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ABSTRACT

Low-rank Deconvolution (LRD) has been recently introduced as a new represen-
tation model for multi-dimensional data. In this work we consider its use for
tackling the problem of matrix and tensor completion. This model is designed
to encode information in a very efficient manner using a limited number of pa-
rameters and to be flexible by providing a simple framework that allows for easy
inclusion of priors such different types of regularizers while, at the same time,
letting for easy algorithms to solve the (generally non-convex) learning process.
We suspect that these properties will facilitate the resolution of tensor completion
problems, i.e. the reconstruction of a tensor from incomplete and randomly cor-
rupted entries. Then, our contribution is twofold: first we show that this model
acts as a relaxation of the classical low-rank approach allowing for a greater num-
ber of solutions than the imposed by the low-rank constraint while using a similar
number of parameters. And second, we present an algorithm based on a block
multi-convex optimization method with nuclear norm minimization and squared
total variation regularization that solves the tensor completion problem. Theoreti-
cal and empirical results are presented that support our claims.

1 INTRODUCTION

Estimating latent models from incomplete and corrupted observations is a fundamental task that
covers a diverse range of applications. Matrix completion represents a standard problem of this kind
and comes up in many areas of science and engineering, including collaborative filtering (Goldberg
et al., 1992; Rennie & Srebro, 2005; Srebro & Salakhutdinov, 2010), control (Liu & Vandenberghe,
2010), remote sensing (Schmidt, 1986), chemometrics (Bro, 1999), integrated radar and communi-
cations (Sodagari et al., 2012), system identification (Liu et al., 2013) and computer vision (Chen &
Suter, 2004; Tomasi & Kanade, 1992; Ji et al., 2010; Bertalmio et al., 2000), to name a few.

Regarding this problem a wide variety of studies about its statistical performance have been pub-
lished during the last couple of decades (Candes & Plan, 2010; Candes & Recht, 2012; Chen et al.,
2020; Chi & Li, 2019; Li et al., 2019). Generally considering low-rank models as this structure is
often present in the nature of these problems, namely low-rank matrix completion (LRMC). This
problem can be formulated as:

min
Z

1

2
∥PΩ(Y − Z)∥2F (1)

subject to Z = VS,

where Y ∈ Rn×m is the measurement matrix, Z ∈ Rn×m is the matrix to be recovered of low-
rank r, V ∈ Rn×r and S ∈ Rr×m are matrices of low-rank r and PΩ denotes the projection onto
the set of known values Ω. This matrix completion problem easily extends to higher dimensional
spaces as tensor completion. Concerning that situation, the scientific community has given much of
the attention to its computational challenge and its statistical performance (Acar et al., 2011; Barak
& Moitra, 2016; Xia et al., 2021), but in general without variations on the latent model, which is
assumed to be a LR tensor. And the problem is equivalently low-rank tensor completion (LRTC)
with ubiquitous application in different areas such computer vision (Li & Li, 2010; Liu et al., 2012),
signal processing (Lim & Comon, 2010; Nion & Sidiropoulos, 2010) and machine learning (Collins
& Cohen, 2012; Chaganty & Liang, 2013).
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Figure 1: Performance evaluation of matrix reconstruction on city and fruit testing dataset.

More recently deep matrix factorization (DMF) has appeared in the machine learning community as
a new latent model for the problem of matrix completion (Fan & Cheng, 2018; Arora et al., 2019).
With a general formulation given by,

Z = g1(X1g2(X2 · · · gL−1(XL−1XL) · · · )), (2)

where {gi}L−1
l=1 are activation functions and {Xi}L−1

l=1 their correspondent activation maps. This
model has direct extension to the tensor completion case (Fan, 2022). And similarly to this approach
Low-rank Deconvolution (LRD) came out as a new model for tensor data representation (Reixach,
2023; Humbert et al., 2021). It relays on a set of filters convoluted with a set of low-rank and sparse
activation maps that can be formulated as:

Z =
∑
m

Dm ∗Km =
∑
m

Dm ∗ JX(1)
m , . . . ,X(N)

m K, (3)

where Z ∈ RI1×I2×···×IN is the signal to be recovered, Dm ∈ RL1×L2×···×LN acts as a dictionary,
and Km ∈ RI1×I2×···×IN , the activation map, is a low-rank factored tensor (i.e. a Kruskal tensor)
and can be expressed in terms of its constituent matrices {X(n)

m } as explained in Section 1.1. Then,
a generic method for solving the tensor completion problem can be formulated as,

argmin
{X(n)

m ,Dm}

1

2

∥∥∥∥∥PΩ(Y−
M∑

m=1

Dm ∗ JX(1)
m , . . . ,X(N)

m K)

