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Abstract

Meta-learning for few-shot classification has been challenged on its effectiveness
compared to simpler pretraining methods and the validity of its claim of “learning
to learn”. Recent work has suggested that MAML-based models do not perform
“rapid-learning” in the inner-loop but reuse features by only adapting the final linear
layer. Separately, BatchNorm, a near ubiquitous inclusion in model architectures,
has been shown to have an implicit learning rate decay effect on the preceding layers
of a network. We study the impact of BatchNorm’s implicit learning rate decay
on feature reuse in meta-learning methods and find that counteracting it increases
change in intermediate layers during adaptation. We also find that counteracting
this learning rate decay sometimes improves performance on few-shot classification
tasks.

1 Introduction

Meta-learning [2] offers a compelling promise of machine learning generalization. A model “learns
to learn” by solving a collection of different tasks in an episodic training objective. By optimizing
this challenging bi-level objective, the model learns to adapt its weights to new tasks at test time
through a few simple gradient descent steps. The updates usually aim to update large portions, if not
the entire network, to suit each task.

This is in contrast to pretraining methods [14] that learn a single flexible representation to solve an
entire distribution of tasks by adding and training a single layer linear classifier during test-time.
These approaches have been shown to effectively tackle few-shot learning tasks and are simpler to
train than meta-learning methods. A natural question is to explore why meta-learning is outperformed
by these pretraining techniques. [12] uncovers that while meta-learning methods perform gradient
descent updates to the entire network, the inner loop updates only change the final linear layer, leaving
the majority of the weights unchanged. This suggests that meta-learning methods are not actually
adapting their representations for each task. Intuitively, this weakens its distinction from pre-training
methods as full-network adaptability is often considered one of the strengths of meta-learning [10].

Separately, it has been shown that the usage of BatchNorm modules in neural networks causes an
implicit learning rate decay proportional to weight norm of the preceding layer. As many meta-
learning models make use of the 4-block convolutional architecture used in [2], they may all be
subject to this decay phenomenon. This is particularly in line with ANIL [12] where only the final
layer, which is not followed by a BatchNorm layer, sees substantial adaptation.

In our work, we aim to answer the question, does BatchNorm’s implicit learning rate decay negatively
impact model adaptation and lead to feature reuse? We find evidence that counteracting this decay
increases learning in intermediate layers and improves performance on existing few-shot classification
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benchmarks. We also find that enabling this increased adaptation lead to notable performance gains
over other methods for tasks sampled from a different distribution.

2 Related Work

Representation adaptation in meta-learning MetaOptNet [8] is the first method to meta-learn
a fixed representation and then only adapt a final convex classification layer during task-specific
training. ANIL [12] studies rapid-learning vs. feature reuse in meta-learning by studying individual
layer adaptation. They demonstrate that representations hardly change during inner loop optimization
for MAML [2] and that training only the final layer during the inner-loop preserves most of the
method’s performance. More recently, BOIL [10] does the opposite of ANIL and only optimizes the
body of the network and also proposes evaluating a model on different test-time datasets. [1] proposes
a method of creating few-shot tasks that are more challenging and observe improved performance of
full-model adaptation methods over ANIL and pretraining approaches.

Normalization and learning rate decay [4] first identifies that in CNNs, the norm of the weight
vectors grows logarithmically with the number of gradient descent steps. [16] then identifies that the
usage of normalization schemes influences the effective learning rate based on the magnitude of the
layer weights that precede and normalization module. [9] then proposes an exponentially growing
learning rate for neural network training to improve model performance.

3 Studying the Inner-Loop Adaptation Procedure

3.1 Implicit Learning Rate Decay in Inner-Loop Adaptation

We observe that all layers except for the final Dense layer in the 4-block convolutional architecture
is affected by BatchNorm and its implicit learning rate decay. This was previously studied in [16]
and we reference [3] in our explanation below. This is due to the scale invariance of functions from
BatchNorm and other normalization schemes. We focus on BatchNorm as it is the most prevalent
normalization method. Due to the operation being scale invariant, the network function and cost are
also scale invariant when viewed from the incoming weights wj . If a function g(x) is scale invariant
with respect to x with any scale γ, the following holds true:

g(γx) = g(x) (1)
∇g(γx) = γ−1∇g(x) (2)

We crucially observe that while the function value is now unaffected by scale due to BatchNorm,
the gradient of the function is not. We can study the dynamics this has on training by looking at
our stochastic gradient descent update. Because the scale of wj is invariant, we canonicalize wj to
the unit vector ŵ = wj/||wj || to use as a reference point to calculate an effective learning rate. The
gradient update is approximated as:

