
UQ-Guided Hyperparameter Optimization for
Iterative Learners

Jiesong Liu⋄, Feng Zhang⋆, Jiawei Guan⋆, Xipeng Shen⋄,
⋄Department of Computer Science, North Carolina State University

⋆School of Information, Renmin University of China
jliu93@ncsu.edu, guanjw@ruc.edu.cn, fengzhang@ruc.edu.cn, xshen5@ncsu.edu

Abstract

Hyperparameter Optimization (HPO) plays a pivotal role in unleashing the potential
of iterative machine learning models. This paper addresses a crucial aspect that has
largely been overlooked in HPO: the impact of uncertainty in ML model training.
The paper introduces the concept of uncertainty-aware HPO and presents a novel
approach called the UQ-guided scheme for quantifying uncertainty. This scheme
offers a principled and versatile method to empower HPO techniques in handling
model uncertainty during their exploration of the candidate space. By constructing
a probabilistic model and implementing probability-driven candidate selection
and budget allocation, this approach enhances the quality of the resulting model
hyperparameters. It achieves a notable performance improvement of over 50% in
terms of accuracy regret and exploration time.

1 Introduction
Hyperparameter optimization (HPO) is essential for unleashing the power of iterative machine
learning models [4, 18, 40]. Hyperparameters include traditional parameters like learning rates
and more complex ones like neural architectures and data augmentation policies. For iterative
learners (multi-fidelity and early stopping methods specifically), practitioners can obtain intermediate
validation loss after each iteration and use them for model assessment; the main goal of HPO is to
explore a vast candidate space to find candidates that lead to optimal model performance.

There are many designs in the literature to solve the HPO problem. Successive Halving (SH) [19],
for example, terminates training of candidate configurations with poor performance early so as to
save computing resources for more well-behaved candidates. Bayesian optimization [17, 34], another
optimization method, uses a surrogate model to guide the selection of candidate configurations for
assessment.

There is however a lack of systematic treatment of an important factor in HPO designs, the uncertainty
inherent in the dynamics of the training process of iterative machine learning applications. Because
of the uncertainty, a model with a candidate hyperparameter configuration (or candidate in short)
performing poorly in an early stage of its training could turn out to be the best model after convergence.
Such candidates are however likely to be stopped from proceeding further or be completely discarded
by existing HPO methods in the early stages, because their selections of candidates are mostly based
on the currently observed performance, for lack of a way to treat the uncertainty properly. In 100
experiments of Successive Halving, for instance, the actually best candidates were discarded in
the first 8–22 iterations of training, causing 48% performance regrets in validation loss (details in
Section 3.1 Figure 1 and Section 4 Figure 3).

This paper introduces model uncertainty into the design of HPO methods for iterative learners
and establishes the concept of uncertainty-aware HPO. At the core of uncertainty-aware HPO is
a novel uncertainty quantization (UQ) guided scheme, named UQ-guided scheme, which unifies
the selection of candidates and the scheduling of training budget—two most important operations
in HPO—into a single UQ-based formal decision process. The UQ-guided scheme builds on a
probabilistic uncertainty-based model, designed to approximate the statistical effects of discarding

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

a set of candidates at the end of a step in HPO. It uses a lightweight method to efficiently quantify
model uncertainty on the fly. It offers a principled, efficient way for HPO to treat model training
uncertainty.

As a general scheme, the UQ-guided scheme can be integrated into a variety of HPO methods for
iterative learners, especially DNNs. This paper demonstrates its usefulness and generality for DNNs
by integrating it into four existing HPO methods. Experiments on two widely used HPO benchmarks,
NAS-BENCH-201 [9] and LCBench [42], show that the enhanced methods produce models that have
21–55% regret reduction over the models from the original methods at the same exploration cost.
And those enhanced methods need only 30–75% time to produce models with accuracy comparable
to those by the original HPO methods. The paper further gives a theoretical analysis of the impact of
the UQ-guided scheme for HPO.

2 Background and Related Work
Many studies are committed to solving the HPO problem for iterative learners efficiently [26, 20, 29,
39, 41]. Bayesian optimization, early stop-based mechanisms, and multi-fidelity optimizations are
some important approaches.

Bayesian Optimization (BO). BO is a sequential design strategy used to optimize black-box functions
[34, 17, 11]. In HPO scenarios, it can be used as a surrogate model to sample high-quality candidates.

Early Stop Mechanisms. Early stop-based approaches can be effective since they evaluate different
candidates during training and make adaptive selections accordingly [2, 8, 35]. The early stopping
mechanism, which stops the training of poorly-performed candidates early, has been widely em-
ployed in the HPO community including Successive Halving (SH) [19] and Hyperband (HB) [25];
BOHB [11] combines both BO and HB methods to take advantage of both the BO surrogate model
and the early stopping mechanism.

Multi-fidelity Optimizations. Multi-fidelity evaluation focuses on using low-fidelity results trained
with small resources to accelerate the evaluation of candidates [2, 3, 8, 22, 23, 38, 21, 35, 36, 14, 26].
Sub-sampling (SS) [15] is proposed mainly using multi-fidelity methods to collect high-quality data
to select good configurations without early stopping.

Model Uncertainty in HPO. Various optimization methods in HPO scenarios focus on specific
training metrics to assess candidate performance. However, these methods typically overlook the
uncertainty in the candidate selection process. Machine learning models inherently have approxima-
tion uncertainties [5, 6, 10, 12, 24, 28, 31]. Some HPO designs sample the candidate space based on
distributions on the effect of each hyperparameter dimension on the quality of the candidates, but
without considering the uncertainty in the model training process. For example, one of the studies [33]
separates candidates into “good” or “bad” groups in order to build the distributions. The separation
is based on the same deterministic metrics as other HPO methods use, giving no consideration of
the uncertainty in model trainings. The only work we find that considers uncertainty in training
metrics [32] selects configurations for further training based on its assessment of the upperbound
of those configurations. In each round, the configurations it chooses are those that, considering the
best possible performance at the last iteration, show a smaller validation loss than the validation loss
current best configuration shows. The selection treats model uncertainty preliminarily and does not
use it to guide the allocation of training budget. We compare other related works in Appendix E.

3 Uncertainty Quantification (UQ)-Guided Hyperparameter Optimization

This section gives an exploration of model uncertainty, introduces UQ-guided scheme for incorporat-
ing UQ into the design of HPO, discusses examples of ways to use the UQ-guided scheme to enhance
existing HPO methods, and theoretically analyzes its effects.

3.1 Uncertainty in Iterative Machine Learning
Uncertainty in iterative machine learning originates mainly from two factors: inherent noise in
the data and the variability of model predictions due to restricted knowledge [16, 1]. Since data
uncertainty is constant, it is the variability in model predictions, referred to as model uncertainty,
that primarily influences decisions on HPO. To estimate the model uncertainty, we can incur small
perturbations to the model, evaluate these model variants, and calculate the variance of the results as
the approximation for the model uncertainty [16].

2

Figure 1 shows how the model uncertainty affects the quality of the returned candidate. In a
given SH run, half of the candidates are eliminated at each checkpoint marked by a vertical
red dashed line. The solid blue line represents the best validation loss up to the current point,
while the orange dashed line signifies the true quality (in terms of validation loss after conver-
gence) of the candidates SH retains at that specific juncture. From the figure, we see that in every
round, SH discards the actually best candidates, causing a continuous increase of the regret. The
reason is that the discarding decision of SH is solely based on the current validation loss, but
model uncertainty, particularly pronounced in the early stages, obfuscating the true model potential.

0

1

2

3

4

5

0 20 40 60 80 100

Va
lid
at
io
n
Lo
ss

Iteration

Current Best

Final Best

Ground Truth

Last halving
3rd halving

2nd halving

1st halving
Regret

Figure 1: Demonstration of the negative im-
pact from uncertainty on HPO; Successive
Halving (SH) is used; the benchmark is NAS-
BENCH-2.0 [9]. More detailed are in Sec-
tion 4.1 and Appendix F. Due to its over-
looking at model uncertainty, at each halving
point, SH discards the actual best candidates,
causing an increase in the regret.

3.2 Quantify Uncertainty and the Impact

We explain how we quantify model uncertainty, and
how, based on it, at any point of time, estimate the
performance and uncertainty of a candidate model
when its training converges.

High efficiency is essential here as the UQ happens
during the HPO process. We employ a lightweight
approach to conduct the UQ efficiently on the fly, as
explained next.

Let γ1, γ2, · · · , γK ∈ Γ be K candidates drawn
from the hyperparameter space Γ. Consider a su-
pervised learning setting, where a machine learning
model M is trained on some training set DTrain =
{(x1, y1), (x2, y2), · · · , (xntrain

, yntrain
)}. Let M t

γ
denote the model with hyperparameter γ trained on
DTrain after t epochs, and M∗

γ the converged model.
M t

γ(x) gives the prediction on a given input x ∈ Rd.

We use ℓ(·, ·) to denote the metric that evaluates the
performance of a candidate model. Given a hyperparameter configuration γc, the validation loss of a
model instance, ℓ(y,M∗

γc
(X)), can be affected by training data and other factors, and hence has some

uncertainty. Let N (µc∗, σ2
c∗) represent the distribution of ℓ(y,M∗

γc
(X)), where, σ2

c∗ embodies the
uncertainty.

