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Abstract001

Speech generation has achieved significant ad-002
vances through flow-matching techniques. And003
reinforcement learning from human feedback004
shown the possibility of further improving005
the performance of speech generation mod-006
els. In this work ,we propose F5D-TTS, a007
framework for integrating flow-matching text-008
to-speech models to human preferences by di-009
rectly optimizing on human preference data010
pairs. Specifically, we start by using the base011
F5-TTS model to create a preference dataset012
with 10000 speech pairs (about 2 hours), with a013
winner speech and a loser speech generated in014
the same prompt. Then we align flow matching015
TTS model with Flow-DPO. Experiments show016
that F5D-TTS significantly outperforms both017
the base F5-TTS model and the supervised-018
finetuned F5-TTS model in speaker similar-019
ity (measured by SIM-O) while maintaining020
speech intelligence (measured by WER) and021
speech naturalness (measured by UTMOS). We022
also show Flow-DPO alignment is applicable023
to low-resource scenarios. Audio samples are024
available at https://demo-used.github.io/F5D-025
TTS026

1 Introduction027

Recent advancements in Text-to-Speech (TTS)028

systems have achieved remarkable progress in029

generating high-quality , natural and expressive030

speech. Current TTS model architectures bifurcate031

into two dominant paradigms: autoregressive (AR)032

(Wang et al., 2023; Zhang et al., 2023; Chen et al.,033

2024a; Song et al., 2025) and non-autoregressive034

(NAR) (Chen et al., 2024b; Wang et al., 2024;035

Ju et al., 2024; Lee et al., 2024; Jiang et al.,036

2025) modeling approaches. AR models typically037

employ sequential token prediction through speech038

codecs, leveraging language model architectures039

to achieve high-fidelity synthesis. NAR models040

utilize parallel generation techniques via denoising041

diffusion or flow matching, offering significantly 042

faster inference while maintaining competitive 043

audio quality. 044

045

The concurrent advancement of reinforcement 046

learning (RL) techniques has opened new frontiers 047

in generative model, which can enhance model 048

performance by aligning with human preference 049

rather than scaling up. Pioneering works in RL, 050

exemplified by the DeepSeek series (Shao et al., 051

2024; Liu et al., 2024, 2025; Guo et al., 2025), 052

demonstrates the efficacy of RL paradigms like 053

Direct Preference Optimization (DPO) (Rafailov 054

et al., 2023) and Group Relative Policy Optimiza- 055

tion (GRPO) (Guo et al., 2025) for preference 056

alignment. These methods have been successfully 057

adapted to AR-TTS systems, where Proximal 058

Policy Optimization (PPO) (Schulman et al., 2017) 059

and Direct Preference Optimization (DPO) opti- 060

mize acoustic metrics such as speaker similarity 061

(SIM-O) and word error rate (WER). However, 062

integration of RL with NAR-TTS architectures 063

remains conspicuously absent from the literature. 064

This unresolved challenge presents a critical gap 065

at the intersection of non-autoregressive speech 066

synthesis and reinforcement learning research. 067

068

In this paper, we introduce F5D-TTS, which aligns 069

flow-matching TTS models with Direct Preference 070

Optimization (Flow-DPO) (Tian et al., 2025). The 071

framework of F5D-TTS is shown in Fig.1. First, 072

we generated an initial set of speech samples using 073

the F5-TTS model and employed the SIM-O as the 074

reward signal for preference selection. Through 075

this process, we curated a total of 10,000 data pairs 076

as our preference dataset. Subsequently, we fine- 077

tuned the F5-TTS model with Flow-DPO. Experi- 078

mental results demonstrate that significant improve- 079

ment in speaker similarity can be achieved with 080

low-resource scenarios (fine-tuning by only 1,000 081

data pairs and 1,000 optimization steps). The main 082

1

https://demo-used.github.io/F5D-TTS
https://demo-used.github.io/F5D-TTS
https://demo-used.github.io/F5D-TTS


Figure 1: Framework of F5D-TTS. (a) Human Preference Data Collection. (Sec 3.2) We select a subset of
LibriTTS dataset as prompts. Then we utilize the F5-TTS model to generate speech data for five times and select
the winner speech and the loser speech using SIM-O as reward signals. We create 10,000 preference data pairs in
total. (B) Aligning Pre-trained Model with Flow-DPO. (Sec 3.3) Once we get preference data pairs, we use them
to fine-tune the F5-TTS model with Flow-DPO. In this work, we use 1,000 pairs (about 2 hours) of speech data for
fine-tuning the F5-TTS pre-trained model.

