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ABSTRACT
Radio remains a pervasive medium for mass information dissemi-
nation, with AM/FM stations reaching more Americans than either
smartphone-based social networking or live television. Increas-
ingly, radio broadcasts are also streamed online and accessed over
the Internet. We present WavePulse, a framework that records,
documents, and analyzes radio content in real-time. While our
framework is generally applicable, we showcase the efficacy of
WavePulse in a collaborative project with a team of political scien-
tists focusing on the 2024 Presidential Elections. We use WavePulse
to monitor livestreams of 396 news radio stations over a period of
three months, processing close to 500,000 hours of audio streams.
These streams were converted into time-stamped, diarized tran-
scripts and analyzed to track answer key political science questions
at both the national and state levels. Our analysis revealed how
local issues interacted with national trends, providing insights into
information flow. Our results demonstrate WavePulse’s efficacy in
capturing and analyzing content from radio livestreams sourced
from the Web.

CCS CONCEPTS
• General and reference→Measurement; • Information sys-
tems→Multimedia streaming; • Computing methodologies
→ Information extraction.

KEYWORDS
Web content analytics, Radio livestreams, Large language models
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1 INTRODUCTION
Despite the rise of theWorldWideWeb and the emergence of social
media networks, radio as a cornerstone of mass media has demon-
strated remarkable staying power. Since 2018, even though televi-
sion viewership and print readership have plummeted by 29%, radio
listenership has experienced amere 7% decrease [32]. This resilience
is further underscored by radio’s dominance in terms of its reach
among the public. In 2023, AM/FM radio can be freely accessed
by over 84% of U.S. adults, outperforming both smartphone-based
social networking (78%) and live TV (72%) [21, 32].
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Radio’s enduring relevance stems from its unique attributes. In
contrast to global social media platforms, radio’s focus is primarily
hyperlocal, and fosters deep community connections through con-
tent tailored to specific geographical areas (such as towns, counties,
and states). Radio’s primary function is as a one-way communica-
tion channel, allowing listeners to passively engage during their
everyday activities, such as during commutes and/or at work. Many
radio broadcasts are spontaneous and ephemeral, and the irreversible
nature of radio broadcasts lends authenticity and immediacy to its
content, particularly crucial in political discourse. These features
have positioned radio as a trusted, community-oriented medium
which provides an alternative to the deluge of social media content,
and gives (to some) welcome respite during digital fatigue.

While these distinctions make radio unique as a medium, they
also make radio content much more challenging to monitor. In the
United States, these features take on heightened significance. Radio
serves as a vital link across diverse urban and rural landscapes,
functioning as primary information sources in remote areas and
during long drives.

Media exposure, especially through radio, plays a crucial role in
shaping political attitudes by both reinforcing and challenging exist-
ing beliefs. Theories of opinion formation suggest competing media
messages intensity is crucial in explaining changes in opinions over
time [10, 34]. While partisan news tends to modestly reinforce exist-
ing beliefs, it is also shown to activate and convert individuals when
they are continually exposed to opposing viewpoints, leading them
to shift away from their original affiliations and preferences [11].
Resistance to these opposing viewpoints requires the ability and
motivation to recognize discrepancies between the message and
one’s values and beliefs [34].

The deregulation and livestreaming of talk radio content over
the Web have contributed to its rise and the corresponding in-
crease in conservative public opinion [6]. Researchers have found
that exposure to talk radio can be more powerful predictor of atti-
tudes than political knowledge [18] with information received via
news radio strongly influencing policy beliefs [31] and promoting
memory-based political information processing more effectively
than entertainment media [17].

This paper introduces WavePulse, an end-to-end system for
real-time acquisition, transcription, speaker diarization, curation,
and content analysis of up to several hundreds of radio livestreams
sourced from URL’s accessible via the Web. The key feature of
WavePulse is that most of the system components are built using
powerful AI tools such as modern, multimodal large language mod-
els (LLMs) which have witnessed significant advances in 2024. This
feature enables rapid design and deployment, and showcases AI’s
potential as a valuable tool for worldwide broadcast media analysis.

We report our findings from a pilot deployment of WavePulse
that encompassed 396 AM/FM radio streams spanning all 50 US
states, where we placed a strong emphasis on political news broad-
casts recorded continuously over a 100-day period from late June to
late September 2024. This time period captures a significant period
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Figure 1: Overview of WavePulse. It streams radio, transcribes, diarizes, classifies, timestamps and summarizes content on the
radio, making available for analytics. We derive political trends, match claims

of American political history, which included pivotal events such as
controversial debates, two assassination attempts on a presidential
candidate, an unexpected campaign withdrawal by the sitting US
President, and several other key political milestones.

A key outcome of our pilot deployment of WavePulse is a
large-scale, timestamped, speaker-diarized dataset of raw radio
transcripts. This dataset provides a rich and unique glimpse on the
pulse of the American public (as recorded on the airwaves) during
this period. The corpus of transcripts was derived from over 485,090
hours of speech content,1 comprising of 329 million text segments
(1-3 sentences each) or approximately 4.5 billion words (in com-
parison, it matches size of the English Wikipedia as of Oct 13th,
2024 [33])2. We intend to publicly release this dataset for review
and follow-up work by the research community. We envision that
our system (and the associated dataset) can be leveraged by diverse
researchers who are interested in analyzing patterns in national
public discourse, media narratives, formation of public opinions,
and the science of misinformation.

To showcaseWavePulse, we present three case studies:
(1) Monitoring narratives and rumors: In our first case study,

we collaborated with a team of political scientists studying
election integrity and trying to identify the provenance of a
very specific rumor concerning the legitimacy of the 2020 Pres-
idential Election (which continues to echo through the political
discourse 4 years later). Our system enabled us to identify posi-
tive matches for this rumor and track it across the US over a
period of several months.

(2) Understanding content syndication patterns: In our second
case study, we study content syndication across geographically
dispersed radio stations. Using techniques from transcript de-
duplication and hashing-based matching, we construct a virtual
“radio syndication graph” and find communities/clusters in this
graph that frequently mirror each others’ (sometimes even

1This is equivalent to 55 years of continuous speech.
2We acknowledge that this comparison requires careful interpretation due to the nature
of spoken language and content repetition due to syndicated broadcasts.

niche) content. Such tools can potentially be used to study na-
tionwide media diversity and analyze longitudinal information
spread.

(3) Measuring political trends: In our third case study, we per-
form NLP-based sentiment analysis of chunks of transcripts
related to specific candidates in the US Presidential Election,
curate them into scalar time series, and visualize national and
state-wise trends over given time periods. Remarkably, we find
that our sentiment scores (gathered in a purely passive manner)
mirror national polling trends, showing thatWavePulse can
be used as a supplementary tool for tracking public opinion
over the web.

The above showcase applications illustrate the utility of WavePulse
as a system for curating and comprehending content broadcast over
radio. It also illuminates a specific corner of the Web (livestreamed
audio) which has been remained somewhat hard to access, until
the development of modern multimodal LLMs.

To summarize, our contributions include the following:
(1) An end-to-end framework for recording, transcribing and per-

forming analytics on the radio.
(2) A data pipeline to convert raw transcripts into their rich coun-

terparts, by time-stamping, diarizing, summarizing and classi-
fying into ads, news and discussion, and ancilliary content.

(3) Rich analysis including topic modeling to distill top emerging
narratives, sentiment analysis to gauge political temperament
across the United states stratified by state and time interval.

(4) Three case studies, stemming from a collaboration with a non-
profit center for monitoring election integrity.

(5) A self-updating interactive website for our analytics.3
The rest of this paper is organized as follows. We first describe

theWavePulse framework, followed by details about the data ac-
quisition process. Next, we provide our qualitative and quantitative
findings from the three case studies described above. We provide a
discussion of related work, and conclude with potential directions
of future research.

3Our anonymized website can be accessed at https://wave-pulse.io.
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Figure 2: Coverage of Radio Stations. Each marker is an
AM / FM station. We clubbed News/Talk/Business-News into
"News/Talk", and Public-Radio/College/Religious/Others
into "Other". Counts: "News / Talk" : 347, "Other": 49. For rest
of the US plots, we will use above state labels as reference.

2 FRAMEWORK AND DATA COLLECTION
2.1 Design of WavePulse
The proposed framework comprises three primary components, as
illustrated in Fig. 1. Each component serves a distinct function in
the process of capturing, processing, and analyzing radio content:
Radio Streamer is responsible for acquiring audio feeds from web-
based radio broadcasts [1]. It operates on a configurable schedule,
enabling parallel recording of multiple audio streams at predeter-
mined intervals throughout the day. The streamer segments incom-
ing audio into manageable chunks to facilitate batch processing.
Upon completion of each chunk, the component transfers the file
to the audio buffer of the subsequent component.

The Radio Streamer continuously records all configured radio
streams in parallel and segments them into 30-minute MP3 files.
These files are then forwarded to the system’s audio buffers for
further processing. To optimize capture of relevant content while
allowing time for system maintenance and backup, the streamer
automatically initiates operations at 05:00 and concludes at 03:00
the following day (UTC-4).
Audio Processor transforms the recorded audio chunks into time-
stamped, diarized transcripts through a multi-stage process:
Diarization and Transcription: We first utilize WhisperX [4], which
integrates OpenAI’s Whisper-large-v3 [24] model with PyAnno-
tate [22] for speaker diarization; this converts each audio files into
structured JSON format. The resulting output contains spoken text
segments, speaker indices, and precise start and end times for each
segment (typically a sentence long, see Fig. 3 for examples).
Content Classification: Radio broadcasts intermix political news
and discussion with ads and apolitical content. We process the
radio broadcast in the JSON output using Google’s Gemini-1.5-
Flash model [29], which categorizes each segment as either political

or apolitical. In alignment with the project’s focus on political
discourse, apolitical segments are archived in cold storage.

