for a given y ∈ Y , ∆̂DTE,emp
w,w′ (y) is a regular,

consistent and asymptotically normal estimator for the DTE. Moreover, the variance of ∆̃DTE,adj
w,w′ (y) coincides with the

semiparametric efficiency bound Ω(y) established in Theorem 5.3. Consequently, we obtain

V ar
(
∆̃DTE,adj

w,w′ (y)
)
≤ V ar

(
∆̂DTE,emp

w,w′ (y)
)
,

which concludes the proof.
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D. Additional experimental details
All experiments were carried out on a MacBook Pro equipped with an Apple M3 Pro chip and 36GB memory. The
replication code is publicly available at https://github.com/CyberAgentAILab/dte car, and the method can be implemented
using the Python library dte-adj (https://pypi.org/project/dte-adj/).

D.1. Simulation Study

Figure 4 illustrates the percentage reduction in RMSE of regression-adjusted estimators relative to the empirical estimator
for different sample sizes: n ∈ {1,000, 5,000, 10,000}. Across all outcome levels, ML adjustment consistently outperforms
linear regression, achieving reductions in RMSE of up to 50%. The RMSE reduction increases notably as the sample size
grows from 1,000 to 5,000, but the improvement is less pronounced when the sample size increases from 5,000 to 10,000.

Figure 4. RMSE reduction (%) of regression-adjusted estimators vs. empirical estimator across quantiles for continuous outcomes,
with n ∈ {1,000, 5,000, 10,000}. Linear adjustment uses linear regression; ML adjusment uses gradient boosting. Both use 2-fold
cross-fitting. Number of simulations is 1,000.

D.1.1. ADDITIONAL SIMULATION RESULTS

We consider a discrete outcome Yi that follows a Poisson distribution with the conditional expected value given by:

E[Yi|Xi,Wi, Zi] = 0.2 |b(Xi) + c(Xi)Wi + γZi| ,

where b(Xi) and c(Xi) are given in Section 6.1. All other variables and treatment assignment mechanism are consistent
with those described in Section 6.1. Figure 5 presents the RMSE of the DTE estimators, along with the average length
and coverage probabilities of their 95% confidence intervals, for the empirical estimator and the regression-adjusted
estimators using both linear and machine learning (ML) adjustments, with a sample size of n = 1,000. Figure 6 shows the
percentage reduction in RMSE of the regression-adjusted estimators relative to the empirical estimator across varying sample
sizes: n ∈ {1,000, 5,000, 10,000}. Similar to the results observed in the continuous outcome simulation, ML adjustment
consistently outperforms linear regression. The benefit of regression adjustment increases with sample size: while neither
method achieves RMSE reduction for large values of Y when n = 1,000, both show significant RMSE reductions across all
outcome levels when n = 10,000.

We compare our method with the quantile treatment effect (QTE) estimator by Jiang et al. (2023) in the simulation setting
described in Section 6.1, using linear regression. Additionally, we examine a scenario with discrete covariates, which leads
to a discrete outcome variable. In this setting, we retain the same data-generating process but sample each covariate Xi

independently from a Uniform(−5, 5) distribution and round the values to the nearest integer. Table 2 presents the results,
showing that our proposed method with linear adjustment achieves a reduction in RMSE ranging from 6.4% to 12.5% for the
continuous outcome and from 0.8% to 6.1% for the discrete outcome. In contrast, the method by Jiang et al. (2023) achieves
up to a 6.5% reduction in RMSE for the continuous outcome but does not yield improvements for the discrete outcome.
Furthermore, the DTE estimator demonstrates substantially better computational efficiency. It requires only 0.008 seconds
for the continuous outcome and 0.015 seconds for the discrete outcome, while the QTE estimators take 0.148 and 0.145
seconds, respectively. This corresponds to our method being approximately 18 times faster for the continuous outcome and
9 times faster for the discrete outcome.
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Figure 5. RMSE, average length and coverage probability of 95% confidence intervals (CI) on simulated data with discrete outcomes
(n = 1,000). Linear adjustment uses linear regression, and ML adjustment uses gradient boosting, both with 2-fold cross-fitting. Number
of simulations is 1,000.

Figure 6. RMSE reduction (%) of regression-adjusted estimators vs. empirical estimator across quantiles for discrete outcomes, with
n ∈ {1,000, 5,000, 10,000}. Linear adjustment uses linear regression; ML adjusment uses gradient boosting. Both use 2-fold cross-fitting.
Number of simulations is 1,000.

Table 2. Comparison of RMSE reduction (%) between the proposed method and the estimator by Jiang et al. (2023), using linear
adjustment on simulated data (n = 1, 000)

Method Quantiles Execution Time (SD)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Continuous Outcome

Jiang et al. (2023) -0.55 0.44 2.82 3.90 6.51 5.66 2.96 2.89 4.45 0.1480 (0.0200)
Proposed Method 6.42 9.26 11.67 11.51 10.79 11.41 12.48 11.58 9.91 0.00829 (0.0168)

Discrete Outcome

Jiang et al. (2023) -1.97 -2.20 -2.59 -4.93 -2.69 -4.95 -5.19 0.08 0.38 0.1446 (0.01112)
Proposed Method 5.62 5.36 2.10 0.86 2.67 2.41 5.67 3.75 6.10 0.0153 (0.00665)
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D.2. The Impacts of Microfinance

Dataset The dataset from the field experiment conducted by Attanasio et al. (2015) is available for download at OpenICPSR
(Project 113597, Version V1).

Figure 7 highlights the five provinces in Mongolia where the experiment was conducted. The original map was sourced from
https://en.wikipedia.org/wiki/Provinces of Mongolia and subsequently modified by the authors to display the provinces,
their associated stratum indicators, and the location of Ulaanbaatar, the capital city.

Figure 7. Five northern provinces in Mongolia where the experiment was conducted. Randomization was stratified at the provincial level
to ensure the inclusion of all treatment groups within each province.

Table 3. Pre-treatment covariates included in regression adjustment

Variable name Description

Age Age in years of respondent
Age squared Age in years of respondent squared
Buddhist Respondents is of the Buddhist religion
Children < 16 Number of children in the household younger than 16 years
Education high Dummy variable that is 1 if the respondent completed grade VIII or higher
Education vocational Dummy variable that is 1 if the respondent completed vocational training
Female adults Number of female household members aged 16 or older
Halh Respondent ethnicity is Halh
Household size Number of children and adults in the household
Loans at baseline Dummy variable that is 1 if the household had at least one loan outstanding at the time of the baseline interview
Male adults Number of male household members aged 16 or older
Married Dummy variable that is 1 if the respondent is married or living together with partner
Household income Total annual household income prior to the experiment
Wage income Total annual household income from wage employment prior to the experiment
Enterprise revenue Annual enterprise revenue prior to the experiment
Enterprise profit Annual enterprise profit prior to the experiment

Table 4. Estimated treatment assignment probabilities within each stratum (joint-liability lending vs. control). The stratum indicator Si

corresponds to provinces in Mongolia, and π̂(Si) represents the estimated probability of assignment to the joint-liability lending.

Si 1 2 3 4 5

π̂(Si) 0.53 0.61 0.55 0.55 0.69
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