contributions of this work are as follows:083

• We introduce F5D-TTS, which aligns flow-084

matching TTS models with DPO. In this way,085

we can enhance model performance by align-086

ing with human preference rather than simply087

scaling up.088

• Experiments show that F5D-TTS can signifi-089

cantly improve speaker similarity while main-090

taining speech intellience and speech natural-091

ness with low-resource scenarios.092

2 Related Works093

Aligning AR-TTS System. Reinforcement094

learning (RL) techniques have been applied in095

autoregressive text-to-speech (AR-TTS) systems096

to enhance performance through reward-driven097

optimization. In Seed-TTS (Anastassiou et al.,098

2024), reinforcement learning (RL) methods are099

employed to enhance system performance by100

fine-tuning the base model with tailored reward 101

functions. Specifically, the REINFORCE (Ahma- 102

dian et al., 2024) algorithm is utilized to optimize 103

two variants derived from the zero-shot in-context 104

learning model: one incorporates SIM-O and 105

word error rate (WER) metrics as rewards to 106

improve speaker similarity and robustness, while 107

the other leverages speech emotion recognition 108

(SER) accuracy to enhance emotion controllability. 109

Evaluations are conducted on both objective and 110

subjective test sets, including a challenging textual 111

dataset designed to stress-test autoregressive mod- 112

els, with results demonstrating the effectiveness 113

of RL in refining speech attributes. This approach 114

highlights the adaptability of reward-driven 115

optimization in balancing attribute-specific control 116

and implementation simplicity for TTS systems. 117

Other works (Adler et al., 2024; Tian et al., 2025; 118

Gao et al., 2025; Hussain et al., 2025) use RL 119

techniques and achieve some improvement. 120
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121

