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Abstract

After a period of decrease, interest in word001
alignments is increasing again for their useful-002
ness in domains such as typological research,003
cross-lingual annotation projection and ma-004
chine translation. Generally, alignment algo-005
rithms only use bitext and do not make use of006
the fact that many parallel corpora are multi-007
parallel. Here, we compute high-quality word008
alignments between multiple language pairs009
by considering all language pairs together.010
First, we create a multiparallel word alignment011
graph, joining all bilingual word alignment012
pairs in one graph. Next, we use graph neural013
networks (GNNs) and community detection al-014
gorithms to exploit the graph structure. Our015
GNN approach (i) utilizes information about016
the meaning, position and language of the in-017
put words, (ii) incorporates information from018
multiple parallel sentences, (iii) adds and re-019
moves edges from the initial alignments, and020
(iv) provides a prediction model that can gener-021
alize beyond the sentences it is trained on. We022
show that community detection provides valu-023
able information for multiparallel word align-024
ment. Our method outperforms previous work025
on three word alignment datasets and on a026
downstream task.027

1 Introduction028

Word alignments are crucial for statistical machine029

translation (Koehn et al., 2003) and useful for many030

other multilingual tasks such as neural machine031

translation (Alkhouli and Ney, 2017; Alkhouli032

et al., 2016), typological analysis (Lewis and Xia,033

2008; Östling, 2015; Asgari and Schütze, 2017),034

annotation projection (Yarowsky and Ngai, 2001;035

Fossum and Abney, 2005; Wisniewski et al., 2014;036

Huck et al., 2019). The rise of deep learning037

initially led to a temporary plateau, but interest in038

word alignments is now increasing, demonstrated039

by several recent publications (Jalili Sabet et al.,040

2020; Chen et al., 2020; Dou and Neubig, 2021)041
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Figure 1: Alignment graph for the verse “It will pro-
duce thorns and thistles for you, and you will eat the
plants of the field.” in a 12-way multiparallel corpus.
Colors represent languages. Each English (yellow)
node is annotated with its word. Red dashed lines sever
links that incorrectly connect distinct concepts. We ex-
ploit community detection algorithms to detect distinct
concepts. This provides valuable information for our
GNN model and improves word alignments.

Multiparallel corpora contain sentence level par- 042

allel text in more than two languages, e.g., JW300 043

(Agić and Vulić, 2019), PBC (Mayer and Cysouw, 044

2014) and Tatoeba.1 While the amount of data pro- 045

vided by multiparallel corpora is less than bilingual 046

corpora, this type of corpus is essential to study 047

very low-resource languages. There are thousands 048

of languages in the world a very small portion of 049

which is covered by language technologies (Joshi 050

et al., 2020). Recent work (Bird, 2020) suggests a 051

number of approaches to develop technologies for 052

indigenous languages. Multiparallel corpora are a 053

valuable (and arguably complementary) resource 054

for this aim. We use the PBC corpus since it covers 055

more than 1300 languages. 056

Most prior work on word alignment uses bitext, 057

with one notable exception: (Imani et al., 2021). 058

1https://tatoeba.org
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They introduce MPWA (MultiParallel Word Align-059