∥∥∥∥∥
2

2

+

M∑
m=1

N∑
n=1

λ
∥∥∥X(n)

m

∥∥∥2
F
. (4)

In this work we will show how the classical LR model is a special case of LRD with m = 1 and Dm

the identity filter. Therefore, LRD acts as a relaxation of the LR model. To begin with this concept,
we perform an experiment: we reconstruct the city and fruit testing dataset from Zeiler et al. (2010),
without missing data and without corruption, using LR (1), DMF (Fan, 2022), and LRD. Results
are presented in figure 1. We can observe how, for the same given complexity, LRD is capable of a
reconstruction of a greater quality than the other two methods, a hypothesis that will be later proven.
In this work we will also show how the LRD model facilitates the development of tensor completion
algorithms which can contemplate total variation and nuclear norm regularization allowing to work
with corrupted data.

The structure of this paper is as follows: section 1.1 introduces the notation used, section 2 provides
theoretical guarantees for the matrix and tensor completion problems using LRD and LR, section 3
presents the tensor completion method based on LRD, section 4 presents the extensive numerical
results that verify our claims and section 5 concludes the work.
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1.1 NOTATION

Let K ∈ RI1×I2×...×IN be a N -order tensor. The PARAFAC (Harshman et al., 1970) decomposition
(a.k.a. CANDECOMP Carroll & Chang (1970)) is defined as:

K ≈
R∑

r=1

µrv
(1)
r ◦ v(2)

r ◦ . . . ◦ v(N)
r , (5)

where v
(n)
r ∈ RIn with n = {1, . . . , N} and µr ∈ R with r = {1, . . . , R}, represent an one-

order tensor and a weight coefficient, respectively. ◦ denotes an outer product of vectors. Basically,
Eq. equation 5 is a rank-R decomposition of K by means of a sum of R rank-1 tensors. If we
group all these vectors per mode (n), as X(n) =

[
v
(n)
1 ,v

(n)
2 , . . . ,v

(n)
R

]
, we can define the Kruskal

operator (Kolda, 2006) as follows:

JX(1),X(2), . . . ,X(N)K =
R∑

r=1

v(1)
r ◦ v(2)

r ◦ . . . ◦ v(N)
r , (6)

being the same expression as Eq. equation 5 with µr = 1 for ∀r, i.e., depicting a rank-R decompos-
able tensor.

For later computations, we also define a matricization transformation to express tensors in a ma-
trix form. Particularly, we will use an special case of matricization known as n-mode matriciza-
tion (Bader & Kolda, 2006; Kolda, 2006). To this end, let C = {c1, . . . , cG} = {1, . . . , n − 1, n +
1, . . . , N} be the collection of ordered modes different than n, and Λ =

∏
t It/In be the product of its

correspondent dimensions; we can express then tensor K in a matricized array as (n)K ∈ RIn×Λ.
Note that we represent the n-mode matricization by means of a left super-index. The n-mode matri-
cization is a mapping from the indices of K to those of (n)K, defined as:(

(n)K
)
in,j

= Ki1,i2,...,iN , (7)

with:

j = 1 +

G∑
g=1

[
(icg − 1)

G−1∏
g′=1

Icg′
]
. (8)

With these ingredients, and defining J(X(1), . . . ,X(N)) = JX(1), . . . ,X(N)K, we can obtain the
n-mode matricization of the Kruskal operator as:

(n)J = X(n)(Q(n))⊤, (9)

with:
Q(n) = X(N) ⊙ . . .⊙X(n+1) ⊙X(n−1) ⊙ . . .⊙X(1), (10)

where ⊙ denotes the Khatri-Rao product (Kolda, 2006).

Finally, we can express the vectorized version of Eq. equation 9 as:

vec
(
(n)J

)
=
[
Q(n) ⊗ IIn

]
vec(X(n)), (11)

where ⊗ indicates the Kronecker product, and vec(·) is a vectorization operator. It is worth noting
that doing so, the vectorized form of the Kruskal operator is represented by a linear expression.