Aligning NAR-TTS System. Aligning NAR-122

TTS system to human preferences has so far been123

much less explored than AR-TTS system. F5R-124

TTS (Sun et al., 2025) applys the GRPO method to125

NAR-TTS models, using WER and SIM as reward126

signals, and significantly improve the WER and127

SIM. The main method of this work is transform-128

ing the outputs of flow-matching TTS models into129

probabilistic representations, which cannot align130

flow-matching TTS models with human preference.131

The fine-tuning process of Group Relative Policy132

Optimization (GRPO) exhibits some constraints:133

Although GRPO reduces memory overhead com-134

pared to PPO, it still incurs substantial computa-135

tional costs, rendering the GRPO methodology in-136

applicable in low-resource scenarios. Furthermore,137

compared to DPO, GRPO demonstrates suboptimal138

stability, which introduces additional implementa-139

tion risks and constraints in practical applications.140

3 Methodology141

The core idea of F5D-TTS is aligning flow-142

matching TTS models with Direct Preference Opti-143

mization. To accomplish this, we first select some144

speech-text pairs as prompt and synthesize some145

candidate speech. Then we use SIM-O as reward146

signals to collect preference data pairs. And we use147

Flow-DPO, a method to align flow-based model148

with human preference to imporve the model per-149

formance in speaker similarity.150

In the following sections, we first briefly review the151

F5-TTS model. Then, we introduce the method we152

used to construct the preference dataset. Finally,153

we present the method of aligning flow-matching154

TTS models with DPO. It is important to note that155

though we use the F5-TTS to conduct F5D-TTS,156

this method is applicable to any flow-matching TTS157

models.158

3.1 Overview of F5-TTS159

F5-TTS is a novel non-autoregressive text-to-160

speech synthesis system based on flow-matching161

and Diffusion Transformer, designed to achieve ef-162

ficient and high-fidelity speech generation through163

a simplified architecture. Unlike traditional164

methods that rely on complex components (e.g.,165

phoneme alignment, duration models, or pre-166

trained language models), F5-TTS adopts a mini-167

malist end-to-end paradigm, directly concatenating168

padded text sequences with speech inputs and im-169

plicitly modeling text-speech semantic alignment 170

via contextual learning. F5-TTS introduces Con- 171

vNeXt modules to optimize text representations, 172

significantly enhancing the fidelity and naturalness 173

of synthesized speech in zero-shot scenarios. Addi- 174

tionally, it proposes a dynamic inference strategy 175

named Sway Sampling, which adjusts the sampling 176

distribution of flow steps to optimize generation 177

quality and efficiency without increasing training 178

costs. The model demonstrates rapid convergence 179

during training and achieves near-real-time synthe- 180

sis speed during inference. 181

3.2 Human Preference Data Collection 182

To collect human preference data, we should gen- 183

erate speech samples from various prompts with 184

the pre-trained F5-TTS model. This work conclude 185

three stages as follows: 186

Stage 1: Create speech-text pairs for generation. 187

In this stage, we utilize LibriTTS (Zen et al., 2019), 188

a multi-speaker English corpus of approximately 189

585 hours of read English speech at 24kHz sam- 190

pling rate. In the initial experimental setup, we first 191

curated a subset of the LibriTTS dataset, specifi- 192

cally, we selected speech samples with 3-15 second 193

durations as prompts (denoted by xref ), and ran- 194

domly shuffled their corresponding transcripts as 195

target texts (denoted by y). Through this process, 196

we created 50,000 speech-text pairs for subsequent 197

data generation. 198

Stage 2: Multiple inferences from the same 199

prompt. Following the creation of speech-text 200

paired datasets, we employ the F5-TTS model to 201

synthesize speech outputs. For each input prompt, 202

defined as a tuple comprising textual content y and 203

a reference speech xref , we perform five parallel 204

synthesis iterations under identical hyperparameter 205

configurations (e.g., fixed temperature, determin- 206

istic sampling seeds). This procedure yields a set 207

of candidate speech samples (y, x1, x2, x3, x4, x5) 208

per prompt. By systematically aggregating these 209

multi-output generations across the dataset, we con- 210

struct a diversified pool of candidate preference 211

pairs. 212

Stage 3: Ranking and preference data selection. 213

In stage 3, we need to select the winner speech xw 214

and the loser speech xl from data pool created in 215

stage 2. We choose SIM-O as reward signals to re- 216

place human feedback. We calculated SIM-O of all 217

samples in data pool. For each prompt, we ranked 218

the five generated speech samples by their SIM-O 219

scores, designating the highest-scoring and lowest- 220
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Figure 2: Statistics of data. These two figures show
the distribution of speech durations and SIM-O of the
winner speech and the loser speech.

scoring samples as the winner speech and loser221

speech respectively. This process yielded 50,000222

ranked pairs (y, xw, xl) based on SIM-O metrics.223

Subsequently, we computed UTMOS scores for224

all winner speech and ultimately selected 10,000225

high-quality pairs for Flow-DPO fine-tuning and226

data scale ablation studies. The distribution char-227

acteristics of these paired samples are illustrated in228

Fig.2.229

3.3 Aligning Pre-trained Model with230

Flow-DPO231

Reinforcement Learning from Human Feed-232

back. Reinforcement Learning from Human233

Feedback (RLHF) is applied to learn a speech234

generation policy πθ(x0|y) that aligns with hu-235

man preference. Given a dataset D = {y, xw, xl},236

where each sample includes prompt y and two out-237

puts xw (preferred) and xl (dispreferred) synthe-238

sized by a reference model πref(x|y), RLHF op-239

timizes the policy to maximize a reward model240

r(x, y). To prevent excessive divergence from the241

reference model, a KL-divergence regularization242

term weighted by β is incorporated. The optimiza- 243

tion objective is formulated as Eq.1: 244

max
πθ

Ey∼D, x0∼πθ(x0|y) [r(x0, y)]

−β DKL [πθ(x0|y) ∥ πref(x0|y)]
(1) 245

Flow-DPO. Despite the success of RLHF, this ap- 246

proach still faces challenges such as high resource 247

consumption and the difficulty in acquiring reli- 248

able reward models. Motivated by these challenges. 249

DPO introduces a simple approach for policy opti- 250

mization using human preferences directly. Com- 251

pared with RLHF, DPO demonstrate a more prati- 252

cal method for alignment with human preference, 253

without explicit reward modeling. DPO objective 254

allows the model to learn from both desirable (win- 255

ner) data and undesirable (loser) data. Recent re- 256

search shows that DPO has demonstrated success in 257

AR models. Diffusion-DPO (Wallace et al., 2024) 258

further demonstrated that aligning DPO with NAR 259

models is also effective. The objective of Diffusion- 260

DPO LDiffusion-DPO(θ) is defined by Eq.2 261

−E
[
log σ

(
− β

2

(
∥ϵw − ϵθ(x

w
t , t)∥2 − ∥ϵw − ϵref(x

w
t , t)∥2 262

−
(
∥ϵl − ϵθ(x

l
t, t)∥2 − ∥ϵl − ϵref(x

l
t, t)∥2

)))]
(2)