ŵ(k+1)
j =

w(k)
j − α∇J (w(k)

j )

||w(k)
j − α∇J (w(k)

j )||
≈

w(k)
j − α∇J (w(k)

j )

||w(k)
j ||

= ŵ(k)
j − α||w(k)

j ||
−2∇J (ŵ(k)

j ) (3)

From this equation, we can interpret α̂ = α||w(k)
j ||−2 as the effective learning rate. Thus, the learning

rate for each layer is downscaled by the square of the norm of its weights. We note that as the final
Dense layer is not succeeded by BatchNorm, it does not experience any decay effect. It is also
important to note that as training progresses, the weight norm ||w(k)

j || will also increase, resulting in a
further gradual decrease of learning rate. This is shown empirically in Figure 1, with the mathematical
explanation in Appendix A.3.

3.2 Counteracting Implicit Learning Rate Decay

We aim to study the effect that implicit learning rate decay has on model adaptation by counteracting
this effect during the inner-loop training procedure. We present two solutions – Scaled learning rate
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update and Unit norm weight update. For each method, we outline the update rule and the resulting
new effective learning rate and include a toy example demonstrating each in Appendix A.2.

Scaled learning rate update multiplies the inner-loop learning rate for each layer except for the
classification head by its squared weight norm.

Update rule: We apply the following gradient update (with changes shown in color):

w(k+1)
j = w(k)

j − α||w(k)
j ||

2∇J (w(k)
j ) (4)

Effective learning rate:
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(5)
As seen above, the effects of BatchNorm’s implicit learning rate decay have been counteracted by our
scaled learning rate update. Note that our weights are not actually normalized, rather this update is to
correct the learning rate scaling from the perspective of a normed weight vector.

Unit norm weight update ensures that all the weights for each layer in the network other than the
classification head have a weight norm of 1 throughout training.

Update rule: We normalize each layer by its norm after every step of gradient descent, such that
||w(k)

j || = 1 for all k. We apply the following gradient update (with changes shown in color).

w(k+1)
j =

w(k)
j − α∇J (w(k)

j )

||w(k)
j − α∇J (w(k)

j ||
(6)

Effective learning rate: As seen below, the effects of BatchNorm’s implicit learning rate decay have
been counteracted by our unit norm weight update.

w(k+1)
j = ŵ(k+1)

j ≈
w(k)

j − α||w(k)
j ||−1∇J (ŵ

(k)
j )

||w(k)
j ||

= w(k)
j − α∇J (ŵ(k)

j ) (7)

4 Experiments

4.1 Experimental setup

We perform our experiments on several classification benchmarks for few-shot learning. We use
the miniImageNet dataset proposed by [13]. We also perform experiments on the Caltech-UCSD
Birds 200 (CUB) dataset [17] which is a fine-grained classification task for birds and on the Fewshot-
CIFAR100 (FC-100) dataset [11], which is based on the widely-used CIFAR100 dataset.

For all experiments, we use the standard Conv4 architecture for meta-learning outlined by [2]. We
use 64 filters per layer and max-pooling, as was done previously for the miniImageNet benchmark.
We perform 5-way classification with 1 or 5 shots denoted as 5x1 and 5x5 classification, respectively.

We show results from MAML [2], ANIL [12] and our two methods. We also include a simple baseline
in several experiments, labelled “3X LR update”, which refers to the Vanilla MAML algorithm with
the inner loop learning rate scaled by a factor of 3. This is used to test whether rapid adaptation in the
network can occur simply with an increased learning rate.

We provide details on hyperparameter settings for our experiments in Appendix A.1.
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miniImageNet
5-way 1-shot 5-way 5-shot

MAML 47.8±1.0 63.9±1.0
MAML 3X 48.6±0.9 62.9±1.1
ANIL 47.3±0.9 61.0±0.8
Scaled LR Update 49.6±0.9 67.2±1.0
Unit Norm Update 35.8±0.7 49.6±1.0
Table 1: Accuracy Results on the miniImagenet.

4.2 Evaluation Metrics

In addition to reporting accuracies, we are interested in measuring the layer-wise similarity between
the slow weights, the weights of the network prior to performing the inner-loop optimization, and the
fast weights, the weights of the network after the inner-loop optimization.

We use the centered kernel alignment (CKA) metric [5], which is also used to motivate ANIL in [12].
CKA measures the similarity between two neural network representations by comparing the neuron
activations over a set of data. We use the output activations of each convolutional layer in the Conv4
network and the final dense linear layer for our comparisons.