Advertisement Identification: Political segments undergo a second
round of classification using Gemini to distinguish advertisements
from substantive content. The remaining material consists of news
reports and political discussions.

Having labeled each segment as apolitical, political ad, or politi-
cal content (implicitly news and discussions), we split each JSON
transcript into three mutually-exclusive parts. The filtered political
content is then sent for final processing.

While we startedwith classifying audio to segment outmusic and
delete segments that were devoid of speech, we ended up removing
this step because music was rare in news-oriented stations and
radio stations tend to keep any gaps to a minimum in order to not
waste air-time.

Final Transcript Generation: The system generates timestamped
transcripts that include speaker indices using the start time of each
transcript, offset with the segment-specific stamp (as illustrated
in Fig. 3). Additionally, we split the transcript into three mutually-
exclusive parts – news/discussion, ads, apolitical – and append
continuation markers in these transcripts to prevent temporal dis-
continuities. For example, we insert "political ad..." between two
segments of a political discussion. For more details, see Sec. A.1.

2.2 A Dataset of Nationwide Radio Transcripts
WavePulse produces a comprehensive, segmented record of ra-
dio content, categorized into mutually exclusive, chronologically
ordered, speaker-tagged, chat-like transcripts. This approach pre-
serves the temporal integrity of the original broadcast, clearly delin-
eating transitions between political discourse, advertisements, and
apolitical content. Consequently, users can navigate the transcribed
content with a clear understanding of its structure and context, even
when encountering interruptions such as advertisements within
political discussions. Please refer to Sec. A for details.

We collected the dataset for a period of 100 days starting June
26th, 2024 with a cutoff on Oct 3rd, 2024. In this period, we started
with 158 News/Talk stations and scaled up to 396 stations to get
wide coverage, over a course of four weeks to include stations with
News, Religious, Public-Radio, Business-News, and College
formats. Fig. 2 illustrates the coverage of 396 radio stations.

The dataset comprises of 485,090.5 hours of speech recordings,
which resulted in 970,181 raw JSON transcripts. This data had
approximately 4.5 billion words and 329 million text segments,
each are 1-3 sentences long.

Quality of Transcripts. Each recording goes through several steps
before being converted into the final transcripts. Out of these steps,
speech recognition is themost important as we discard audio record-
ings after successful transcription, making this step irreversible.

In order to make evaluation of downstream baselines feasible,
we filtered a representative dataset comprising two weeks worth
of recordings, i.e., totaling 672. We varied time-of-day, U.S. state
of station, format, wave modulation (AM/FM). We also ran checks
to ensure that no filtered recording was cutoff and held a full 30
minute worth of speech. We evaluated Nvidia’s RNN-T-Parakeet-
1.1B [20], MMS-1B [23], WhisperX [4], while considering Microsoft

3
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23/07/2024, 11:00:14 - SPEAKER_15: 
The head of the Secret Service has
resigned.
23/07/2024, 11:00:16 - SPEAKER_15: 
Kimberly Cheadle had faced withering
pressure since the Trump assassination
attempt.
23/07/2024, 11:00:21 - SPEAKER_15: 
House Speaker Mike Johnson.
23/07/2024, 11:00:23 - SPEAKER_18:
It is overdue.
23/07/2024, 11:00:23 - SPEAKER_18: 
She should have done this at least a
week ago.
23/07/2024, 11:00:27 - SPEAKER_18: 
I'm happy to see that she has heeded the
call of both Republicans and Democrats.

{
    "start": 14.679, 
     "end": 16.819,
    "text": "The head of the Secret Service
has resigned.",
    "speaker": "SPEAKER_15",
}, ....segments in-between....
{
    "start": 27.622,
    "end": 32.163,
    "text": "I'm happy to see that she has
heeded the call of  both Republicans and
Democrats.",
    "speaker": "SPEAKER_06"}

Political Discussion
23/07/2024, 06:54:53 - SPEAKER_04: 
What really happened with the
assassination attempt?
23/07/2024, 06:54:56 - SPEAKER_04: 
Why hasn't anybody been been fired?
23/07/2024, 06:54:59 - SPEAKER_04:  
What is true?
23/07/2024, 06:55:00 - SPEAKER_04: 
What's a rumor?
23/07/2024, 06:55:01 - SPEAKER_04: 
We need answers.

Source Transcripts, with relative time, 
text segments, speaker ID

Political Ad
08/08/2024, 08:46:05 - SPEAKER_02: 
President Trump is counting on Republicans
like you.
08/08/2024, 08:46:08 - SPEAKER_02: 
Get out and vote for Michelle Fischbach.
08/08/2024, 08:46:11 - SPEAKER_02: 
The Republican primary is August 13th.
08/08/2024, 08:46:13 - SPEAKER_02: 
Vote conservative. Vote Michelle
Fischbach for Congress.
08/08/2024, 08:46:16 - SPEAKER_06: 
I'm Michelle Fischbach and I approve this
message.
08/08/2024, 08:46:19 - SPEAKER_02: 
Paid for by Fischbach for Congress.

Changes
in

speaker

Kimberly Cheadle, the former head of the Secret Service, has resigned after facing 
bipartisan calls for her resignation following the attempted assassination of Donald

Trump. House Speaker Mike Johnson stated that Cheadle's resignation was overdue.
Summary

Figure 3: Samples of (Top left) JSON segments (Bottom Right)
Corresponding Diarized Time-stamped Political News (Top
right)Discussion, (Bottom Left)Advert., and (Bottom) Summary.

Azure as the ground truth on this dataset. WhisperX performed
most accurately and fastest (see Tab. 1).
Condensing the dataset. Radio discussions and news reporting
are essentially conversations. Each radio station presents the news
selectively, brings guests to discuss them, and broadcasts their opin-
ions to listeners. To create concise summaries of each conversation,
preserving relevant discussion and news threads while reducing
erroneous text predictions, we summarize each 30 minute tran-
script using Gemini [29]. This step also enhances suitability of our
dataset for open research by filtering out personally identifiable
information. Fig 3 illustrates a sample summary.
Embedding the dataset. As the dataset has nearly a million data
points, it warranted an efficient search mechanism. Therefore,
we converted the summarized version of our dataset into a 1024-
dimensional vector database using dense embeddings from BGE-
M3 [9]. Each embedding vector contains metadata like state, call
sign, date, and time. We used LLaMa-3.1-8B-Instruct [14] to query
the database, which in turn used FAISS [12] to search through the
vector space and retrieve top matches. This resulted in a Question-
Answering Retrieval Augmented Generation (QA-RAG) pipeline.

3 ANALYSIS AND CASE STUDIES
Having a time-stamped radio transcript database, that captures a
unique snapshot in American political broadcasting, we analyze
them in the following three case studies. The studies demonstrate

Table 1:Word-error-rate and Avg. Inference Speed for 30-min
audio clips of ASR models, from our representative dataset.

Model RNN-T MMS-1B WhisperX

WER (%) ↓ 14.5±8.2 35.1±13.2 8.4±4.6

Speed (s)↓ 15.0 17.8 9.5

howWavePulse can be used to explore the spread of a specific mis-
information claim, the amplification of information by a network
of radio stations, and assessment of the overall sentiment of major
party candidates.

3.1 Case Study: Spread of a Political Narrative
Overview.We collaborated with a democracy group at a non-profit
center which champions social causes including election integrity.
Our goal was to understand how a system likeWavePulse could
be useful to gain insights into the political/election discourse.

The center aimed to track a narrative that revolved around the
integrity of the 2020 US Presidential election in Fulton County,
Georgia (US), that stemmed from a report analyzing the election
in Georgia, published by a campaign spokesperson, claiming that
the election was stolen from Trump. Taking this narrative as an
example, we searched through our corpus for matching pieces of
the narrative. Our dataset came out positive with at least 50 positive
samples, including a majority amplifying the claim in this narrative,
a handful reporting and a few debunking it.

Context and Background. A major focus area of the democracy
group at this non-profit is to perform election monitoring world-
wide. A specific current goal of theirs is to track election related
claims across the U.S. Prior toWavePulse, their reach was limited in
scope to social media posts, blogs, news articles, podcasts and com-
ments. Political scientists at the center provided us with a narrative
that appeared on the airwaves just after the Biden-Trump’s debate
on June 27th, 2024; this date coincided with the start of our data
collection. The main rhetoric was that there were inconsistencies
in the logic and accuracy tests conducted on voting machines.

Summarized narrative: “There were discrepancies in the
2020 Presidential election vote count in Fulton County,
Georgia. Specifically, 17,000 votes needed to be reconciled
before certification. A group called The Elections Groupwas
involved in various aspects of the 2020 election across mul-
tiple states. The Georgia State Election Board investigated
the recount process and confirmed some rule violations by
Fulton County. Over 20,000 ballots were added to both the
original results and the machine recount without proper
justification. There were missing ballot images and du-
plicate ballots, which makes the election suspicious. The
Secretary of State’s office and the State Election Board
investigated, and there was a lack of transparency and
accountability. Since the 2020 election in Georgia was in-
accurate, therefore the Presidential election was stolen.”