Our objective here is a way that can, at any point in the HPO process, estimate σ∗2
c and µ∗

c for a
candidate model configured with γc. Our solution leverages the validation history in the HPO process,
ℓ(y,M1

γc
(X)), · · · , ℓ(y,M t

γc
(X)), to construct an estimated loss curve, explained as follows.

Decomposition of momentum and the underlying structure of the metric. This part uses
breakdowns to characterize the loss curve and introduces the objective function we want to minimize
to estimate the curve parameters. The first component, referred to as momentum, models the decaying
trend of the loss curve. The second component is the bias term for each candidate’s loss curve;
it models a latent effect underlying the hyperparameter space by allowing correlation among the
candidates. The details are as follows.

Typically a candidate in HPO can be represented as a vector. We use a set Ur ⊂ Rr to represent the
candidates {γi, i ∈ [n]}; r > 0 is the vector length. For modeling the loss curve, we set kt ∈ RL as
a vector whose elements are functions of training epochs t = 1, 2, · · · . (In our experiments, we set
kt = [t−1/2, t−1], for the general decreasing trend of loss curves as training epochs increase.) We
model metric ℓut of candidate u ∈ Ur at time t as the summation of the impact from three sources:

ℓut = ℓ(y,M t
γc
(X)) = k⊤

t η
u + u⊤Z+ ϵut , (3.1)

where ηu and Z are the parameter vectors to determine. The three components in Equation 3.1 are
(1) the momentum part (k⊤

t η
u) that denotes the contribution from the trends in the loss curve of the

training specific candidate model variant, (2) the contribution from the underlying model structure
(u⊤Z), and (3) the noises by other elements ϵut , which is asssumed to follow a Gaussian distribution
N (0, σ2

t) independent of each other and of Z.

For a candidate u ∈ Ur, let αu = u⊤Z. The loss curve parameters {αu,ηu} can be determined by
optimizing a weighted least squares objective

3

G = min
αu,ηu

T∑
t=1

Fk∑
j=1

wjt(ℓ
u
jt − αu − k⊤

t η
u)2 (3.2)

where wjt =
1

Ftσ2
t

. Ft is the number of models trained with time t.

Solving for the Momentum Mean and Variance. This part analyzes the mean and variance of the
loss curve we constructed and makes inferences to the converged loss based on the loss curve. The
quantified uncertainty of the estimated converged loss is then used for model selection and budget
resource allocation. The specifics are as follows.

For a candidate i at iteration T , concatenating the validation losses across training epochs (indexed
by t) will lead to a validation loss vector v of dimension D =

∑T
t=1 Ft. For each d ∈ {1, · · · , D},

the dth element in v is an observation of loss at time td that follows N (µitd
, σ2

td
) with td mapping d

to its corresponding epoch t.

For a given candidate u (for better readability, we omit the superscript u in the notations in the
following discussion), the weighted least squares problem can be formulated as solving the equation
W

1
2v = W

1
2Aβ for β with W ∈ RD×D being a diagonal matrix of weights Wdd = 1

Ftd
σ2
td

.

A = [1 K], K ∈ RD×(L+1) with K[d, :] = k⊤
td

, and β⊤ = [α η⊤]. The empirical estimate of
σ2
i is computed as the variance of the loss in the recent several epochs of i—those instances can be

regarded as results of small perturbations to the model at epoch i.

Solving the weighted least square objective, we have the estimator as β̂ = (A⊤WA)−1(A⊤Wv).
The covariance of the estimator is given by Σβ̂ = (A⊤WA)−1.

Since the estimated curve is given by v̂(t) = [1 k⊤
t]β̂, the variance of this estimation is given by

σ̂2(t) = [1 k⊤
t]Σβ̂

[
1
kt

]
.

With the formulas for v̂(t) and σ̂2(t), we can then approximate the distribution of ℓ(y,M∗
γi
(X)) as

N (v̂(N), σ̂2(N)) for a large N value (N = 200 in our experiments).

Algorithm. Based on the analysis, we devise an iterative algorithm to compute the estimated loss
and variance. Without the loss of generality, we make the following assumption.
Assumption 1. There exist positive constants u such that for any r, max

u∈Ur

∥u∥ ≤ u, and the set of

candidates Ur ⊂ Rr has r linearly independent elements b1, · · · ,br.

The algorithm goes as follows. At the beginning of HPO, it sets Z with a random vector. At the end
of each epoch, it conducts the following two operations. First, it solves the weighted least squares
objective 3.2 for each of the r candidates (mentioned in Assumption 1) by following the formulas
described earlier in this section, with the current Z value being used. Second, for p = 1, 2, · · · r, it
observes the metrics Xbp(t) = ℓ

bp

t − k⊤
t η̂

bp and refines the ordinary least square estimate for Z as
follows:

Ẑ =

(
r∑

p=1

bpb
⊤
p

)−1 r∑
p=1

bpX
bp

At the end of an HPO round (e.g., at the halving time in SH), it performs the first step for every
candidate model to compute the estimated distributions of their ℓ(y,M∗

γi
(X)), so that the HPO can

use the estimates to select promising candidates to continue in the next round.

We next show how to use the approximated loss and uncertainty to compare two candidates:
Definition 1 (UQ-guided comparison of candidates). UQ-guided comparison of candidates compares
two candidates based on the probability that the validation loss of the converged model γc1 is lower
than that of γc2 , represented as follows based on the approximation from the current validation losses
and uncertainty of the two candidates:
P = Pr

{
ℓ(y,M∗

γc1
(X)) > ℓ(y,M∗

γc2
(X))

∣∣∣ℓ(y,M t=1,2,...
γc1

(X)), σ̂c1 , ℓ(y,M
t=1,2,...
γc2

(X)), σ̂c2

}
.

(3.3)

4

K

Round Start

Choose
discard

Budget
Endsk

Round 1 Round 2

…
Round 3 Round r

Probabilistic
Model

Discarding
Mechanism

P
Confidence Curve

k

Configs

Uncertainty Quantification

f ((µi, σi2)#$%& , k)
Sweet Point

k

Determine the number of k
models to keep

k↓

k↑µ1

'(()

(µ2µK

l: probability
distribution of loss
after convergence

li ~ N (µi, σi2)

l1

l2
lK

Figure 2: Illustration of using UQ-guided scheme to enhance Successive Halving. The goal is to
select an optimal hyperparameter configuration from K candidates. It involves multiple rounds. R
is the predefined budget resources (e.g., training epochs) for each round. For the first round, K
candidates each get trained for R

K epochs. Based on the observed validation loss and the quantified
uncertainty for each candidate, our method represents each candidate’s converged loss with a prob-
ability distribution. From that, it constructs a confidence curve, capturing the probability that the
best configuration is among the current top k candidates for 1 ≤ k ≤ K. From the curve, it then
calculates f((µi, σ

2
i)

K
i=1, k), which captures the effects of keeping k top candidates (1 ≤ k ≤ K) for

the next round, by considering the tradeoff between the risks of discarding the best candidate and the
training budget each top candidate can get. From that, it identifies the best k value, discards the least
promising K − k candidates, and enters the next round. The process continues until the total budget
is used up.

The main idea of Definition 1 is to use the current validation loss history and quantified uncertainty
to approximate the converged validation loss, so that we compare two candidates – more precisely,
we compute the probability that one candidate is better than the other – based on the probability
distribution of their converged validation loss. For example, if the approximated loss and uncertainty
of two candidates γj and γk, at epoch t, are (µj , σj) and (µk, σk), using converged validation loss

as the metric, we have Pr(ℓ(y,M t
γj
(X)) > ℓ(y,M t

γk
(X)))= Φ

(
µk−µj√
σ2
j+σ2

k

)
, where Φ denotes the

cumulative distribution function (CDF) of the standard normal distribution.

We next present UQ-guided scheme, a principled way to use UQ to guide HPO.

3.3 UQ-Guided Scheme

Figure 2 illustrates how UQ-guided scheme works in HPO. For the purpose of clarity, we base our
explanation of the scheme on HPO that uses early stop mechanisms, but will show in Section 3.5 that
the scheme is general, applicable to other HPO methods for iterative learners as well.

The original HPO method, Successive Halving [19], evaluates and eliminates candidates over multiple
rounds. At the end of each round, it drops those candidates regarded as unpromising. With our
UQ-guided scheme, at the end of each round, the scheme derives a confidence curve from the current
probabilistic model, and uses a discarding mechanism to drop candidates that are unlikely to perform
well after convergence. In contrast to the original HPO that drops a fixed amount (or fraction) of
candidates in each round, the UQ-guided scheme carefully calculates the number of candidates to
drop in a round based on the probabilistic model such that the expected quality of the HPO outcomes
can be maximized, as explained later.

The UQ-guided scheme respects the HPO budget—that is, the total amount of time usable by the
HPO for identifying the best candidate. By default, it works around the given budget constraint: the
budget for each round (R) equals the total budget divided by the number of rounds. We next discuss
each step.

3.3.1 Confidence Curve Derived from Uncertainty Quantification
The concept of confidence curve is central in UQ-guided HPO. Define [n] = {1, 2, · · · , n}.