4.3 Weight norm throughout training

Figure 1: Weight norms layers, conv1-4 and dense layer throughout training on miniImageNet 5x1
task

We visualize how the weight norm changes throughout the training process across the learning
algorithms in 1. The growth in the weight norm confirms that learning rate decay occurs and begins
quite early in training. We also see that the 3x learning rate method follows a similar weight norm
trajectory compared to vanilla MAML updates. This suggests that increasing the learning rate does
not change the weight trajectory. Curiously, we see that the Scaled LR norm increases dramatically
in the Conv4 block, though the underlying mechanism behind this change requires further study.

4.4 Feature reuse due to batch normalization

Conv1 Conv2 Conv3 Conv4 Dense
Layers

0.0

0.2

0.4

0.6

0.8

1.0

CK
A 

sim
ila

rit
y

miniImageNet 5x1 - 
CKA Similarity before and after inner loop adaptation

Vanilla MAML
3x Learning Rate
ANIL
Scaled LR
Unit Norm Weights

Figure 2: CKA Similarity for miniImageNet 5x1

In Figure 2, we display the CKA similarity be-
tween the fast and slow weights per layer in
the Conv4 network on the miniImageNet 5x1
tasks. This is performed after training the net-
work for 60k iterations. Here, the feature reuse
phenomenon of MAML can be observed, as the
dense layer is the only one that changes mean-
ingfully after inner loop optimization. ANIL
has similar behaviour by construction, as its ear-
lier layers do not perform any weight updates.
We also see that the 3x Learning Rate only has
significant updates in the last layer, which sug-
gests that this effect is not due to the inner loop
learning rate being too small.

Interestingly, we see that the unit norm weight update and scaled learning rate update have different
behaviours, despite the results in Section 3.2 showing their equivalence. We see that the Unit weight
update deviates significantly from its slow weights in the 2nd and 4th layers, while the scaled learning
rate update drops off at the 3rd layer of the network.

From these plots, it is evident that our update methods behave differently when applied to MAML’s
bi-level optimization. Furthermore, we see that the unit norm weight update counteracts the feature
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re-use phenomenon more significantly than its scaled learning rate counterpart, as there is less feature
reuse occurring earlier within the network.

Despite the promising results for the unit norm weight update in its ability to encourage learning
in earlier layers of the network, it performs poorly, achieving lower accuracy on the miniImageNet
benchmark, as seen in Table 1.

The scaled learning rate update outperforms the vanilla MAML algorithm on the miniImageNet
benchmark. The 3X Learning Rate achieves similar performance to the scaled Learning Rate update
on miniImageNet. It isn’t entirely clear why MAML with higher learning rate performs better, this
could be explained with further hyperparameter tuning in future work.

Lastly, in Figure 3 we see that the CKA similarity metrics do not change significantly throughout the
training process for each learning rule, implying that the feature phenomenon occurs very quickly
into the training procedure.
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Figure 3: CKA similarity over model training on miniImageNet 5x1

4.5 Feature reuse and batch normalization in diverse tasks

We wish to verify how batch normalization affects MAML’s performance in more diverse settings. To
test this, we measure the CKA metric on the CUB, and Fewshot-CIFAR100 datasets, as well as the
miniImageNet dataset, Figure 4. As in Section 4.4, we train models using unit norm weight update,
scaled learning rate update and the vanilla MAML algorithm.

In Figure 4, we observe that feature reuse continues to occur across most datasets for the vanilla
MAML algorithm as CKA does not register any changes other than the final layer. Comparatively,
we see considerable adaptation over all datasets trained using our two update methods.
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Figure 4: CKA similarity for the CUB, FC-100, and miniImageNet datasets.

4.6 Novel Dataset Generalization
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Figure 5: CKA Similarity for miniImageNet
5x1 model on FC-100

To further study how meta-learning behaves in dif-
ferent data settings, we draw tasks from differ-
ent datasets during test time. Changing class do-
mains and image settings may demand more adap-
tation from the model. Here, we evaluate our
miniImageNet5x1 model on two downstream tasks
of CUB and FC-100, in addition to its training
set, miniImageNet as a baseline comparison. We
present a single-graph comparing our different meth-
ods trained on miniImageNet and tested on FC-100
in Figure 5. We also show Figure 6 showing CKA
results for each method across different datasets.
MAML continues to re-use features and surprisingly
performs even less adaptation on the transfer CUB
task than the model trained on CUB. This could be
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Evaluation Dataset Model (trained on miniImageNet) Setting
5way-1shot 5way-5shot

CUB

MAML 45.3±0.8 61.8±0.6
3x LR MAML 43.1±0.8 61.9±0.9

ANIL 40.6±0.8 58.4±0.6
Scaled LR Update 48.1±0.9 67.8±0.9
Unit Norm Update 39.9±0.8 55.5±0.8

FC-100

MAML 39.1±0.7 49.3±0.9
3x LR MAML 37.9±0.7 48.7±0.9

ANIL 37.5±0.7 45.8±0.6
Scaled LR Update 40.9±0.8 48.9±0.9
Unit Norm Update 40.8±0.8 49.2±1.1

Table 2: Accuracy Results of the miniImagenet trained model on the CUB and FC-100 dataset

due to a greater breadth of features learned by training on miniImageNet. Once again, our methods
adapt more across all tasks.