ment), a framework that utilizes the synergy be-060

tween multiple language pairs to improve bilingual061

word alignments. The rationale is that some of the062

missing alignment edges between a source and a063

target language can be recovered using their align-064

ments with words in other languages.065

The first step in MPWA is to create bilingual066

alignments for all language pairs in a multiparallel067

corpus using a bilingual word aligner. Then the068

bilingual alignments for a multiparallel sentence069

are represented as a graph where words are nodes070

and initial word alignments are edges. Figure 1071

gives an example: a multiparallel alignment graph072

for a 12-way multiparallel corpus. MPWA infers073

missing alignment links based on the graph struc-074

ture in a postprocessing step, casting the word align-075

ment task as an edge prediction problem. They use076

two traditional graph algorithms, Adamic-Adar and077

non-negative matrix factorization, for edge predic-078

tion. However, these standard graph algorithms are079

applied to individual multiparallel sentences inde-080

pendently and therefore cannot accumulate knowl-081

edge from multiple sentences. Moreover, their edge082

predictions are solely based on the structure of the083

graph and do not take advantage of other beneficial084

signals such as a word’s language, relative position085

and word meaning. Another limitation is that it086

only adds links and does not remove any, which is087

important to improve precision.088

In this paper, we propose to use graph neural089

networks (GNNs) to exploit the graph structure090

of multiparallel word alignments and address the091

limitations of prior work. GNNs were proposed092

to extend the powerful current generation of neu-093

ral network models to processing graph-structured094

data (Scarselli et al., 2009) and they have gained095

increasing popularity in many domains (Wu et al.,096

2020; Sanchez-Gonzalez et al., 2018; He et al.,097

2020). In contrast to other graph algorithms, GNNs098

can incorporate heterogeneous sources of signal in099

the form of node and edge features.100

Since the nodes in the graph are words that101

are translations of each other, we expect them102

to create densely connected regions or communi-103

ties. Our analysis of the structure of the multi-104

parallel alignment graph confirms this intuition;105

see Figure 1. We use community detection al-106

gorithms to find communities. We show that107

pruning inter-community edges and adding intra-108

community edges is helpful. We use community109

information as node features for our GNN. 110

We enable the removal of alignment edges from 111

initial alignments by inferring alignments from the 112

alignment probability matrix. Our method predicts 113

new alignment links independently of initial edges. 114

Therefore it is not limited to adding edges wrt ini- 115

tial bilingual alignments, it can also remove them. 116

For our experiments, we follow the setup of 117

Imani et al. (2021). We train a GNN model 118

with a link prediction objective. We show im- 119

proved results for three language pairs on word 120

alignment (English-French, Finnish-Hebrew and 121

Finnish-Greek). As a demonstration of the im- 122

portance of high-quality alignments, we use our 123

word alignments to project annotations from high- 124

resource to low-resource languages. We improve 125

a part-of-speech tagger for Yoruba by training it 126

over a high-quality dataset, which is created using 127

annotation projection. We show that our model is 128

especially helpful for distant languages. 129

Contributions: i) We propose a graph neural 130

network model that incorporates a diverse set of 131

features for word alignments in multiparallel cor- 132

pora and an elegant way of training it efficiently and 133

effectively. ii) We show that community detection 134

improves multiparallel word alignment. iii) We 135

show that the improved alignments improve per- 136

formance on a downstream task for a low resource 137

language. iv) We propose a new method to infer 138

alignments from the alignment probability matrix. 139

v) We will make our code publicly available. 140

2 Graph Analysis with Community 141

Detection (CD) 142

The nodes in the alignment graph are words that 143

are translations of each other. If the initial bilingual 144

alignments are of good quality, we expect these 145

translated words to form densely connected regions 146

or communities; see Figure 1. We expect these 147

communities to be genarally disconnected, each 148

corresponding to a distinct connected component. 149

In other words, ideally, words representing a con- 150

cept should be densely connected, but there should 151

be no links between different concepts. Clearly, 152

this intuition will not be true for all concepts be- 153

tween all possible language pairs. Nonetheless, we 154

hypothesize that identifying distinct concepts in 155

a multiparallel word alignment graph can provide 156

useful information. 157

To examine to what extent this expectation is 158

met, we count the components in the original 159
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Eflomal-generated (Östling and Tiedemann, 2016)160