5

Definition 2 (Confidence curve). At epoch t, we evaluate each candidate’s performance and sort
them based on validation loss. A confidence curve C is a trajectory of a series of probabilities,
{Pk|k ∈ [n]}, that depicts the probability that the optimal configuration (with the lowest loss after
convergence) is among the first k configurations. For k ∈ [n], Pk can be expressed as

Pk = Pr
{
min(ℓ(y,M∗

γ1
(X)), · · · , ℓ(y,M∗

γk
(X))) ≤ min(ℓ(y,M∗

γk+1
(X)), · · · , ℓ(y,M∗

γn
(X)))

}
.

The confidence curve is derived based on joint probability distribution in the following way.
Suppose there are n candidates. At the end of a certain round, the probabilistic model returns
n pairs of (µ1, σ1), (µ2, σ2), · · · , (µn, σn) as estimations for ℓ(y,M∗

γ1
(X)), ℓ(y,M∗

γ2
(X)), · · · ,

ℓ(y,M∗
γn
(X)). For simplicity, assume that µ1 < µ2 < · · · < µn, and σ1 = σ2 = · · · = σ.

Let Φ and ϕ be the CDF and PDF of the standard normal distribution. For k = m, we can calculate

Pm =

∫ ∞

−∞

1

σ

m∑
i=1

ϕ(y+µi

σ)

Φ(y+µi

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy. (3.4)

The details of obtaining Equation 3.4 are in Appendix A.1.

3.3.2 Discarding Mechanism
The next step is to decide, at the end of each round, the appropriate value of k, which determines
how many (n− k) lowest-ranked candidates will be discarded in this round. Our scheme decides k
based on the confidence curve: choosing the smallest k that satisfies Pk ≥ τ , where τ is a parameter
determined by our scheme adaptively as follows.

Choosing τ . At the end of round i, we have the confidence curve Ci(P i
1, P

i
2, · · · , P i

n) that is the
trajectory of a series of probabilities. We quantify how τ influences the probability for the HPO to
select the best candidate.

Let τi be the value of τ for round i, ki be min{k : Ci(Pk) ≥ τi}. As the scheme discards the worst
n−ki candidates and further trains the best ki candidates in round i+1, we can derive the confidence
curve of round i+ 1 as Ci+1(P

i+1
1 , P i+1

2 , · · · , P i+1
ki

) based on those selected ki candidates. Since
we want to quantify the effect of τ on the probability that the scheme returns the best candidate (that
is, to suppose round i+ 1 is our final round), P i+1

1 is the target we desire to maximize. Define ξi to
be the current condition (µi, σi)

n
i=1. Let f(·, ·) be a mapping such that f(ξi, τi) = P i+1

1 . We want to
use a selector function Ψ : D → [0, 1] where D = ([0,∞)× [0,∞))n × [0, 1]. Ψ takes ξi as input
and returns an optimal τi:

Ψ(ξi) = arg max
τi∈[0,1]

{f(ξi, τi)}. (3.5)

The effect of τi on f manifests through its influence on the number of candidates ki retained in
the subsequent round, and can be ultimately broken down into the influence of (1) exploration,
meaning keeping more candidates in the next round can reduce this round’s discarding error, and
(2) exploitation, meaning keeping fewer candidates in the next round can allow each candidate to
receive more training time (recall that the training time budget is fixed for each round) and hence will
increase the reliability of the validation at the end of the next round.

Exploration. If ki drops by 1 to k′i, according to the definition of the confidence curve, the probability
that the final optimal configuration is among the remaining candidates we keep drops by ∆c↓ =
Pki
− Pk′

i
:

∆c↓ =

∫ ∞

−∞

1

σ
·
ϕ(

y+µki

σ)

Φ(
y+µki

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy. (3.6)

Exploitation. At the same time, a drop in ki leads to an increase in the individual training budget b.
Let ζ be the coefficient that relates the increase in the number of training epochs to its corresponding
effect on confidence. Using an approach similar to that employed in formulating the confidence curve,

ζ =

∫ ∞

−∞

1

σ −∆tσ
ϕ(

y + µ1

σ −∆tσ
) ·

ki∏
i=2

Φ(
y + µi

σ −∆tσ
)dy −

∫ ∞

−∞

1

σ
ϕ(

y + µ1

σ
) ·

ki∏
i=2

Φ(
y + µi

σ
)dy (3.7)

where t represents the current total number of epochs and ∆tσ represents the reduction in the
uncertainty σ that would result from training each candidate for one additional epoch. The specifics
for Equations 3.6 and 3.7 can be found in Appendix A.2. Given that b increases by R

k′
i
− R

ki
, the overall

influence of exploitation on the probability of selecting an optimal candidate is ∆c↑ = R
ki(ki−1)ζ.

6

Let ζ(ki, ξi) be the confidence increase, given condition ξi, when each of the ki candidates gets a
unit extra training budget. Ci(Pk), k ∈ [n] are the confidence curves. Balancing exploration and
exploitation leads to a sweet point where ∆c↓ = ∆c↑. That gives the way to derive the appropriate
value for τ , which just needs to make the following hold:

Pki − Pki−1 =
R

ki(ki − 1)
ζ(ki, ξi). (3.8)

3.4 Theoretical Analysis
We consider how the method performs in terms of identifying the best candidate. For convenience,
we let ℓi,t be the approximation of the converged loss for the model with hyperparameter γi at time
t. For each i, assume νi = limτ→∞ ℓi,τ exists. The goal is to identify argmini νi. Without loss of
generality, assume that ν1 < ν2 ≤ · · · ≤ νn. The assumption that limτ→∞ ℓi,τ exists implies that
as τ grows, the overall gap between ℓi,τ and νi decreases. Let σt = f(t) be the model uncertainty
at epoch t. We then introduce a random variable that characterizes the approximation error of ℓi,t
relative to νi, modeling it as a distribution that incorporates t as a parameter:

Xt = ℓi,t − νi, Xt ∼ N (0, σ2
t) ∀t.

By applying Chebyshev inequality, we have

Pr
{
|ℓi,t − νi| >

νi − ν1
2

}
≤ 4σ2

t

(νi − ν1)2
=

4f(t)2

(νi − ν1)2
i = 2, · · · , n. (3.9)

Let A denote the event ℓi,t > ℓ1,t, then by Equation 3.9

Pr(A) = Pr
{
(ℓi,t − νi) + (ν1 − ℓ1,t) + 2 · (νi − ν1

2
) > 0

}
≥ 1−

(4f(t)2

(νi − ν1)2

)2

. (3.10)

Equation 3.10 tells us that ℓi,t > ℓ1,t has a high probability with respect to t if f(t) ∈ O(t−1/4) (see
Lemma in Appendix C). That is, comparing the intermediate values at a certain time t is likely to
establish an order similar to the order of the final values of νi and ν1.

The following theorem is stated using the abovementioned quantities with proofs in Appendix C.1.

Theorem 1. Let n be the number of total candidates, and νi = lim
τ→∞

ℓi,τ . For a given c > 0, there

exists a T > 0 s.t.
n∏

i=2

(1 − (4f(T)2

(νi−ν1)2
)2) > 1 − c . If the round budget R > T · n, then the best

candidate is returned with probability P > (1− ⌊BR ⌋c)(1− c), where B is the total budget.

In comparison, the bound in the UQ-oblivious approach is as follows:

Theorem 2. Let δ > 0, νi = lim
τ→∞

ℓi,τ and assume ν1 ≤ ν2 ≤ · · · ≤ νn. Let γ−1(ϵ, δ) = min{t ∈

N : f(t)
ϵ ≤ δ

1
4 }, and

zob = 2⌈log2(n)⌉ max
i=2,...,n

i
(
1 + γ−1(νi−ν1

2 , δ)
)

≤ 2⌈log2(n)⌉(n+
∑

i=2,...,n

γ−1(νi−ν1

2 , δ)).

If the UQ-oblivious early stopping method is run with any budget Bob > zob then the best candidate
is returned with probability Pob > 1− nδ.

Example 3. Consider f(t) = 1
t . According to Theorem 2, if Bob > 2⌈log2(n)⌉(n +∑

i=1,...,n γ
−1(νi−ν1

2 , δ)), the UQ-oblivious method can return the best candidate with probability
over 1− nδ. But if BUQ ≃ γ−1(ν2−ν1

2 , δ) · n 1, the UQ method can return the best candidate with
probability over 1− nδ. As shown in Appendix C.2, Theorems 1 and 2 together show that the UQ
approach guarantees the same probability of identifying the optimal candidate as the UQ-oblivious
counterpart with a smaller budget lowerbound B (see Corollary 6).

1f ≃ g if there are constants c, c′ s.t. cg(x) ≤ f(x) ≤ c′g(x).