4
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They also provided us with a list of keywords, which we con-
verted to rules for filtering transcripts:
logic AND accuracy AND test
OR logic test* AND election
OR logic testing AND vot*
OR accuracy testing AND vot*
OR accuracy test* AND election
OR voting machine test*
OR machine test AND election
OR machine test AND vot*

OR Logic and accuracy
OR L and A
OR logic/accuracy
OR logic / accuracy
OR LA testing
OR Elections group
OR <Claimant’s name>
OR <Website’s name>

Manual Methodology: Using the above keywords, we first fil-
tered transcripts of stations in Georgia. E.g., a filtered transcript
should have "logic" AND "accuracy" AND "test" keywords. How-
ever, this resulted in only a few matches. We expanded our search
nation-wide, which revealed 120 samples. As keywords acted as
a broad net and we needed exact citations, we did an internal hu-
man study amongst four individuals. We split the 120 samples into
four overlapping sets so that each transcript gets seen atleast twice.
Then, we aggregated the responses and received a ground truth
with 53 transcripts – 34 supporting the claim, 16 neutrally reporting
and 3 actively debunking this claim. An excerpt from a June 2024
transcript that matched:

A matching transcript from Ohio (US) reads:
“You know, here, the must-read of the day, [Claimant’s
name] on how Georgia was stolen. A longtime spokesper-
son for President Trump, published a must-read analysis of
the 2020 stolen Georgia election on [website], Wednesday.
This is the most comprehensive investigative piece of the
fraudulent election in Georgia to date.
Biden allegedly received the most votes of a president

in U.S. history, yet simultaneously could only sneak up in
Georgia by some 13,558 votes. It didn’t add up. It just didn’t
add up, and neither did the numbers in Fulton County.”

Automated Methodology: As the manual method depends on cu-
rated filtration rules to reduce search space, which is non-trivial for
arbitrary narratives, we employ QA-RAG. We started by querying
it, which gave us a positive answer:

Question to LLM: Were there discrepancies in the 2020
Presidential election vote count in Fulton County, Georgia?
Answer: Yes, there were claims of discrepancies which re-
ported that Fulton County had double-counted thousands
of ballots during a recount, resulting in discrepancies in
the vote count. This issue was brought up by a whistle-
blower and led to an investigation. he Georgia Election
Board voted 3-2 to request an investigation by Attorney
General Chris Carr into thematter. Though, the outcome of
the election was not altered by these discrepancies, but the
incident raised concerns about the accuracy and reliability
of the Georgia election process in 2020.

While the retrieval mechanism yielded solid leads, we did not
have a ground truth to compare it against. Therefore, to get a holistic
understanding of the scope of this narrative, we searched through
the whole dataset. For each summarized transcript, we prompted
Llama to count the number of mentions related to "2020 election
being stolen, rigged, or false." If a transcript came out positive,
we subsequently obtained a label for its stance, i.e., Promoting,
Neutral Reporting, orDebunking. We obtained 3,497 mentions across
the corpus. Fig. 4 illustrates the occurrence of such mentions and
provides breakdown across the stances. For prompts see A.2.

Findings and Discussion:While the manual method yielded 53
matches, the automated method extracted 3,497 matches, providing
a superior estimate of the media landscape covering a contentious
narrative. Majority of mentions were examples of neutral reporting,
followed by 36.3% of debunking the narrative, with only a 10.4%
minority promoting it. This case study serves as an example of how
one can gauge the level of traction a narrative gets on the radio.

3.2 Case Study: Content Syndication Across
Radio Stations

Our analysis of radio station transcripts revealed extensive verbatim
duplications across geographically dispersed stations, suggesting
the existence of a complex social network among broadcasters.
This phenomenon, observed across state boundaries and varying
time frames, indicates structured information sharing among media
outlets. For instance, a specific claim regarding a presidential can-
didate’s alleged substance use before a debate was simultaneously
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Figure 5: The “Syndication” Social Network among Radio.We
do not show edges for clarity. Here, each marker is a station
and color encodes its degree category.

broadcast by 31 distinct stations. While this synchronicity in con-
tent dissemination does not establish causality between broadcasts,
it strongly suggests coordinated information sharing.
Methodology: Connecting and Categorizing Stations. To in-
vestigate information sharing patterns, we developed an algorithm
to identify unique broadcasts and their repeats, comprising the
following steps:
Hashing and Similarity Computation:We computed locality-sensitive
hashes of text-only portions of all transcripts using MinHash. We
considered transcript pairs with Jaccard similarity exceeding a pre-
defined threshold (𝜃 = 0.8) related and thus added to each other’s
adjacency list. As causality is hard to predict, we consider such a
content-based match to only suggest a symmetric connection.
Subgroup Identification: Utilizing these adjacency lists, we expanded
our search to identify distinct subgroups through a Breadth-First
Search (BFS) approach. We started with the initial list of unvisited
transcripts, and BFS all connected transcripts, forming exhaustive
lists of resonating broadcasts which matched thematically.
Network Refinement: To identify long-term collaborations and in-
formation propagation hubs, we implemented the following steps:
(1) Merged broadcasters in the same subgroup on consecutive dates

(e.g., We would consolidate KM_WXYZ_2024_07_15_13_30 and
LM_WABC_2024_07_16_02_00 broadcasted identical content).

(2) Discarded single-broadcaster subgroups, eliminating instances
of content repetition on two-consecutive days.

(3) In the remaining subgroups, extracted only the station names,
such as KLMN and KOPQ, for each unique station.

(4) Removed single-station lists, further refining the network by
eliminating stations who broadcast their own content several
days apart.

(5) Created bidirectional edges between stations in each subgroup
(e.g., for stations KLMN, KOPQ, and KRST, edges were created
between all pairs).

(6) Ensured uniqueness across rows and order invariance, stan-
dardizing edge representation.

(7) Generated pair-wise connections, excluding self-connections.

Results and Discussion. Our analysis initially identified 22,149
unique subgroups broadcasting similar content. Post-refinement,
this reduced to 1,776 subgroups with 2,684 unique edges. This con-
tent mirroring pattern suggests coordinated messaging strategies
transcending geographical and temporal boundaries. Figure 5 illus-
trates this broadcasting station network. Notable findings include:
• Fifteen stations exhibiting over 40 connections, suggesting key

information exchanges.
• A ten-station network spanning 10 mid-western and southern

states shared content several times, indicating a regional syndi-
cation network.

• Cross-country information flow, exemplified by KYZZ (Califor-
nia) and WABC (New York) broadcasting identical content with
a consistent two-day delay.

• 50 stations remained disconnected in our final network, poten-
tially indicating non-participation in syndicates, self-broadcasters
or representing false negatives in our analysis. For instance, a
station in New Jersey, despite being a major broadcaster, showed
no connections in our network, suggesting it might prioritize
original content or use syndication methods our analysis could
not capture.

• Content propagation chains, such as a station in Iowa broad-
casted a story, another one in Tennessee echoed it ten days later,
and followed by Illinois after another eight days.
This study enhances our understanding of information propa-

gation in legacy media networks. The observed patterns raise im-
portant questions about media diversity, centralization of narrative
control by major syndicates, and the potential for rapid, wide-scale
dissemination of specific viewpoints across seemingly independent
broadcast radio channels. This methodology also provides a simple
approach to map information flow and identifying potential echo
chambers in the broadcasting landscape.

3.3 Case Study: Presidential Candidates’
Favorability Trends

The summer of 2024 marked a pivotal period in American politics,
with public perception of presidential candidates fluctuating in
response to unfolding events. This study delves into these dynamics
through a sentiment analysis of the dataset, focusing on the three
most prominent figures: Harris, Biden, and Trump, with Biden
dropping out in mid-July.

We isolated relevant text segments by keyword matching, care-
fully excluding instances of multiple candidate mentions to ensure
sentiment clarity4. The Twitter-roBERTa-basemodel [8], denoted as
S, served as the foundation for sentiment analysis, generating posi-
tive (𝑆⊕ ), neutral (𝑆⊙ ), and negative (𝑆⊖ ) sentiment counts. To distill
these multifaceted sentiment counts into a single, comprehensible
metric, we developed a normalized sentiment score 𝑆 ∈ [0, 1]:

𝑆 = (2 · 𝑆⊕ + 1 · 𝑆⊙ + 0 · 𝑆⊖)/(2 · 𝑆𝑇 )
where 𝑆⊕, 𝑆⊙, 𝑆⊖ ∈ Z+ and 𝑆⊕ + 𝑆⊙ + 𝑆⊖ = 𝑆𝑇

This formulation captures the nuances of all three sentiment cate-
gories, while providing a holistic view of content sentiment.