graph. Table 1 shows that the average number of161

components per sentence is less than three (“Eflo-162

mal intersection”, columns #CC). But intuitively,163

the number of components should roughly corre-164

spond to sentence length (i.e., the number of con-165

tent words). This indicates that there are many166

links that incorrectly connect different concepts.167

To detect such links, we use community detection168

(CD) algorithms.169

CD algorithms find subnetworks of nodes that170

form tightly knit groups that are only loosely con-171

nected with a small number of links (Girvan and172

Newman, 2002). CD algorithms maximize the173

modularity measure (Newman and Girvan, 2004).174

Modularity measures how beneficial a division of175

a community into two communities is, in the sense176

that there are many links within communities and177

only a few between them. Given a graph G with178

n nodes and m edges and G’s adjacency matrix179

A ∈ Rn×n, modularity is defined as:180

mod =
1

2m

∑
ij

(
Aij − γ

didj
2m

)
I(ci, cj) (1)181

di is the degree of node i. I(ci, cj) is 1 if nodes i182

and j are in the same community, 0 otherwise.183

We experiment with two CD algorithms:184

• Greedy modularity communities (GMC). This185

method uses Clauset-Newman-Moore greedy186

modularity maximization (Clauset et al.,187

2004). GMC begins with each node in its188

own community and greedily joins the pair of189

communities that most increases modularity190

until no such pair exists.191

• Label propagation communities (LPC). This192

method finds communities in a graph using193

label propagation (Cordasco and Gargano,194

2010). It begins by giving a label to each node195

of the network. Then each node’s label is up-196

dated by the most frequent label among its197

neighbors in each iteration. It performs label198

propagation on a portion of nodes at each step199

and quickly converges to a stable labeling.200

After detecting communities, we link all201

nodes inside a community and remove all inter-202

community links. GMC (LPC) on average removes203

3% (7%) of the edges. Table 1 reports the average204

number of graph components per sentence before205

and after runing GMC and LPC, as well as the cor-206

responding F1 for word alignment. We see that the207

FIN-HEB FIN-GRC ENG-FRA
#CC F1 #CC F1 #CC F1

Eflomal intersection 2.2 0.404 1.6 0.646 2.2 0.678

GMC 13.7 0.396 10.1 0.375 13.5 0.411
LPC 41.5 0.713 37.1 0.754 46.0 0.767

Sentence length 25.7 23.2 27.4

Table 1: Effect of community detection algorithms on
alignment prediction. #CC: average number of con-
nected components. F1: word alignment performance.

number of communities found is lower for GMC 208

than for LPC; therefore, LPC identifies more can- 209

didate links for deletion.2 Comparing the number 210

of communities detected with the average sentence 211

length, GMC seems to have failed to detect enough 212

communities to split different concepts properly. 213

The F1 scores confirm this observation and show 214

that LPC performs well at detecting the communi- 215

ties we are looking for. 216

These results indicate that CD algorithms can 217

provide valuable information. To exploit this in our 218

GNN model, we add a node’s community informa- 219

tion as a GNN node feature; see §3.1.2. 220

3 Methods 221

3.1 GNN in MPWA 222

GNNs can be used in transductive or inductive set- 223

tings. Transductively, the final model can only be 224

used for inference over the same graph that it is 225

trained on. In an inductive setting, which we use 226

here, nodes are represented as feature vectors, and 227

the final model has the advantage of being applica- 228

ble to a different graph in inference. 229

3.1.1 Model Architecture 230

Our model is inspired by the Graph Auto Encoder 231

(GAE) model of Kipf and Welling (2016b) for link 232

prediction. The architecture consists of an encoder 233

and a decoder. We make changes to this model to 234

improve the model’s quality and reduce its compu- 235

tation cost. We use GATConv layers (Veličković 236

et al., 2018) for encoder instead of GCNConv (Kipf 237

and Welling, 2016a)and a more sophisticated de- 238

coder instead of simple dot product for a stronger 239

model. We also introduce a more efficient training 240

procedure. 241

The encoder is a graph attention network (GAT) 242

(Veličković et al., 2018) with two GATConv layers 243

2LPC may detect more communities than average sentence
length because of null words: words that have no translation
in the other languages, giving rise to separate communities.
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Figure 2: GNN training. At each training step, node features and links of a multiparallel sentence are fed to a graph
attention network (GAT) that creates hidden representations for all nodes. On the decoder side, at each step, one
batch of alignment links and hidden node representations is used to create positive and negative samples, which
are then processed and classified by a multi-layer perceptron (MLP). Parameters of GAT and MLP are updated for
each batch. FC = fully connected.

followed by a fully connected layer. Layers are244

connected by RELU non-linearities. A GATConv245

layer computes its output x′i for a node i from its246

input xi as247

x′i = αi,iWxi +
∑

j∈N (i)

αi,jWxj , (2)248

where W is a weight matrix, N (i) is some neigh-249

borhood of node i in the graph, and αi,j is the250

attention coefficient indicating the importance of251

node j’s features to node i. αi,j is computed as252

αi,j =
exp

(
g
(
a>[Wxi ‖Wxj ]