7

3.5 UQ-Guided HPO Family
The UQ-guided scheme is a general approach to enhancing HPO with uncertainty awareness. We next
explain how it is integrated into several existing HPO methods to transform them into UQ-guided
ones, yielding a UQ-guided HPO family. In the following, we use the suffix “plus (+)" to indicate the
UQ-guided HPO methods.
Successive Halving plus (SH+) is derived from the early stop-based HPO design Successive Halving
(SH) [19]. Algorithms 1 and 2 in Appendix A.3 show the pseudo-code. Given total budget B and
round budget R and an initial K, SH+ first trains K candidates each with the initial b = ⌊RK ⌋
units of budget, and ranks them by the evaluation performance. Then SH+ updates K based on
Section 3.3.2 and keeps the top K configurations according to the UQ-guided scheme (OracleModel
in Algorithms 1 and 2), and continues the process until the budget runs out.
Hyperband plus (HB+) originates from the popular HPO design Hyperband (HB). HB is an HPO
method trying to better balance exploration and exploitation than SH does [25] by adding an outer
loop for grid search of the value of K. HB+ simply extends HB by using SH+ rather than SH as its
inner loop, changing the target of the grid search to the initial value of K.
Bayesian Optimization and Hyperband plus (BOHB+) is developed from BOHB [11]. BOHB
is similar to HB except that it replaces the random sampling from the uniform distribution with
BO-based sampling. BOHB+ makes the corresponding changes from HB+ by adopting BO-based
sampling for its outer loop.
Sub-sampling plus (SS+) is derived from the Sub-sampling (SS) algorithm [15]. It showcases the
applicability of the UQ-guided scheme to non-early stop–based methods. Similar to other methods,
in each round, SS also chooses candidates for further training based on its assessment of the potential
of those candidates. But unlike the other methods, SS does not discard any candidates, but keeps all
in play throughout the entire HPO process. In each round, the candidates it chooses are those that
show smaller validation loss than the most trained candidate shows. If there is none, it trains only
the most trained candidate in that round. SS+ integrates the UQ-guided scheme into the candidate
selection process of SS. When SS+ compares a candidate (ci) against the most trained candidate (cm),
rather than checking their validation losses, it uses the UQ-guided scheme to compute the probability
for the convergence loss of ci to be smaller than that of cm and checks whether the probability is over
a threshold τ (0.9 in our experiments), that is, Pr(ℓ(y,M∗

γcm
(x)) ≥ ℓ(y,M∗

γci
(x))) ≥ τ .

4 Experiments
We conduct a series of experiments on the four UQ-guided HPO methods to validate the efficacy of
the UQ-guided scheme for HPO.
4.1 Experimental Setup
Methodology. To check the benefits of the UQ-guided scheme for HPO, we apply the proposed
UQ-guided HPO family to different HPO benchmarks, including NAS-BENCH-201 and LCBench,
each for 30 repetitions, to measure the performance for different hyperparameter optimization tasks,
and compared those with their original UQ-oblivious versions.

Platform. Our experiments are conducted on a platform equipped with an Intel i9-9900k CPU and an
NVIDIA GEFORCE RTX 2080 TI GPU. The CPU has 8 cores, each of which can support 2 threads.
The GPU has 4,352 cores of Turing architecture with a computing capability of 7.5. The GPU can
achieve a maximum memory bandwidth of 616 GB/s, 0.4 tera floating-point operations per second
(TFLOPS) on double-precision, and 13 TFLOPS on single-precision.

Workloads. We evaluate the UQ-guided methods on two real-world benchmarks. Nas-Bench-201 [9]
(CC-BY 4.0) encompasses three heavyweight neural architecture search tasks (NAS) on CIFAR-10,
CIFAR-100, and ImageNet-16-12 (CC-BY 4.0) datasets. In addition, we investigate the performance
of optimizing traditional ML pipelines, hyperparameters, and neural architecture in LCBench [42].
For example, we optimized 7 parameters for the Fashion-MNIST dataset [7], where the resource type
is determined by the number of iterations. Additional information regarding these benchmarks can be
found in Appendix F. In this context, one unit of budget equates to a single training epoch, and by
default, the total HPO budget (B) allocated for each method is 4 hours.

4.2 Experimental Results
Figure 3 illustrates the results of NAS-BENCH-201 trained on ImageNet-16-120. It shows the results
of four UQ-guided methods compared to their original ones. For each comparison, we show three

8

1
Different Trials

5

10

To
p

1
R

an
k SH

SH+

0 0.2 0.4 0.6 0.8 1
Fraction of Budgets

2
4
6
8

10

To
p

1
R

an
k SH

SH+

0 0.2 0.4 0.6 0.8 1
Fraction of Budgets

0

5

10

15

R
eg

re
t

SH
SH+

1
Different Trials

5

10

To
p

1
R

an
k HB

HB+

0 0.2 0.4 0.6 0.8 1
Fraction of Budgets

2
4
6
8

10

To
p

1
R

an
k HB

HB+

0 0.2 0.4 0.6 0.8 1
Fraction of Budgets

0

5

10

15

R
eg

re
t

HB
HB+

1
Different Trials

5

10

To
p

1
R

an
k BOHB

BOHB+

0 0.2 0.4 0.6 0.8 1
Fraction of Budgets

2
4
6
8

10

To
p

1
R

an
k BOHB

BOHB+

0 0.2 0.4 0.6 0.8 1
Fraction of Budgets

0

5

10

15

R
eg

re
t

BOHB
BOHB+

1
Different Trials

5

10

To
p

1
R

an
k SS

SS+

0 0.2 0.4 0.6 0.8 1
Fraction of Budgets

2
4
6
8

10

To
p

1
R

an
k SS

SS+

0 0.2 0.4 0.6 0.8 1
Fraction of Budgets

0

5

10

15

R
eg

re
t

SS
SS+

Figure 3: Experimental results of UQ-oblivious HPO methods and their UQ-guided enhancements on
NAS-BENCH-2.0.

metrics, namely top-1 rank on different trials, top-1 rank on different fractions of budgets, and regret
on different fractions of budgets. The fraction of budgets denotes the portion of the budget that we
allocate for that particular experiment compared to the standard full budget. Top-1 rank refers to the
real ranking of the candidate ultimately chosen by the method. Regret (%) refers to the accuracy
difference between the returned candidate and the real best candidate. In Figure 3, the average
results of 30 repetitions are reported. For the right two columns, we also report the uncertainty
bands, defined as the interval between the 30th and 70th percentiles. The benefits of the UQ-guided
scheme are obvious, both for individual trials and across different fractions of budgets. It brings a
21-55% regret reduction. Similar results are observed on other benchmarks (LCBench results shown
in Appendix G).

Table 1 provides the fraction of the total exploration time needed for the UQ-guided methods to
achieve comparable model accuracy as the original methods do. The UQ-guided methods need much
less time than their counterparts to obtain a similar performance. For instance, SH+ achieves the same
average regret of 5% on NAS with only half of the budgets required by SH. These results indicate
that the UQ technique can conduct HPO efficiently and effectively.

Table 1: Fraction of time (%) required for the UQ-guided methods to achieve comparable model
performance as the original HPO methods do.

Methods NAS-BENCH-201 LCBench

SH+ 50.78 43
HB+ 75 60
BOHB+ 68.4 53.34
SS+ 47.84 30.93

Our paper’s experiments concentrate on DNN because efficient HPO is crucial for the time-consuming
nature of DNN training. We also use the ridge regression in Section H as a demonstration to show the

9

potential of the methodology for other iterative learners, and leave a systematic study of which to the
future.

5 Conclusion
This paper points out the importance of systematic treatment to the uncertainty in model trainings for
HPO. It introduces a novel scheme named UQ-guided scheme, which offers a general way to enhance
HPO methods for DNNs with uncertainty awareness. Experiments demonstrate that the UQ-guided
scheme can be easily integrated into various HPO methods. The enhanced methods achieve 21–55%
reduction of regret over their original versions, and require only 30–75% time to identify a candidate
with a matching performance as the original methods do. The paper in addition provides a theoretical
analysis of the effects of the UQ-guided scheme for HPO.

The key characteristic of the UQ method is the necessity to rank multiple learners during the HPO
process. Gradient-based HPO methods [30], for instance, may not benefit from our UQ-guided
scheme because of their sequential properties. One limitation of this paper is that it is mostly suitable
for iterative learners, and needs adaptations for other learners: To go beyond, it could be, for instance,
applied to the model selection work in previous studies [31] that use training dataset size as the
budget dimension. In this case, the learner does not need to be iterative; the selection is based on the
validation loss history trained with incremental dataset sizes. The UQ component can still guide the
configuration selection and budget allocation in the HPO process.

Overall, this study concludes that UQ is important for HPO to consider, simple on-the-fly UQ goes a
long way for HPO, and the UQ-guided scheme can serve as a general effective scheme for enhancing
HPO designs.

References
[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad Ghavamzadeh,

Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A review of uncertainty
quantification in deep learning: Techniques, applications and challenges. Information fusion, 76:243–297,
2021.

[2] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture search
using performance prediction. arXiv preprint arXiv:1705.10823, 2017.

[3] Hadrien Bertrand, Roberto Ardon, Matthieu Perrot, and Isabelle Bloch. Hyperparameter optimization
of deep neural networks: Combining hyperband with bayesian model selection. In Conférence sur
l’Apprentissage Automatique, 2017.

[4] Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas,
Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter optimization: Foundations,
algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 13(2):e1484, 2023.

[5] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In International conference on machine learning, pages 1613–1622. PMLR, 2015.

[6] Danruo Deng, Guangyong Chen, Yang Yu, Furui Liu, and Pheng-Ann Heng. Uncertainty estimation by
fisher information-based evidential deep learning. In International conference on machine learning. PMLR,
2023.

[7] Li Deng. The mnist database of handwritten digit images for machine learning research [best of the web].
IEEE signal processing magazine, 29(6):141–142, 2012.

[8] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. In Twenty-fourth international
joint conference on artificial intelligence, 2015.

[9] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture search.
arXiv preprint arXiv:2001.00326, 2020.