4Name variations (e.g., "Kamala" for Harris) were aggregated under primary identifiers
for consistency.
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The lower part of Fig. 6 illustrates the ebb and flow of nationwide
sentiment as computed from the radio content, smoothed with a
7-day moving average to reveal underlying trends, as radio shows
had less programming during weekends which caused weekly dips.
Annotated political events offer context for significant shifts, paint-
ing a picture of how key moments shaped public perception. We
derive the upper part of the figure from raw data of Nate Silver’s
model [28].5 Diving deeper, Fig. 7 breaks the trends down according
to state-specific sentiments, reflecting local political climates or the
impact of targeted campaign strategies.
Findings and Discussion: Our sentiment predictions demonstrate
similarity with the 2024 Presidential polling averages, which in turn
is based on reputable national polls and summarized by a compet-
itive model from a prominent pollster. This alignment suggests
that radio content analysis can serve as a valuable proxy for public
sentiment, offering real-time insights into political trends.

The state-wise sentiment analysis reveals a granular view of
political leanings across the country. However, some anomalies
emerged, such as the surprisingly strong Democratic lead in Wis-
consin (D+12). This discrepancy between state-level and nationwide
trends warrants further investigation.

4 RELATEDWORK
Radio Content Analytics.While radio has a century-long history
as a broadcasting medium for entertainment and information dis-
semination, modern radio in the U.S. has its roots in the deregulation
adopted in the Telecommunications Act of 1996 that fundamen-
tally reshaped the U.S. radio industry. The deregulation altered
the industry’s economics, with large conglomerates implementing
cost-cutting measures such as staff reductions and automated pro-
gramming, while also changing advertising dynamics by offering
multi-station, multi-market packages to advertisers [13]. Also, due
to the rise in online music streaming and piracy making music
expensive to broadcast, talk shows gained popularity. We did not
include iHeartMedia stations in this study as they have restrictive
terms of service, but still found several other syndicates [6].

Hofstetter [15, 16] studied how radio shows shape public opinion
and found that they play several roles for their listeners, including
seeking information, contextualizing, interpreting the information,
and serving as a proxy for interaction with the hosts and guests.

From 2006-2011, DARPA undertook efforts to collect and tran-
scribe cross-lingual broadcast news and talk shows under its GALE
project [30]. In 2019, RadioTalk [5] was the first work that created
a large corpus of talk radio transcripts comprising 284,000 hours of
radio and 2.8 billion words. The authors conducted transcription
using a TDNN model which produced noisy samples with a WER
of 13.1%. Using this dataset, Brannon and Roy [7] compared the
speed of news on Twitter versus radio during 2019-2021 and found
that Twitter news circulates and evaporates faster and is more neg-
ative than radio. A follow-up work assembled the Interview media
dialog dataset [19] comprising of collection of 20 years of NPR
radio transcripts that enables discourse pattern analysis. Our work
simultaneously provides an end-to-end pipeline, based on modern
5Nate Silver is a renowned American statistician and data journalist, famous for
accurate election predictions and founding the influential website FiveThirtyEight.
This website focuses on opinion poll analysis, politics, and economics. Their data
(accessed Oct 13) is displayed in the upper part of Fig 6.

LLMs with 8.3% WER, which continuously produces a rich dataset
while being able to run real-time analytics to poll it.

Social Media Analytics Frameworks. Aggarwal et al. [2] devel-
oped a multimodal framework to track bias and incivility on Indian
TV news. Saez-Trumper et al. [27] used unsupervised methods on
a geographically diverse set of news sources by examining ’gate-
keeping,’ coverage, and statement bias to find bias in online news.
Ribeiro et al. [26] employed scalable methodologies that leverage
social media’s advertiser interfaces to infer the ideological slant of
thousands of news outlets. Allen et al. [3] analyzed Facebook posts
during the COVID pandemic for content in the grey area and found
that this unflagged content cast doubts on vaccine safety or efficacy
and was 46-fold more consequential for driving vaccine hesitancy
than flagged misinformation. Contrary to them,WavePulse pro-
vides a tool to measure radio content in real-time, with the case
studies performed primarily to showcase its capabilities, and it does
not provide any subjective labeling.

5 DISCUSSION AND CONCLUSION
Ethics statement. We have maintained strict ethical principles
during the data collection, usage, and analysis conducted in this
work. Our research utilizes data broadcast to the web on public
radio streams, which falls under fair use unless explicitly restricted
under terms of service. We meticulously reviewed broadcasters’ li-
cense agreements where applicable and excluded stations with such
restrictions. The dataset does not contain personally identifying
information (PII) about listeners. The dataset may include PII about
advertisers (e.g., names and contact information of organizational
representatives) and show hosts. Given our focus on political topics,
we have strived to avoid political bias. We acknowledge that the
usage of LLMs in our analysis may inherently exhibit some biases
due to their respective training data.

Limitations and Future Directions.Our analysis does not incor-
porate population data along with reach of each stations waves’ to
calculate exposure to each station. Nielsen Audio sells exposure rat-
ings and FCC hosts ground conductivity data. We also included only
stations which are livestreamed over the Internet. Terrestrial-only
radio broadcasts would require dedicated hardware (an antenna,
transceiver, and recording equipment). Finally, whileWavePulse
is widely applicable, our analysis derives results and conclusions
from only US radios. An important direction of future work is to
broaden the scope to worldwide radio livestreams; due to the mul-
tilingual nature of LLMs we anticipate our system to scale up with
no significant design changes.

Conclusions.We introduceWavePulse, an end-to-end pipeline
for gathering and analyzing live-stream radio broadcasts which
can increasingly be accessed via the Web. Using this system, we
collected nearly half a million hours of news/talk radio content
over a 100-day period of significant political activity in the United
States.We conducted three case studies: tracking political narratives
with political scientists, building a social network of radio stations,
and predicting political trends in real-time. Our findings highlight
the depth of insights derivable from WavePulse’s comprehensive
dataset.
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A SUPPLEMENTARY MATERIAL
FORWAVEPULSE

Table of Contents:

A.1: Data Collection Pipeline
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A.3: Embedding Summaries
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A.5: Useful Addition: Unique Narrative Network
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A.7: Wave-Pulse.io Backend
A.8: Useful Addition: Fact Checker
A.9: Useful Addition: Audio Classifier

A.1 Data Collection Pipeline
A.1.1 Radio Streamer. This component is used to stream and record
audio streams from multiple radio broadcasts based in parallel. It
takes as input a configurable schedule in the form of a json file,
for when to stream and from which radio. There will be one entry
per radio stream, its live URL, name, record times, and the state in
which it is locate along with a list start and end times for streaming
for that particular radio stream as shown in Listing 1. The compo-
nent processes the schedule to get unique start times across all the
stations and durations specific for each station and then create cron
jobs appropriately to achieve it’s objective.

Conventionally, radio stations are referred by their call signs
(3-4 lettered string) with the starting letter being eitherW (Stations
east of the Mississippi River), K (Stations west of the Mississipi
River), N (military stations), A (Army or Air Force stations). See
Table 2, Table 3, and Table 4 for the full list of successfully streamed
stations.

Audio files are recorded and saved in chunks of 30 minutes
to facilitate batch transcription and analysis. The recorded audio
files are distributed into buffer folders for running transcription in
parallel. Buffer folders are created based on the number of available
GPUs in the system to run transcription. The files are named in
format 𝑆𝑆_𝑅𝑅𝑅𝑅_𝑦𝑦𝑦𝑦_𝑚𝑚_𝑑𝑑_𝐻𝐻_𝑀𝑀.𝑚𝑝3where SS stands for
State Abbreviation, RRRR stands for radio call-sign which is unique
for each radio station , followed by year, month, day, hour and
minute, such as, 𝐶𝐴_𝐾𝐴𝐻𝐼_2024_07_16_13_30.𝑚𝑝3. This naming
format allows us to be able to easily filter files based on state, radio
station or dates.

{
"url": "https :// stream.revma.ihrhls.com/zc3014",
"radio_name": "KENI",
"time": ["08:00", "14:00", "17:00", "21:30"],
"state": "AK"

}

Listing 1: Example for schedule of one radio stream. As per
schedule radio streamer will record the audio from 8:00 AM
to 2:00 PM then from 5:00 PM to 9:30 PM

A.1.2 Audio Processor. This component is responsible for tran-
scription, adding punctuation and capitalization to the text, provid-
ing time stamps, and speaker diarization, of the audio files recorded.
We tried multiple ASR models for transcription like facebook’s

Local HPC
Audio Buffers

Local Streaming
Server

Instance of
Application only

Recording

Local
Audio Buffers 

Transcripts

Cron
Trigger

Instance of
Application only

Transcribing

HPC Audio
Buffers

Transcripts

Cloud Compute
(7 x H100 GPUs)

Cron
Trigger

Cron
Trigger

Cron
Trigger

Audio
Recordings

Radio
Stream

Backup

Figure 8: Crontab Schedule in the data collection pipeline to
transcribe on the cloud and retrieve back.

MMS-1B, Nvidia’s parakeet-rnnt-1.1b and OpenAI’s whisper-large-
v3. Fig. 2 has sample outputs of these models for same input audio.
We found word error rate of mms-1b to be significantly higher as
compared to parakeet-rnnt andwhisper-large-v3, for the later two it
was comparable. Ultimately we decided to go ahead with WhisperX
implementation of Whisper as it provides a built-in pipeline for
transcription using Whisper, accurate timestamps using wav2vec2
and Speaker Diarization using Pyannote at a reasonable inference
speed. Listing 1. shows a snippet of output usingWhisperX pipeline.