))∑
k∈N (i)∪{i} exp (g (a>[Wxi ‖Wxk]))

(3)253

where ‖ is concatanation, g is LeakyReLU, and a254

is a weight vector. Given the features for the nodes255

and their alignment edges, the encoder creates a256

contextualized hidden representation for each node.257

Based on the hidden representations of two258

nodes, the decoder predicts whether a link con-259

nects them. The decoder architecture consists of a260

fully connected layer, a RELU non-linearity and a261

sigmoid layer.262

Training. By default, GAE models are trained263

using full batches with random negative samples.264

This approach requires at least tens of epochs over265

training dataset to converge and a lot of GPU mem-266

ory for graphs as big as ours. We train our model267

using mini-batches and an adversarial loss to de-268

crease memory requirements and improve the per-269

formance. Using our training approach the model270

converges after one epoch. The negative samples271

are selected more elegantly, as described below.272

Figure 2 displays our GNN model and the training273

process. The outer loop iterates over the multipar- 274

allel sentences in the training set. The training set 275

contains one graph for each sentence; the graph 276

is constructed using the bilingual alignment edges 277

between all language pairs. 278

Each graph is divided into multiple batches. 279

Each batch contains a random subset of the graph’s 280

edges as positive samples. The negative sam- 281

ples are created as follows. Given a sentence 282

u1u2 . . . un in language U and its translation 283

v1v2 . . . vm in language V , for each alignment edge 284

ui:vj in the current batch, two negative edges ui:v′j 285

and u′i:vj (j′ 6= j, i′ 6= i) are randomly sampled. 286

For each training batch, the encoder takes the 287

batch’s whole graph (i.e., node features for all 288

graph nodes and all graph edges) as input and com- 289

putes hidden representations for the nodes. On the 290

decoder side, for each link of the batch, the hidden 291

representations of the attached nodes are concate- 292

nated to create the decoder’s input. The decoder’s 293

target is the link’s class: 1 (resp. 0) for positive 294

(resp. negative) links. We train with a binary classi- 295

fication objective: 296

L = −1

b

b∑
i=1

log(p+i ) +
1

2b

2b∑
i=1

log(p−i ) (4) 297

where b is the batch size and p+i and p−i are the 298

model predictions for the ith positive and negative 299

samples within the batch. Parameters of the en- 300

coder and decoder as well as the node-embedding 301

feature layer are updated after each training step. 302

3.1.2 Node Features 303

We use three main types of node features: (i) graph 304

structural features, (ii) community-based features 305

and (iii) word content features. 306
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Graph structural features. We use degree,307

closeness (Freeman, 1978) , betweenness (Bran-308

des, 2001) , load (Newman, 2001) and harmonic309

centrality (Boldi and Vigna, 2014) features as addi-310

tional information about the graph structure. These311

features are continuous numbers, providing infor-312

mation about the position and connectivity of the313

nodes within the graph. We standardize (i.e., z-314

score) each feature across all nodes, and train an315

embedding of size four for each feature.3316

Community-based features. One way to incor-317

porate community information into our model is318

to train the model based on the refined edges after319

the community detection step. This approach hob-320

bles the GNN model by making decisions about321

many of the edges before the GNN gets to see322

them. Our initial experiments also confirmed that323

training the GNN over CD refined edges does not324

help. Therefore, we add community information as325

node features and let the GNN use them to improve326

its decisions. We use the community detection327

algorithms GMC and LPC (see §2) to identify com-328

munities in the graph. Then we take the community329

membership information of the nodes as one-hot330

vectors and learn an embedding of size 32 for each331

of the two algorithms.332

Word content features. We train embeddings333

for word position (size 32) and word language (size334

20). We learn 100-dimensional multilingual word335

embeddings using Levy et al. (2017)’s sentence-336

ID method on the 84 PBC languages selected by337

Imani et al. (2021). Word embeddings serve as338

initialization and are updated during GNN training.339

After concatenating these features, each node340

is represented by a 236 dimensional vector that is341

then fed to the encoder.342

3.1.3 Inducing Alignment Edges343

When our trained GNN model is used to pre-344

dict alignment edges between a source sentence345

x̂ = x1, x2, . . . , xm in language X and a target346

sentence ŷ = y1, y2, . . . , yl in language Y , it pro-347

duces a symmetric alignment probability matrix S4348

of size m× l where Sij is the predicted alignment349

probability between words xi and yj . Using these350

values directly to infer alignment edges is usually351

suboptimal; therefore, more sophisticated methods352

3Learning a size-four embedding instead of a single num-
ber gives the feature a weight similar to other features – which
have a feature vector of about the same size.

