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Abstract

Speech generation has achieved significant ad-
vances through flow-matching techniques. And
reinforcement learning from human feedback
shown the possibility of further improving
the performance of speech generation mod-
els. In this work ,we propose F5D-TTS, a
framework for integrating flow-matching text-
to-speech models to human preferences by di-
rectly optimizing on human preference data
pairs. Specifically, we start by using the base
F5-TTS model to create a preference dataset
with 10000 speech pairs (about 2 hours), with a
winner speech and a loser speech generated in
the same prompt. Then we align flow matching
TTS model with Flow-DPO. Experiments show
that FSD-TTS significantly outperforms both
the base F5-TTS model and the supervised-
finetuned F5-TTS model in speaker similar-
ity (measured by SIM-O) while maintaining
speech intelligence (measured by WER) and
speech naturalness (measured by UTMOS). We
also show Flow-DPO alignment is applicable
to low-resource scenarios. Audio samples are
available at https://demo-used.github.io/F5D-
TTS

1 Introduction

Recent advancements in Text-to-Speech (TTS)
systems have achieved remarkable progress in
generating high-quality , natural and expressive
speech. Current TTS model architectures bifurcate
into two dominant paradigms: autoregressive (AR)
(Wang et al., 2023; Zhang et al., 2023; Chen et al.,
2024a; Song et al., 2025) and non-autoregressive
(NAR) (Chen et al., 2024b; Wang et al., 2024;
Ju et al., 2024; Lee et al., 2024; Jiang et al.,
2025) modeling approaches. AR models typically
employ sequential token prediction through speech
codecs, leveraging language model architectures
to achieve high-fidelity synthesis. NAR models
utilize parallel generation techniques via denoising

diffusion or flow matching, offering significantly
faster inference while maintaining competitive
audio quality.

The concurrent advancement of reinforcement
learning (RL) techniques has opened new frontiers
in generative model, which can enhance model
performance by aligning with human preference
rather than scaling up. Pioneering works in RL,
exemplified by the DeepSeek series (Shao et al.,
2024; Liu et al., 2024, 2025; Guo et al., 2025),
demonstrates the efficacy of RL paradigms like
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) and Group Relative Policy Optimiza-
tion (GRPO) (Guo et al., 2025) for preference
alignment. These methods have been successfully
adapted to AR-TTS systems, where Proximal
Policy Optimization (PPO) (Schulman et al., 2017)
and Direct Preference Optimization (DPO) opti-
mize acoustic metrics such as speaker similarity
(SIM-O) and word error rate (WER). However,
integration of RL with NAR-TTS architectures
remains conspicuously absent from the literature.
This unresolved challenge presents a critical gap
at the intersection of non-autoregressive speech
synthesis and reinforcement learning research.

In this paper, we introduce FSD-TTS, which aligns
flow-matching TTS models with Direct Preference
Optimization (Flow-DPO) (Tian et al., 2025). The
framework of FSD-TTS is shown in Fig.1. First,
we generated an initial set of speech samples using
the F5-TTS model and employed the SIM-O as the
reward signal for preference selection. Through
this process, we curated a total of 10,000 data pairs
as our preference dataset. Subsequently, we fine-
tuned the F5-TTS model with Flow-DPO. Experi-
mental results demonstrate that significant improve-
ment in speaker similarity can be achieved with
low-resource scenarios (fine-tuning by only 1,000
data pairs and 1,000 optimization steps). The main
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Figure 1: Framework of FSD-TTS. (a) Human Preference Data Collection. (Sec 3.2) We select a subset of
LibriTTS dataset as prompts. Then we utilize the F5-TTS model to generate speech data for five times and select
the winner speech and the loser speech using SIM-O as reward signals. We create 10,000 preference data pairs in
total. (B) Aligning Pre-trained Model with Flow-DPO. (Sec 3.3) Once we get preference data pairs, we use them
to fine-tune the F5-TTS model with Flow-DPO. In this work, we use 1,000 pairs (about 2 hours) of speech data for

fine-tuning the F5-TTS pre-trained model.

contributions of this work are as follows:

* We introduce F5D-TTS, which aligns flow-
matching TTS models with DPO. In this way,
we can enhance model performance by align-
ing with human preference rather than simply
scaling up.