{
"start": 946.93,
"end": 948.391,
"text": "Here 's Anna with headlines.",
"speaker": "SPEAKER_04"

},
{

"start": 948.532,
"end": 959.54,
"text": "Pope Francis today has accepted the

retirement of the longtime Archbishop of
Boston , Cardinal Sean O'Malley and chosen
Providence Bishop Richard Henning to be his
successor.",

"speaker": "SPEAKER_19"
},
{

"start": 960.601,
"end": 964.004,
"text": "Tropical Storm Debbie is now a hurricane

.",
"speaker": "SPEAKER_19"

},
{

"start": 964.585,
"end": 965.045,
"text": "What , Matt?",
"speaker": "SPEAKER_19"

},
{

"start": 966.766,
"end": 968.087,
"text": "Oh, no, my mic is still alive.",
"speaker": "SPEAKER_04"

}

Listing 2: Sample Transcript Segments

One H100 GPU takes around 30 seconds to process one audio
file of 30 minutes. So one GPU can process 60 audio files of 30
minute length, in other words one GPU can process 60 radio streams
without resulting in any backlog. Since we were trying to process
400+ streams so we had to use 7 H100 GPUs. Due to resource

10
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constraints in our local server we used cloud services to get access
to GPUs to be able to process all the radio streams. One instance of
the application runs on local server and it’s job is to only record
the streams and store audio files in a recordings folder and their
copies to audio buffer folder. Normally, files in recordings folder
are sent to backup regularly and the ones in audio buffer are used
for transcription and then deleted. In this case we setup a corn
trigger to periodically transfer files from audio buffer folders to
hpc audio buffer folders with load distribution. Then next cron
job periodically transfers files from hpc audio buffer folders to the
audio buffer folders of cloud compute service. We have another
instance of application running on cloud server with 7 H100 GPUs
that does only transcription part and saves the result in transcripts
folder. Then another cron trigger transfers files from the transcripts
folder on cloud server to local server. If the audio streams are less
and can be processed by local server than one can enable both
recording and transcription on local server without needing to use
cloud resources and creating data pipelines.

Figure 9: Line chart showing the addition of radio stations
over time.

Figure 10: Bar chart showing the number of radio stations
by station format.

(a) WhisperX [4]

(b) RNN-T [25]

(c) MMS-1B [23]

Figure 11: Transcribed text for same audio clip using different
speech recognition models.
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Figure 12: Sentiment for Ozempic, a pharmaceutical product
which has been gaining traction due to success in fat loss.
This plot suggests that talk shows discuss a variety of things
and not just politics.

A.2 Summarization
The summarization process is a critical step in condensing lengthy
conversation transcripts into concise, meaningful summaries. This
section outlines the prompts and techniques employed to achieve
efficient and accurate summarization using the Google Gemini API,
combined with dynamic conversation segmentation and embedding
generation. Our unit of summarization is a 30-min transcript.
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Summarization Prompt: You are a concise and direct
news summarizer. Given below is a JSON with spoken text
and its speaker ID recorded from a radio livestream. Create
a summary that:
• Presents information directly, without phrases like "I

heard" or "The news reported."
• Uses a factual, journalistic tone as if directly reporting

the news.
• Retains key facts and information while making the

content specific and granular.
• Removes personal identifiable information (PII), such as

phone numbers and sensitive personal data, but keeps
public figures’ names (e.g., politicians, celebrities) and
other key proper nouns relevant to the context.

• Is clear and avoids vague language.
• Clarifies ambiguous words or phrases.
• Utilizes changes in speaker ID to understand the flow

of conversation or different segments of news.
• Corresponds strictly to information derived from the

provided text.
• Organizes information into coherent paragraphs, each

focusing on a distinct topic or news item.
• Maintains a neutral, objective tone throughout the sum-

mary.
Do not include any meta-commentary about the summa-
rization process or the source of the information.
Spoken Text Transcription: {conversation block}

Prompt used for finding matching mentions/claims
of the 2020 election narrative: Analyze the following
document summary regarding mentions of the 2020 elec-
tion being stolen, rigged, or false.
Document summary: {content}
Answer the following questions:
- How many times was the 2020 election being stolen,
rigged, or false mentioned?
- Did the document promoting, neutral report, or debunk
these claims?
Provide your answer in the following format:
"mention_count": <number of mentions>,
"stance": "<promote/neutral/debunk>"

A.3 Dense Embedding for Summaries
A.3.1 Overview. Once the conversation segments are generated
and summarized, the next step is to create embeddings for each
summary. These embeddings serve as high-dimensional vector rep-
resentations that capture the semantic meaning of the text. The
embeddings are generated using BGE-M3 [9]. By converting tex-
tual summaries into vectors, we enable efficient operations like
similarity comparisons, clustering, and semantic search.

A.3.2 Mathematical Representation. The embedding function, de-
noted by 𝑓 , transforms a given summary 𝑆 into a high-dimensional

vector v ∈ R𝑑 , where 𝑑 represents the number of dimensions in the
vector space. The process can be mathematically described as:

v𝑆 = 𝑓 (𝑆), 𝑓 : R𝑛 → R𝑑 (1)

Here, 𝑆 is the summary, v𝑆 is its corresponding embedding, 𝑛 is
the number of words in the summary, and 𝑑 is the dimensionality
of the embedding space. This transformation allows each summary
to be represented as a vector, which can then be compared against
other vectors in terms of cosine similarity or other distance mea-
sures.

A.3.3 Cosine Similarity of Embeddings. To compare the semantic
similarity between two summary embeddings, cosine similarity is
used. The cosine similarity between two vectors v𝑖 and v𝑗 , repre-
senting summaries 𝑆𝑖 and 𝑆 𝑗 , is given by:

Cosine Similarity(v𝑖 , v𝑗 ) =
v𝑖 · v𝑗
∥v𝑖 ∥∥v𝑗 ∥

(2)

Where v𝑖 · v𝑗 represents the dot product of the vectors, and
∥v𝑖 ∥ and ∥v𝑗 ∥ are the magnitudes (or norms) of the vectors. This
similarity measure is particularly useful for clustering, retrieval,
and semantic search tasks.

A.3.4 Asynchronous Embedding Generation. Given the large num-
ber of summaries, the embeddings are generated asynchronously
to improve performance and scalability. By parallelizing the gen-
eration process, we can significantly reduce the processing time,
ensuring that embeddings are computed efficiently for each sum-
mary.

The embedding function is queried asynchronously for each
summary, as shown in the following pseudo-code:

By leveraging the embeddings, we ensure that each summary is
represented in a vector space, allowing for more advanced semantic
operations.

A.3.5 Usage of Embeddings. The generated embeddings are then
used for multiple downstream tasks, such as:

• Clustering: Grouping similar conversations based on their
semantic embeddings.

• Retrieval: Efficiently finding summaries that are similar
to a given query.

• Semantic Search: Searching through conversation sum-
maries based on the semantic content rather than exact
matches.

A.4 Semantic Similarity Search with FAISS
A.4.1 Why FAISS?. FAISS (Facebook AI Similarity Search) was
chosen for its ability to perform efficient nearest-neighbor search
in high-dimensional vector spaces. Given the large number of sum-
maries and their associated embeddings, FAISS provides a highly
scalable solution for searching through these embeddings.

A.4.2 FAISS Workflow. The FAISS workflow consists of the follow-
ing steps:

(1) Initialize a FAISS index with the appropriate dimension size
𝑑 , where 𝑑 is the size of the embedding vectors.

(2) Add the embeddings for each summary to the index.
12
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(3) Perform nearest-neighbor search queries on the index to
find semantically similar summaries.

The FAISS index is initialized as:

FAISS Index = faiss.IndexFlatL2(𝑑) (3)

Where 𝑑 is the dimension of the embedding vectors. The similar-
ity search is then performed by querying the index with the query
embedding 𝑞.

Distances, Indices = FAISS Index.𝑠𝑒𝑎𝑟𝑐ℎ(𝑞, 𝑘) (4)

Where 𝑘 is the number of nearest neighbors to retrieve.

A.5 Useful Addition: Finding Unique Narrative
Network

Analysis of transcripts revealed that the same narrative, content,
or show was often broadcast multiple times on a radio station and
across multiple stations, even when the stations appeared indepen-
dent. An algorithmwas developed to identify unique narratives that
were shared multiple times and form a network of radio stations for
each narrative. MinHash with a similarity threshold of 0.8 was used
to check if any two transcripts contained the same content. This
process identified approximately 22,000 unique narratives from the
dataset.We use only a part of it inWavePulse, where we perform LSH

and BFS to find a social network. The narratives from this subsection

can help us answer: What is getting amplified in that network?

Output Summary of Common Content: This collection
of text excerpts focuses on the upcoming US presidential
election and the role of celebrities in influencing voters.
Election Coverage:
• The Democratic National Convention concluded with

Vice President Kamala Harris accepting the party’s nom-
ination for president.

• The convention featured speeches from prominent
Democrats and celebrities, highlighting their support
for the Harris-Biden ticket.

• The election is just two months away, with the first
presidential debate scheduled for September 10th.

Celebrity Endorsements:
• Celebrities are increasingly using their platforms to en-

dorse political candidates.
• While some celebrities, like Oprah Winfrey, have been

shown to have a significant impact on voter turnout,
others, like Taylor Swift, have not yet endorsed anyone.

• The rise of social media and AI-generated images has
created new challenges for verifying the authenticity of
celebrity endorsements.