2 THEORETICAL BOUNDS FOR MATRIX AND TENSOR COMPLETION
PROBLEMS.

LRD can outperform LR in representation tasks as shown in Section 1. But does it always happen?
In this section we provide a theoretical guarantee for LRD that allows to compare it to classical LR
methods.
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2.1 LRD VS. LR IN MATRIX COMPLETION.

Assumption 2.1. Suppose Y = Z + E, where Y ∈ RI2×I1 . Z =
∑M

m=1 F2
(2)

D̂m ⊕
X̂

(2)
m (X̂

(1)
m )TF1 is generated by the matricized form of the LRD model and formulated in the DFT

domain (for more details see Section 3), where X̂
(n)
m ∈ CIn×r, F1 ∈ CI1×I1 , F2 ∈ CI2×I2 ,

(2)
D̂m ∈ CI2×I1 and ⊕ denotes hadamard product. The entries of the noise matrix E are drawn

from N (0, σ2). Suppose we observed a few entries of Y randomly (sampling without replacement)
and want to recover Z from the incomplete Y. Consider the following method:

min
{X̂(n)

m ,
(2)

D̂m}

1

2
∥PΩ(Y −

M∑
m=1

F2
(2)

D̂m ⊕ X̂(2)
m (X̂(1)

m )TF1)∥2F +
µX

2

M∑
m=1

2∑
n=1

∥X̂(n)
m ∥2F

+
µD

2

M∑
m=1

∥
(2)

D̂m∥2F (12)

Where µX and µD are regularization parameters and it can be shown that matches the matricized
version of (4) for an appropriate choice of µD. The following theorem provides the excess risk
bound for (12).

Theorem 2.2. Suppose {X̂(1)
m }Mm=1, {X̂

(2)
m }Mm=1, {

(2)
D̂m}Mm=1 are given by (12). Let Ẑ =∑M

m=1 F2
(2)

D̂m ⊕ X̂
(2)
m (X̂

(1)
m )TF1. Suppose max(∥Y∥∞, ∥Ẑ∥∞) ≤ ξ and Iπ =

∏n
i=1 Ii. Then

with probability at least 1− 2I−1
π :

1√
Iπ

∥Z− Ẑ∥F =
1√
|Ω|

∥PΩ(Y − Ẑ)∥F +
1√
Iπ

∥E∥F +
2ϵ√
|Ω|

+

(
8ξ4(log(Iπ) + (I1r + 2Iπ) log(

34M3 ∑M
m=1(β

0
mβ1

mβ2
m)3

ϵ ))

|Ω|

)1/4

(13)

Proof. See appendix C.2

Now observe how a classical LR method is a specific case of a LRD with an identity dictionary

(i.e.
(2)

D̂ = 1).

Assumption 2.3. Suppose Y = Z+E, where Y ∈ RI2×I1 . Z = X(2)(X(1))T is generated by the
matricized form of the LR model. Dismissing the DFT matrices by considering directly the spatial
versions X(n), the classical LR method can be formulated as:

min
{X(n)}

1

2
∥PΩ(Y −X(2)(X(1))T )∥2F +

µX

2

2∑
n=1

∥X(n)∥2F (14)

With this consideration, we obtain the following theorem, that provides the excess risk bound for
classical LR.

Theorem 2.4. Suppose X(1),X(2), are given by (14). Let Ẑ = X(2)(X(1))T . Suppose
max(∥Y∥∞, ∥Ẑ∥∞) ≤ ξ. With Iπ defined above. Then with probability at least 1− 2I−1

π :

1√
Iπ

∥Z− Ẑ∥F =
1√
|Ω|

∥PΩ(Y − Ẑ)∥F +
1√
Iπ

∥E∥F +
2ϵ′√
|Ω|

+

(
8ξ4(log(Iπ) + (I1r + Iπ) log(

12(β1β2)2

ϵ′ )

|Ω|

)1/4

(15)

Proof. See appendix C.3
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As classical LR is limited to
(2)

D̂ = 1 we have ϵ′ >> ϵ when the latent model includes a dictionary
different that the identity. If we compare (13) and (15) we observe how the third term is greater in
the second case while the fourth is smaller. However, the minorization of the fourth term happens
inside a logarithm operator which allows us to conclude that LRD provides a tighter generalization
bound than the classical LR when the latent model is not strictly LR.