* Experiments show that FSD-TTS can signifi-
cantly improve speaker similarity while main-
taining speech intellience and speech natural-
ness with low-resource scenarios.

2 Related Works

Aligning AR-TTS System. Reinforcement
learning (RL) techniques have been applied in
autoregressive text-to-speech (AR-TTS) systems
to enhance performance through reward-driven
optimization. In Seed-TTS (Anastassiou et al.,
2024), reinforcement learning (RL) methods are
employed to enhance system performance by

fine-tuning the base model with tailored reward
functions. Specifically, the REINFORCE (Ahma-
dian et al., 2024) algorithm is utilized to optimize
two variants derived from the zero-shot in-context
learning model: one incorporates SIM-O and
word error rate (WER) metrics as rewards to
improve speaker similarity and robustness, while
the other leverages speech emotion recognition
(SER) accuracy to enhance emotion controllability.
Evaluations are conducted on both objective and
subjective test sets, including a challenging textual
dataset designed to stress-test autoregressive mod-
els, with results demonstrating the effectiveness
of RL in refining speech attributes. This approach
highlights the adaptability of reward-driven
optimization in balancing attribute-specific control
and implementation simplicity for TTS systems.
Other works (Adler et al., 2024; Tian et al., 2025;
Gao et al., 2025; Hussain et al., 2025) use RL
techniques and achieve some improvement.



Aligning NAR-TTS System. Aligning NAR-
TTS system to human preferences has so far been
much less explored than AR-TTS system. F5R-
TTS (Sun et al., 2025) applys the GRPO method to
NAR-TTS models, using WER and SIM as reward
signals, and significantly improve the WER and
SIM. The main method of this work is transform-
ing the outputs of flow-matching TTS models into
probabilistic representations, which cannot align
flow-matching TTS models with human preference.
The fine-tuning process of Group Relative Policy
Optimization (GRPO) exhibits some constraints:
Although GRPO reduces memory overhead com-
pared to PPO, it still incurs substantial computa-
tional costs, rendering the GRPO methodology in-
applicable in low-resource scenarios. Furthermore,
compared to DPO, GRPO demonstrates suboptimal
stability, which introduces additional implementa-
tion risks and constraints in practical applications.

3 Methodology

The core idea of F5D-TTS is aligning flow-
matching TTS models with Direct Preference Opti-
mization. To accomplish this, we first select some
speech-text pairs as prompt and synthesize some
candidate speech. Then we use SIM-O as reward
signals to collect preference data pairs. And we use
Flow-DPO, a method to align flow-based model
with human preference to imporve the model per-
formance in speaker similarity.

In the following sections, we first briefly review the
F5-TTS model. Then, we introduce the method we
used to construct the preference dataset. Finally,
we present the method of aligning flow-matching
TTS models with DPO. It is important to note that
though we use the F5-TTS to conduct FSD-TTS,
this method is applicable to any flow-matching TTS
models.

3.1 Overview of F5-TTS

F5-TTS is a novel non-autoregressive text-to-
speech synthesis system based on flow-matching
and Diffusion Transformer, designed to achieve ef-
ficient and high-fidelity speech generation through
a simplified architecture.  Unlike traditional
methods that rely on complex components (e.g.,
phoneme alignment, duration models, or pre-
trained language models), F5-TTS adopts a mini-
malist end-to-end paradigm, directly concatenating
padded text sequences with speech inputs and im-

plicitly modeling text-speech semantic alignment
via contextual learning. F5-TTS introduces Con-
vNeXt modules to optimize text representations,
significantly enhancing the fidelity and naturalness
of synthesized speech in zero-shot scenarios. Addi-
tionally, it proposes a dynamic inference strategy
named Sway Sampling, which adjusts the sampling
distribution of flow steps to optimize generation
quality and efficiency without increasing training
costs. The model demonstrates rapid convergence
during training and achieves near-real-time synthe-
sis speed during inference.