[10] Vincent Dumont, Casey Garner, Anuradha Trivedi, Chelsea Jones, Vidya Ganapati, Juliane Mueller, Talita
Perciano, Mariam Kiran, and Marc Day. Hyppo: A surrogate-based multi-level parallelism tool for
hyperparameter optimization. In 2021 IEEE/ACM Workshop on Machine Learning in High Performance
Computing Environments (MLHPC), pages 81–93. IEEE, 2021.

10

[11] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter optimization
at scale. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1437–1446. PMLR,
10–15 Jul 2018.

[12] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR.

[13] Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and Joaquin Vanschoren. An
open source automl benchmark. arXiv preprint arXiv:1907.00909, 2019.

[14] Yi-Qi Hu, Yang Yu, Wei-Wei Tu, Qiang Yang, Yuqiang Chen, and Wenyuan Dai. Multi-fidelity automatic
hyper-parameter tuning via transfer series expansion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3846–3853, 2019.

[15] Yimin Huang, Yujun Li, Hanrong Ye, Zhenguo Li, and Zhihua Zhang. Improving model training with
multi-fidelity hyperparameter evaluation. In D. Marculescu, Y. Chi, and C. Wu, editors, Proceedings of
Machine Learning and Systems, volume 4, pages 485–502, 2022.

[16] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning: An
introduction to concepts and methods. Machine Learning, 110:457–506, 2021.

[17] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In Carlos A. Coello Coello, editor, Learning and Intelligent Optimization, pages
507–523, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[18] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, systems,
challenges. Springer Nature, 2019.

[19] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter optimiza-
tion. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Research, pages
240–248, Cadiz, Spain, 09–11 May 2016. PMLR.

[20] Jie Jiang, Jiawei Jiang, Bin Cui, and Ce Zhang. Tencentboost: A gradient boosting tree system with
parameter server. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pages
281–284. IEEE, 2017.

[21] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos. Multi-fidelity bayesian
optimisation with continuous approximations. In International Conference on Machine Learning, pages
1799–1808. PMLR, 2017.

[22] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian optimization
of machine learning hyperparameters on large datasets. In Artificial intelligence and statistics, pages
528–536. PMLR, 2017.

[23] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction with
bayesian neural networks. In International Conference on Learning Representations, 2016.

[24] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems, 30,
2017.

[25] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A
novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res., 18(1):6765–6816, jan
2017.

[26] Yang Li, Yu Shen, Jiawei Jiang, Jinyang Gao, Ce Zhang, and Bin Cui. Mfes-hb: Efficient hyperband with
multi-fidelity quality measurements. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 8491–8500, 2021.

[27] M. Lichman. Uci machine learning repository, 2013. Accessed: [Insert access date here].

[28] Siyan Liu, Pei Zhang, Dan Lu, and Guannan Zhang. PI3NN: Out-of-distribution-aware prediction intervals
from three neural networks. In International Conference on Learning Representations, 2022.

11

[29] Jingwei Ma, Jiahui Wen, Mingyang Zhong, Weitong Chen, and Xue Li. Mmm: multi-source multi-net
micro-video recommendation with clustered hidden item representation learning. Data Science and
Engineering, 4:240–253, 2019.

[30] Paul Micaelli and Amos J Storkey. Gradient-based hyperparameter optimization over long horizons.
Advances in Neural Information Processing Systems, 34:10798–10809, 2021.

[31] Felix Mohr and Jan N van Rijn. Towards model selection using learning curve cross-validation. In 8th
ICML Workshop on automated machine learning (AutoML), 2021.

[32] Felix Mohr and Jan N van Rijn. Fast and informative model selection using learning curve cross-validation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[33] Alejandro Morales-Hernández, Inneke Van Nieuwenhuyse, and Gonzalo Nápoles. Multi-objective hyper-
parameter optimization with performance uncertainty. Communications in Computer and Information
Science, 1684:37–46, 2022.

[34] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[35] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. Advances in neural
information processing systems, 26, 2013.

[36] Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki Shiga, Ichiro Takeuchi,
and Masayuki Karasuyama. Multi-fidelity bayesian optimization with max-value entropy search and its
parallelization. In International Conference on Machine Learning, pages 9334–9345. PMLR, 2020.

[37] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

[38] Jiazhuo Wang, Jason Xu, and Xuejun Wang. Combination of hyperband and bayesian optimization for
hyperparameter optimization in deep learning. arXiv preprint arXiv:1801.01596, 2018.

[39] Shiwen Wu, Yuanxing Zhang, Chengliang Gao, Kaigui Bian, and Bin Cui. Garg: anonymous recommenda-
tion of point-of-interest in mobile networks by graph convolution network. Data Science and Engineering,
5:433–447, 2020.

[40] Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li, Wei-Wei Tu, Qiang Yang,
and Yang Yu. Taking human out of learning applications: A survey on automated machine learning. arXiv
preprint arXiv:1810.13306, 2018.

[41] Wentao Zhang, Jiawei Jiang, Yingxia Shao, and Bin Cui. Snapshot boosting: a fast ensemble framework
for deep neural networks. Science China Information Sciences, 63:1–12, 2020.

[42] Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch: Multi-fidelity metalearning for efficient
and robust autodl. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9):3079–3090,
2021.

12

A Method Details

A.1 Formulation of Confidence Curve

The following contents detail how to compute the confidence curve C(P1, P2, · · · , Pn) based on
current validation loss and quantified uncertainty of the n candidates.

Let Y be the random variable denoting the negation of the lowest converged validation loss:

Y = max(−ℓ(y,M∗
γ1
(X)),−ℓ(y,M∗

γ2
(X)), · · · ,−ℓ(y,M∗

γn
(X))).

Since ℓ(y,M∗
γi
(X)) ∼ N (µi, σ

2
i), the cumulative distribution function (CDF) of Y , FY (y), is

FY (y) = Pr(Y ≤ y) = Pr(−ℓ(y,M∗
γ1
(X)) ≤ y,−ℓ(y,M∗

γ2
(X)) ≤ y, · · · ,−ℓ(y,M∗

γn
(X)) ≤ y)

=

n∏
i=1

Φ(
y + µi

σ
) = exp(

n∑
i=1

lnΦ(
y + µi

σ
)).

Accordingly, the probability density function (PDF) of Y , fY (y), is

fY (y) =
dFY (y)

dy
=

1

σ

n∑
i=1

ϕ(y+µi

σ)

Φ(y+µi

σ)
·

n∏
i=1

Φ(
y + µi

σ
).

Now we can construct the confidence curve by calculating each Pk (k ∈ [n]). For k = m, Pk can be
expressed as

Pm = Pr(min(ℓ(y,M∗
γ1
(X)), · · · , ℓ(y,M∗

γm
(X))) ≤ min(ℓ(y,M∗

γm+1
(X)), · · · , ℓ(y,M∗

γn
(X)))).

Let ℓ(y,M∗
γ1
(X)), · · · , ℓ(y,M∗

γn
(X)) be mutually independent, thus

Pm =

∫ ∞

−∞
fY (y) Pr(−N (µm+1, σm+1) ≤ y, · · · ,−N (µn, σn) ≤ y)dy

=

∫ ∞

−∞
fY (y)Φ(

y + µm+1

σ
)× · · · × Φ(

y + µn

σ
)dy

=

∫ ∞

−∞

1

σ

m∑
i=1

ϕ(y+µi

σ)

Φ(y+µi

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy.

(A.1)

A.2 Computing ζ

Equation 3.6 can be calculated by directly subtracting Pki
by Pki−1:

∆c↓ =

∫ ∞

−∞

1

σ

ki∑
i=1

ϕ(y+µi

σ)

Φ(y+µi

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy −

∫ ∞

−∞

1

σ

ki−1∑
i=1

ϕ(y+µi

σ)

Φ(y+µi

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy

=

∫ ∞

−∞

1

σ
·
ϕ(

y+µki

σ)

Φ(
y+µki

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy.

ζ is the coefficient that relates the increase in the number of training epochs to its corresponding effect
on confidence. Consider a working round that starts with k candidates. We have approximations at
the end of the round for the converged loss ℓ(y,M∗

γi
(x)) ∼ N (µi, σ

2) for i ∈ [k]. Here, t denotes
the epochs. Letting each candidate train one extra unit of resource results in lower uncertainty, thus
increasing the f score. First compute f(ξ, τ) at epoch t:

f(ξ, τ)t =

∫ ∞

−∞

1

σ
ϕ(

y + µ1

σ
) ·

k∏
i=2

Φ(
y + µi

σ
)dy. (A.2)

If each configuration is trained with one extra unit of resource (a total of t + 1 epochs), model
uncertainty would be reduced. We use the same µi to approximate the converged validation loss

13

for t + 1 epochs, and use σ − ∆tσ as an approximation for model uncertainty. Here ∆tσ is the
decrease in model uncertainty that is determined through offline profiling with details in Section D.
This approximation leads us to f(ξ, τ) at epoch t+ 1 as

f(ξ, τ)t+1 =

∫ ∞

−∞

1

σ −∆tσ
ϕ(

y + µ1

σ −∆tσ
) ·

k∏
i=2

Φ(
y + µi

σ −∆tσ
)dy. (A.3)

Subtracting Equation A.3 by Equation A.2 gives us the result in Equation 3.7:

ζ = f(ξ, τ)t+1−f(ξ, τ)t =
∫ ∞

−∞

1

σ −∆tσ
ϕ(

y + µ1

σ −∆tσ
)·

k∏
i=2

Φ(
y + µi

σ −∆tσ
)dy−

∫ ∞

−∞

1

σ
ϕ(

y + µ1

σ
)·

k∏
i=2

Φ(
y + µi

σ
)dy.