2.2 LRD VS LR IN TENSOR COMPLETION.

Now we consider the same as in section 2.1 but for three-dimensional tensors.

Assumption 2.5. Suppose Y = Z+E, where Y ∈ RI1×I2×I3 . Z =
∑M

m=1 F3
(3)

D̂m⊕X̂
(3)
m (X̂

(1)
m ⊙

X̂
(2)
m )TF12 is generated by the matricized form of the LRD model and formulated in the DFT

domain (for more details see Section 3), where X̂
(n)
m is defined above, F12 ∈ CI1I2×I1I2 , F3 ∈

CI3×I3 ,
(3)

D̂m ∈ CI3×I1I2 . The entries of the noise tensor E are drawn from N (0, σ2). Suppose
we observed a few entries of Y randomly (sampling without replacement) and want to recover Z
from the incomplete Y. Consider the following method:

min
{X̂(n)

m ,
(3)

D̂m}

1

2
∥PΩ(Y −

M∑
m=1

F3
(3)

D̂m ⊕ X̂(3)
m (X̂(1)

m ⊙ X̂(2)
m )TF12∥2F +

µX

2

M∑
m=1

3∑
n=1

∥X̂(n)
m ∥2F

+
µD

2

M∑
m=1

∥
(3)

D̂m∥2F (16)

Which can be shown that matches the matricized version of (4) for an appropriate choice of µD. The
following theorem provides the excess risk bound for (16).

Theorem 2.6. Suppose {X̂(1)
m }Mm=1, {X̂

(2)
m }Mm=1, {X̂

(3)
m }Mm=1, {

(3)
D̂m}Mm=1 are given by (16). Let

Ẑ =
∑M

m=1 F3
(3)

D̂m ⊕ X̂
(3)
m (X̂

(1)
m ⊙ X̂

(2)
m )TF12. Suppose max(∥Y∥∞, ∥Ẑ∥∞) ≤ ξ. With Iπ

defined above. Then with probability at least 1− 2I−1
π :

1√
Iπ

∥Z− Ẑ∥F =
1√
|Ω|

∥PΩ(Y − Ẑ)∥F +
1√
Iπ

∥E∥F +
2ϵ√
|Ω|

+

(
8ξ4(log(Iπ) + ((1 + I2)I1r + 2Iπ) log(

3·44M4 ∑M
m=1(β

0
mβ1

mβ2
mβ3

mkr)
4

ϵ ))

|Ω|

)1/4

(17)

Proof. See appendix C.4

Again, we observe how a classical LR method is a specific case of a LRD with an identity dictionary

(i.e.
(3)

D̂ = 1) also for the three-dimensional case. We give the following assumption:

Assumption 2.7. Suppose Y = Z + E, where Y ∈ RI1×I2×I3 . Z = X(3)(X(1) ⊙ X(2))T is
generated by the matricized form of the LR model. And, dismissing the DFT matrices by considering
directly the spatial versions X(n), the classical LR method can be formulated as:

min
{X(n)}

1

2
∥PΩ(Y −X(3)(X(1) ⊙X(2))T )∥2F +

µX

2

2∑
n=1

∥X(n)∥2F (18)

With that in mind we obtain the following theorem, that provides the excess risk bound for classical
LR for the three-dimensional case.
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Algorithm 1 LRD. Solves Eq. equation 20 as an alternating optimization between the code and the
dictionary. The code update step is done by means of the LRD method (Alg. 2). The dictionary
update step is done by a masked application of the ADMM method from Wohlberg (2015).

1: Input: Y, {D0,m}Mm=1, R > 0,Ω
2: Output: {D,m}Mm=1
3: while not converged do
4: {X(n)

m } = argmin 1
2

∥∥∥PΩ(Y −
∑M

m=1 Dm ∗ JX(1)
m , . . . ,X(N)

m K)
∥∥∥2

2
+ Φ({X(n)

m }) ▷ Code Update

5: {Dm} = argmin 1
2

∥∥∥PΩ(Y −
∑M

m=1 Dm ∗ JX(1)
m , . . . ,X(N)

m K)
∥∥∥2

2
▷ Dictionary Update

s. t. Dm ∈ C ∀m
6: end while

Theorem 2.8. Suppose X(1),X(2),X(3), are given by (18). Let Ẑ = X(3)(X(1)⊙X(2))T . Suppose
max(∥Y∥∞, ∥Ẑ∥∞) ≤ ξ. With Iπ defined above. Then with probability at least 1− 2I−1