3.2 Human Preference Data Collection

To collect human preference data, we should gen-
erate speech samples from various prompts with
the pre-trained F5-TTS model. This work conclude
three stages as follows:

Stage 1: Create speech-text pairs for generation.
In this stage, we utilize LibriTTS (Zen et al., 2019),
a multi-speaker English corpus of approximately
585 hours of read English speech at 24kHz sam-
pling rate. In the initial experimental setup, we first
curated a subset of the LibriTTS dataset, specifi-
cally, we selected speech samples with 3-15 second
durations as prompts (denoted by x,.r), and ran-
domly shuffled their corresponding transcripts as
target texts (denoted by y). Through this process,
we created 50,000 speech-text pairs for subsequent
data generation.

Stage 2: Multiple inferences from the same
prompt. Following the creation of speech-text
paired datasets, we employ the F5-TTS model to
synthesize speech outputs. For each input prompt,
defined as a tuple comprising textual content y and
a reference speech ..y, we perform five parallel
synthesis iterations under identical hyperparameter
configurations (e.g., fixed temperature, determin-
istic sampling seeds). This procedure yields a set
of candidate speech samples (y, x1, 2, T3, T4, 5)
per prompt. By systematically aggregating these
multi-output generations across the dataset, we con-
struct a diversified pool of candidate preference
pairs.

Stage 3: Ranking and preference data selection.
In stage 3, we need to select the winner speech x,,
and the loser speech z; from data pool created in
stage 2. We choose SIM-O as reward signals to re-
place human feedback. We calculated SIM-O of all
samples in data pool. For each prompt, we ranked
the five generated speech samples by their SIM-O
scores, designating the highest-scoring and lowest-
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Figure 2: Statistics of data. These two figures show
the distribution of speech durations and SIM-O of the
winner speech and the loser speech.

scoring samples as the winner speech and loser
speech respectively. This process yielded 50,000
ranked pairs (y, x,, ;) based on SIM-O metrics.
Subsequently, we computed UTMOS scores for
all winner speech and ultimately selected 10,000
high-quality pairs for Flow-DPO fine-tuning and
data scale ablation studies. The distribution char-
acteristics of these paired samples are illustrated in
Fig.2.

3.3 Aligning Pre-trained Model with
Flow-DPO

Reinforcement Learning from Human Feed-
back. Reinforcement Learning from Human
Feedback (RLHF) is applied to learn a speech
generation policy my(zo|y) that aligns with hu-
man preference. Given a dataset D = {y, zy,, 21},
where each sample includes prompt y and two out-
puts x,, (preferred) and z; (dispreferred) synthe-
sized by a reference model 7¢(x|y), RLHF op-
timizes the policy to maximize a reward model
r(x,y). To prevent excessive divergence from the
reference model, a KL-divergence regularization

term weighted by (3 is incorporated. The optimiza-
tion objective is formulated as Eq.1:

]E ~ xTor~TlT b)
H}T%X y~D, zo~mo(woly) [7(%0,Y)] )
—BDxL [mo(woly) | Tret(woly)]

Flow-DPO. Despite the success of RLHF, this ap-
proach still faces challenges such as high resource
consumption and the difficulty in acquiring reli-
able reward models. Motivated by these challenges.
DPO introduces a simple approach for policy opti-
mization using human preferences directly. Com-
pared with RLHF, DPO demonstrate a more prati-
cal method for alignment with human preference,
without explicit reward modeling. DPO objective
allows the model to learn from both desirable (win-
ner) data and undesirable (loser) data. Recent re-
search shows that DPO has demonstrated success in
AR models. Diffusion-DPO (Wallace et al., 2024)
further demonstrated that aligning DPO with NAR
models is also effective. The objective of Diffusion-
DPO Lpittusion-pro (0) is defined by Eq.2
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where 2} = (1 — t)zf + te,e ~ N(0,1), The
"*#" indicates either "w" or "l". The expectation
is computed over samples {z¥, 74} ~ D and the
noise schedule parameter .