Other Topics:
• The text also includes information on the economy,

specifically the role of data-driven decision-making in
various industries.

• The text also touches on the importance of free speech
and the potential risks of “cancel culture.”

Algorithm 1 Finding unique narratives in broadcasts

Require: Set of radio broadcast transcripts 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}
Require: Similarity threshold 𝜃
Require: Time threshold Δ𝑡
1: function OptimizedAnalyzeBroadcasts(𝑇, 𝜃,Δ𝑡 )
2: 𝐻 ← ComputeLSH(𝑇 ) ⊲ Compute LSH for all transcripts
3: 𝐴← CreateAdjacencyList(𝑇,𝐻, 𝜃 )
4: 𝑁 ← IdentifyNarrativesDisjointSet(𝐴)
5: return 𝑁
6: end function
7: function CreateAdjacencyList(𝑇,𝐻, 𝜃 )
8: 𝐴← empty dictionary
9: for each 𝑡𝑖 ∈ 𝑇 do
10: 𝐶 ← GetCandidates(𝐻, 𝑡𝑖 ) ⊲ candidates from LSH
11: for each 𝑡 𝑗 ∈ 𝐶 do
12: if MinHashSimilarity(𝑡𝑖 , 𝑡 𝑗 ) ≥ 𝜃 then
13: 𝐴[𝑡𝑖 ] ← 𝐴[𝑡𝑖 ] ∪ {𝑡 𝑗 } ⊲ add to matching set
14: 𝐴[𝑡 𝑗 ] ← 𝐴[𝑡 𝑗 ] ∪ {𝑡𝑖 } ⊲ maintain symmetric set
15: end if
16: end for
17: end for
18: return 𝐴
19: end function
20: function IdentifyNarrativesDisjointSet(𝐴)
21: 𝑁 ← ∅ ⊲ Set of disjoint repeated narratives
22: 𝑉 ← ∅ ⊲ Set of visited nodes
23: for each 𝑡 ∈ 𝐴.Keys not in 𝑉 do
24: 𝑛 ← BFS(𝐴, 𝑡,𝑉 )
25: 𝑁 ← 𝑁 ∪ 𝑛
26: end for
27: return 𝑁
28: end function

A.6 Wave-Pulse.io Frontend
Wave-Pulse.io is a comprehensive real-time data visualization plat-
form that leverages React for the frontend and Django with Post-
greSQL for the backend. The system is designed to create an intu-
itive and responsive user interface that facilitates data analysis and
exploration.

The frontend, built with React, establishes communication with
the backend through REST API calls, utilizing Axios for data man-
agement. To enhance performance and user experience, the fron-
tend implements asynchronous data fetching techniques and em-
ploys caching mechanisms.

The platform comprises key components, each serving a specific
purpose in the data visualization ecosystem:

A.6.1 Home Page. The Home Page functions as the central navi-
gation hub for the Wave-Pulse.io application, providing users with
access to various features and data visualization options.

A.6.2 Map UI. The Map UI is built upon the ComposableMap
component from ’react-simple-maps’, offering users an interactive
exploration of the United States map. This visualization includes
state boundaries, county outlines, and markers representing popu-
lation centers and radio station coverage areas.
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Figure 13: Wave-pulse USA Map illustrating state and county
boundaries, with radio station markers (grey) and popula-
tion centers (yellow) plotted according to their precise coor-
dinates.

To enhance user interaction and data analysis capabilities, the
map interface offers toggles and filters:

Map level toggle.

• State Party Toggle: Visualizes sentiment data for political
parties at the state level, providing insights into political
leanings across regions.

• State Candidate Toggle: Presents sentiment data for individ-
ual candidates at the state level, allowing for comparison
of candidate popularity.

• State Party Absolute Toggle: Displays absolute sentiment
counts for political parties at the state level, offering a quan-
titative view of party support.

• State Candidate Absolute Toggle: Shows absolute sentiment
counts for candidates at the state level, enabling direct
numerical comparisons.

Coverage toggle.

• Show County Toggle: Activates county-level data visualiza-
tion, allowing for granular analysis of sentiment patterns.

• Show Coverage Toggle: Illustrates the approximate radio
area coverage for each station, providing insights into broad-
cast reach.

• Show Population Toggle: Highlights population density
markers for major U.S. cities, contextualizing sentiment
data with demographic information.

Narrative toggle. The ’Georgia Election Stolen’ option provides
a visualization of how information related to the 2020 Georgia elec-
tion controversy propagated through the radio network, offering
insights into information dissemination patterns.

Date Picker. This feature empowers users to select specific date
ranges for data visualization, enabling temporal analysis of senti-
ment trends and patterns.

Figure 14: Detailed map visualization showing Republican
vs Democrat leaning states from August 1, 2024, to August 7,
2024, with a particular emphasis on Pennsylvania data for
the specified period.

A.6.3 Plots UI. The Plots UI component features two primary line
charts: a nationwide combined sentiment analysis and a nationwide
sentiment count. These charts are designed to adjust based on user
interactions, providing a responsive data exploration experience. To
add depth to the visualizations, entropy is incorporated, providing
context to the plotted data and illustrating the degree of uncertainty
in the sentiment analysis.

Sentiment Analysis. This chart focuses on presenting sentiment
values for key political entities (Biden, Harris, Trump, Democrats,
and Republicans) on a daily basis. To smooth out short-term fluctu-
ations and highlight longer-term trends, the system calculates and
displays a 3-day moving average.

Sentiment Count. This visualization plots sentiment counts for
both candidates and political parties. Users have the flexibility to
toggle between different data lines, allowing them to focus on
positive, neutral, or negative sentiments as needed for their analysis.

A.7 Wave-Pulse.io Backend
The Django-powered backend is designed to expose APIs that fa-
cilitate interaction with the frontend. This backend infrastructure
is responsible for processing, aggregating, and formatting data to
enable real-time visualizations. The PostgreSQL database under-
pinning the system is optimized to handle complex queries and
store time-series data, ensuring rapid data retrieval and analysis
capabilities.

Wave-Pulse.io employs a hosting solution that leverages the
strengths of multiple platforms. GitHub Pages is utilized to host
the frontend, while the DigitalOcean App Platform is responsi-
ble for hosting the backend and PostgreSQL database. This setup
ensures efficient resource utilization and cost-effectiveness, while
maintaining high performance and scalability.

The deployment process is integrated with GitHub reposito-
ries, facilitating a Continuous Integration/Continuous Deployment
(CI/CD) pipeline. This integration allows for updates and ensures
that the latest stable version of the application is available to users.
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Figure 15: Comprehensive sentiment plot for all parties and
candidates, covering the period from June 26, 2024, to August
7, 2024.

Figure 16: Detailed plot illustrating the frequency of senti-
ment occurrences for all candidates over the period from
June 26, 2024, to August 7, 2024.

A.7.1 GitHub Pages Frontend. GitHub Pages serves as the hosting
platform for the frontend, providing key advantages:

Performance. GitHub Pages delivers pre-built assets directly to
the browser, resulting in fast load times for users. This approach
eliminates the need for server-side rendering, enhancing the re-
sponsiveness of the application.

Automated Deployment. Updates to the frontend trigger auto-
matic deployment processes using GitHub Actions. This automa-
tion streamlines the development workflow and ensures that new
features and improvements are made available to users.

Advantages.

• Cost-effectiveness: GitHub Pages offers free hosting for
public repositories, reducing operational costs.

Figure 17: Comprehensive plot showing the frequency of
sentiment occurrences for both major political parties from
June 26, 2024, to August 7, 2024.

• Seamless integration: The tight integration with the GitHub
ecosystem facilitates a smooth development and deploy-
ment process.

• Version control: Inherent version control capabilities allow
for tracking of changes and rollbacks if necessary.

A.7.2 DigitalOcean Backend. The DigitalOcean App Platform is
employed to handle the Django backend and PostgreSQL database,
offering a robust and scalable solution for server-side operations.

Functionality. The backend processes incoming requests, man-
ages complex business logic, and interfaces with the database to
serve real-time data to the frontend. This setup ensures efficient
data management and enables the dynamic features of the Wave-
Pulse.io platform.

Advantages.

• Dynamic resource allocation: DigitalOcean adjusts resource
allocation based on the backend’s workload, ensuring opti-
mal performance during peak usage periods.

• Comprehensive monitoring: Integrated monitoring tools
provide real-time insights into system performance, allow-
ing for proactive management and optimization.

• Streamlined deployment: Automatic deployment processes
are triggered by GitHub pushes, ensuring that the backend
remains synchronized with the latest code changes.

• Managed database services: DigitalOcean’s managed Post-
greSQL service reduces the operational overhead of data-
base management while maintaining high availability and
performance.

A.8 Useful Addition: Scraping Fact Checks
The fact-checking program is a system designed for the automated
collection, processing, and post-processing of fact-checking arti-
cles from various reputable websites. Developed using Python and
leveraging the Scrapy framework for web scraping, the system
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incorporates specialized spiders for specific fact-checking web-
sites, including FactCheck.org, Lead Stories, Politifact, Snopes, and
TruthOrFiction. Although we do not use it in WavePulse, matching

fact checks from authoritative resources with transcript embeddings

can help automate fact-checking.