4For inference, we feed all possible alignment links be-
tween source and target to the decoder.

have been suggested (Ayan and Dorr, 2006; Liang 353

et al., 2006). Here we propose a new approach: it 354

combines Koehn et al. (2005)’s Grow-Diag-Final- 355

And (GDFA) with Dou and Neubig (2021)’s proba- 356

bility thresholding. We modify the latter to account 357

for the variable size of the probability matrix (i.e., 358

length of source/target sentences). Our method is 359

not limited to adding new edges to some initial 360

bilingual alignments, a limitation of prior work. As 361

we predict each edge independently, some initial 362

links can be discarded from the final alignment. 363

We start by creating a set of forward (source- 364

to-target) alignment edges and a set of backward 365

(target-to-source) alignment edges. To this end, 366

first, inspired by probability thresholding (Dou and 367

Neubig, 2021), we apply softmax to S, and zero 368

out probabilities below a threshold to get a source- 369

to-target probability matrix SXY : 370

SXY = S ∗ (softmax(S) >
α

l
) (5) 371

Analogously, we compute the target-to-source prob- 372

ability matrix SY X : 373

SY X = S> ∗ (softmax(S>) >
α

m
) (6) 374

where α is a sensitivity hyperparameter, e.g., α = 1 375

means that we pick edges with a probability higher 376

than average. We experimentally set α = 2. Next, 377

from each row of SXY (SY X ), we pick the cell 378

with the highest value (if any exists) and add this 379

edge to the forward (backward) set. 380

We create the final set of alignment edges by ap- 381

plying the GDFA symmetrization method (Koehn 382

et al., 2005) to forward and backward sets. The 383

gist of GDFA is to use the intersection of forward 384

and backward as initial alignment edges and add 385

more edges from the union of forward and back- 386

ward based on a number of heuristics. We call this 387

method TGDFA (Thresholding GDFA). 388

We also experiment with combining TGDFA 389

with the original bilingual GDFA alignments. We 390

do so by adding bilingual GDFA edges to the union 391

of forward and backward before performing the 392

GDFA heuristics. We refer to these alignments as 393

TGDFA+orig. 394

We evaluate the resulting alignments using F1 395

score and alignment error rate (AER), the standard 396

evaluation measures in the word alignment litera- 397

ture. 398
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FIN-HEB FIN-GRC ENG-FRA
Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

Eflomal (intersection) 0.818 0.269 0.405 0.595 0.897 0.506 0.647 0.353 0.971 0.521 0.678 0.261
Eflomal (GDFA) 0.508 0.448 0.476 0.524 0.733 0.671 0.701 0.300 0.856 0.710 0.776 0.221

WAdAd (intersection) 0.781 0.612 0.686 0.314 0.849 0.696 0.765 0.235 0.938 0.689 0.794 0.203
NMF (intersection) 0.780 0.576 0.663 0.337 0.864 0.669 0.754 0.248 0.948 0.624 0.753 0.245
WAdAd (GDFA) 0.546 0.693 0.611 0.389 0.707 0.783 0.743 0.257 0.831 0.796 0.813 0.186
NMF (GDFA) 0.548 0.646 0.593 0.407 0.720 0.759 0.739 0.261 0.844 0.767 0.804 0.195

GNN (TGDFA) 0.811 0.648 0.720 0.280 0.845 0.724 0.780 0.220 0.926 0.711 0.804 0.192
GNN (TGDFA+orig) 0.622 0.683 0.651 0.349 0.738 0.780 0.758 0.242 0.863 0.789 0.824 0.174

Table 2: Word alignment results on PBC for GNN and baselines. The best result in each column is in bold. GNN
outperforms the baselines as well as the graph algorithms WAdAd and NMF on F1 and AER.