Based on Diffusion-DPO, Flow-DPO (Liu et al.,
2025) proved that in rectified flow, we can relate
the noise vector €* to a velocity field v* by Eq.3
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And the objective of Flow-DPO Lgjow-ppo(f) is
given by Eq.4
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Here, 3; = 3(1 — t)?, and the expectation is com-

puted over samples {z¥, zL} ~ D and the noise
schedule parameter ¢. Intuitively, it is noteworthy
that many experiments indicate better results when
using a constant ;. Therefore, in our experiments,



Table 1: Results on three test sets, LibriSpeech-PC test-clean, Seed-TTS test-en and Seed-TTS test-zh. The boldface

indicates the best result.

Model SIM-Ot WER% | UTMOS?
LibriSpeech-PC fest-clean

F5-TTS 0.639 1.69 3.85

F5-TTS + SFT  0.650 1.65 3.92

F5D-TTS 0.667 1.75 3.80
Seed-TTS test-en

F5-TTS 0.648 1.50 3.75

F5-TTS + SFT  0.661 145 3.82

F5D-TTS 0.690 1.62 3.70
Seed-TTS test-zh

F5-TTS 0.747 1.79 2.96

F5-TTS + SFT  0.753 1.82 2.99

F5D-TTS 0.760 1.75 2.84

B¢ is set as a constant, and its specific value will be
discussed in Sec. 4.3.

Flow-DPO on TTS. As Flow-DPO aligns flow-
matching models with preference by solving the
RLHF objective (Eq. 1) analytically, we can opti-
mize policy alignment with human preference via
supervised training. We use the preference dataset
collected in Sec. 3.2, minimizing Lgiow-ppo ()
means that the predict velocity field vg gets closer
to the target velocity field of desirable speech v,,.
By aligning flow-matching TTS models with pref-
erence (In this work, we use SIM-O as a reward
signal), we can significantly improve the perfor-
mance of base model.

4 Experiments

4.1 Experimental Setup

Datasets and Model. For datasets, as mentioned
in Sec. 3.2, we use the F5-TTS model to generate
10,000 pairs, 20 hours of preference speech data,
and we randomly select 1,000 pairs for model
fine-tuning. We utilize three datasets for evaluation:
LibriSpeech-PC (Meister et al., 2023), in this work,
we use the 4-to-10-second sample test set based on
LibriSpeech-PC, with 1,127 samples in the subset.
Seed-TTS (Anastassiou et al., 2024) test-en with
1,088 samples from Common Voice (Ardila et al.,
2019) and Seed-TTS test-zh with 2,020 samples
from DiDiSpeech (Guo et al., 2021). For model,
we use the F5-TTS model as base model.

Training and Inference. We fine-tune F5-TTS
model on 8 NVIDIA A100 80G GPUs, with a
batch size of 2 (pairs of data) and gradient accu-

mulation of 4 steps. We use AdamW (Loshchilov
and Hutter, 2017) and a learing rate of 1 x 1077 is
used without warmup. For the divergence penalty
parameter 3, we find the model demonstrates
superior performance when 5 € [500, 10000]. In
the series of experiments, we set 5 = 500. During
the inference phase, our setup remains largely
consistent with F5-TTS, with one modification that
we don’t use the Exponential Moving Averaged
(EMA) (Karras et al., 2024) weights.

Metrics. We evaluate speaker similarity us-
ing SIM-O, speech intelligibility using the word
error rate (WER) and speech naturalness using
mean opinion score (MOS). For SIM-O, we utilize
WavLM-large-based (Chen et al., 2022) speaker
verification model to calculate the cosine similarity
score between the generated speech and the prompt
speech. For WER, we utilize Whisper-large-v3
(Radford et al., 2023) to transcribe English speech
and Paraformer-zh (Gao et al., 2023) to transcribe
Chinese speech. The WER is calculated by com-
paring the transcribed text with the target text. For
MOS, we use UTokyo-SaruLLab MOS Prediction
System (UTMOS) (Saeki et al., 2022) to automati-
cally calculate the MOS of the generated speech.