π :

1√
Iπ

∥Z− Ẑ∥F =
1√
|Ω|

∥PΩ(Y − Ẑ)∥F +
1√
Iπ

∥E∥F +
2ϵ′√
|Ω|

+

(
8ξ4(log(Iπ) + ((1 + I2)I1r + Iπ) log(

34(β1β2β3kr)
3

ϵ′ )

|Ω|

)1/4

(19)

Proof. See appendix C.5

If we compare (17) and (19), we observe again the same behaviour as in section 2.1, which allows us
to conclude that LRD provides a tighter generalization bound than the classical LR when the latent
model is not strictly LR.

3 LOW-RANK DECONVOLUTION

We now derive the formulation of LRD for our problem. Let Y ∈ RI1×I2×···×IN be a multidimen-
sional signal. Our goal is to obtain a multidimensional convolutional representation Y ≈

∑
m Dm ∗

Km, where Dm ∈ RL1×L2×···×LN acts as a dictionary, and Km ∈ RI1×I2×···×IN , the activation
map, is a low-rank factored tensor (i.e. a Kruskal tensor). If we write Km = JX(1)

m ,X
(2)
m , . . . ,X

(N)
m K

with X
(n)
m ∈ RIn×R, we can obtain a non-convex problem as:

argmin
X

(n)
m ,D

(n)
m

1

2

∥∥∥∥∥PΩ(Y−
M∑

m=1

Dm ∗ JX(1)
m , . . . ,X(N)

m K)

∥∥∥∥∥
2

F

+Φ({X(n)
m }) (20)

where ∗ indicates a N -dimensional convolution. Following Reixach (2023) we propose to solve the
problem alternating first between the activation map (Kruskal tensor) and the dictionary, and for the
activation maps case, again for each Kruskal factor (n) alternately, Algorithm 1 and appendix A
provide with more details.

3.1 CODE UPDATE STEP

argmin
X

(n)
m

L(X(n)
m )

L(X(n)
m ) =

1

2

∥∥∥∥∥PΩ(Y−
M∑

m=1

Dm ∗ JX(1)
m , . . . ,X(N)

m K)

∥∥∥∥∥
2

F

+Φ({X(n)
m }) (21)

Following Reixach (2023) we solve the LRD optimization problems in a DFT domain assuming that
boundary effects are neglegible (i.e. relying on the use of filters of small spatial support). To this end,

we denote by Â an arbitrary variable A in the DFT domain. Let D̂(n)
m = diag

(
vec
( (n)

D̂m

))
∈

6
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RΛIn×ΛIn be a linear operator for computing convolution, and x̂
(n)
m = vec(X̂

(n)
m ) ∈ RRIn be the

vectorized Kruskal factor. We define Q̂(n)
m = X̂

(N)
m ⊙· · ·⊙X̂

(n+1)
m ⊙X̂

(n−1)
m ⊙· · ·⊙X̂

(1)
m ∈ RΛ×R,

as it was done in Eq. 10, with Λ defined in section 1.1. We also define the following supporting
expressions:

Ŵ(n)
m = D̂(n)

m

[
Q̂(n)

m ⊗ IIn
]
, (22)

Ŵ(n) =
[
Ŵ

(n)
0 ,Ŵ

(n)
1 , . . . ,Ŵ

(n)
M

]
, (23)

x̂(n) =
[
(x̂

(n)
0 )⊤, (x̂

(n)
1 )⊤, . . . , (x̂

(n)
M )⊤

]⊤
. (24)

All these algebraic modifications allow us to formulate the optimization problem masking out the
unknowns which are given in the spatial domain. This requires us to include the DFT transform
matrix in our formulation and to consider the spatial version of the signal y(n) which correspond to
the vectorized version of (n)Y:

argmin
x̂(n)

1

2

∥∥∥y(n) −P(n)F̂(n)Ŵ(n)x̂(n)
∥∥∥2
2
+Φ({x̂(n)

m }). (25)

Here, F̂(n) = F̂N ⊗ · · · ⊗ F̂n+1 ⊗ F̂n−1 ⊗ · · · ⊗ F̂1 ⊗ F̂n is the matricization of the multilinear
DFT inverse transform being F̂i the inverse transform for mode-i and P(n) the mask matrix, which
is diagonal for a tensor completion problem. Then its solution will depend on the regularizer chosen
(Φ({x̂(n)

m })).