A.3 Pseudo-code for UQ-Guided Hyperparameter Optimization (SH+)

Algorithm 1 UQ-Guided Hyperparameter Optimization (SH+)

Input: Total budget B, the set of K configurations Γ = {γ1, γ2, · · · , γK}, minimum round budget
R
Output: The configuration with the best performance
b = ⌊RK ⌋
repeat

for i = 1 to K do
Evaluate M ti

γi
with budget b and get M ti+b

γi

ti+ = b
end for
Rank according to performance and obtain new M t1

γ1
, M t2

γ2
, · · · ,M tK

γK

K = OracleModel(M t1
γ1
,M t2

γ2
, · · · ,M tK

γK
)

Keep top K candidates
until total budget B runs out

Algorithm 2 OracleModel for determining K candidates into the next round.

Input: K instances of Machine Learning models M t1
γ1

, M t2
γ2
, · · · ,M tK

γK

Output: A new K that tells the model how many candidates to keep
Get a τ from the probabilistic model
Construct the confidence curve C(P1, P2, · · · , PK) based on
ℓ(y,M t1

γ1
(X)), ℓ(y,M t2

γ2
(X)), · · · , ℓ(y,M tK

γK
(X))

return min{k : Pk > τ}

A.4 Pseudo-code for UQ-Guided Hyperparameter Optimization (HB+)

Algorithm 3 Hyperband plus (HB+)

Input: Total budget B, the set of K configurations Γ = {γ1, γ2, · · · , γK}, maximum budget R,
ratio η
Output: The configuration with the best performance
smax = ⌊logη R⌋, b = B

smax

for s = 1 to smax do
k = ⌈ bη

s

s+1⌉
Sample k configurations randomly
Call SH+ with (k, b, b

s)
end for

A.5 Pseudo-code for UQ-Guided Hyperparameter Optimization (BOHB+)

14

Algorithm 4 Bayesian Optimization Hyperband plus (BOHB+)

Input: Total budget B, the set of K configurations Γ = {γ1, γ2, · · · , γK}, maximum budget R,
ratio η (default η = 3)
Output: The configuration with the best performance
smax = ⌊logη R⌋, b = B

smax

for s = 1 to smax do
k = ⌈ bη

s

s+1⌉
Sample k configurations using Bayesian optimizer
Call SH+ with (k, b, b

s)
end for

A.6 Pseudo-code for UQ-Guided Hyperparameter Optimization (SS+)

Algorithm 5 Sub-Sampling plus (SS+)

Input: Total budget B, the set of K configurations Γ = {γ1, γ2, · · · , γK}, maximum budget R,
minimum budget b, ratio η (default η = 3)
Output: The configuration with the best performance
r = 1, evaluate all configurations with budget b.
for r = 2 to ⌊logη(R/b)⌋ do

Select γζ with the most observations.
I ′ = {k : ck ∈ Γ\γζ , γk ⪯ γζ ∧ pass UQ check}
if I ′ == ∅ then

Evaluate γζ with budget ηrb.
else

Evaluate γk with budget ηrb for each k ∈ I ′.
end if

end for

B More Theoretical Analysis

We have been concerned with identifying the best candidate, while in practice, it is often sufficient to
consider a situation where the difference between the result of candidate iϵ (νiϵ) and the result of the
best candidate (ν1) is less than or equal to a small value ϵ. We obtain the following theorem with
proofs in Appendix C.3.

Theorem 4. For a budget B > R and a set of n candidates, let î be the output of the UQ-guided
approach. Then

E(νî − ν1) ≤
2⌊BR ⌋

√
2f(R)
√
π

.

In comparison, îD, the output of the UQ-oblivious counterpart, satisfies

E(νîD − ν1) ≤
2⌈log2(n)⌉

√
2f(⌊ B

n⌈log2(n)⌉
⌋)

√
π

.

Example 5. Consider f(t) = 1
t . Substitution of f(t) in Theorem 4 can clearly show a smaller

upperbound of the UQ-guided approach than that of the UQ-oblivious counterpart (see Appendix C.3
for details).

The theorems provide some insights into the theoretical benefits of the UQ-guided scheme. But it
is worth noting that neither this bound comparison nor the budget bound comparison in Example 3
is sufficient to prove that the UQ-guided approach definitely would outperform the UQ-oblivious
approach, a reason for the empirical comparisons in Section 4.

15

C Proofs

In this section, we provide proofs for the theorems presented in Section 3.4. At the end of the proof,
we let f(t) = 1

t and obtained the results in Example 3 and Example 5.

The Lemma stated next will prove to be useful.

Lemma 1. For i > 1, if min{t1, ti} > t, then we have a high probability that ℓi,ti > ℓ1,t1 with
respect to t if f(t) ∈ O(t−1/4).

Proof. In Section 3.4, we come to the conclusion that

Pr(ℓi,t > ℓ1,t) ≥ 1− (
4f(t)2

(νi − ν1)2
)2 = 1− (

2

νi − ν1
)4 · f(t)4 > 1−O

(
1

t

)
.

This shows that the event ℓi,t > ℓ1,t happens with high probability with respect to t.

Now consider a more general setting, where each ℓi has its own ti:

Pr(|ℓi,ti − νi| >
νi − ν1

2
) ≤ 4f(ti)

2

(νi − ν1)2
i = 1, · · · , n.

Comparing ℓi,ti and ℓ1,t1 for a particular i ∈ [n] gives us the following:

Pr(ℓi,ti > ℓ1,t1) = Pr((ℓi,ti − νi)+ (ν1− ℓ1,t1)+2 · νi − ν1
2

> 0) ≥ 1− 4f(t1)
2

(νi − ν1)2
· 4f(ti)

2

(νi − ν1)2
.

(C.1)
Since t1 > t and ti > t,

(C.1) > 1−O

(
1

t

)
.

C.1 Proof of Theorem 1

Proof. Let Si be the set of candidates the UQ scheme evaluates at the beginning of the i-th round.
We assume that the n infinitely long loss sequences [ℓi,t] with limits {νi}ni=1.

We compute the probability that the algorithm includes the best candidate in the last round, namely,
1 ∈ S⌊B

R ⌋, and the probability that the UQ scheme returns the best candidate in S⌊B
R ⌋.

Let rk be the round budget for each candidate in Sk. Rk =
∑k

j=0 rk. The probability that the best
candidate is among the final kept candidate set is

Pr(1 ∈ S⌊B
R ⌋) = 1−

r=⌊B
R ⌋∑

k=1

Pr(1 /∈ Sk, 1 ∈ Sk−1)

= 1−
r=⌊B

R ⌋−1∑
k=0

(Pr(1 ∈ Sk−1)− Pr(1 ∈ Sk, 1 ∈ Sk−1))

≥ 1−
r=⌊B

R ⌋−1∑
k=0

1− Pr
(∧

i∈Sk\{1}

ℓi,Rk
> ℓ1,Rk

) .

(C.2)

Since the probability that ℓ1,t is the smallest among all ℓk,t (k ∈ [n]) is greater than
n∏

i=2

Pr(ℓi,t > ℓ1,t) ≥
n∏

i=2

(1−
(4f(t)2

(νi − ν1)2

)2

),

16

we have

(C.2) ≥ 1−
⌊B
R ⌋−1∑
k=0

(1−
n∏

i=2

(1− (
4f(Rk)

2

(νi − ν1)2
)2))

= 1−
⌊B
R ⌋−1∑
k=0

(1−
n∏

i=2

(1− (
4f
(∑k

j=0
R

|Sj |
)2

(νi − ν1)2
)2))

≥ 1− ⌊B
R
⌋c.

Therefore, the probability that the scheme returns the best candidate is no less than

Pr(1 ∈ S⌊B
R ⌋) · Pr

(∧
i∈S⌊B

R
⌋

ℓi,R⌊B
R

⌋
> ℓ1,R⌊B

R
⌋

)
≥ (1− ⌊B

R
⌋c)(1− c). (C.3)

That is to say, for a given confidence threshold c, there exists a T such that as long as
min{t1, t2, ..., tn} > T , then Pr(∧i=2,...,n(ℓi,ti > ℓ1,t1)) > 1 − c. Recall that in the UQ scheme
design, the goal is to select an optimal hyperparameter configuration from n candidates, and each
round is allocated for R resources. This means that if choose R ≥ T · n, then the best candidate is
returned from the algorithm with probability P > (1− ⌊BR ⌋c)(1− c).

C.2 Proof of Theorem 2

The representation of zob on the right-hand-side of the inequality is very intuitive: For each i, to
confirm that the final loss of the i-th candidate is greater than the best candidate’s with a probability
of at least 1− δ, it is necessary to train both candidates for at least the number of steps indicated by
the i-th term in the sum. Repeating this reasoning for all i justifies the sum over all candidates.

Proof. First we show that, given budget z = zob, round budget for round k satisfies

rk ≥
z

|Sk|⌈log2 n⌉
− 1

=
2

|Sk|
max

i=2,...,n
i
(
1 + γ−1(νi−ν1

2 , δ)
)
− 1

≥ 2

|Sk|
(⌊|Sk|/2⌋+ 1)

(
1 + γ−1(

ν⌊|Sk|/2⌋+1−ν1

2 , δ)
)
− 1

≥ γ−1(
ν⌊|Sk|/2⌋+1−ν1

2 , δ).