4.2 Results

The main results are shown in Tab.1. We can see
that FSD-TTS achieves better SIM-O scores, com-
parable to the F5-TTS base model and SFT model.
The improvement of SIM-O indicates that aligning
the NAR-TTS model with Flow-DPO is effective,
with only a small number of data pairs. Though



Table 2: Ablation studies on data scales. Experiments on Seed-TTS test-en demonstrate that the SIM-O stabilizes

upon reaching a data scale of 1,000 pairs.

Model Dataset

F5-TTS Emilia

FSD-TTS LibriTTS

Data scale SIM-Of
- 0.639
100 pairs 0.681
500 pairs 0.685
1,000 pairs 0.690
2,000 pairs 0.689
5,000 pairs 0.688
10,000 pairs ~ 0.689

we observed reward hacking phenomena in WER
and UTMOS metrics, experiments demonstrate
that such effects can be confined within tolerable
bounds, inducing negligible impact on synthesized
speech quality. The comprehensive experimental
results demonstrate that FSD-TTS achieves sub-
stantial improvements in speaker similarity perfor-
mance under low-resource conditions (requiring
only minimal training data (e.g., 1,000 samples)
and reduced computational budgets), while main-
taining speech intelligence and speech naturalness.

4.3 Ablation Studies

Ablation on 3;. As discussed in Sec 3.3, the
parameter [3; controls the strength of the KL
divergence constraint. Ablation studies with
varying 3; demonstrate comparable performance
within the range §; € [500, 10000]. The main
results are shown in Fig.3.

./.\'—’\’\'\’

log(Be)

Figure 3: Ablation studies on /3; . Experiments on
Seed-TTS test-en demonstrate that varying 3; demon-
strate comparable performance within the range 5; €
[500, 10000].

Ablation on data scale. To verify the impact of
the data scale on SIM-O, we fine-tuned the model
using randomly sampled subsets of varying sizes
from the pre-constructed dataset. The results show

that the model performance stabilizes when the
data scale reaches 1,000 pairs. This experiment
demonstrates that FSD-TTS significantly improves
SIM-O performance with only a small amount of
data. The main results are shown in Tab.2.

Ablation on training steps. To validate the op-
timal number of training steps, we fine-tuned the
model using 1,000 data samples. The experimen-
tal results indicate the maximum performance of
the model in 1 k training steps. Furthermore, the
experiments reveal that reward hacking intensifies
progressively with increasing training steps. The
main results are shown in Fig.4.

Figure 4: Ablation studies on training steps. The SIM-O
metric attains its peak value of 0.690 at 1,000 training
steps, followed by a progressive decline in subsequent
iterations. Reward hacking intensifies with prolonged
training, as evidenced by deteriorating UTMOS scores.

5 Conclusion

In this paper, we introduce FSD-TTS, a method
to align flow-matching TTS models with human
preferences by directly optimizing on human pref-



erence data. We utilized the F5-TTS model to
construct 50,000 speech-text pairs from the Lib-
riTTS dataset, and then generate speech five times
with the same condition. Using the SIM-O metric
for preference data construction, we ultimately se-
lected 10,000 high-quality preference data pairs.
Additionally, we use Flow-DPO to align flow-
matching system to human preferences. Experi-
ments show that FSD-TTS can significantly im-
prove the speaker similarity while maintain the
speech naturalness and speech intelligence using
few-scale data and computationally efficient train-

ing.
Limitations

In this section, we discuss the limitations of this
work and discuss potential directions for further
research.

* High-quality preference dataset required.
DPO relies on high-quality preference data, as
low-quality preference data can negatively im-
pact model performance (particularly in terms
of speaker naturalness), which necessitates the
screening of high-quality speech data during
the data generation process.

* Reward hacking. Compared to FSR-TTS,
though we get better speaker similarity (SIM-
O) in a low-cost way, UTMOS score experi-
ences a slight decline, making it challenging
to balance all aspects of speech quality met-
rics simultaneously.
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