3.2 Annotation Projection399

Annotation projection automatically creates lin-400

guistically annotated corpora for low-resource lan-401

guages. A model trained on data with “annotation-402

projected” labels can perform better than full un-403

supervision. Here, we focus on universal part-of-404

speech (UPOS) tagging (Petrov et al., 2012) for the405

low resource target language Yoruba; this language406

only has a small set of annotated sentences in Uni-407

versal Dependencies (Nivre et al., 2020) and has408

poor POS results in unsupervised settings (Kon-409

dratyuk and Straka, 2019).410

The quality of the target annotated corpus de-411

pends on the quality of the annotations in the source412

languages and the quality of the word alignments413

between sources and target. We use the Flair (Ak-414

bik et al., 2019) POS taggers for three high resource415

languages, English, German and French (Akbik416

et al., 2018), to annotate 30K verses whose Yoruba417

translations are available in PBC. We then trans-418

fer the POS tags from source to target using three419

different approaches: (i) We directly transfer an-420

notations from English to the target. (ii) For each421

word in the target, we get its alignments in the three422

source languages and predict the majority POS to423

annotate the target word. (iii) We repeat (ii) using424

alignments from our GNN (TGDFA) model instead425

of the original bilingual alignments. In all three426

approaches, we discard any target sentence from427

the POS tagger training data if more than 50% of428

its words are annotated with the "X" (other) tag.429

We train a Flair SequenceTagger model on the430

target annotated data using mBERT embeddings431

(Devlin et al., 2019) and evaluate on Yoruba test432

from Universal Dependencies.5433

5https://universaldependencies.org/

4 Experimental Setup 434

4.1 Word Alignment Datasets 435

Following Imani et al. (2021), we use PBC, a mul- 436

tiparallel corpus of 1758 sentence-aligned editions 437

of the Bible in 1334 languages. 438

Evaluation data. For our main evaluation, we 439

use the two word alignment gold datasets for 440

PBC published by Imani et al. (2021): Blinker 441

(Melamed, 1998) and HELFI (Yli-Jyrä et al., 2020). 442

The HELFI dataset contains the Hebrew Bible, 443

Greek New Testament and their translations into 444

Finnish. For HELFI, we use Imani et al. (2021)’s 445

train/dev/test splits. The Blinker dataset provides 446

word level alignments between English and French 447

for 250 Bible verses. 448

Training data. The graph algorithms used by 449

Imani et al. (2021) operate on each multiparallel 450

sentence separately. In contrast, our approach al- 451

lows for an inductive setting where a model is 452

trained on a training set and then evaluated on a 453

separate test set. We combine the verses in the 454

training sets of Finnish-Hebrew and Finnish-Greek 455

for a combined train set size of 24,159. 456

4.2 Initial Word Alignments 457

We use the Eflomal statistical word aligner to ob- 458

tain bilingual alignments. We train it for every 459

language pair in our experiments. We do not con- 460

sider SimAlign (Jalili Sabet et al., 2020) since it 461

is shown to perform poorly for languages whose 462

representations in the multilingual pretrained lan- 463

guage model are of low quality. We use Eflomal 464

asymmetrical alignments post-processed with the 465

intersection heuristic to get high precision bilingual 466

alignments as input to the GNN. We use the same 467

subset of 84 languages as Imani et al. (2021). 468

6
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4.3 Training Details469

We use PyTorch Geometric6 to construct and train470

the GNN. The model’s hidden layer size is 512471

for both GATConv and Linear layers. We train for472

one epoch on the train set – a small portion of the473

train set is enough to learn good embeddings (see474

§5.1.1). For training, we use a batch size of 400 and475

learning rate of .001 with AdamW (Loshchilov and476

Hutter, 2017). The whole training process takes477

less than 4 hours on a GeForce GTX 1080 Ti and478

the inference time is on the order of milliseconds479