The last inequality is derived because ⌊|Sk|/2⌋ ≥ |Sk|/2− 1.

Let τi := γ−1(νi−ν1

2 , δ). We then show that, for a time t:

t ≥ τi ⇒ t ≥ γ−1(νi−ν1

2 , δ)

⇔ 1−
(4f(t)2

(νi − ν1)2

)2
≥ 1− δ

⇒ Pr(ℓi,t > ℓ1,t) ≥ 1− δ.

The second line follows by the definition of γ−1(ϵ, δ). Since rk ≥ τ⌊|Sk|/2⌋+1, we can compute the
following probability

Pr(1 ∈ Sk+1|1 ∈ Sk) = Pr
(∑

i∈Sk

1{ℓi,Rk
> ℓ1,Rk

} ≥ ⌊|Sk|/2⌋
)

≥ Pr(

|Sk|∑
i=⌊|Sk|/2⌋+1

1{ℓi,Rk
> ℓ1,Rk

} ≥ ⌊|Sk|/2⌋)

≥ (1− δ)⌊
|Sk|
2 ⌋

17

where the first line follows by the definition of the early stopping algorithm (Successive Halving), the
second by τi being non-increasing. Namely, for all i > ⌊|Sk|/2⌋+ 1, we have τi ≤ τ⌈|Sk|/2⌉+1 and
consequently, Pr(ℓi,Rk

> ℓ1,Rk
) ≥ Pr(ℓ⌊|Sk|/2⌋,Rk

> ℓ1,Rk
) ≥ 1− δ.

Consequently, the probability that the UQ-oblivious approach returns the optimal candidate is

Pob ≥ Pr
(∧

i=0,...,⌈log2 n⌉−1

(1 ∈ Sk+1|1 ∈ Sk)
)

≥
⌈log2 n⌉−1∏

k=0

(1− δ)⌊
|Sk|
2 ⌋

≥ 1− nδ.

We show in the next Corollary that, for c = n·δ
2 , the probability P obtained in Theorem 1 is no less

than 1− nδ.

Corollary 6. For the threshold c in Theorem 1 and δ in Theorem 2, let c = n·δ
2 and

β−1(ϵ2, ϵ3, · · · , ϵn, c) = min{T :
n∏

i=2

(1 − (f(T)
ϵi

)4) ≥ 1 − c} . Then by Theorem 1 the UQ

approach returns the best candidate with probability over 1− nδ if B ≃ γ−1(ν2−ν1

2 , δ) · n.

Proof. Let T > 4
√
2 · γ−1(ν2−ν1

2 , δ), we have
n∏

i=2

(1− (
4f(T)2

(νi − ν1)2
)2) > (1− δ

2
)n ≥ 1− nδ

2
= 1− c.

This shows us that T > β−1(ν2−ν1

2 , ..., νn−ν1

2 , c). Consequently, according to Theorem 1, for
B = R > T · n, the UQ approach returns the best candidate with probability

(1− c)2 ≥ 1− 2c = 1− nδ.

The UQ-oblivious approach returns the optimal candidate with probability over 1− nδ if the budget
Bob > zob. But the UQ approach achieves the guarantee with budget B > 4

√
2 · γ−1(ν2−ν1

2 , δ) · n,
which can be empirically substantially smaller than the budget required in Theorem 2.

C.3 Proof of Theorem 4

Proof. Let Rk =
∑k

j=0 rk, namely, the total number of epochs allocated for each candidate in Sk.
We can guarantee that, for the UQ-oblivious approach, the output candidate îD satisfies

E(νîD − ν1) = E
(

min
i∈S⌈log2(n)⌉

νi − ν1

)
= E

(⌈log2(n)⌉−1∑
k=0

min
i∈Sk+1

νi − min
i∈Sk

νi

)

≤ E
(⌈log2(n)⌉−1∑

k=0

2|νi − ℓi,Rk
|+ min

i∈Sk+1

ℓi,Rk
− min

i∈Sk

ℓi,Rk

)

= E
(⌈log2(n)⌉−1∑

k=0

2|νi − ℓi,Rk
|
)

≤
2⌈log2(n)⌉

√
2f(⌊ B

n⌈log2(n)⌉
⌋)

√
π

=
2
√
2n⌈log2(n)⌉2√

πB
.

by inspecting how the approach eliminates candidates and plugging in an upper bound for E(2|νi −
ℓi,Rk

|) for all k in the last inequality. We can calculate the bound for the UQ-guided method in a

18

similar way:

E(νî − ν1) = E
(

min
i∈S⌊B

R
⌋

νi − ν1

)

= E
(⌊B

R ⌋−1∑
k=0

min
i∈Sk+1

νi − min
i∈Sk

νi

)

≤ E
(⌊B

R ⌋−1∑
k=0

min
i∈Sk+1

(νi − ℓi,Rk+1
+ ℓi,Rk+1

)− min
i∈Sk

(νi − ℓi,Rk
+ ℓi,Rk

)
)

≤ E
(⌊B

R ⌋−1∑
k=0

2|νi − ℓi,Rk
|+ min

i∈Sk+1

ℓi,Rk+1
− min

i∈Sk

ℓi,Rk

)

≤ E
(⌊B

R ⌋−1∑
k=0

2|νi − ℓi,Rk
|+ (min

i∈Sk+1

ℓi,Rk+1
− min

i∈Sk+1

ℓi,Rk
) + (min

i∈Sk+1

ℓi,Rk
− min

i∈Sk

ℓi,Rk
)
)

≤ E
(⌊B

R ⌋−1∑
k=0

2|νi − ℓi,Rk
|
)

≤
2⌊BR ⌋

√
2f(R)
√
π

=
2
√
2⌊BR ⌋√
πR

.

The smaller upperbound of the UQ-guided approach than that of the UQ-oblivious counterpart
in Theorem 4.

A simple calculation reveals that

2⌊BR ⌋
R2ϵ

<
2n2⌈log2(n)⌉3

B2ϵ

by diving the first term by the second:

2⌊BR ⌋
Rϵ

/2n⌈log2(n)⌉2

Bϵ
= ⌊B

R
⌋B
R
· 1

n⌈log2(n)⌉2
< 1.

The last inequality holds because both B
R and ⌈log2(n)⌉ are the number of rounds and are considered

the same.

D Computational Details

Approximating ∆σ for Candidates. In our probabilistic model, ℓ(y,M∗
γc
(X)) is approximated

by a Gaussian distribution parameterized by µc and σc. To compute the uncertainty reduction that
would result from training each candidate for one additional epoch, we consider the uncertainty as
a time series in the form of (σc(t))

T
t=1. We examine the uncertainty trendings in NAS-BENCH-

201 [9]. Figure 4 shows a certain pattern of uncertainty behavior as t increases, both individually and
aggregately, for different candidates.

We then model (σc(t))
T
t=1 according to different phases in the following way:

1. For t ∈ (0, 6), σ(t) increases. We use linear regression to fit the σ(t), namely, σ(t) =
a1t+ b1.

2. For t ∈ (6, 50), σ(t) drops quickly. We use the exponential model to fit σ(t), namely,
σ(t) = a1e

−b1x.
3. For t ∈ (50, 180), σ(t) increases steadily. We use another linear regression to fit σ(t).

19

0

0.01

0.02

0.03

0.04

0.05

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1 x

σ

(a) Uncertainty scope for different candidates.

0

0.01

0.02

0.03

0.04

0.05

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1 x

Average σ

(b) Average uncertainty for different candidates.

Figure 4: Landscape of the uncertainty scope for different epochs.

Confidence

Candidates

Threshold τ

k1k3 k2

round 1r2r3r4

(a) Confidence curves in different rounds.

Threshold τ

Confidence

Candidateski

ri for round i

ri+1

ki’

∆𝑐

(b) Analysis of the choice of τ .

Figure 5: Illustration for confidence curve and discarding mechanisms. After obtaining the confidence
curve, a threshold τ determines the number of candidates we will keep (k1 for round 1, k2 for round
2, and k3 for round 3). We choose the smallest k such that Pk ≥ τ for each round, proceed training
with the best performed k candidates, and discard the rest configurations.

4. For t ∈ (180, 200), σ(t) reverses the trend and decreases again. We use linear regression.

For each launch, we sample a few candidates and train each one fully till convergence. We then use
the abovementioned way to model the uncertainty behavior for the whole dataset. This makes the
approximation for ∆tσ = σ(t)− σ(t+ 1) effective and efficient.

An alternative way to approximate ∆tσ is to use

1

δ

∑
b∈Dt−1

(ℓ(y,M b
γc
(X))−EDt−1

[ℓ(y,M b
γc
(X))])2−1

δ

∑
b∈Dt

(ℓ(y,M b
γc
(X))−EDt

[ℓ(y,M b
γc
(X))])2.

Building Probabilistic Model. At any given time t, the approximation of converged validation loss
follows the Gaussian distribution: ℓ(y,M∗

γc
(X)) ∼ N (µc, σ

2
c). In our experiments, δ = 10, µc is

the current accuracy ℓ(y,M t
γc
(X)), and σc is the unbiased estimation of the standard deviation of

ℓ(y,M i
γc
(X))ti=t−10.