A.8.1 Websites Overview. Our team developed a Fact Check Web
Crawler capable of scraping fact-checking articles from multiple
authoritative websites. The data collection period spans from Janu-
ary 1, 2020, to August 6, 2024, providing a substantial dataset for
analysis. To ensure ethical and legal compliance, we reviewed the
terms of service for each website prior to data collection.

A.8.2 Scrapy Implementation. The core of our fact-checking sys-
tem utilizes Scrapy spiders to scrape fact-checking articles. These
spiders are designed with flexibility, supporting various filtering
options including date range, keywords, tags, and pagination. This
adaptability allows for targeted data collection based on specific
research needs.

Post-crawling, the system employs a data merging process that
combines information from all scraped websites into a unified
dataset. A key feature of our system is the standardization of fact-
checking rulings across different articles, ensuring consistency in
our analysis. The merged dataset undergoes a filtering process
to isolate political content, enabling focused studies on political
misinformation.

A.8.3 Deduplication Process. To ensure data integrity and prevent
redundancy, we implemented a deduplication module. This com-
ponent is designed to identify and manage duplicate fact-checking
articles by conducting analysis of textual content and publication
dates.

The deduplication process employs natural language processing
techniques, including TF-IDF (Term Frequency-Inverse Document
Frequency) vectorization. This method transforms the text into a
numerical representation, enabling the calculation of cosine sim-
ilarity between articles. By setting thresholds for similarity and
considering publication date proximity, the system clusters and
manages duplicate content.

Figure 18: Illustrative example of misinformation fact-
checked across multiple reputable websites, demonstrating
the need for effective deduplication.

A.8.4 Results Visualization. To facilitate understanding and analy-
sis of the collected fact-checking data, we developed visualization
tools, including word clouds and histograms.

Histogram Analysis. We created a histogram to visualize the
frequency distribution of various fact-checking rulings. This anal-
ysis provides insights into the landscape of misinformation and
fact-checking efforts. For the year 2024, our findings include:

• The "False" category shows the highest frequency, with
1008 instances, indicating a significant volume of debunked
claims.

• "True" claims occur less frequently, with 320 instances, sug-
gesting a lower proportion of verified information in the
fact-checking landscape.

• Categories such as "Miscaptioned", "Satire", and "Outdated"
constitute a notable portion of the dataset, highlighting the
diverse nature of misinformation and the nuanced approach
required in fact-checking.

Figure 19: Comprehensive histogram illustrating the fre-
quency of occurrence for all fact-checking "rulings" across
the scraped websites for the year 2024.

Figure 20: Word cloud showing frequency of occurrence of
significant words with the ruling "True" across all the data
scraped from fact-checking websites for 2024.
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Figure 21: Word cloud showing frequency of occurrence of
significant words with the ruling "False" across all the data
scraped from fact-checking websites for 2024.

Figure 22: Word cloud showing frequency of occurrence of
significant words with the ruling "Mostly True", "Mixed", or
"Mostly False" across all the data scraped from fact-checking
websites for 2024.

Figure 23: Word cloud showing frequency of occurrence of
significant words with the remaining rulings such as "Satire"
or "Outdated" across all the data scraped from fact-checking
websites for 2024.

Word Cloud Visualization. To provide a representation of the
fact-checking landscape, we generated word clouds that visually
depict the most frequent words found in article titles, categorized
by their fact-checking "rulings". This approach offers insights into
recurring themes and topics within different truth categories. The
titles were divided into four primary categories:

• True:Word clouds for this category often feature prominent
political figures and terms related to electoral processes,
such as "election", "president", and "vote".

• False: While containing similar political keywords, this
category notably includes terms like "photo", "fake", and
"real", indicating a prevalence of visual misinformation.

• Middle (including "Mostly True", "Mixed", or "Mostly False"):
This category highlights words such as "year", "million", and
"country", suggesting a focus on claims involving statistics
or demographic information.

• Miscellaneous: Words like "video", "claim", "fact-checking",
and "evidence" are more prominent in this category, reflect-
ing the complex nature of these fact-checks.

A.9 Useful Addition: Audio Classifier
As part of our data analysis toolkit, we developed a system for
segmenting and classifying speech from audio files. This system
leverages the audio processing capabilities of MediaPipe, enabling
us to extract and analyze spoken content with accuracy. Although
we do not use it in WavePulse, we can use it to separate music from

speech content.

Audio Segmentation. The process begins with the loading of the
audio file into our system. Once loaded, the audio data is converted
into a numpy array, allowing for manipulation and analysis. The
system then employs a segmentation approach, dividing the audio
into fixed-length chunks with a specified overlap between consecu-
tive segments. This segmentation is crucial for analyzing smaller
portions of the audio stream, enabling us to capture specific speech
events with precision.

The overlap between segments plays a role in ensuring conti-
nuity and preventing the loss of important speech elements that
might occur at segment boundaries. For instance, in a scenario with
a sample rate of 44.1 kHz, a one-second audio segment would con-
tain 44,100 data points. If we set the segment length to 5 seconds,
each segment would encompass 220,500 samples. With an overlap
of 2 seconds, each segment would share 88,200 samples with its
predecessor, ensuring smooth transitions and coverage.

MediaPipe AudioClassifier Implementation. Following the seg-
mentation process, each audio chunk is passed throughMediaPipe’s
AudioClassifier. This step begins with the loading of a pre-trained
classification model, which we configure to return the top clas-
sification result for each segment, optimizing for accuracy and
processing efficiency.

Prior to classification, each segment undergoes a normalization
process. This involves dividing the audio values by the maximum
possible value for 16-bit audio (32,767), ensuring that the input data
falls within the appropriate range for the classifier. This normaliza-
tion step is crucial for maintaining consistency and improving the
accuracy of our speech detection.

The classifier evaluates each normalized segment, generating
classification results that include both labels and confidence scores.
We implement a quality control measure by considering a segment
as containing valid speech only if the classifier assigns it a confi-
dence score exceeding 0.80. This threshold helps minimize false
positives and ensures the reliability of our speech detection.
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Final Audio File Compilation. After processing all segments, our
system combines the identified speech-containing segments into a
single audio file. During this compilation, we remove the overlap
between consecutive segments to avoid any duplication of audio
data. This approach ensures that the final combined audio main-
tains continuity without repeating any part of the speech, resulting

in a streamlined audio file containing only the relevant speech
segments.

The resulting audio file, representing a distilled version of the
original input focusing on detected speech, is then saved in the
specified output directory. This final product serves as a resource
for further analysis, transcription, or other downstream processing
tasks.
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Table 2: List of successfully streamed Radio Stations along with their location.

Call Sign Location Call Sign Location Call Sign Location

WACV Coosada, AL WAVH Daphne, AL WGSV Guntersville, AL
WLBF Montgomery, AL WQSI Union Springs, AL WTLS Tallassee, AL
KAGV Big Lake, AK KBKO Kodiak, AK KFAR Fairbanks, AK
KFNP North Pole, AK KGSM Saint Mary’s, AK KSRM Soldotna, AK
KVNT Eagle River, AK KAWC Yuma, AZ KDJI Holbrook, AZ
KFNN Mesa, AZ KFNX Cave Creek, AZ KQNA Prescott Valley, AZ
KVOI Cortaro, AZ KVWM Show Low, AZ KYCA Presott, AZ
KARV Russellville, AR KBEU Bearden, AR KBTM Jonesboro, AR
KOMT Lakeview, AR KRZP Gassville, AR KUAR Little Rock, AR
KURM Rogers, AR KAHI Auburn, CA KBLA Santa Monica, CA
KCAA Loma Linda, CA KCNR Shasta, CA KINS Blue Lake, CA
KMET Banning, CA KMYC Marysville, CA KOMY La Selva Beach, CA
KPAY Chico, CA KPRL Paso Robles, CA KQMS Redding, CA
KSAC Olivehurst, CA KSCO Santa Cruz, CA KVTA Ventura, CA
KYOS Merced, CA KDGO Durango, CO KFKA Greeley, CO
KGLN Glenwood Springs, CO KLZ Denver, CO KNFO Basalt, CO
KPPF Monument, CO KRDO Colorado Springs, CO KVFC Cortez, CO
WDRC Hartford, CT WFOX Southport, CT WGCH Greenwich, CT
WICC Bridgeport, CT WLAD Danbury, CT WSTC Stamford, CT
WDEL Wilmington, DE WGMD Reho. Beach, DE WHMS Pine Creek, DE
WIHW Dover, DE WVCW Wilmington, DE WCSP Washington, DC
WFED Washington, DC WPFM Washington, DC WTOP Washington, DC
PRNN Pensacola, FL WBOB Jacksonville, FL WDBO Orlando, FL
WDCF Dade City, FL WELE Ormond Beach, FL WFSX Estero, FL
WFTL West Palm Beach, FL WHBO Pinellas Park, FL WKEZ Tavernier, FL
WNDB Daytona Beach, FL WNRP Pensacola, FL WNZF Bunnell, FL
WPIK Summerland Key, FL WPSL Port Saint Lucie, FL WWBA Largo, FL
WWPR Bradenton, FL WWTK Lake Placid, FL WXJB Homosassa, FL
WYOO Springfield, FL WCHM Clarkesville, GA WDJY Dallas, GA
WDUN Gainesville, GA WFOM Marietta, GA WGAC Harlem, GA
WJRB Young Harris, GA WKWN Trenton, GA WLAQ Rome, GA
WLBB CaWAUBrrollton, GA WRGA Rome, GA WRWH Cleveland, GA
WSBB Doraville, GA WVGA Lakeland, GA WVOP Vidalia, GA
KANO Hilo, HI KHJC Lihue, HI KIHL Hilo, HI
KKCR Hanalei, HI KAOX Shelley, ID KBOI New Plymouth, ID
KIDG Shelley, ID KOUW Island Park, ID WBGZ Alton, IL
WCGO Evanston, IL WCIL Carbondale, IL WCMY Ottawa, IL
WCPT Willow Springs, IL WCRA Effingham, IL WDAN Danville, IL
WDWS Champaign, IL WGGH Marion, IL WJPF Herrin, IL
WLUW Chicago, IL WMAY Taylorville, IL WMBD Peoria, IL
WRPW Colfax, IL WSDR Sterling, IL WSOY Decatur, IL
WTAD Quincy, IL WTIM Assumption, IL WTRH Ramsey, IL
WZUS Macon, IL WBIW Bedford, IN WFDM Franklin, IN
WGCL Bloomington, IN WGL Fort Wayne, IN WIMS Michigan City, IN
WTRC Elkhart, IN KBIZ Ottumwa, IA KFJB Marshaltown, IA
KMA Shenandoah, IA KOKX Keokuk, IA KWBG Boone, IA
KXEL Waterloo, IA KGGF Coffeyville, KS KINA Salina, KS
KIUL Garden City, KS KLWN Lawrence, KS KQAM Wichita, KS
KSAL Salina, KS KSCB Liberal, KS KVGB Great Bend, KS
KWBW Hutchinson, KS KWKN Wakeeney, KS WDOC Prestonsburg, KY
WHIR Danville, KY WKCT Bowling Green, KY WZXI Lancaster, KY
KFXZ Lafayette, LA KSYL Alexandria, LA KWLA Anacoco, LA
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Table 3: List of successfully streamed Radio Stations along with their location (continued).