263

where x∗t = (1 − t)x∗0 + tϵ, ϵ ∼ N (0, I), The 264

"*" indicates either "w" or "l". The expectation 265

is computed over samples {xw0 , xl0} ∼ D and the 266

noise schedule parameter t. 267

Based on Diffusion-DPO, Flow-DPO (Liu et al., 268

2025) proved that in rectified flow, we can relate 269

the noise vector ϵ∗ to a velocity field v∗ by Eq.3 270

∥ϵ∗ − ϵpred(x
∗
t , t)∥2 = (1− t)2∥v∗ − vpred(x

∗
t , t)∥2

(3)
271

And the objective of Flow-DPO LFlow-DPO(θ) is 272

given by Eq.4 273

−E
[
log σ

(
− βt

2

(
∥vw − vθ(x

w
t , t)∥2 − ∥vw − vref(x

w
t , t)∥2 274

−
(
∥vl − vθ(x

l
t, t)∥2 − ∥vl − vref(x

l
t, t)∥2

)))]
(4)

275

Here, βt = β(1− t)2, and the expectation is com- 276

puted over samples {xw0 , xl0} ∼ D and the noise 277

schedule parameter t. Intuitively, it is noteworthy 278

that many experiments indicate better results when 279

using a constant βt. Therefore, in our experiments, 280
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Table 1: Results on three test sets, LibriSpeech-PC test-clean, Seed-TTS test-en and Seed-TTS test-zh. The boldface
indicates the best result.

Model SIM-O↑ WER% ↓ UTMOS↑
LibriSpeech-PC test-clean

F5-TTS 0.639 1.69 3.85
F5-TTS + SFT 0.650 1.65 3.92
F5D-TTS 0.667 1.75 3.80

Seed-TTS test-en
F5-TTS 0.648 1.50 3.75
F5-TTS + SFT 0.661 1.45 3.82
F5D-TTS 0.690 1.62 3.70

Seed-TTS test-zh
F5-TTS 0.747 1.79 2.96
F5-TTS + SFT 0.753 1.82 2.99
F5D-TTS 0.760 1.75 2.84