E Additional Related Work

Freeze-thaw Bayesian optimization. This paper proposes a new method to improve Bayesian
optimization (BO) for HPO. It avoids the limits of the expected improvement (EI) criterion in naive
BO which always favors picking new candidates rather than running old ones for more iterations.
Instead of always sampling new candidates, it can also choose old candidates for further evaluation
based on the modified EI in each round. This method, however, is limited to BO method. In contrast,
our UQ scheme is applicable to the vast number of early stopped and multi-fidelity-based HPO
methods.

20

HyperJump improves HB in that, during HPO, it skips certain rounds for certain candidates if the
risk of skipping is within a threshold. For the NAS-BENCH-201 trained on ImageNet-16-120, HJ
reduces the running time compared to the original HB method (only needs a 5.3% fraction of budget
to achieve close to optimal results achieved by the original HB with a standard full budget), but it
does not improve the HPO performance (i.e., Top-1 Rank and Regret). In contrast, our method only
needs less than a 3% fraction of the budget to achieve close to optimal results and when using around
5% fraction of budget, our method reduces the regret by 33%.

F Benchmark and Dataset Information

Table 2 consolidates information on the datasets, hyperparameters, fidelity, and dataset sizes for
Nas-Bench-201 and LCBench. The datasets for LCBench are drawn from various sources [37, 13].

Table 2: Benchmark and Dataset information.

Tasks Datasets Hyperparameters Fidelity # Training set # Validation set # Test set

N
as

-B
en

ch
-2

01 CIFAR-10 1←− 0

2←− {0, 1}∗
3←− {0, 1, 2}∗
Range: {none, skip_connect, nor_conv_1x1,
nor_conv_3x3, avg_pool_3x3}

1-200
25K images 25K images 10K images

CIFAR-100 50K images 5K images 5K images
ImageNet-16-120 151.7K images 3K images 3K images

L
C

B
en

ch

Fashion-MNIST Batch size: [16, 512], log-scale
Learning rate: [1e−4, 1e−1], log-scale
Momentum: [0.1, 0.99]
Weight decay: [1e−5, 1e−1]
Number of layers: [1, 5]
Maximum number of units per layer: [64, 1024], log-scale
Dropout: [0.0, 1.0]

1-50

“Whenever possible, we use the given
test split with a 33% test split and ad-
ditionally use fixed 33% of the training
data as validation split. In case there is
no such OpenML task with a 33% split
available for a dataset, we create a 33%
test split and fix it across the configura-
tions.” [42]

adult
higgs
jasmine
vehicle
volkert

G More Results on Experiments

We include more results on NAS-Bench-201 and LCBench. For example, Figure 10 and 11 show
the results on LCBench, where we proved the consistently better performance of the UQ-guided
approaches than the UQ-oblivious methods on Fashion-MNIST. Figure 10 shows the results of the
validation loss while Figure 11 demonstrates the results of regret. UQ-guided approaches obtained
an average of over 50% improvement over the UQ-oblivious counterparts.

88

88.5

89

89.5

90

1e-2 1e-1 1e0
Fraction of Budgets

SH

SH+

88

88.5

89

89.5

90

1e-2 1e-1 1e0
Fraction of Budget

HB

HB+

88

88.5

89

89.5

90

1e-2 1e-1 1e0
Fraction of Budget

SS

SS +

80

82

84

86

88

90

1e-2 1e-1 1e0
Fraction of Budget

BOHB

BOHB+

Figure 6: Results of test accuracy when optimizing on CIFAR-10.

21

0

0.5

1

1.5

2

1e-2 1e-1 1e0
Fraction of Budget

HB

HB+

0

0.5

1

1.5

2

1e-2 1e-1 1e0
Fraction of Budget

SH

SH+

0

2

4

6

8

1e-2 1e-1 1e0
Fraction of Budget

BOHB

BOHB+

0

0.5

1

1.5

2

1e-2 1e-1 1e0
Fraction of Budget

SS

SS+

Figure 7: Results of regret (%) when optimizing on CIFAR-10.

64

65

66

67

68

69

70

1e-2 1e-1 1e0
Fraction of Budgets

SH

SH+

64

65

66

67

68

69

70

1e-2 1e-1 1e0
Fraction of Budget

HB

HB+

60

62

64

66

68

70

1e-2 1e-1 1e0
Fraction of Budget

BOHB

BOHB+

60

62

64

66

68

70

1e-2 1e-1 1e0
Fraction of Budget

SS

SS +

Figure 8: Results of test accuracy when optimizing on CIFAR-100.

22

0

1

2

3

4

5

6

1e-2 1e-1 1e0
Fraction of Budget

SH

SH+

0

1

2

3

4

5

6

1e-2 1e-1 1e0
Fraction of Budget

HB

HB+

0
1
2
3
4
5
6
7
8

1e-2 1e-1 1e0
Fraction of Budget

BOHB

BOHB+

0
1
2
3
4
5
6
7
8

1e-2 1e-1 1e0
Fraction of Budget

SS

SS+

Figure 9: Results of test accuracy when optimizing on CIFAR-100.

12

13

14

15

16

0.3 0.6 0.9
Fraction of Budget

SS
SS+

12

13

14

15

16

0.3 0.6 0.9
Fraction of Budget

HB
HB+

12

13

14

15

16

0.3 0.6 0.9
Fraction of Budgets

SH
SH+

12

14

16

18

0.3 0.6 0.9
Fraction of Budget

BOHB
BOHB+

Figure 10: Results of validation error for optimizing on Fashion-MNIST.

0

2

4

0.3 0.6 0.9
Fraction of Budget

SS
SS+

0

2

4

0.3 0.6 0.9
Fraction of Budget

HB
HB+

0

2

4

0.3 0.6 0.9
Fraction of Budget

BOHB
BOHB+

0

2

4

0.3 0.6 0.9
Fraction of Budget

SH
SH+

Figure 11: Results of regret (%) on test accuracy for optimizing on Fashion-MNIST.

23

H Experiments on Other Iterative Learners

We focus on DNNs in our experiments because (1) DNNs are among the most influential models
today and (2) DNN training takes a long time so selecting the optimal hyperparameters is a critical
concern, making the problem more pressing.

Even though we focus on DNN methods, our approach can be applied to other iterative learners. We
consider a ridge regression problem trained with stochastic gradient descent on this objective function
with step size .01/

√
2 + T . The l2 penalty hyperparameter λ ∈ [10−6, 100] was chosen uniformly

at random on a log scale per trial. We use the Million Song Dataset year prediction task [27] with
the same experiment settings as in the original SH paper. We show the results of ridge regression on
"SH" and "SH+". Figure 12 shows the Top-1 Rank results and the regret of the test error for different
fractions of budgets. The average results of 30 repetitions are reported. The benefits are obvious:
SH+ obtained an average of over 40% improvement over the SH.

0.03 0.2 0.4 0.6 0.8 1
Fraction of Budgets

4

7

To
p

1
R

an
k SH

SH+

0.03 0.2 0.4 0.6 0.8 1
Fraction of Budgets

0
0.01
0.02
0.03
0.04
0.05

R
eg

re
t

SH
SH+

Figure 12: Results of Top-1 Rank and Regret on test error for optimizing ridge regression.

Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1, Section 3.4, and Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We state them at the end of Section 5. The key characteristic of the UQ method
is the necessity to rank multiple learners during the HPO process. Gradient-based HPO
methods [30], for instance, may not benefit from our UQ-guided scheme because of their
sequential properties. One limitation of this paper is that it is mostly suitable for iterative
learners, and needs adaptations for other learners: To go beyond, it could be, for instance,
applied to the model selection work in previous studies [31] that use training dataset size as
the budget dimension. In this case, the learner does not need to be iterative; the selection

24

is based on the validation loss history trained with incremental dataset sizes. The UQ
component can still guide the configuration selection and budget allocation in the HPO
process.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] .
Justification: See Section 3.4 and appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include them in Section 4 and the supplemental material.
Guidelines:

25

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include them in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conducted 30 repetitions for the experiments. For the right two columns in
Figure 3, besides the average results of the repetitions, we also report the interval between
the 30th and 70th percentiles.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: See Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.

27

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As stated in Section 5, our work is a general algorithm aiming at optimizing
HPO and belongs to a foundational research; its societal impacts are neutral.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

28

https://neurips.cc/public/EthicsGuidelines

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the creators for the existing assets and included the name of the
license. See Section 4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: See supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

29

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Background and Related Work
	Uncertainty Quantification (UQ)-Guided Hyperparameter Optimization
	Uncertainty in Iterative Machine Learning
	Quantify Uncertainty and the Impact
	UQ-Guided Scheme
	Confidence Curve Derived from Uncertainty Quantification
	Discarding Mechanism

	Theoretical Analysis
	UQ-Guided HPO Family

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Method Details
	Formulation of Confidence Curve
	Computing
	Pseudo-code for UQ-Guided Hyperparameter Optimization (SH+)
	Pseudo-code for UQ-Guided Hyperparameter Optimization (HB+)
	Pseudo-code for UQ-Guided Hyperparameter Optimization (BOHB+)
	Pseudo-code for UQ-Guided Hyperparameter Optimization (SS+)

	More Theoretical Analysis
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 4

	Computational Details
	Additional Related Work
	Benchmark and Dataset Information
	 More Results on Experiments
	Experiments on Other Iterative Learners