3.2 PLUG-AND-PLAY TOTAL VARIATION AND NUCLEAR NORM REGULARIZATION

The idea of Plug-and-Play regularization (Venkatakrishnan et al., 2013) is to consider a prior model
for data reconstruction to be included in the optimization procedure. Following the approach
by Rudin et al. (1992), a squared Total Variation and a Nuclear Norm regularizer can be added
to the global problem in the following manner:

argmin
{X(n)

m },U

1

2
∥PΩ(Y−U)∥22 +

γ

2
∥U∥2TV + λ

∑
m

∥∥∥X̂(n)
m

∥∥∥
NN

+Ψ({X(n)
m }),

subject to U =

M∑
m=1

Dm ∗ JX(1)
m , . . . ,X(N)

m K (26)

where ∥·∥NN denotes the nuclear norm operator. Now, with a little algebraic manipulation, and
making use of the derivative property of the DFT, we can present the following proposition:
Proposition 3.1. The problem presented in eq. (26) is equivalent to problem of eq. (21) with

Φ({X(n)
m }) = γ

2

∥∥∥(Θ̂(n))T x̂(n)
∥∥∥2
2
+ λ

∑
m

∥∥∥X̂(n)
m

∥∥∥
NN

+Ψ({X(n)
m }). (27)

With Ψ({X(n)
m } =

∑M
m=1

∑N
n=1

α
2

∥∥∥X(n)
m

∥∥∥2
2

it can be solved by means of gradient descent with a
gradient given by

∇L(x̂(n)
m ) =

[
(T̂(n)

m )HT̂(n)
m + γ(Θ̂(n))HmΘ̂(n)

m +αIβ
]
x̂(n)− (T̂(n)

m )H ŷ(n)+λĈ(n)
m (Â(n)

m )T , (28)

where T̂
(n)
m = P(n)F̂(n)Ŵ

(n)
m and ŷ(n), x̂(n)

m , Ŵ(n)
m are defined in section 3.1. And defining:

(Θ̂
(n)
i,m)T = 2πjξi ⊕ Ŵ(n)

m , (29)

Θ̂m =
[
Θ̂

(n)
0,m, Θ̂

(n)
1,m, . . . , Θ̂

(n)
N,m

]
, (30)

X̂(n)
m = Â(n)

m B̂(n)
m Ĉ(n)

m , (31)

with ξi being the vector of frequencies for the i-dimension, ⊕ denoting element-wise product and
Â

(n)
m B̂

(n)
m Ĉ

(n)
m being the SVD of X̂(n)

m .

Proof. See appendix C.1.
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4 EXPERIMENTS

4.1 SYNTHETIC DATA

We use the LRD model to generate matrices and tensors (eq. (3)). For two-dimensional matrices
we use the filters learned from the city and fruit testing dataset from Zeiler et al. (2010). For three-
dimensional tensors we use the filters learned on the basketball sequence used by Reixach (2023).
In both cases we generate random activation-map matrices ({X(n)

m }M,N
m=1,n=1) and learn the filters

using the algorithm from Wohlberg (2017). For more details see appendix B.

For the matrix completion experiments, we evaluate the methods MF (Fan, 2022), FGSR (Fan et al.,
2019), DMF (Fan & Cheng, 2018), M2DMTF (Fan, 2022) and LRD. And regarding the tensor
completion experiments, we evaluate the methods FaLRTC (Liu et al., 2012), TenALS (Jain & Oh,
2014), TMac (Xu et al., 2015), KBR-TC (Xie et al., 2017), TRLRF (Yuan et al., 2019), OITNN-
O (Wang et al., 2022), M2DMTF (Fan, 2022) and LRD (ours).
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Figure 2: Performance evaluation of matrix and tensor completion on synthetic data (σ = 1.0).

Figure 2 shows the performance (average of 5 trials) with an Additive White Gaussian Noise
(AWGN) with σ = 1.0 for both matrix and tensor completion. We use the relative recovery er-
ror (Fan et al., 2019) ∥PΩ(Y−Ẑ)∥/∥PΩ(Y)∥. We observe how our method systematically outperforms
all the matrix completion methods considered. Regarding the tensor completion case our method
is listed among the best achivers only surpassed by TMac and M2DMTF. For more results see ap-
pendix B.