per sentence.480

5 Experiments and Results481

5.1 Multiparallel corpus results482

Table 2 shows results on Blinker and HELFI for our483

GNNs and the baselines: bilingual alignments and484

the traditional graph algorithms WAdAd and NMF485

from Imani et al. (2021). Our GNNs provide a486

better trade-off between precision and recall, most487

likely thanks to their ability to remove edges, and488

achieve the best F1 and AER on all three datasets,489

outperforming WAdAd and NMF.490

GNN (TGDFA) achieves the best results491

on HELFI (FIN-HEB, FIN-GRC) while GNN492

(TGDFA+orig) is best on Blinker (ENG-FRA). As493

argued in Imani et al. (2021), this is mostly due494

to the different ways these two datasets were an-495

notated. Most HELFI alignments are one-to-one,496

while many Blinker alignments are many-to-many:497

phrase-level alignments where every word in a498

source phrase is aligned with every word in a target499

phrase. This suggests that one can choose between500

GNN (TGDFA) and GNN (TGDFA+orig) based501

on the characteristics of the desired alignments.502

5.1.1 Effect of Training Set Size503

To investigate the effect of training set size, we504

train the GNN on subsets of our training data with505

increasing sizes. Figure 3 shows results. Perfor-506

mance improves fast until around 2,000 verses;507

then it stays mostly constant. Indeed, using more508

than 6,400 samples does not change the perfor-509

mance at all. Therefore, in the other experiments510

we use 6,400 randomly sampled verses from the511

training set to train GNNs.512

5.1.2 Ablation Experiments513

To examine the importance of node features, we514

ablate language, position, centrality, community515
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Figure 3: F1 of GNN (TGDFA) and GNN
(TGDFA+orig) on Blinker as a function of train size

and word embedding features. Table 3 shows that 516

removal of graph structural features drastically re- 517

duces performance. Community features and lan- 518

guage information are also important. Removal of 519

word position information and word embeddings 520

– which store semantic information about words – 521

has the least effect. Based on these results, it can be 522

argued that the lexical information contained in the 523

initial alignments and in the community features 524

provides a strong signal regarding word related- 525

ness. The novel information that is crucial is about 526

the overall graph structure which goes beyond the 527

local word associations that are captured by word 528

position and word embeddings. 529

5.1.3 Effect of Word Frequency 530

We investigate the effect of word frequency on 531

alignment performance where frequency is calcu- 532

lated based on the source word in the PBC; the first 533

bin has the highest frequency. Figure 4 shows that 534

the performance of Eflomal drops with frequency 535

and it struggles to align very rare words. In con- 536

trast, GNN is not affected by word frequency as 537

severely and its performance gains are even greater 538

for rare words. WAdad which is the multilingual 539

baseline from (Imani et al., 2021) has the same 540

trend as GNN method, but GNN is more robust. 541

5.2 Annotation Projection 542

Table 4 presents accuracies for POS tagging in 543

Yoruba. Unsupervised baseline performance is 544

50.86%. Supervised training using pseudo-labels 545

mostly outperforms the unsupervised baseline. Pro- 546

jecting the majority POS labels to Yoruba improves 547

over projecting English labels. Using the GNN 548

model to project labels works best and outperforms 549
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(a) ENG-FRA (b) FIN-HEB

Figure 4: F1 for different frequency bins.

FIN-HEB FIN-GRC ENG-FRA

GNN (TGDFA) 0.720 0.780 0.804

¬ language -0.323 -0.280 -0.370
¬ position -0.068 -0.045 -0.066
¬ centrality -0.636 -0.730 -0.772
¬ community -0.204 -0.238 -0.253
¬ word-embedding -0.139 -0.103 -0.129

GNN (TGDFA+orig) 0.651 0.758 0.824

¬ language -0.238 -0.077 -0.162
¬ position -0.088 +0.029 -0.032
¬ centrality -0.556 -0.530 -0.617
¬ community -0.156 -0.039 -0.083
¬ word-embedding -0.135 +0.002 -0.058