βt is set as a constant, and its specific value will be281

discussed in Sec. 4.3.282

Flow-DPO on TTS. As Flow-DPO aligns flow-283

matching models with preference by solving the284

RLHF objective (Eq. 1) analytically, we can opti-285

mize policy alignment with human preference via286

supervised training. We use the preference dataset287

collected in Sec. 3.2, minimizing LFlow-DPO(θ)288

means that the predict velocity field vθ gets closer289

to the target velocity field of desirable speech vw.290

By aligning flow-matching TTS models with pref-291

erence (In this work, we use SIM-O as a reward292

signal), we can significantly improve the perfor-293

mance of base model.294

4 Experiments295

4.1 Experimental Setup296

Datasets and Model. For datasets, as mentioned297

in Sec. 3.2, we use the F5-TTS model to generate298

10,000 pairs, 20 hours of preference speech data,299

and we randomly select 1,000 pairs for model300

fine-tuning. We utilize three datasets for evaluation:301

LibriSpeech-PC (Meister et al., 2023), in this work,302

we use the 4-to-10-second sample test set based on303

LibriSpeech-PC, with 1,127 samples in the subset.304

Seed-TTS (Anastassiou et al., 2024) test-en with305

1,088 samples from Common Voice (Ardila et al.,306

2019) and Seed-TTS test-zh with 2,020 samples307

from DiDiSpeech (Guo et al., 2021). For model,308

we use the F5-TTS model as base model.309

310

Training and Inference. We fine-tune F5-TTS311

model on 8 NVIDIA A100 80G GPUs, with a312

batch size of 2 (pairs of data) and gradient accu-313

mulation of 4 steps. We use AdamW (Loshchilov 314

and Hutter, 2017) and a learing rate of 1× 10−7 is 315

used without warmup. For the divergence penalty 316

parameter β, we find the model demonstrates 317

superior performance when β ∈ [500, 10000]. In 318

the series of experiments, we set β = 500. During 319

the inference phase, our setup remains largely 320

consistent with F5-TTS, with one modification that 321

we don’t use the Exponential Moving Averaged 322

(EMA) (Karras et al., 2024) weights. 323

324

Metrics. We evaluate speaker similarity us- 325

ing SIM-O, speech intelligibility using the word 326

error rate (WER) and speech naturalness using 327

mean opinion score (MOS). For SIM-O, we utilize 328

WavLM-large-based (Chen et al., 2022) speaker 329

verification model to calculate the cosine similarity 330

score between the generated speech and the prompt 331

speech. For WER, we utilize Whisper-large-v3 332

(Radford et al., 2023) to transcribe English speech 333

and Paraformer-zh (Gao et al., 2023) to transcribe 334

Chinese speech. The WER is calculated by com- 335

paring the transcribed text with the target text. For 336

MOS, we use UTokyo-SaruLab MOS Prediction 337

System (UTMOS) (Saeki et al., 2022) to automati- 338

cally calculate the MOS of the generated speech. 339

4.2 Results 340

The main results are shown in Tab.1. We can see 341

that F5D-TTS achieves better SIM-O scores, com- 342

parable to the F5-TTS base model and SFT model. 343

The improvement of SIM-O indicates that aligning 344

the NAR-TTS model with Flow-DPO is effective, 345

with only a small number of data pairs. Though 346
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Table 2: Ablation studies on data scales. Experiments on Seed-TTS test-en demonstrate that the SIM-O stabilizes
upon reaching a data scale of 1,000 pairs.

Model Dataset Data scale SIM-O↑
F5-TTS Emilia - 0.639

F5D-TTS LibriTTS

100 pairs 0.681
500 pairs 0.685

1,000 pairs 0.690
2,000 pairs 0.689
5,000 pairs 0.688
10,000 pairs 0.689

we observed reward hacking phenomena in WER347

and UTMOS metrics, experiments demonstrate348

that such effects can be confined within tolerable349

bounds, inducing negligible impact on synthesized350

speech quality. The comprehensive experimental351

results demonstrate that F5D-TTS achieves sub-352

stantial improvements in speaker similarity perfor-353

mance under low-resource conditions (requiring354

only minimal training data (e.g., 1,000 samples)355

and reduced computational budgets), while main-356

taining speech intelligence and speech naturalness.357

4.3 Ablation Studies358

Ablation on βt. As discussed in Sec 3.3, the359

parameter βt controls the strength of the KL360

divergence constraint. Ablation studies with361

varying βt demonstrate comparable performance362

within the range βt ∈ [500, 10000]. The main363

results are shown in Fig.3.364

365

Figure 3: Ablation studies on βt . Experiments on
Seed-TTS test-en demonstrate that varying βt demon-
strate comparable performance within the range βt ∈
[500, 10000].

Ablation on data scale. To verify the impact of366

the data scale on SIM-O, we fine-tuned the model367

using randomly sampled subsets of varying sizes368

from the pre-constructed dataset. The results show369

that the model performance stabilizes when the 370

data scale reaches 1,000 pairs. This experiment 371

demonstrates that F5D-TTS significantly improves 372

SIM-O performance with only a small amount of 373

data. The main results are shown in Tab.2. 374

375

Ablation on training steps. To validate the op- 376

timal number of training steps, we fine-tuned the 377

model using 1,000 data samples. The experimen- 378

tal results indicate the maximum performance of 379

the model in 1 k training steps. Furthermore, the 380

experiments reveal that reward hacking intensifies 381

progressively with increasing training steps. The 382

main results are shown in Fig.4. 383

Figure 4: Ablation studies on training steps. The SIM-O
metric attains its peak value of 0.690 at 1,000 training
steps, followed by a progressive decline in subsequent
iterations. Reward hacking intensifies with prolonged
training, as evidenced by deteriorating UTMOS scores.

5 Conclusion 384

In this paper, we introduce F5D-TTS, a method 385

to align flow-matching TTS models with human 386

preferences by directly optimizing on human pref- 387
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erence data. We utilized the F5-TTS model to388

construct 50,000 speech-text pairs from the Lib-389

riTTS dataset, and then generate speech five times390

with the same condition. Using the SIM-O metric391

for preference data construction, we ultimately se-392

lected 10,000 high-quality preference data pairs.393

Additionally, we use Flow-DPO to align flow-394

matching system to human preferences. Experi-395

ments show that F5D-TTS can significantly im-396

prove the speaker similarity while maintain the397

speech naturalness and speech intelligence using398

few-scale data and computationally efficient train-399

ing.400

Limitations401

In this section, we discuss the limitations of this402

work and discuss potential directions for further403

research.404

• High-quality preference dataset required.405

DPO relies on high-quality preference data, as406

low-quality preference data can negatively im-407

pact model performance (particularly in terms408

of speaker naturalness), which necessitates the409

screening of high-quality speech data during410

the data generation process.411

• Reward hacking. Compared to F5R-TTS,412

though we get better speaker similarity (SIM-413

O) in a low-cost way, UTMOS score experi-414

ences a slight decline, making it challenging415

to balance all aspects of speech quality met-416

rics simultaneously.417
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