We present accuracy evaluations in Table 2, we notice similar trends in the CUB evaluation as in the
miniImageNet evaluation - we observe improvements in accuracy for the model with scaled learning
rate update as compared to vanilla MAML and a general decrease in accuracy in the unit norm weight
update case. Interestingly, in the FC-100 evaluations, the unit norm weight update shows surprisingly
competitive results, performing similarly to the scaled learning rate update and MAML in both 5
way-1 shot and 5 way-5 shot.

Furthermore, in Figure 5, we see that the 3X learning rate update performs similarly to the Vanilla
MAML and ANIL updates, and fails to update the intermediate layers significantly. This again
reinforces the point that the underlying effect we are studying is not caused by a small learning rate.
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Figure 6: CKA similarity for vanilla MAML, scaled learning rate and unit norm weight update
trained on miniImageNet and evaluated on the CUB, FC-100, miniImageNet datasets

5 Conclusion and future work

As previous works have noted, meta-learning methods often do not “adapt” to new tasks and instead
train a single-layer network to re-use a meta-learned representation. In our work, we study the impact
of implicit learning rate decay due to batch normalization on model adaptation within the test time
inner loop. Using CKA [6] as our metric for model adaptation at each layer of the network, we find
that counteracting the batch norm learning rate decay increases intermediate layer representation
change throughout the entirety of meta-learning training. This suggests that there is increased model
adaptation to each new task.

One of our methods does also show some modest improvement in classification accuracy for some
tasks and settings. The normed weights approach, struggles, but we expect this to improve and
require entirely new hyperparameter tuning compared to unnormalized weight vectors. Furthermore,
we believe that the minor gain could be due to existing benchmarks being relatively simple. Other
future work would include testing on more challenging tasks with greater class diversity or different
image statistics to observe any possible benefits. Diverse tasks from Meta-Dataset [15] or artificially
generated ones from ATG [1] may benefit from this increased adaptability and capacity to learn.
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A Appendix

A.1 Hyperparameter Details

We train a single model for each N-way K-shot problem and test it on all 3 datasets (miniImageNet,
CUB and FC-100). The MAML baseline uses the same hyperparameters as [2], making the 3x
inner-loop learning rate variation use a rate of 0.03 for both training and validation. For the 5x1
setting, our methods used a batch size of 4, 6 inner-loop steps and an inner-loop learning rate of
0.005 and outer loop 0.0005. For our 5x5 setting, our methods used a batch size of 2 and 6 inner
loops steps. Our scaled learning rate update used 0.001 for both inner and outer learning rates while
our the unit norm weight update used 0.005 and 0.0005 respectively.

A.2 Unit weights vs. layer-wise learning rate update

We perform a simple toy experiment to confirm the parity between our two methods of scaling the
learning rate for each layer as well as normalizing layer weights. We implement both methods and
train the same convolutional model as discussed in Section 4.1. This is in a regular supervised
learning (not meta-learning) problem where we train the model to classify CIFAR10 [7]. We see
in Figure 7 that the unit weight and scaled learning rate methods are roughly the same. While not
identical, this could be due to the approximation described in equation 5.

Figure 7: Validation of our methods

A.3 Mathematical Explanation of Increasing Weight Norm during Training

We reference our math from [16] and [3]. If the function g(x) is homogeneous of degree k with
respect to x with any scale γ, the following holds true:

g(γx) = γkg(x) (8)

∇g(γx) = γk−1∇g(x) (9)

The function g(x) is said to be scale-invariant if this holds for the degree k = 0. One corollary
required for Equation 9, which we left out for brevity in the main text, is that if the function g is
scalar-valued (which in our case holds true), Euler’s homogeneous function theorem tells us that:

x>∇g(x) = kg(x) (10)

In the scale invariant case where k = 0, then x is orthogonal to∇g(x). Using Pythagorean’s Theorem,
we can now derive the update for our weight norm:

||w(k+1)
j ||2 = ||w(k)

j − α∇J (w(k)
j )||2 = ||w(k)

j ||
2 + α2||∇J (w(k)

j )||2 (11)

As shown in the equation, our weight norm increases monotonically according to ||J (w(k)
j )||2.
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