Table 3: F1 for GNNs and ∆F1 for five ablations

Eflomal-GDFA-majority (the unsupervised base-550

line) by 5% (15%) absolute improvement.551

6 Related Work552

Bilingual Word Aligners. Much work on bilin-553

gual word alignment is based on probabilistic mod-554

els, mostly implementing variants of the IBM mod-555

els of Brown et al. (1993): e.g., Giza++ (Och and556

Ney, 2003), fast-align (Dyer et al., 2013) and Eflo-557

mal (Östling and Tiedemann, 2016). More recent558

work, including SimAlign (Jalili Sabet et al., 2020)559

and SHIFT-ATT/SHIFT-AET (Chen et al., 2020),560

uses pretrained neural language and machine trans-561

lation models. Although neural models achieve562

superior performance compared to statistical align-563

ers, they are only applicable for less than two hun-564

dred high-resource languages that are supported by565

multilingual language models like BERT (Devlin566

et al., 2019) and XLM-R (Conneau et al., 2020).567

This makes statistical models the only option for568

the majority of the world’s languages.569

Multiparallel Corpora. Prior applications of570

using multiparallel corpora include reliable transla-571

tions from small datasets (Cohn and Lapata, 2007),572

and phrase-based machine translation (PBMT) (Ku-573

mar et al., 2007). Multiparallel corpora are also574

used for language comparison (Mayer and Cysouw,575

2012), typological studies (Östling, 2015; Asgari576

Model Yoruba YTB

Unsupervised (Kondratyuk and Straka, 2019) 50.86

Eflomal Inter - eng 43.45
Eflomal GDFA - eng 55.13

Eflomal Inter - majority 54.13
Eflomal GDFA - majority 60.27

GNN (TGDFA) - majority 65.74
GNN (TGDFA+orig) - majority 64.55

Table 4: POS tagging with annotation projection for
Yoruba. Apart from “Unsupervised”, all lines show a
sequence tagger trained on pseudo-labels induced by
word alignments. GNN-based pseudo-labels outper-
form prior work by 5%.

and Schütze, 2017) and PBMT (Nakov and Ng, 577

2012; Bertoldi et al., 2008; Dyer et al., 2013). 578

To the best of our knowledge Östling (2014)7 is 579

the only word alignment method designed for mul- 580

tiparallel corpora. However, this method is outper- 581

formed by Eflomal (Östling and Tiedemann, 2016), 582

a “biparallel” method from the same author. Re- 583

cently, Imani et al. (2021) proposed MPWA, which 584

we use as our baseline. 585

Graph Neural Networks (GNNs) have been 586

used to address many problems that are inherently 587

graph-like such as traffic networks, social networks, 588

and physical and biological systems (Liu and Zhou, 589

2020). GNNs achieve impressive performance 590

in many domains, including social networks (Wu 591

et al., 2020) and natural science (Sanchez-Gonzalez 592

et al., 2018) as well as NLP tasks like sentence clas- 593

sification (Huang et al., 2020), question generation 594

(Pan et al., 2020), and summarization (Fernandes 595

et al., 2019). 596

7 Conclusion and Future Work 597

We introduced graph neural networks and commu- 598

nity detection algorithms for multiparallel word 599

alignment. By incorporating signals from diverse 600

sources as node features, including community fea- 601

tures, our GNN model outperformed the baselines 602

and prior work, establishing new state-of-the-art 603

results on three PBC gold standard datasets. We 604

also showed that our GNN model improves down- 605

stream task performance in low-resource languages 606

through annotation projection. 607

We have only used node features to provide sig- 608

nals to GNNs. In the future, other signals can be 609

added in the form of edge features to further boost 610

the performance. 611

7github.com/robertostling/eflomal
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Afrikaans Albanian Arabic Armenian Azerbaijani Bashkir
Basque Belarusian Bengali Breton Bulgarian Burmese
Catalan Cebuano Chechen Chinese Chuvash Croatian
Czech Danish Dutch English Estonian Finnish
French Georgian German Greek Gujarati Haitian
Hebrew Hindi Hungarian Icelandic Indonesian Irish
Italian Japanese Javanese Kannada Kazakh Kirghiz
Korean Latin Latvian Lithuanian Low Saxon Macedonian
Malagasy Malay Malayalam Marathi Minangkabau Nepali
Norwegian (Bokmal) Norwegian (Nynorsk) Punjabi Persian Polish Portuguese
Punjabi Romanian Russian Serbian Slovak Slovenian
Spanish Swahili Sundanese Swedish Tagalog Tajik
Tamil Tatar Telugu Turkish Ukrainian Urdu
Uzbek Vietnamese Waray-Waray Welsh West Frisian Yoruba

Table 5: List of the 84 languages we used in our experiments.
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