4.2 REAL MATRICES

We consider a benchmark dataset: MovieLens-100k. It consists of a rating matrix (1 to 5) for movies
given by users. The size (movies×users) of the rating matrix in the dataset is 1682× 943 but due to
computational limitations of our method we only consider a fourth part of the matrix with a size of
840 × 460. The matrix is highly incomplete, moreover we randomly mask out some of the known
values with a certain missing ratio and add AWGN with a certain σ. The relative recovery errors

Table 1: Relative recovery error of matrix completion on MovieLens-100k.
MR σ = 1.0 σ = 2.0

MF FGSR DMF M2DMTF LRD MF FGSR DMF M2DMTF LRD
10% 0.2590 0.2957 0.3331 0.3248 0.2688 0.2664 0.4949 0.4586 0.4799 0.4463
30% 0.2596 0.2904 0.3404 0.3343 0.2874 0.2769 0.4901 0.4803 0.5260 0.4500
50% 0.2694 0.2835 0.3527 0.3521 0.2911 0.2917 0.4617 0.5129 0.6009 0.4184
70% 0.2876 0.2881 0.3563 0.3688 0.2886 0.3198 0.4876 0.5610 0.6862 0.4404
90% 0.3991 0.3520 0.3267 0.3385 > 0.95 0.4512 0.5394 0.5218 0.5931 > 0.95
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Table 2: Relative recovery error of tensor completion on two real tensors (σ = 1.0 ).
data MR FaLRTC TenALS TMac KBR-TC TRLRF OITNN-O M2DMTF LRD

A
m

in
o

10% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.6459
30% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.6981
50% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.6851
70% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.6991
90% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.7356

Fl
ow

10% 0.8534 0.4583 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.4825
30% 0.8923 0.4807 > 0.95 0.9496 > 0.95 > 0.95 > 0.95 0.4919
50% 0.9411 0.6049 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.5064
70% > 0.95 0.6964 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.5356
90% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.6094

for each case are reported in table 1 (average of 5 trials), where we have marked in blue and red
color the best and second-best achievers. We can observe how MF is the best achiever and LRD
(ours) is the second-best achiever in general. These results, together with the results reported in the
appendix B where it can be seen how FGSR, DMF and M2DMTF perform well when less or no
noise is considered makes us state that these methods do not perform well when noise is involved.

4.3 REAL TENSORS

We compare our method with the baselines of tensor completion on the following datasets: Amino
acid fluorescence (Bro, 1997) (5× 201× 61) and Flow injection (Nørgaard & Ridder, 1994) (12×
100 × 89) that we cut to the nearest even size in order to being able to compute the derivative
component: (4×200×60) and (12×100×88) respectively. The relative recovery errors are reported
in Tables 2 and 3 for an AWGN of σ = 1.0 and σ = 2.0 (average of 5 trials). In the appendix B,
more results are reported. We observe how on the Amino dataset our method is the unique capable
of reporting an acceptable error below 0.95 while in the Flow dataset FaLRTC, TenALS and our
method are the unique ones that are capable of reporting acceptable errors. When considering the
results on the appendix we observe how our method is the unique that presents robustness against
noise and a similar behaviour to the matrix completion case can be observed.

Table 3: Relative recovery error of tensor completion on two real tensors (σ = 2.0 ).
data MR FalRTC TenALS TMac KBR-TC TRLRF OITNN-O M2DMTF LRD

A
m

in
o

10% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.8450
30% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.8332
50% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.8572
70% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.8256
90% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.8993

Fl
ow

10% > 0.95 0.6460 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.6554
30% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.6716
50% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.7021
70% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.7154
90% > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 0.8241

5 CONCLUSION

This paper has proposed the use of LRD to the resolution of matrix and tensor completion problems.
We have shown how LRD acts as a relaxation of the classical low-rank approach allowing for a
greater number of solutions than the imposed by the low-rank constraint by performing a thorough
theoretical analysis. We have also shown how the framework involved by LRD is flexible enough
as it allows for easy algorithms to solve the learning process while at the same time facilitates the
inclusion of priors such nuclear norm minimization or squared total variation regularization which
allow the resolution of the problems considered as we have proved with the extensive empirical
results presented.
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