Call Sign Location Call Sign Location Call Sign Location

WBOK New Orleans, LA WEGP Presque Isle, ME WLOB Portland, ME
WMEA Portland, ME WBAL Baltimore, MD WCBM Baltimore, MD
WFMD Frederick, MD WBNW Concord, MA WGAW Gardner, MA
WNBP Newburyport, MA WSAR Fall River, MA WAAM Ann Arbor, MI
WBRN Big Rapids, MI WCXI Fenton, MI WIOS Tawas City, MI
WKHM Jackson, MI WKNW Sault Sainte Marie, MI WLDN Ludington, MI
WMIC Sandusky, MI WMPL Hancock, MI WPHM Port Huron, MI
WSJM Benton Harbor, MI WTCM Traverse City, MI KBRF Fergus Falls, MN
KKBJ Bemidji, MN KLTF Little Falls, MN KNSI Saint Louis, MN
KROX Crookston, MN KTRF Thief River Falls, MN KXRA Alexandria, MN
WZFG Dilworth, MN WMXI Ellisville, MS WVBG Vicksburg, MS
WYAB Pocahontas, MS KFMO Flat River, MO KICK Springfield, MO
KRMS Osage Beach, MO KRTK Hermann, MO KSIM Sikeston, MO
KSWM Aurora, MO KTRS Saint Louis, MO KTTR Saint James, MO
KTUI Sullivan, MO KWOC Poplar Bluff, MO KWPM West Plains, MO
KZIM Cape Girardeau, MO KZRG Joplin, MO KZYM Joplin, MO
KAFH Great Falls, MT KALS Kalispell, MT KAPC Butte, MT
KBGA Missoula, MT KBMC Bozeman, MT KCAP Helena, MT
KINX Fairfield, MT KJJR Whitefish, MT KGFW Kearney, NE
KLIN Lincoln, NE KODY North Platte, NE KOIL Omaha, NE
KOLT Terrytown, NE KRGI Grand Island, NE WJAG Norfolk, NE
KAVB Hawthorne, NV KELY Ely, NV KKFT Gardnerville-Minden, NV
KLNR Panaca, NV KNCC Elko, NV WEMJ Laconia, NH
WNTK New London, NH WTSN Dover, NH WUVR Lebanon, NH
WFJS Trenton, NJ WFMU East Orange, NJ WOND Pleasantville, NJ
WVBV Medford Lakes, NJ KEND Roswell, NM KENN Farmington, NM
KINN Alamogordo, NM KKOB Albuquerque, NM KOBE Las Cruces, NM
KRSY Alamogordo, NM KSVP Artesia, NM KXKS Albuquerque, NM
WATN Watertown, NY WAUB Auburn, NY WBAI New York, NY
WFME Garden City, NY WGBB Freeport, NY WGDJ Rensselaer, NY
WGVA Geneva, NY WJJF Montauk, NY WKCR New York, NY
WLNL Horseheads, NY WLVL Lockport, NY WNYU New York, NY
WRHU Hempstead, NY WTBQ Warwick, NY WUTQ Utica, NY
WVBN Bronxville, NY WWSK Smithtown, NY WYSL Avon, NY
WBT Charlotte, NC WEEB Southern Pines, NC WGNC Gastonia, NC
WHKY Hickory, NC WNOS New Bern, NC WOBX Wanchese, NC
WRHT Morehead City, NC WSJS Winston-Salem, NC WSPC Albemarle, NC
WTIB Willamston, NC KNOX Grand Forks, ND KTGO Tioga, ND
WDAY Fargo, ND WCBE Columbus, OH WDBZ Cincinnati, OH
WHIO Dayton, OH WHTX Warren, OH WINT Willoughby, OH
WLYV Bellaire, OH WNIR Kent, OH WYOH Niles, OH
KCLI Cordell, OK KGWA Enid, OK KGYN Guymon, OK
KQOB Enid, OK KRMG Tulsa, OK KTLR Oklahoma City, OK
KWON Bartlesville, OK WBBZ Ponca City, OK KAGO Klamath Falls, OR
KBND Bend, OR KBNP Portland, OR KFIR Sweet Home, OR
KFLS Klamath Falls, OR KGAL Lebanon, OR KMED Eagle Point, OR
KPNW Eugene, OR KSLM Salem, OR KUMA Pendleton, OR
KVBL Union, OR KWRO Coquille, OR KYKN Keizer, OR
WATS Sayre, PA WBVP Beaver Falls, PA WCED Du Bois, PA
WEEU Reading, PA WFYL King of Prussia, PA WKHB Irwin, PA
WPSN Honesdale, PA WRSC Bellefonte, PA WRTA Altoona, PA
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Table 4: List of successfully streamed Radio Stations along with their location (continued).

Call Sign Location Call Sign Location Call Sign Location

WTRW Carbondale, PA WURD Philadelphia, PA WEAN Wakefield-Peacedale, RI
WNPE Narragansett Pier, RI WSJW Pawtucket, RI WAIM Anderson, SC
WCRS Greenwoord, SC WDXY Sumter, SC WFRK Quinby, SC
WRHI Rock Hill, SC WRNN Socastee, SC WTKN Murrells Inlet, SC
KAUR Sioux Falls, SD KELQ Flandreau, SD KOTA Rapid City, SD
KWAM Memphis, TN WBFG Parker’s Crossroads, TN WCMT Martin, TN
WENO Nashville, TN WGNS Murfreesboro, TN WHUB Cookeville, TN
WUCT Algood, TN KBST Big Spring, TX KCRS Midland, TX
KKSA San Angelo, TX KLVT Levelland, TX KRDY San Antonio, TX
KRFE Lubbock, TX KWEL Midland, TX KXYL Brownwood, TX
KZHN Paris, TX KZHN Paris, TX WTAW College Station, TX
KBJA Sandy, UT KJJC Murray, UT KMXD Monroe, UT
KOAL Price, UT KSGO Saint George, UT KSVC Richfield, UT
KVNU Logan, UT WBTN Bennington, VT WCKJ Saint Johnsbury, VT
WJPL Barre, VT WJSY Newport, VT WMTZ Rutland, VT
WVMT Burlington, VT WCHV Charlottesville, VA WFJX Roanake, VA
WGMN Roanake, VA WIQO Forest, VA WJFV Portsmouth, VA
WLNI Lynchburg, VA WMNA Gretna, VA WNIS Norfolk, VA
WRAD Radford, VA WRCW Warrenton, VA KEDO Longview, WA
KELA Centralia-Chehalis, WA KGDC Walla Walla, WA KGTK Olympia, WA
KITZ Silverdale, WA KKNW Seattle, WA KLCK Goldendale, WA
KNWN Seattle, WA KODX Seattle, WA KONP Port Angeles, WA
KOZI Chelan, WA KSBN Spokane, WA KTEL Walla Walla, WA
KVI Seattle, WA KXLY Spokane, WA WMOV Ravenswood, WV
WRNR Martinsburg, WV WSCW South Charleston, WV WWNR Beckley, WV
KFIZ Fond Du Lac, WI WAUK Jackson, WI WCLO Janesville, WI
WFHR Wisconsin Rapids, WI WISS Berlin, WI WLCX La Crosse, WI
WMDX Columbus, WI WSAU Rudolph, WI WTAQ Glenmore, WI
WXCO Wausau, WI KBUW Buffalo, WY KROE Sheridan, WY
KVOW Riverton, WY
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